Regular Representations of Lattice Ordered Semigroups

Boyu Li

University of Waterloo

COSy

June 18th, 2015
Theorem (Sz. Nagy 1961)

Let $T_1 \in \mathcal{B}(\mathcal{H})$ be a contraction. Then there exists a Hilbert space \mathcal{K} that contains \mathcal{H} and a unitary operator $U_1 \in \mathcal{B}(\mathcal{K})$ such that $T_1^k = P_\mathcal{H}U_1^k|_\mathcal{H}$ for all $k \geq 0$.

Equivalently, we can consider a contractive representation $T : \mathbb{N} \to \mathcal{B}(\mathcal{H})$ where $T(k) = T^k$. Nagy's result implies that there exists a unitary representation $U : \mathbb{Z} \to \mathcal{B}(\mathcal{K})$ such that for all $k \geq 0$, $T(k) = P_\mathcal{H}U(k)|_\mathcal{H}$.
Theorem (Sz. Nagy 1961)

Let $T_1 \in \mathcal{B}(\mathcal{H})$ be a contraction. Then there exists a Hilbert space \mathcal{K} that contains \mathcal{H} and a unitary operator $U_1 \in \mathcal{B}(\mathcal{K})$ such that $T_1^k = P_\mathcal{H}U_1^k|_\mathcal{H}$ for all $k \geq 0$.

Equivalently, we can consider a contractive representation $T : \mathbb{N} \rightarrow \mathcal{B}(\mathcal{H})$ where $T(k) = T_1^k$. Nagy's result implies that there exists a unitary representation $U : \mathbb{Z} \rightarrow \mathcal{B}(\mathcal{K})$ such that for all $k \geq 0$, $T(k) = P_\mathcal{H}U(k)|_\mathcal{H}$.
Theorem (Sz. Nagy 1961)

Let $T_1 \in \mathcal{B}(\mathcal{H})$ be a contraction. Then there exists a Hilbert space \mathcal{K} that contains \mathcal{H} and a unitary operator $U_1 \in \mathcal{B}(\mathcal{K})$ such that $T_1^k = P_{\mathcal{H}}U_1^k|_{\mathcal{H}}$ for all $k \geq 0$.

Equivalently, we can consider a contractive representation $T : \mathbb{N} \to \mathcal{B}(\mathcal{H})$ where $T(k) = T_1^k$. Nagy’s result implies that there exists a unitary representation $U : \mathbb{Z} \to \mathcal{B}(\mathcal{K})$ such that for all $k \geq 0$, $T(k) = P_{\mathcal{H}}U(k)|_{\mathcal{H}}$

Question

What happens to contractive representations of other semigroups?
Theorem

If G is a group, let $S : G \to \mathcal{B}(\mathcal{H})$ be a unital contractive map. Then the following are equivalent:

1. There exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and a unitary representation $U : G \to \mathcal{B}(\mathcal{K})$ such that $S(g) = P_\mathcal{H} U(g)|_\mathcal{H}$.

2. For any $g_1, \ldots, g_n \in G$, the operator matrix $[S(g_i g_j^{-1})] \in M_n(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^n)$ is positive.

We call such map completely positive definite.
Theorem

If G is a group, let S : G → B(ℋ) be a unital contractive map. Then the following are equivalent:

1. *There exists a Hilbert space K ⊇ ℋ and a unitary representation U : G → B(K) such that S(g) = PℋU(g)|ℋ.*

2. *For any g₁, ⋯ , gₙ ∈ G, the operator matrix [S(gᵢg⁻¹ⱼ)] ∈ Mₙ(B(ℋ)) ≅ B(ℋⁿ) is positive.*

We call such map completely positive definite.

