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Abstract. How do we compare the complexities of various classes of struc-

tures? The Turing ordinal of a class of structures, introduced by Jockusch and
Soare, is defined in terms of the number of jumps required for coding to be

possible. The back-and-forth ordinal, introduced by Montalbán, is defined in

terms of Σα-types. The back-and-forth ordinal is (roughly) bounded by the
Turing ordinal. In this paper, we show that, if we do not restrict the allow-

able classes, the reverse inequality need not hold. Indeed, for any computable

ordinals α ≤ β we present a class of structures with back-and-forth ordinal α
and Turing ordinal β. We also present an example of a class of structures with

back-and-forth ordinal 1 but no Turing ordinal.

1. Introduction

When we speak of the Turing degree of a particular presentation of a computable
structure, we mean the Turing degree of the atomic diagram of that presentation,
where the atomic formulas have been placed into some reasonable correspondence
with N. The degree spectrum of a structure is the set of Turing degrees of all pre-
sentations (isomorphic copies with domain ω) of the structure. There has been a
significant body of work on studying what kinds of degree spectra are possible, ei-
ther in general, or restricted to various classes of structures. Knight [Kni86] showed
that the degree spectrum must be upward closed. When the degree spectrum has
a least degree d, we can consider d to be the complexity of the structure. How
do we measure the complexity of a class of structures? When is one class more
complicated than another? There is a sense in which the class of graphs appears
to be the most complicated, since it is possible to make a rather large mess in a
graph. It is easy to have any degree be the least degree in the degree spectrum of
a graph. Indeed, graphs are universal for many properties in computable structure
theory, as explained in [HKSS02]. In fact, we might rather view the class of graphs
as “easy” because we can realize anything we want with a graph. In this sense the
class of linear orderings could be viewed as more difficult than that of graphs, as
Richter has shown that 0 is the only degree that can be realized as the least degree
in the degree spectrum of a linear order.

We will formally define the back-and-forth ordinals of Montalbán, and the Turing
ordinals of Jockusch in a moment. For now, note that graphs have uncountably
many existential types, and that every degree can be realized as the least degree of
the degree spectrum of a graph. This means that they have back-and-forth ordinal
1, and Turing ordinal 0. Montalbán showed [Mon12] that the class of linear orders
has countably many Σ2-types, but uncountably many Σ3-types, so that they have
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back-and-forth ordinal 3. Knight [Kni86] improved Richter’s result on linear orders
to show that 0′ is the only degree that can be realized as the least degree in the
collection of the jumps of the degrees in the degree spectrum of a linear order, and
in that same paper showed that any degree d > 0′′ can be realized as the least
degree of the double jumps of degrees in the degree spectrum of a linear order,
thereby showing that the class of linear orders has Turing ordinal 2. Thus under
either of these measures, the class of linear orders is seen to be more complex than
the class of graphs.

We follow the notations and conventions for computable structure theory as in
the book by Ash and Knight [AK00]. In this paper, all structures considered are
countable.

1.1. The Back-and-forth ordinal. Consider a class of structures, K. Given two
structures A and B from K, not necessarily distinct, and two fixed finite tuples ~a

and ~b from the respective structures, we can ask how difficult it is to distinguish

the tuple ~a in A from the tuple ~b in B. If A and B are isomorphic, with an

isomorphism mapping ~a to~b, then the tuples are indistinguishable. If not then, from
a complexity point of view, we can ask how difficult it is to separate the two tuples.
More precisely, what is the minimal complexity of a formula ϕ witnessing this
distinction? This idea is represented in the notion of the back-and-forth relations.

Definition 1.1 (Back-and-forth relations [AK00]). Let A be a countable structure
in a finite language and let ~a be a finite tuple from A. Let B be another structure

in the same language as A and let ~b be a tuple from B of the same length as ~a. For
all ordinals α, define the back-and-forth relations, ≤α, inductively as follows:

(1) (A,~a) ≤0 (B,~b) if and only if ~a and ~b satisfy the same atomic formulas in
A and B respectively, and

(2) for γ ≥ 1, (A,~a) ≤γ (B,~b) if and only if for each ~d ∈ B and each 0 ≤ β < γ

there exists ~c ∈ A such that (B,~b, ~d) ≤β (A,~a,~c), where ~c and ~d are of the
same length.

Note that this definition includes the case where ~a and ~b are both the empty tuple.
We will denote (A, ∅) ≤α (B, ∅) simply by A ≤α B.

There is a known relationship between the back-and-forth relations on structures
in a given language and the infinitary formulas in the same language.

Theorem 1.2 (Ash and Knight [AK00]). Let A and B be structures in the same

language and let ~a and ~b be finite tuples, from A and B respectively, with |~a| = |~b|.
Then, for all ordinals α, the following are equivalent.

(i) (A,~a) ≤α (B,~b)
(ii) Every Σα formula true of ~b in B is also true of ~a in A.

(iii) Every Πα formula true of ~a in A is also true of ~b in B.

We write (A,~a) ≡γ (B,~b) if both (A,~a) ≤γ (B,~b) and (B,~b) ≤γ (A,~a) and get the
following back-and-forth structures defined in [Mon12]:

Definition 1.3 (Montalbán). Let K be a class of structures. Let

bfγ(K) =
{(A,~a) : A ∈ K,~a ∈ A}

≡γ
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where the equivalence classes in bfγ(K) are partially ordered by ≤γ in the obvious
way.

It is not hard to see that (A,~a) ≤α (B,~b) implies (A,~a) ≤β (B,~b) for all β ≤ α.
To measure the complexity of a class of structures, we are interested in the number
of back-and-forth equivalence classes and, in particular, the first ordinal α where
there are a large number of different tuples up to ≡α-equivalence.

Definition 1.4 (Montalbán). The back-and-forth ordinal of a class K is the least
ordinal α such that bfα(K) is uncountable, if such an α exists.

By Theorem 1.2, the ≡α-equivalence classes correspond to Σα-types. It is easy
to see that there are uncountably many existential types realized by tuples from
graphs, and it follows that the back-and-forth ordinal of the class of graphs is 1.
Montalbán analyzed the back-and-forth classes of equivalence structures and linear
orderings in [Mon12] and showed that the back-and-forth ordinal of these classes
are 2 and 3 respectively.

1.2. Turing ordinal. We now present a computability-theoretic method of com-
paring classes of structures based on the ease or difficulty of coding information
into structures of the given class, as introduced by Jockusch and Soare.

Definition 1.5 (Jockusch). Let A be a structure. For any computable ordinal α,
we define the following.

(1) The αth jump degree spectrum of A is defined as

Spec(α)(A) = {deg(B)(α) : B ∼= A}.

(2) We say that A has αth jump degree d if d is the least member of Spec(α)(A).

