INTERMEDIATE BIMODULES FOR CROSSED PRODUCTS OF VON NEUMANN ALGEBRAS

Roger Smith
(joint work with Jan Cameron)

COSy Waterloo, June 2015
Most of the results in this talk are taken from

CROSSED PRODUCTS

$M \subseteq B(H)$ is a factor. A discrete group G acts on M by automorphisms α_g with α_g outer for $g \neq e$ (there is no $u \in \mathcal{U}(M)$ so that $\alpha_g(x) = uxu^*$ for $x \in M$). Outerness is equivalent to:

if $t \in M$ and $xt = t\alpha_g(x)$ for $x \in M$, then $t = 0$.

$\pi : M \to B(H \otimes \ell^2(G))$ is

$$\pi(x)(\xi \otimes \delta_h) = \alpha_{h^{-1}}(x)\xi \otimes \delta_h, \quad \xi \in H, \ x \in M, \ h \in G.$$

A representation $g \mapsto u_g$ is

$$u_g(\xi \otimes \delta_h) = \xi \otimes \delta_{gh}, \quad \xi \in H, \ g, h \in G.$$

$M \rtimes_\alpha G$ is generated by

$$\{\pi(x) : x \in M\} \cup \{u_g : g \in G\}$$

$$u_g\pi(x)u_g^* = \pi(\alpha_g(x)), \quad x \in M, \ g \in G.$$
We also write this as

\[M \rtimes_\alpha G = \{ xg : x \in M, \ g \in G \} \]

subject to the relations \(gx = \alpha_g(x)g \).

There is a normal faithful conditional expectation \(E : M \rtimes_\alpha G \to M \) defined on generators by

\[
E(xg) = \begin{cases}
 xg, & g = e, \\
 0, & g \neq e.
\end{cases}
\]

Each \(x \in M \rtimes_\alpha G \) has a Fourier series

\[
x \sim \sum_{g \in G} x_g g
\]

where

\[x_g = E(xg^{-1}). \]

The series does not converge in the usual von Neumann algebra topologies so we need the Bures topology or \(B \)-topology (Mercer).
THE B-TOPOLOGY

$M \subseteq N$ with a faithful normal conditional expectation $E : N \to M$ (think $E : M \rtimes_{\alpha} G \to M$). For each normal state ϕ on M there is a seminorm

$$x \mapsto (\phi \circ E(x^*x))^{1/2}, \quad x \in N.$$

The B-topology is defined by these seminorms and $x_\lambda \to x$ in the B-topology if and only if

$$\lim_{\lambda} \phi \circ E((x_\lambda - x)^*(x_\lambda - x)) = 0, \quad \phi \in M^*,$$

equivalently

$$w^* - \lim_{\lambda} E((x_\lambda - x)^*(x_\lambda - x)) = 0.$$

(Mercer) For each $x \in M \rtimes_{\alpha} G$, its Fourier series converges in the B-topology to x.
EXAMPLE

The B-topology is closely connected to the w^*-topology. Let $x_\lambda \to x$ in the B-topology for elements in $M \rtimes_\alpha G$. Write the Fourier series as

$$x_\lambda = \sum_{g \in G} x_{\lambda, g} g, \quad x = \sum_{g \in G} x_g g.$$

For a particular $g \in G$ and a normal state ϕ on M,

$$|\phi(x_{\lambda, g} - x_g)| = |\phi \circ E((x_\lambda - x)g^{-1})|$$

$$\leq (\phi \circ E((x_\lambda - x)^*(x_\lambda - x)))^{1/2} \quad \text{(C-S)}$$

$$\to 0 \quad \text{(limit over } \lambda)$$

so $x_g = w^* - \lim_\lambda x_{\lambda, g}$.
Theorem (H. Choda)

Let M be a factor and let G act on M by outer automorphisms. If N is a von Neumann algebra with $M \subseteq N \subseteq M \rtimes_{\alpha} G$ and there is a faithful normal conditional expectation

$$E : M \rtimes_{\alpha} G \to N,$$

then there is a subgroup $H \subseteq G$ so that

$$N = M \rtimes_{\alpha} H.$$

For M with separable predual, Izumi-Longo-Popa showed that the existence of such a conditional expectation is always true.