Let P be a semigroup inside a group G and T : P → B(ℋ) be a representation. If we can extend T to a completely positive definite map Ŵ : G → B(ℋ), then T has a unitary dilation. We call such representation T **completely positive definite**.
Example

1. \(T(k) = T_1^k \) for some contraction \(T_1 \) defines a representation on \(\mathbb{N} \subseteq \mathbb{Z} \). Sz.Nagy showed that the extension

\[
\tilde{T}(k) = \begin{cases}
T_1^k & k \geq 0 \\
(T_1^*)^{-k} & k < 0
\end{cases}
\]

is a completely positive map on \(\mathbb{Z} \)

and thus \(T \) has a unitary dilation.
Example

1. \(T(k) = T_1^k \) for some contraction \(T_1 \) defines a representation on \(\mathbb{N} \subseteq \mathbb{Z} \). Sz.Nagy showed that the extension

\[
\tilde{T}(k) = \begin{cases}
T_1^k & k \geq 0 \\
(T_1^*)^{-k} & k < 0
\end{cases}
\]

is a completely positive map on \(\mathbb{Z} \) and thus \(T \) has a unitary dilation.

2. \(T(k_1, k_2) = T_1^{k_1} T_2^{k_2} \) for two commuting contractions \(T_1, T_2 \) defines a representation on \(\mathbb{N}^2 \subseteq \mathbb{Z}^2 \). Then Ando’s theorem shows that \(T \) is a completely positive definite. However, we do not know its completely positive definite extension \(\tilde{T} \) explicitly.
Example

1. \(T(k) = T_1^k \) for some contraction \(T_1 \) defines a representation on \(\mathbb{N} \subseteq \mathbb{Z} \). Sz.Nagy showed that the extension
 \[
 \tilde{T}(k) = \begin{cases}
 T_1^k & k \geq 0 \\
 (T_1^*)^{-k} & k < 0
 \end{cases}
 \]
 is a completely positive map on \(\mathbb{Z} \) and thus \(T \) has a unitary dilation.

2. \(T(k_1, k_2) = T_1^{k_1}T_2^{k_2} \) for two commuting contractions \(T_1, T_2 \) defines a representation on \(\mathbb{N}^2 \subseteq \mathbb{Z}^2 \). Then Ando’s theorem shows that \(T \) is a completely positive definite. However, we do not know its completely positive definite extension \(\tilde{T} \) explicitly.

3. \(T(k_1, k_2, k_3) = T_1^{k_1}T_2^{k_2}T_3^{k_3} \) for three commuting contractions \(T_1, T_2, T_3 \) defines a representation on \(\mathbb{N}^3 \subseteq \mathbb{Z}^3 \). By Parrott’s example, \(T \) might not be completely positive definite.
Definition

Let G be a group

1. A unital semigroup $P \subseteq G$ is called a **cone**.
2. A cone P is **spanning** if $PP^{-1} = G$, and is **positive** if $P \cap P^{-1} = \{e\}$.
Definition

Let G be a group

1. A unital semigroup $P \subseteq G$ is called a **cone**.
2. A cone P is **spanning** if $PP^{-1} = G$, and is **positive** if $P \cap P^{-1} = \{e\}$.

Definition

A positive spanning cone P induces a partial order where $x \leq y$ whenever $x^{-1}y \in P$. P is called a **lattice ordered semigroup** in G if for every $g \in G$, $gPg^{-1} \subseteq P$ and the induced partial order is a lattice (In other words, for any two elements $g, h \in G$, they have a least upper bound $g \lor h$ and a greatest lower bound $g \land h$).
Proposition

(Properties of Lattice Ordered Group) Let P be a lattice ordered semigroup in a group G. Then for any $a, b, c \in G$

1. $a(b \lor c) = (ab) \lor (ac)$ and $(b \lor c)a = (ba) \lor (ca)$. A similar distributive law holds for \land.

Proposition

(Properties of Lattice Ordered Group) Let P be a lattice ordered semigroup in a group G. Then for any $a, b, c \in G$

1. $a (b \vee c) = (ab) \vee (ac)$ and $(b \vee c)a = (ba) \vee (ca)$. A similar distributive law holds for \wedge.