Definition 1.6 (Jockusch and Soare). Let T be a first order theory which has
continuum many pairwise nonisomorphic countable models. We call a computable
ordinal α the Turing ordinal of T if

(i) every degree ≥ 0(α) is the αth jump degree of a model of T , and

(ii) for all β < α, the only possible βth jump degree of a model of T is 0(β).

There are many natural questions that arise from this definition. One that is of
particular interest in this paper is the following: Is every computable ordinal the
Turing ordinal of some class of structures? And if so, how complicated must the
theory of such a class be? It has been known since 1994 that, for each ordinal α
satisfying 0 ≤ α ≤ ω, there is a finitely axiomatizable class having Turing ordinal α.
In Section 3, following the work of Ash and Knight in [AK90], we will define classes
of structures having Turing ordinal α for all computable ordinals α. These will be
classes of linear orderings. We will not discuss their axiomatizations, except to note
that they are axiomatizable via computable infinitary formulas, the complexity of
which increase as a function of α. For α > ω, it is still unknown whether or not
there is a finitely axiomatizable class with Turing ordinal α.

1.3. Relating the two ordinals. We will see how the back-and-forth ordinal can
provide computability-theoretic information about the given class of structures. In
particular, it will help to describe the collection of sets that can be coded into
structures in the class. We now present the necessary background for this analysis.
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Definition 1.7 (Montalbán [Mon12]). We say that a set X ⊆ ω is coded by a
structure A if X is c.e. in B for all B ∼= A. More generally, X ⊆ ω is coded by the
nth jump of a structure A if X is c.e. in B(n) for all B ∼= A.

Montalbán also defined a slightly weaker notion of coding requiring only that
the set be left-c.e. rather than c.e. in each copy.

Definition 1.8. Let X ⊆ ω.

(1) For σ, τ ∈ 2<ω, we write σ ≤L τ if σ ⊆ τ or for the least n such that σ(n) and
τ(n) are both defined and σ(n) 6= τ(n), we have τ(n) = 1.
Note that ≤L is total order on 2<ω.

(2) Let σ ∈ 2<ω and X,Y ∈ 2ω. We write σ ≤L X if σ ⊆ X or there exists a least
n such that σ(n) is defined and σ(n) 6= X(n) = 1. If there is a least n such
that σ(n) is defined and 1 = σ(n) 6= X(n) then we write X ≤L σ. Finally, we
write X ≤L Y if for the least n such that X(n) 6= Y (n) we have Y (n) = 1.
Note that ≤L is total order on 2≤ω.

(3) We will write <L if we have ≤L but not equality. Observe that for any σ ∈ 2<ω

and X ∈ 2ω we have either σ <L X or X <L σ. Let XL := {σ ∈ 2<ω : σ <L
X}. We say that X is left-c.e. if the set XL is c.e.

Definition 1.9 (Montalbán [Mon12]). We say that a set X ⊆ ω is weakly coded by
a structure A if X is left-c.e. in B for all B ∼= A. More generally, X ⊆ ω is weakly
coded by the nth jump of A if X is left-c.e. in B(n) for all B ∼= A.

We will also be using the notion of enumeration reducibility. Informally, we want
A to be enumeration reducible to B if we can computably enumerate A from an
enumeration of B, where the enumeration of A does not depend on the order in
which the set B is enumerated. For a formal treatment, we need a coding of pairs
n,D where n is a natural number and D is a finite set of natural numbers. Fix
an effective list of all finite sets of natural numbers, say D0, D1, D2, . . . , and let
〈n,Dj〉 = 〈n, j〉.

Definition 1.10 ([Coo04]). We say that a set A is enumeration reducible to a set
B, denoted A ≤e B, if for some c.e. set Wi,

n ∈ A ⇐⇒ (∃ finite D ⊆ B)[〈n,D〉 ∈Wi].

If we have A ≤e B via the set Wi then we write A = ΨB
i .

Recall the following equivalent definition of enumeration reducibility due to Selman
[Sel71]:

A ≤e B ⇔ (∀X)[B is c.e. in X → A is c.e. in X].

A result of Knight’s relates the two previous definitions:

Theorem 1.11 (Knight). Let A be a structure. A set X ⊆ ω is coded by the nth

jump of A if and only if X is enumeration reducible to the Σcn+1-type of some tuple
~a ∈ A.

Note that the Σcn+1-type of ~a in A is the set of Σcn+1 formulas true of ~a in A. The
proof of the n = 0 case can be found in [AK00] and this proof can be generalized
to obtain the above result for all n ≥ 0.
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1.4. Size of the n-back-and-forth structure. It follows from Theorem 1.11 that
if there are only countably many ≡n+1-classes of tuples from K, then only countably
many sets can be coded by nth jumps of structures in K. It follows from a result of
Silver’s in [Sil80] that, if K is Borel class — i.e. a class axiomatizable via countably
many Lω1,ω formulas — then bfn(K) is either countable or has size continuum.
The following results from [Mon12] characterize exactly when each of these two
sizes occur, relative to the difficulty of coding into structures of the given Borel
class.

Theorem 1.12 (Montalbán). Let K be a Borel class of structures, then the follow-
ing are equivalent.

(i) |bfn(K)| = ℵ0
(ii) There exists an oracle relative to which the only sets of numbers that can be

coded by the (n− 1)st jump of a structure in K are the sets computable in the
oracle.

Corollary 1.13 (Montalbán). Let K be class of countable structures with |bfn+1(K)| =
ℵ0. If K has Turing ordinal m then n < m (and hence n+ 1 ≤ m).

Proof. Suppose that bfn+1(K) is countable. Then by Theorem 1.12, we can only
code countably many sets into the nth jumps of structures in K. It follows that
structures in K cannot have arbitrary nth jump degree. Hence the Turing ordinal
(if it exists) must be strictly bigger than n by definition. �

Corollary 1.14. If K has back-and-forth ordinal n + 1 and the Turing ordinal of
K is m then n ≤ m.

Proof. If K has back-and-forth ordinal n+1 then in particular bfn(K) is countable.
�

Montalbán extended this result to infinite computable ordinals using the follow-
ing result of Knight’s.

Theorem 1.15 (Knight). Let α be a computable ordinal. If S is c.e. in ∆0
α(B) for

all B ∼= A then S is enumeration reducible to the Σcα-type of some tuple ~a ∈ A.

Theorem 1.15, along with its converse, appears without proof in [Kni98]. For a
full proof of Theorem 1.15 see Knoll’s thesis [Kno13].

Corollary 1.16. Let K be a class of countable structures. If the Turing ordinal,
γ, of K exists and satisfies ω ≤ γ < ωCK1 , then the back-and-forth ordinal of K is
at most γ.