Question

What can be said about intermediate w^*-closed M-bimodules? Easier to answer for B-closed M-bimodules, a subclass of the w^*-closed ones.
Recall that a masa A in a factor M is Cartan if its unitary normalizers in M generate M, and there is a normal conditional expectation onto A. Put M in standard position on H with a cyclic and separating vector ξ and modular conjugation J.

$$\mathcal{A} = (A \cup JAJ)^{''},$$

masa in $B(H)$. Each w^*-closed A-bimodule $X \subseteq M$ gives an \mathcal{A}-invariant subspace $X\xi \parallel \cdot \parallel^2$ and the projection P_X onto it is in \mathcal{A}.

Theorem (Cameron-Pitts-Zarikian)

$X \mapsto P_X$ is a bijection from B-closed A-bimodules to projections in \mathcal{A}.
For $x = \sum_{g \in G} x_g g \in M \rtimes_\alpha G$, let

$$\text{supp}(x) = \{ g \in G : x_g \neq 0 \} \subseteq G.$$

For an M-bimodule $X \subseteq M \rtimes_\alpha G$, let

$$S_X = \bigcup \{ \text{supp}(x) : x \in X \} \subseteq G$$

and for $S \subseteq G$, let

$$X_S = \{ x \in M \rtimes_\alpha G : \text{supp}(x) \subseteq S \} \subseteq M \rtimes_\alpha G.$$
Theorem (Cameron-S.)

\[S \mapsto X_S = \text{span}^B \{ Mg : g \in S \} \]

is a bijection between subsets \(S \subseteq G \) and \(B \)-closed \(M \)-bimodules in \(M \rtimes_\alpha G \). The inverse map is

\[X \mapsto S_X. \]

In particular the \(B \)-closed intermediate von Neumann algebras are

\[M \rtimes_\alpha H \]

for subgroups \(H \subseteq G \).

If \(G \) has the approximation property (AP) of Haagerup-Kraus, then the \(w^* \)-closed and \(B \)-closed \(M \)-bimodules coincide.
The predual of $L(G)$ is the Fourier algebra $A(G)$ consisting of the functions $g \mapsto \langle \ell_g \xi, \eta \rangle$ where $\xi, \eta \in \ell^2(G)$. A completely bounded multiplier is a function f on G such that $f \cdot A(G) \subseteq A(G)$ and the associated multiplication operator M_f is completely bounded.

The space of completely bounded multipliers is denoted by $M_0(A(G))$ and is a Banach space in the cb-norm. It is a dual space with predual denoted by $Q(G)$.

G is said to have the approximation property (AP) if the constant function 1 is in the w^*-closure of the space of finitely supported functions on G. (Haagerup-Kraus). This is a large class of groups that contains all amenable discrete groups and also the weakly amenable groups of Cowling-Haagerup.

The AP class is closed under semidirect products so is strictly larger than the weakly amenable class.
Lemma

Let M be a factor and let X be a w^*-closed M-bimodule in $M \rtimes_\alpha G$. If $g_0 \in G$ is such that $x_{g_0} \neq 0$ for some

$$x = \sum_{g \in G} x_g g \in X,$$

then $g_0 \in X$. In particular

$$\bigcup \{\text{supp}(x) : x \in X\} \subseteq X.$$
SPECIAL CASE

Assume M is hyperfinite and take an amenable subgroup $\Gamma \subseteq \mathcal{U}(M)$ that generates M. Fix an invariant mean and write it as

$$\int_{\Gamma} \cdot du, \quad u \in \Gamma.$$

Take $x = \sum x_g g \in X$ with $x_{g_0} \neq 0$. We want to pick out g_0. Using basic properties of factors we can first make x_{g_0} a nonzero projection and then 1. Consider

$$y = \int_{\Gamma} uxg_0^{-1}(u^*) \, du \in X.$$

Since

$$uxg \alpha g_0^{-1}(u^*) = uxg \alpha gg_0^{-1}(u^*) g,$$

the g_0-coefficient of y is 1 while for $g \neq g_0$

$$y_g = \int_{\Gamma} uxg \alpha gg_0^{-1}(u^*) \, du.$$
By invariance

\[vyg\alpha_{gg_0}^{-1}(v^*) = yg, \quad v \in \Gamma, \]
\[vyg = yg\alpha_{gg_0}^{-1}(v), \quad v \in \Gamma, \]
\[xyg = yg\alpha_{gg_0}^{-1}(x), \quad x \in M. \]

Thus \(y_g = 0 \) for \(g \neq g_0 \) since \(\alpha_{gg_0}^{-1} \) is outer.
We get \(y = g_0 \in X. \)

The general case requires a different type of averaging.
CHRISTENSEN-SINCLAIR THEOREM

Let $L_{cb}(M, M)$ be the cb-maps of M to M, $L_{cb}(M, M)_M$ the subspace of right M-module maps, which are $x \mapsto tx$ for some $t \in M$.