2. $(a \wedge b)^{-1} = a^{-1} \vee b^{-1}$ and similarly $(a \vee b)^{-1} = a^{-1} \wedge b^{-1}$.
Proposition

(Properties of Lattice Ordered Group) Let P be a lattice ordered semigroup in a group G. Then for any $a, b, c \in G$

1. $a(b \lor c) = (ab) \lor (ac)$ and $(b \lor c)a = (ba) \lor (ca)$. A similar distributive law holds for \land.

2. $(a \land b)^{-1} = a^{-1} \lor b^{-1}$ and similarly $(a \lor b)^{-1} = a^{-1} \land b^{-1}$.

3. $a \geq b$ if and only if $a^{-1} \leq b^{-1}$.

Proposition

(Properties of Lattice Ordered Group) Let P be a lattice ordered semigroup in a group G. Then for any $a, b, c \in G$

1. $a(b \lor c) = (ab) \lor (ac)$ and $(b \lor c)a = (ba) \lor (ca)$. A similar distributive law holds for \land.

2. $(a \land b)^{-1} = a^{-1} \lor b^{-1}$ and similarly $(a \lor b)^{-1} = a^{-1} \land b^{-1}$.

3. $a \geq b$ if and only if $a^{-1} \leq b^{-1}$.

4. $a(a \land b)^{-1}b = a \lor b$. In particular, when $a \land b = e$, $ab = ba = a \lor b$.
Proposition

(Properties of Lattice Ordered Group) Let P be a lattice ordered semigroup in a group G. Then for any $a, b, c \in G$

1. $a(b \vee c) = (ab) \vee (ac)$ and $(b \vee c)a = (ba) \vee (ca)$. A similar distributive law holds for \wedge.

2. $(a \wedge b)^{-1} = a^{-1} \vee b^{-1}$ and similarly $(a \vee b)^{-1} = a^{-1} \wedge b^{-1}$.

3. $a \geq b$ if and only if $a^{-1} \leq b^{-1}$.

4. $a(a \wedge b)^{-1}b = a \vee b$. In particular, when $a \wedge b = e$, $ab = ba = a \vee b$.

5. If $a, b, c \in P$, then $a \wedge (bc) \leq (a \wedge b)(a \wedge c)$.
Proposition

(Properties of Lattice Ordered Group) Let P be a lattice ordered semigroup in a group G. Then for any $a, b, c \in G$

1. $a(b \lor c) = (ab) \lor (ac)$ and $(b \lor c)a = (ba) \lor (ca)$. A similar distributive law holds for \land.

2. $(a \land b)^{-1} = a^{-1} \lor b^{-1}$ and similarly $(a \lor b)^{-1} = a^{-1} \land b^{-1}$.

3. $a \geq b$ if and only if $a^{-1} \leq b^{-1}$.

4. $a(a \land b)^{-1}b = a \lor b$. In particular, when $a \land b = e$, $ab = ba = a \lor b$.

5. If $a, b, c \in P$, then $a \land (bc) \leq (a \land b)(a \land c)$.

6. For any $g \in G$, there exists a unique $g_+, g_- \in P$ such that $g_+ \land g_- = e$ and $g = g_+g_-^{-1} = g_-^{-1}g_+$.
Example

1. For any \(k \geq 0 \), \(\mathbb{N}^k \) is a lattice ordered semigroup in \(\mathbb{Z}^n \).
Example

1. For any $k \geq 0$, \mathbb{N}^k is a lattice ordered semigroup in \mathbb{Z}^n.

2. If P_i is a totally ordered semigroup in G_i, then their product $\prod P_i$ is a lattice ordered semigroup in $\prod G_i$.
Example

1. For any $k \geq 0$, \mathbb{N}^k is a lattice ordered semigroup in \mathbb{Z}^n.
2. If P_i is a totally ordered semigroup in G_i, then their product $\prod P_i$ is a lattice ordered semigroup in $\prod G_i$.
3. $C^+([0, 1])$ is a lattice ordered semigroup in $C([0, 1])$.