Montalbán hoped to obtain a complete characterization of the back-and-forth
ordinal in terms of coding and, along these lines, proved the following.

Theorem 1.17 (Montalbán). Let K be a Borel class of structures, then the follow-
ing are equivalent.

(i) |bfn(K)| = 2ℵ0

(ii) Relative to some fixed oracle, every set can be weakly coded into the (n− 1)st

jump of some structure in K.

To have a proper dichotomy in Theorems 1.12 and 1.17, we would need to replace
weak coding in Theorem 1.17 with coding, but unfortunately, this cannot be done.
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It is clear that the direction (ii) ⇒ (i) remains true if we replace the statement
with coding, but the direction (i)⇒ (ii) is false. This is not as obvious. A class of
structures defined by Montalbán (Example 2.17 in [Mon10]) exhibits a class with
uncountably many ≡1 classes, but where arbitrary coding is not possible, even
relative to any fixed oracle. Indeed, his example gives a class of structures with
back-and-forth ordinal 1 and no Turing ordinal. We verify his example in Section
2.

Corollary 1.18. There is a class of structures K such that |bf1(K)| = 2ℵ0 but such
that there is no fixed oracle relative to which every set can be coded in some A ∈ K.

1.5. Lower Bound. After [Mon12], we had the following concrete examples of
classes where both the Turing ordinals and back-and-forth ordinals were known, or
easy to calculate:

Class of structures Turing ordinal Back-and-forth ordinal

Abelian groups 0 [Ric81] 1
Graphs 0 [Ric81] 1

Algebraic fields 0 [CHS07] 1
Partial orderings 0 [Ric81] 1

Lattices 0 [Ric81] 1
Equivalence structures 1 [Ric81], [Mon12] 2 [Mon12]

Linear orderings 2 [Ric81], [Kni86] 3 [Mon12]
Boolean algebras ω [JS94] ω [AK00]

As we can see in the table, every case where the ordinals are finite satisfies that
the back-and-forth ordinal is equal to the successor of the Turing ordinal. In the
only infinite case, we have equality. It is natural to ask whether there is a reason
for this pattern. By Corollary 1.14, for every finite case, the successor of the Turing
ordinal is an upper bound for the back-and-forth ordinal, and by Corollary 1.16,
in the infinite case, the Turing ordinal is an upper bound for the back-and-forth
ordinal. This leads to the following questions:

Question 1.19. If the back-and-forth ordinal of a Borel class of structures, K, is
n+ 1, must K have Turing ordinal n?

Question 1.20. If the back-and-forth ordinal of a Borel class of structures, K, is
α ≥ ω, must K have Turing ordinal α?

For a negative answer to Question 1.19, we can look at a well-known class. It is
known that the Turing ordinal of the class of models of Peano arithmetic (PA) is
1. (A standard model of PA has degree 0 and Proposition 3.4 from [Kni98] asserts
that any nonstandard model of PA has no degree. The fact that every jump degree
is realizable is explained in the Introduction of [Kni86]). A quick analysis of the
existential types of models of PA shows that the back-and-forth ordinal of the class
is also 1.

In Section 3, we will provide a negative answer to Question 1.20. More precisely,
for computable successor ordinals 3 ≤ α ≤ β, we will give a class of linear orderings
Kα,β with Turing ordinal β (or β − 1 if finite) and back-and-forth ordinal α.
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2. Class with no Turing ordinal

In this section we present a class of structures, defined by Montalbán in [Mon10],
having back-and-forth ordinal 1 but no Turing ordinal. We take this opportunity
to fill in some proofs about properties of Montalbán’s class.

Definition 2.1 (Montalbán). Let L = {U, V, f, {cσ : σ ∈ 2<ω}} where U and V
are unary relations, f is a unary function and each cσ is a constant. Let KW be
the class of countable L structures, A, that satisfy the following properties:

(i) U and V partition |A|
(ii) x is named by a constant iff x ∈ V

(iii) If σ 6= τ then cσ 6= cτ
(iv) rng(f) ⊆ V
(v) f �U is 1-1
(vi) f �V = id, and

(vii) If σ <L τ and (∃x ∈ U)[f(x) = cτ ] then (∃x ∈ U)[f(x) = cσ].

For each A ∈ KW , consider the set RA := {σ : A |= (∃x ∈ U)[f(x) = cσ]}. Recall
that RA is coded in A if and only if Spec(A) ⊆ {X : RA is c.e. in X}.

Proposition 2.2. For every A ∈ KW , Spec(A) = {X : RA is c.e. in X}.

Proof. Clearly, RA is c.e. in A. Suppose B ∼= A. Then

RA = {σ : A |= (∃x ∈ U)[f(x) = cσ]} = {σ : B |= (∃x ∈ U)[f(x) = cσ]} = RB.

As RB is c.e. in B, so is RA, and hence RA is coded in A.
It remains to show that Spec(A) ⊇ {X : RA is c.e. in X}. Suppose that RA is

c.e. in X. We want to build an X-computable copy B of A. Let {σ0, σ1, σ2, . . .} be a
computable listing of all strings in 2<ω. By properties (ii) and (iii), the set V must
be infinite. First, let Y = {b0, b1, b2, . . .} be a (coinfinite) computable subset of ω,
declare bi ∈ V B for all i ∈ ω and let cBσi

= bi. Let {RsA}s∈ω be an X-computable
enumeration of RA. At stage s, use X to compute RsA and let

RsA −Rs−1A = {σi1 , σi2 , . . . , σik}.

Take the first k numbers that are not in Y and not yet in the domain of fB, say
a1, a2, . . . , ak. Declare aj ∈ UB for all j = 1, . . . , k, and let fB(aj) = bij and

fB(bij ) = bij .
By construction, the structure B is computable from X and satisfies properties

(i)-(vii). Let’s define a map, π, between A and B as follows: For each v ∈ V A, we
have v = cAσ for some σ. Let π(v) = π(cAσ ) = cBσ . For each u ∈ UA, we must have
fA(u) = v = cAσ for some v ∈ V A and some σ ∈ 2<ω. There must exist exactly
one ũ ∈ UB such that fB(ũ) = cBσ and so we let π(u) = ũ. This map, π, is an
isomorphism between A and B. �

Proposition 2.3 (Montalbán). Every set D ⊆ ω is weakly coded in some A ∈ KW .

Proof. Let D ⊆ ω. Consider the set E = {σ : σ <L D} = {σ0, σ1, σ2, . . .}. We will
define the structure A as follows: Let U consist of the even numbers, and V the
odd numbers. Let cAσi

= 4i+ 1 and for σ 6∈ E, let cAσ = 4σ + 3 (under some coding

of 2<ω into ω). Let fA(2i + 1) = 2i + 1 and fA(2i) = 4i + 1. Then RA = E. As
RA = E is coded in A, the set D is weakly coded in A. �
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By Therorem 1.17, we must have |bf1(KW )| = 2ℵ0 . In particular, the back-and-
forth ordinal of KW is 1.