Take all strings $\beta = (m_j)$ where $\sum_j m_j m_j^* = 1$, $m_j \in M$.

For a cb-map $\phi : M \to M$, form

$$\phi^\beta(x) = \sum_j \phi(xm_j)m_j^*, \quad x \in M.$$

Theorem (Chris.-Sin.)

(i) There exists a contractive projection

$$\rho : L_{cb}(M, M) \to L_{cb}(M, M)_M.$$

(ii) There is a net (β) so that

$$\rho\phi(x) = w^* - \lim_{\beta} \phi^\beta(x), \quad x \in M.$$
For an $x = \sum_{g \in G} x_g g$ with $x_{g_0} = 1$, form

$$\sum_j m_j x_{\alpha_g^{-1}(m_j^*)} = \sum_{g \in G} \left(\sum_j m_j x_g \alpha_{gg_0^{-1}}(m_j^*) \right) g,$$

and take the limit over (β) to get rid of x_g for $g \neq g_0$, and leaving g_0. This is achieved by applying the C-S theorem to the cb-map

$$\phi(x) = \alpha_{g_0g^{-1}}(x) \alpha_{g_0g^{-1}}(x_g), \quad x \in M.$$
GENERAL CHODA THEOREM

If $M \subseteq N \subseteq M \rtimes_{\alpha} G$, M a factor, N a von Neumann algebra then

$$H = \{g \in G : g \in N\}$$

is a subgroup and

$$M \rtimes_{\alpha, r} H = \overline{\text{span}}\|\cdot\|\{Mg : g \in H\}$$

$$\subseteq N \subseteq \overline{N^B} = M \rtimes_{\alpha} H.$$

Taking w^*-closures gives

$$N = M \rtimes_{\alpha} H$$

so all intermediate von Neumann algebras are $M \rtimes_{\alpha} H$ for subgroups H and there is always a faithful normal conditional expectation

$$E : M \rtimes_{\alpha} G \to M \rtimes_{\alpha} H = N$$

without a separable predual assumption.
NONFACTOR CASE

Let \(\{ z_g : g \in G \} \) be a set of central projections in \(M \) and let

\[
N = \overline{\text{span}}^{w^*} \{ Mz_g g : g \in G \} \subseteq M \rtimes_\alpha G.
\]

When is \(N \) a von Neumann algebra?

(i) \textit{Unital}: so \(z_e = 1 \).

(ii) \textit{Self-adjoint}: so

\[
(Mz_g g)^* = g^{-1} Mz_g = M\alpha_{g^{-1}}(z_g)g^{-1}
\]

\[
= Mz_{g^{-1}} g^{-1} \implies \alpha_{g^{-1}}(z_g) = z_{g^{-1}}.
\]

(iii) \textit{Closed under multiplication}: so

\[
z_g g z_h h = z_g \alpha_g(z_h) gh \implies z_g \alpha_g(z_h) \leq z_{gh}.
\]
Theorem (Cameron-S.)

Every intermediate von Neumann algebra is

\[
N = \overline{\text{span}}^{w^*} \{ Mz_g g : g \in G \}
\]

where \(\{ z_g : g \in G \} \) satisfy (i)-(iii). There is a faithful normal conditional expectation \(E : M \rtimes_\alpha G \to N \) given by

\[
E(\sum x_g g) = \sum x_g z_g g.
\]
When M is a factor, $z_g \in \{0, 1\}$. Put

$$H = \{ g \in G : z_g = 1 \}.$$

(ii) $\alpha_{g^{-1}}(Z_g) = Z_{g^{-1}}$

\implies H is closed under inverses,

(iii) $z_g \alpha_g(z_h) \leq z_{gh}$

\implies H is closed under multiplication

so the intermediate algebras of Choda reappear as

$M \rtimes_{\alpha} H$.
Let A be abelian. It is Cartan in $A \rtimes_\alpha G$.
Assume τ is a trace on A and the α_g are trace preserving. Also the action of G is free and ergodic so $A \rtimes_\alpha G$ is a II_1 factor.