Theorem 2.4. There is a set D ⊂ ω such that D is not coded in any structure
A ∈ KW .

First note that, for any set D and any A ∈ KW , we have

D is coded in A ⇔ Spec(A) ⊆ {X : D is c.e. in X}
⇔ {X : RA is c.e. in X} ⊆ {X : D is c.e. in X}
⇔ (∀X)[RA is c.e. in X → D is c.e. in X]

⇔ D ≤e RA
Therefore, to prove Theorem 2.4, we need to show that⋃

A∈K
{D : D ≤e RA} 6= 2ω.

In the proof of Proposition 2.3, we show that for every X ⊆ ω there is a structure
A ∈ KW such that RA = XL. Conversely, for every structure A ∈ KW , we have
RA = XL for some X ⊆ ω. It follows from this observation that⋃

A∈K
{D : D ≤e RA} =

⋃
X⊆ω

{D : D ≤e XL}.

We will prove Theorem 2.4 by showing that
⋃
X⊆ω

{D : D ≤e XL} 6= 2ω.

We wish to build a set D such that D 6≤e XL for all X ⊆ ω. We will build D
satisfying the following requirements, for all e ∈ ω:

Re : D 6= ΨXL
e for all X ⊆ ω.

Given a set X ⊆ ω, finite subsets of XL will be finite sets of strings {σ1, . . . , σk}
such that σi <L X for all 0 ≤ i ≤ k. As such, ~σ := {σ1 . . . , σk} is a subset of XL

if and only if the “rightmost” string in ~σ is in XL. Let R(~σ) := {σ ∈ ~σ : τ ≤L
σ for all τ ∈ ~σ} denote the rightmost string of ~σ.
Recall that we write D = ΨXL

e if for all n ∈ ω,

n ∈ D ⇐⇒ (∃ finite ~σ ⊆ XL)[〈n, ~σ〉 ∈We].

To meet Requirement Re: We will use the numbers 〈0, e〉 and 〈1, e〉 to meet the
requirement Re.
Let Se0 := {~σ : 〈〈0, e〉, ~σ〉 ∈ We} and let Se1 := {~σ <L Se0 : 〈〈1, e〉, ~σ〉 ∈ We}, where
we write “~σ <L S” for some set S ⊆ 2<ω if R(~σ) <L R(~τ) for all ~τ ∈ S.

Definition 2.5. We now define D as follows, depending on which, if any, of the
sets Se0 and Se1 are empty:

(1) If Se0 = ∅ then set D(〈0, e〉) = 1.
(2) If Se0 6= ∅ and Se1 = ∅, then set D(〈0, e〉) = 0 and D(〈1, e〉) = 1.
(3) If Se0 6= ∅ and Se1 6= ∅, then set D(〈0, e〉) = 1 and D(〈1, e〉) = 0.

For any x for which D(x) has not been defined by the above conditions, set D(x) =
0.

Lemma 2.6. The set D defined above satisfies D 6≤e XL for all X ⊆ ω.
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Proof. We will show that Re is met for each e ∈ ω by cases:

Case 1 (Se0 = ∅): If Se0 is empty then, by definition of Se0 , we have ΨXL
e (〈0, e〉) = 0

for all X ⊆ ω. So since D(〈0, e〉) = 1 we satisfy Re.

Case 2 (Se0 6= ∅ and Se1 = ∅): We have two subcases:

(1) There is some ~τ ∈ Se0 satisfying R(~τ) <L X:

In this case we have ~τ ⊂ XL with 〈〈0, e〉, ~τ〉 ∈We and hence

ΨXL
e (〈0, e〉) = 1 6= 0 = D(〈0, e〉).

(2) X <L R(~τ) for all ~τ ∈ Se0 :

In this case, for every ~ρ ∈ 2<ω, we must have either ~ρ 6⊆ XL or 〈〈1, e〉, ~ρ〉 /∈We.
Suppose for a contradiction that we have both ~ρ ⊂ XL and 〈〈1, e〉, ~ρ〉 ∈ We.
Then we have R(~ρ) <L X <L R(~τ) for all ~τ ∈ Se0 , or in other words, ~ρ <L
Se0 . As 〈〈1, e〉, ~ρ〉 ∈ We, it follows that ~ρ ∈ Se1 = ∅ which is a contradiction.
Therefore we have 〈〈1, e〉, ~ρ〉 /∈We for all ~ρ ⊆ XL and hence ΨXL

e (〈1, e〉) = 0 6=
1 = D(〈1, e〉).

Case 3 (Se0 6= ∅ and Se1 6= ∅): Let Se = Se0 ∪ Se1 . Again we have two subcases:

(1) There is some ~σ ∈ Se such that R(~σ) <L X:

If ~σ ∈ Se1 , then D(〈1, e〉) = 0 6= 1 = ΨXL
e (〈1, e〉) and we are done. If ~σ ∈ Se0 ,

then as Se1 6= ∅, we can choose a string ~τ ∈ Se1 such that ~τ <L ~σ <L X and
hence ~τ ⊂ XL and 〈〈1, e〉, ~τ〉 ∈ We. Thus we again have D(〈1, e〉) = 0 6= 1 =
ΨXL
e (〈1, e〉).

(2) X <L R(~σ) for all ~σ ∈ Se:

We will show in this case that 〈〈0, e〉, ~τ〉 /∈ We for all ~τ ⊂ XL. Suppose that
~τ ⊂ XL. Then we have R(~τ) <L X and hence R(~τ) <L X <L R(~σ) for
all ~σ ∈ Se. In particular, we have R(~τ) <L R(~σ) for all ~σ ∈ Se0 and so
~τ /∈ Se0 . The only way we could have ~τ /∈ Se0 is if 〈〈0, e〉, ~τ〉 /∈ We. So we have
ΨXL
e (〈0, e〉) = 0 6= 1 = D(〈0, e〉).

In all cases, Re is met. �

Remark 2.7. It should be noted that the proof of Theorem 2.4 can be relativized
to include an arbitrary fixed oracle. In other words, if we fix an oracle Y , then we
can build a set D such that D is not coded in any structure in KW , even relative to
the oracle Y . We amend the previous construction as follows: We write A ≤Ye B if
there is some e such that for all n ∈ ω,

n ∈ A⇐⇒ (∃ finite D ⊆ B)
[
〈n,D〉 ∈WY

e

]
.

Then for any structure A ∈ KW , we have

D is coded in A relative to Y ⇔ (∀X)[RA is c.e. in X → D is c.e. in X⊕Y ]⇔ D ≤Ye RA.

The first equivalence follows immediately from previous work, and the second equiv-
alence is a relativization of Selman’s theorem. Now we can prove (the relativized
version of) Theorem 2.4 by fixing any oracle Y , and building a set D such that
D 6≤Ye XL for all X ⊆ ω. The construction and verification are the same, except
that every occurrence of the set We must be replaced by the set WY

e .
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Corollary 2.8. There is a class of structures K such that |bf1(K)| = 2ℵ0 but such
that there is no fixed oracle relative to which every set can be coded in some A ∈ K.

Proof. Let KW be the previously defined class. As every set can be weakly coded
into some A ∈ KW then, by Theorem 1.17, we must have |bf1(KW)| = 2ℵ0 .
The set D from Definition 2.5 is not coded in any A ∈ KW (even relative to a fixed
oracle) by Lemma 2.6, Remark 2.7 and earlier observations. �

Corollary 2.9. The Turing ordinal of the class KW , if it exists, is strictly greater
than 0.

Proof. Let D be the set we constructed in Theorem 2.4. Then there is no structure
A ∈ KW of degree d = deg(D). Since there is at least one degree that cannot be
realized as the degree of a structure in KW , the Turing ordinal cannot equal 0. �

The following observation of Joe Miller shows that the class KW has no Turing
ordinal.

Proposition 2.10. The Turing ordinal of the class KW , if it exists, is equal to 0.

Proof. Let Z be the complement of ∅′ and letA be the KW structure with RA = ZL.
Then we have

Spec(A) = {deg(X) : ZL is c.e. in X} = {deg(X) : Z is left-c.e. in X} = {deg(X) : X ≥T ∅′}
and hence A has degree 0′. In fact we can realize any c.e. degree in the same
manner. Since there exist structures in KW having degree other than 0, the Turing
ordinal of KW , if it exists, must be equal to 0. �

3. Arbitrary back-and-forth and Turing ordinals

In the paper [AK90], Ash and Knight showed that for each successor ordinal
α such that 3 ≤ α < ωCK

1 , there is a linear ordering which has αth jump degree
but no γth jump degree for γ < α. This was actually a weakening of an earlier
result from [AJK90], but the orderings they used are useful to us. We will use the
linear orderings from [AK90], and the results about them, to show that for each
computable successor ordinal α ≥ 3 there exist classes of linear orderings Kα with
Turing ordinal α (or α− 1 if finite) and back-and-forth ordinal α. For computable
successor ordinals 3 ≤ α ≤ β we will give a class of linear orderings Kα,β with
Turing ordinal β (or β − 1 if finite) and back and forth ordinal α.

For a fixed computable successor ordinal α ≥ 3, let λ and µ be discrete orderings
such that µ ≤α λ but λ 6≤α µ. These exist, see [AK90] or [Ash86], indeed they
can be taken to be of the form ωβ or ωβ+1 + ωβ . Then for any S ⊆ ω, let Lα(S)
be the shuffle sum of orderings of types η + 1 + λ + n + 1 + η for n ∈ S ⊕ S and
η + 1 + µ+ n+ 1 + η for all n ∈ ω. In [AK90] they show that, for infinite α,

Spec(Lα(S)) = {deg(D) | S ≤T D(α)}
and it follows that, for α finite, Spec(Lα(S)) = {deg(D) | S ≤T D(α−1)}.

For a computable successor ordinal α ≥ 3, let Kα = {Lα(S) | S ⊆ ω}.

Lemma 3.1. Let α be a computable ordinal. If d ≥ 0(α) and S ∈ d then the set
C := {deg(D)(α) : S ≤T D(α)} has least element d.

Proof. By jump inversion there is a set D0 such that S ≡T D
(α)
0 and so D

(α)
0 ≡T

S ∈ C. It is clear that S is a lower bound for the degrees in C by definition. �
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With the following result, we can show that Kα has Turing ordinal α (or α − 1
if finite).

Theorem 3.2 (Ash, Jockusch and Knight [AJK90]). Let γ be a computable ordinal

and let S ⊆ ω. If B ≤T D(γ) for all D satisfying S ≤T D(γ+1) then B ≤T 0(γ).
Hence if S 6≤T 0(γ+1), then the set {D(γ) : S ≤T D(γ+1)} has no element of least
degree.

Corollary 3.3. If α ≥ 3 is a computable successor ordinal then the class Kα has
Turing ordinal α (α− 1 if finite).

Proof. The following proof assumes α is infinite; the proof for α finite is similar
but off by 1 because the degree spectrum is off by 1. For part (i) of Definition 1.6,

suppose d ≥ 0(α). Let S ∈ d, and consider Lα(S) ∈ Kα. Then since Spec(Lα(S)) =
{deg(D) | S ≤T D(α)}, it follows that Spec(Lα(S)) has αth jump degree by Lemma
3.1. It remains to show that part (ii) of the definition is satisfied. In other words,
we need to show that for any S ⊆ ω and any γ < α, if C := {D(γ) : S ≤T D(α)}
has an element of least degree then it is 0(γ). If S ≤T 0(α) then 0(γ) is least in C.
If S 6≤T 0(α), then since α is a successor ordinal and γ < α, S 6≤T 0(γ+1). So by
Theorem 3.2, C has no element of least degree. �

We now show that the back-and-forth ordinal of Kα is α.

Lemma 3.4. Let A be the shuffle sum of linear orderings Ai for i ∈ ω and let B
be the shuffle sum of linear orderings Bi for i ∈ ω such that Bi ≤α Ai for all i ∈ ω.

For any β ≤ α, if ~a = ~a1 ∪ ~a2 ∪ . . . ∪ ~ak ∈ A and ~b = ~b1 ∪~b2 ∪ . . . ∪~bk ∈ B satisfy

(i) ~ai < ~ai+1 (that is, the greatest member of ~ai is less than the least member of

~ai+1 under the ordering on A) and ~bi <~bi+1 for 1 ≤ i ≤ k − 1,

(ii) |~ai| = |~bi| for i = 1, . . . , k,
(iii) each of the tuples ~a1, . . . ,~ak lie in a distinct Ai block in A and each of the

tuples ~b1, . . . ,~bk lie in a distinct Bi block in B (with slight abuse of notation,

we assume ~ai ∈ Ai and ~bi ∈ Bi), and

(iv) (Bi,~bi) ≤β (Ai,~ai) for 1 ≤ i ≤ k
then (B,~b) ≤β (A,~a).