Let ξ be a tracial vector for A. Then $\xi \otimes \delta_e$ is a cyclic and separating vector for $A \rtimes_\alpha G$ and if

$$N = \overline{\text{span}}^{w^*} \{ Az_g \, g : g \in G \}$$

then the projection P_N corresponding to N has range

$$\overline{\text{span}}^\| \cdot \|^2 \{ Az_g \xi \otimes \delta_g : g \in G \}.$$
MERCER’S EXTENSION THEOREM

Recall that a masa A in a factor M is Cartan if its unitary normalizers in M generate M.

Theorem (Mercer, Cameron-Pitts-Zarikian)

Let A be a Cartan masa in a factor M. Let X be a w^*-closed A-bimodule that generates M and let $\theta : X \to X$ be a w^*-continuous isometric surjective isomorphism such that $\theta|_A$ is a \ast-automorphism and

\[\theta(a_1 x a_2) = \theta(a_1) \theta(x) \theta(a_2), \quad x \in X, \quad a_i \in A. \]

Then θ extends to a \ast-automorphism $\overline{\theta}$ of M.
Theorem (Cameron-S.)

Let M be a factor. Let X be a w^*-closed M-bimodule that generates $M \rtimes_\alpha G$ and let $\theta : X \to X$ be a w^*-continuous isometric surjective isomorphism such that $\theta|_M$ is a $*$-automorphism and

$$\theta(m_1 xm_2) = \theta(m_1)\theta(x)\theta(m_2), \quad x \in X, \ m_i \in M.$$

Then θ extends to a $*$-automorphism $\overline{\theta}$ of $M \rtimes_\alpha G$.
SKETCH

\[S = \{ g \in G : g \in X \}, \]
\[Y = \text{span} \{ Mg : g \in S \} \subseteq M \rtimes_{\alpha, r} G, \]

and

\[Y \subseteq X. \]

Apply \(\theta \) to

\[gx = \alpha_g(x)g, \quad x \in M, \ g \in S, \]

\[\theta(g)\theta(x) = \theta(\alpha_g(x))\theta(g), \quad x \in M, \ g \in S. \]

This gives

\[\theta(g)^* \theta(g), \ \theta(g)\theta(g)^* \in M' \cap (M \rtimes_{\alpha} G) = \mathbb{C}1, \]

so \(\theta(g) \) is a unitary in \(M \rtimes_{\alpha} G \) that normalizes \(M \). Then \(\theta(g) = uh \) for some \(h \in G \) and \(u \in \mathcal{U}(M) \). We get \(h \in S \) so \(\theta \) maps \(Y \) to \(Y \).
Recall that a \mathbb{C}^*-algebra A is said to be the \mathbb{C}^*-envelope of a unital operator space X if there is a completely isometric unital embedding $\iota : X \rightarrow A$ so that $\iota(X)$ generates A, and if B is another \mathbb{C}^*-algebra with a completely isometric unital embedding $\iota' : X \rightarrow B$ whose range generates B, then there is a \ast-homomorphism $\pi : B \rightarrow A$ so that $\pi \circ \iota' = \iota$ (which entails surjectivity of π). Every unital operator space has a unique \mathbb{C}^*-envelope denoted $C^*_{\text{env}}(X)$.
Lemma

The C^*-envelope of

$$Y = \overline{\text{span}}\|\cdot\| \{Mg : g \in S\} \subseteq M \rtimes_{\alpha,r} G$$

(where S is the set of group elements in X) is $M \rtimes_{\alpha,r} G$ and

$\theta : Y \to Y$ extends to a \ast-automorphism

$$\phi : M \rtimes_{\alpha,r} G \to M \rtimes_{\alpha,r} G.$$

Moreover, there is an automorphism π of G such that

$$\phi(Mg) = M\pi(g), \quad g \in G.$$
Lemma

Let ϕ be a \ast-automorphism of $M \rtimes_{\alpha, r} G$ such that $\phi(M) = M$. Then ϕ extends to a \ast-automorphism $\overline{\theta}$ of $M \rtimes_{\alpha} G$. On Fourier series,

$$\overline{\theta}(\sum x_g g) = \sum \phi(x_g)\phi(g).$$

To summarize: the original $\theta : X \rightarrow X$ was restricted to $Y \subseteq X$, then extended to $\phi : M \rtimes_{\alpha, r} G \rightarrow M \rtimes_{\alpha, r} G$, and extended again to $\overline{\theta} : M \rtimes_{\alpha} G \rightarrow M \rtimes_{\alpha} G$.