Proof. We will prove the lemma by induction on β for all orderings and tuples at

once. Let ~a and ~b be as above.
For n = 0: Since (Bi,~bi) ≤0 (Ai,~ai), the tuples ~ai and ~bi are ordered the same

way in Ai and Bi respectively. As ~a1 < ~a2 < . . . < ~ak and ~b1 < ~b2 < . . . < ~bk, we

have that ~a = ~a1 ∪ ~a2 ∪ . . . ∪ ~ak and ~b = ~b1 ∪~b2 ∪ . . . ∪~bk are ordered in the same
way in A and B respectively and hence (B,~b) ≤0 (A,~a).

Now assume 0 < β ≤ α and that the result holds for all γ < β and suppose

that we have tuples ~a and ~b satisfying (i) − (iv) for β. We wish to show that

(B,~b) ≤β (A,~a). Fix ~c ∈ A and γ < β. We need to find ~d ∈ B such that

(A,~a,~c) ≤γ (B,~b, ~d). For each i, let ~ci be the portion of ~c that lies in the same

Ai block as ~ai. Note that we could have ~ci = ∅. Since (Bi,~bi) ≤β (Ai,~ai) by

assumption, there exists a tuple ~di ∈ Bi such that (Ai,~ai,~ci) ≤γ (Bi,~bi, ~di).
Any part of ~c that does not lie in the same Ai block as one of the ~ai’s we deal

with separately. Let ~ej be the portion of ~c that lies together in some “new” Aj block
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in A. Choose a copy of Bj in B such that if ~ai < ~ej < ~ai+1 then ~bi < Bj <~bi+1, or

such that Bj is to the left (or right) of all ~bi if ej is to the left (or right) of all ~ai.
Such a copy exists since B is a shuffle sum. Since Bj ≤α Aj , there is some tuple
~fj ∈ Bj such that (Aj , ~ej) ≤γ (Bj , ~fj).

Now we have chosen ~d1 < ~d2 < . . . < ~dk and ~f1 < ~f2 < . . . < ~fl corresponding
to ~c1 < ~c2 < . . . < ~ck and ~e1 < ~e2 < . . . < ~el where l is some natural number
and some of the ~ci (and corresponding ~di) may be the empty tuple. Arrange the

tuples {(~ai ∪ ~ci), ~ej}1≤i≤k,1≤j≤l in A and {(~bi ∪ ~di), ~fj}1≤i≤k,1≤j≤l in B so that
they satisfy property (i). (Note: We already have properties (ii) and (iii) by
construction.) Recall that we have

(Ai,~ai,~ci) ≤γ
(
Bi,~bi, ~di

)
for 1 ≤ i ≤ k

and

(Aj , ~ej) ≤γ
(
Bj , ~fj

)
for 1 ≤ j ≤ l

which is property (iv). Let the tuple ~d include all ~di’s and ~fj ’s ordered correctly
relative to the corresponding ~ci’s and ~ej ’s in A. By the induction hypothesis, we

have (A,~a,~c) ≤γ (B,~b, ~d). This proves that (B,~b) ≤β (A,~a) as desired. �

Corollary 3.5. Let A be the shuffle sum of linear orderings Ai for i ∈ ω and let
B be the shuffle sum of linear orderings Bi for i ∈ ω. For any α, if Bi ≡α Ai for
all i ∈ ω, then B ≡α A.

Proof. We show B ≤α A. Fix ~a ∈ A and β < α. Decompose ~a as ~a1 < ~a2 < · · · < ~ak
where each tuple ~ai lies in a distinct Ai block in A. For i = 1, pick a copy of B1
in B (again, we abuse notation). Then there exists a tuple ~b1 ∈ B1 such that

(A1,~a1) ≤β (B1,~b1).

For i = 2, pick a copy of B2 in B such that ~b1 < B2. Then, similarly, there

is some tuple ~b2 such that (A2,~a2) ≤β (B2,~b2). We continue in this way to find
~b1,~b2, . . . ,~bk such that ~b = ~b1 ∪~b2 ∪ . . . ∪~bk and ~a satisfy properties (i)-(iv) from

Lemma 3.4. Thus (A,~a) ≤β (B,~b) and hence B ≤α A. �

Theorem 3.6. The back-and-forth ordinal of Kα is α.

Proof. By Corollary 1.14 (if α finite) or Corollary 1.16 (if α infinite), the back-and-
forth ordinal of each theory is at most α. To show that the back and forth ordinal

is exactly α, we define a countable structure L̂α and show that for any (Lα(S),~b),

there exists ~a ∈ L̂α such that (Lα(S),~b) ≡α−1 (L̂α,~a). Let An = η+1+µ+n+1+η,
and let Bn = η+1+λ+n+1+η. Since µ ≤α λ, we have An ≤α Bn, so in particular
An ≡α−1 Bn (by Theorem 1.2). Note that Lα(S) is the shuffle sum of orderings An
for all n ∈ ω and Bn for all n ∈ S ⊕ S. Let L̂α be the shuffle sum of the orderings

An and Bn for all n ∈ ω. Fix ~b ∈ Lα(S). Write ~b = ~b1 < ... < ~bk where each
~bi ∈ Cni

for some Cni
= Ani

or Cni
= Bni

. Choose ~a ∈ L̂α such that ~a1 < ... < ~ak,

~ai ∈ Cni and (Cni , ~ai)
∼= (Cni ,

~bi). The result now follows from Lemma 3.4. �

For computable successor ordinals 3 ≤ α ≤ β, let

Kα,β = {Lα(X) + 1 + Lβ(Y ) | Y 6≤T X(β) or (X ≤T ∅(α) and Y ≤T ∅(β))}.

We now compute the Turing ordinals and back-and-forth ordinals for Kα,β .
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Lemma 3.7. Spec(Lα(X)+1+Lβ(Y )) =
{

deg(D) : X ≤T D(α) and Y ≤T D(β)
}

.
(For finite ordinals, subtract 1.)

Proof. Without much loss of generality, assume α and β are infinite. Recall that
Spec(Lα(S)) = {deg(D) | S ≤T D(α)}. Let A = Lα(X) + 1 + Lβ(Y ) and suppose
we have B ∼= A with B ≤T D. Given the element separating the two orderings, we
can use B to build D-computable copies of Lα(X) and Lβ(Y ). From our knowledge

of their degree spectra we conclude that X ≤T D(α) and Y ≤T D(β).
Now suppose that X ≤T D(α) and Y ≤T D(β). Since X ≤T D(α), there a D-

computable copy B1 of Lα(X) and since Y ≤T D(β), there is a D-computable copy
B2 of Lβ(Y ). Then (with slight abuse of notation) B1 + 1 + B2 is a D-computable
copy of Lα(X) + 1 + Lβ(Y ). �

Given the above degree spectrum, we prove the following:

Theorem 3.8. Fix X,Y,B ⊆ ω, computable successor ordinals 3 ≤ α ≤ β, and let

C := {D : X ≤T D(α) and Y ≤T D(β)}.
If B ≤T D(β−1) for all D ∈ C then B ≤T X(β−1). Hence if Y 6≤T X(β), then
{D(β−1) : D ∈ C} has no element of least degree.

We will prove Theorem 3.8 using a generalization of the following claim of Ash,
Jockusch and Knight from [AJK90].

Proposition 3.9. Given Y ⊆ ω and a computable ordinal α, if B 6≤T ∅(α) then
there is a set A such that

(i) Y ≤T A⊕ ∅(α+1), and
(ii) B 6≤T A⊕ ∅(α).

By relativizing this result (easily) we get the following:

Corollary 3.10. Given any sets X,Y ⊆ ω and any computable ordinal α, if B 6≤T
X(α) then there is a set A such that

(i) Y ≤T A⊕X(α+1), and
(ii) B 6≤T A⊕X(α).

Recall that we have strong α-jump inversion:

Lemma 3.11 (Macintyre [Mac77]). For any computable ordinal α and any set X
such that X ≥T 0(α), there exists an α-generic set S such that S⊕0(α) ≡T S(α) ≡T
X.

By relativizing Theorem 3.11 we get the following.

Corollary 3.12. For any computable ordinal α, and any sets A,W such that A ≥T
W (α), there exists a set S ≥T W such that S ⊕W (α) ≡T S(α) ≡T A.

For our purposes, we need the following consequence of the previous corollary.

Corollary 3.13. For any sets A,X ⊆ ω and any computable ordinal α, there is a
set D such that (D ⊕X)(α) ≡T A⊕X(α).

Proof. As A⊕X(α) ≥T X(α), there is a set D ≥T X such that D(α) ≡T A⊕X(α),
by relativized jump inversion. As D ≥T X, we have D(α) ≡T (D ⊕ X)(α) ≡T
A⊕X(α). �
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With these results in hand, we can prove the main lemma needed for Theorem 3.8.

Lemma 3.14. Given X,Y ⊆ ω and any computable ordinal α, if B 6≤T X(α) then
there is a set D such that

(i) Y ≤T (D ⊕X)(α+1), and
(ii) B 6≤T (D ⊕X)(α).

Proof. Given X,Y and α, let A be as in Corollary 3.10. Given A,X and α, let D
be a set such that (D ⊕X)(α) ≡T A ⊕X(α), guaranteed by Corollary 3.13. Then
we have

Y ≤T A⊕X(α+1)

≤T (A⊕X(α))′

≡T
(
(D ⊕X)(α)

)′
≡T (D ⊕X)(α+1)

and so (i) is satisfied. As B 6≤T A⊕X(α) ≡T (D ⊕X)(α) we also have (ii). �

Finally we can prove Theorem 3.8:

Proof. (of Theorem 3.8) Consider the following two sets:

C := {D : X ≤T D(α) and Y ≤T D(β)}
and

C∗ := {D : Y ≤T (D ⊕X)(β)}.
Suppose that B ≤T D(β−1) for all D ∈ C. We claim that B ≤T (D ⊕X)(β−1) for
all D ∈ C∗. For any D ∈ C∗ we have Y ≤T (D⊕X)(β) by definition. Clearly, X ≤T
(D⊕X)(β) and hence D⊕X ∈ C. So, by assumption, we have B ≤T (D⊕X)(β−1).

Now we wish to prove that B ≤T X(β−1). Assume for a contradiction that
B 6≤T X(β−1). Then by Lemma 3.14, there is a set D satisfying Y ≤T (D ⊕
X)(β−1+1) = (D ⊕ X)(β) and B 6≤T (D ⊕ X)(β−1). In other words, we have
D ∈ C∗ with B 6≤T (D⊕X)(β−1) which is a contradiction. Therefore we must have
B ≤T X(β−1) as desired.

We will prove the contrapositive of the hence statement. Suppose that the set

{D(β−1) : D ∈ C} has an element of least degree, say D
(β−1)
0 . Then we have

X ≤T D
(α)
0 and Y ≤T D

(β)
0 and, for all D ∈ C we have D

(β−1)
0 ≤T D(β−1).

It follows from the statement of the theorem that D
(β−1)
0 ≤T X(β−1) and hence

D
(β)
0 ≤T X(β). Then, by the former statement, Y ≤T D(β)

0 ≤T X(β). �

With this result in hand we are ready to prove the main result:

Theorem 3.15. For any computable successor ordinals satisfying 3 ≤ α ≤ β, the
Turing ordinal of Kα,β is β (β − 1 if finite) and the back-and-forth ordinal of Kα,β
is α.

Proof. This result really has three parts so we will present each separately.

(1) For any d ≥ 0(β), there are sets X,Y ⊆ such that Lα(X)+1+Lβ(Y ) ∈ Kα,β
and Lα(X) + 1 + Lβ(Y ) has βth jump degree d:

Fix d ≥ 0(β). We will choose our sets X and Y as follows: Let X = ∅
and by jump inversion, choose Y to be any set such that Y ⊕ ∅(β) ≡T
Y (β) ∈ d. Then Lα(X) + 1 + Lβ(Y ) ∈ Kα,β , and we have X ≤T Y (α)
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and Y ≤T Y (β) and hence deg(Y ) ∈ Spec(Lα(X) + 1 + Lβ(Y )). So we

have d = deg(Y )(β) in the βth jump spectrum of Lα(X) + 1 + Lβ(Y ).
Now suppose that deg(D) ∈ Spec(Lα(X) + 1 + Lβ(Y )). By the spectrum

result, we must have Y ≤T D(β), and since ∅(β) ≤T D(β) as well, we have
Y (β) ≡T Y ⊕ ∅(β) ≤T D(β). So d = deg(Y )(β) is a lower bound for the βth

jump spectrum of Lα(X) + 1 + Lβ(Y ).

(2) No A ∈ Kα,β can have a γth jump degree other than 0(γ) for any γ < β:

Fix A ∈ Kα,β , and γ < β. If A ∼= Lα(X) + 1 + Lβ(Y ) for some X,Y

satisfying Y 6≤T X(β), then it follows from Theorem 3.8 that the set
{D(β−1) : D ∈ Spec(A)} cannot have a least degree, and hence the struc-
ture A cannot have a γth jump degree. If X ≤T ∅(α) and Y ≤T ∅(β), then
Spec(Lα(X)+1+Lβ(Y )) is all degrees, and so A has γth jump degree 0(γ).

(3) The back-and-forth ordinal of Kα,β is α:

Let A = Lα(X)+1+Lβ(Y ) ∈ Kα,β , and let B = Lα(X̃)+1+Lβ(Ỹ ) ∈ Kα,β .
For a tuple ~a ∈ A, let ~aX denote the portion of ~a in Lα(X), ~aY the
portion of ~a in Lβ(Y ), and let ~a1 = 1 if the 1 not belonging to Lα(X)
or Lβ(Y ) belongs to ~a, with ~a1 = 0 otherwise. Make the corresponding

definitions for ~b ∈ B. It is then easy to see that for any ~a ∈ A, ~b ∈ B
and any computable ordinal γ, we have (A,~a) ≡γ (B,~b) iff (Lα(X),~aX) ≡γ
(Lα(X̃),~bX̃), (Lβ(Y ),~aY ) ≡γ (Lβ(Ỹ ),~bỸ ), and ~a1 = ~b1.

Since there are no restrictions on the set X allowable for an order
Lα(X)+1+Lβ(Y ) to belong to Kα,β , it follows that the back-and-forth or-
dinal of Kα,β is at most α from the fact that Kα has back-and-forth ordinal
α. Since β ≥ α, it follows from the fact that Kα and Kβ have back-and-
forth ordinals α and β respectively that the back-and-forth ordinal of Kα,β
is at least α.

�

3.1. Limit ordinals. For limit ordinals α, we can define a class of linear orderings
Kα with Turing ordinal α. Unfortunately, the back-and-forth ordinal will be low.

Definition 3.16. Let α be a countable limit ordinal. A fundamental sequence of
α is an ω-sequence which converges to α.

Let α be a computable limit ordinal and (αn)n∈ω a fundamental sequence for α
consisting of only successor ordinals. Then, for any S ⊆ ω, let

Lα(S) :=
∑
n∈ω

(
1 + ζ + 1 + Lαn(Sn)

)
where Sn = {k : 〈n, k〉 ∈ S} and αn is the nth member of the fundamental sequence.

Using the degree spectra results from the previous sections, we have the following.

Lemma 3.17. Let α be a computable limit ordinal with computable fundamental
sequence (αn)n∈ω consisting of successor ordinals greater than 5. Then for any set
S ⊆ ω, we have:

Spec
(
Lα(S)

)
=
{

deg(D) : Sn ≤T D(αn) uniformly in n
}
.
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Proof. Suppose D is such that Sn ≤T D(αn) uniformly in n. Then, uniformly in
n, there is a D-computable copy of Lαn(Sn), so there is a D-computable copy of
Lα(S). Conversely, suppose there exists a D-computable copy of Lα(S). We note
that the only copies of ζ in Lα(S) are those that separate the Lαn

(Sn). (Note:
the discrete orderings used from [AK90] are built using copies of ωβ for various β,
and no copies of ζ.) So for each n, D(5) can locate the nth and (n + 1)st copy of
1 + ζ + 1 in Lα(S), and hence, endpoints between which there is a D-computable
copy of Lαn

(Sn). The result then follows from the uniformity in the proof of the
result on the degree spectra of the individual Lαn

(Sn). �

The following is a translation into our setting of a result (Theorem 4.6) from
[AJK90]. It shows that the class consisting of the Lα(S) orderings has Turing
ordinal at most α, if it exists.

Theorem 3.18 (Ash, Jockusch and Knight). Let α be a computable limit ordinal.
Then for every degree d ≥ 0(α), there exists a set S such that Lα(S) has αth jump
degree d.

Another result from [AJK90] will show that a particular subcollection of struc-
tures of the form Lα(S) forms a class with Turing ordinal α.

Theorem 3.19 (Lemma 1.4 from [AJK90] ). Let α be a computable limit ordinal
and let (αn)n∈ω be a fundamental sequence with limit α that is picked out by a
notation for α. Let S ⊆ ω. Define

C := {D : Sn ≤T D(αn) uniformly in n}
and suppose that, for some β < α, B ≤T D(β) for all D ∈ C. Then

β < αn =⇒ B ≤T (S0 ⊕ . . . Sn−1)(β).

Hence if β < αn and Sn 6≤T (S0⊕ . . . Sn−1)(αn) then the set {D(β) : D ∈ C} has no
element of least degree.

Theorem 3.20. Let α be a computable limit ordinal. Then for any computable
fundamental sequence (αn)n∈ω of α consisting of successor ordinals greater than 5,
the class

Kα = {Lα(S) : Sk 6≤T (S0 ⊕ S1 ⊕ . . .⊕ Sk−1)(αk) for all k}
has Turing ordinal α.

Proof. Fix d ≥ 0(α). By the proof of Theorem 3.18, there is an α-generic set
S such that Lα(S) has αth jump degree d. As S is α-generic, we have Sk 6≤T
(S0 ⊕ S1 ⊕ . . .⊕ Sk−1)(αk) for all k and hence Lα(S) is in the given class.

Now fix any Lα(S) in the class, and fix β < α. Then we must have β < αn for
some n ∈ ω and Sn 6≤T (S0 ⊕ S1 ⊕ . . .⊕ Sn−1)(αn). By Lemma 3.17 and Theorem
3.19, Lα(S) has no βth jump degree. Therefore the class has Turing ordinal α as
desired. �

4. Conclusion

The back-and-forth ordinal of the class Kα for limit ordinals depends on the
fundamental sequence chosen. It is easy to see (similar to the calculation of the
back-and-forth ordinal of the Kα,β), that it will be α0, the first ordinal in the
fundamental sequence.
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We do not have examples of structures with limit back-and-forth ordinal beyond
ω, where the example is the class of boolean algebras.

Note finally that if we are willing to use graphs and disjoint unions of structures,
rather than sums of linear orderings, then we can include the lower numbers of
0, 1, 2 in our examples of classes Kα,β .

In this paper, we have not analyzed the complexities of the theories of Kα or Kα,β .
We hope the reader will agree that they are “clearly” computably axiomatizable,
with the complexity increasing as a function of α for Kα, and increasing as function
of β for Kα,β . That is, we are pushing up the Turing ordinals by making the theories
of the classes correspondingly more complex. For axiomatizations of classes similar
to the ones in this paper, see Knoll’s thesis [Kno13]. We close with the following
questions.

Question 4.1. Is there a finitely axiomatizable class of structures with Turing
ordinal equal to α > ω?

Question 4.2. Is there a finitely axiomatizable class of structures with the Turing
ordinal strictly larger than the back-and-forth ordinal?

Question 4.3. What is the least n ∈ ω such that there is a Πc
n-axiomatizable class

of structures with the Turing ordinal strictly larger than the back-and-forth ordinal?
We currently have a Πc

9-axiomatizable class with this property. See [Kno13].

Question 4.4. What conditions (if any) can one put on the complexity of the
axiomatization of a class of structures in order to ensure that the Turing ordinal
and the back-and-forth ordinal are close?
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