Background

Lattice Ordered Groups

Main Result

Regular Representation
Example

1. For any $k \geq 0$, \mathbb{N}^k is a lattice ordered semigroup in \mathbb{Z}^n.
2. If P_i is a totally ordered semigroup in G_i, then their product $\prod P_i$ is a lattice ordered semigroup in $\prod G_i$.
3. $C^+([0, 1])$ is a lattice ordered semigroup in $C([0, 1])$.
4. Let X be a totally ordered set and G be the set of all order-preserving automorphisms on X. Define $P = \{\sigma \in G : \sigma(x) \geq x, \forall x \in X\}$, then P is a non-abelian lattice ordered semigroup in G.
Example

1. For any $k \geq 0$, \mathbb{N}^k is a lattice ordered semigroup in \mathbb{Z}^n.
2. If P_i is a totally ordered semigroup in G_i, then their product $\prod P_i$ is a lattice ordered semigroup in $\prod G_i$.
3. $C^+([0, 1])$ is a lattice ordered semigroup in $C([0, 1])$.
4. Let X be a totally ordered set and G be the set of all order-preserving automorphisms on X. Define $P = \{ \sigma \in G : \sigma(x) \geq x, \forall x \in X \}$, then P is a non-abelian lattice ordered semigroup in G.
5. \mathbb{F}^+_n is NOT a lattice ordered semigroup in \mathbb{F}_n.
If $T : P \to \mathcal{B}(\mathcal{H})$ has a completely positive extension to $\tilde{T} : G \to \mathcal{B}(\mathcal{H})$ so that it has a unitary dilation $U : G \to \mathcal{B}(\mathcal{K})$. Then

$$\tilde{T}(g) = P_{\mathcal{H}}U(g)|_{\mathcal{H}}$$

$$= P_{\mathcal{H}}U(g^{-1}g_+)|_{\mathcal{H}}$$

$$= P_{\mathcal{H}}U(g_-)^*U(g_+)|_{\mathcal{H}}.$$

\[\]
If $T : P \to \mathcal{B}(\mathcal{H})$ has a completely positive extension to $\tilde{T} : G \to \mathcal{B}(\mathcal{H})$ so that it has a unitary dilation $U : G \to \mathcal{B}(\mathcal{K})$. Then

$$\tilde{T}(g) = P_{\mathcal{H}}U(g)|_{\mathcal{H}}$$

$$= P_{\mathcal{H}}U(g^{-1}g)|_{\mathcal{H}}$$

$$= P_{\mathcal{H}}U(g-)^*U(g+)|_{\mathcal{H}}.$$

Definition

A contractive representation $T : P \to \mathcal{B}(\mathcal{H})$ is called **regular** if the extension $\tilde{T}(g) = T(g-)^*T(g+)$ on G is completely positive definite.
Theorem (Brehmer 1961)

If T_1, \cdots, T_k is a family of commuting contractions. Define a representation $T : \mathbb{N}^k \to \mathcal{B}(\mathcal{H})$ by $T(e_i) = T_i$. Then T is regular if and only if for any $J \subseteq \{1, 2, \cdots, k\}$, the operator

$$\sum_{U \subseteq J}(-1)^{|U|}T(e_U)^*T(e_U)$$

is positive.
Theorem (Brehmer 1961)

If T_1, \cdots, T_k is a family of commuting contractions. Define a representation $T : \mathbb{N}^k \to \mathcal{B}(\mathcal{H})$ by $T(e_i) = T_i$. Then T is regular if and only if for any $J \subseteq \{1, 2, \cdots, k\}$, the operator $\sum_{U \subseteq J} (-1)^{|U|} T(e_U)^* T(e_U)$ is positive.

Example

For $k = 2$, let T_1, T_2 be two commuting contractions. Brehmer’s condition is equivalent to

$$I - T_1^* T_1 - T_2^* T_2 + (T_1 T_2)^* T_1 T_2 \geq 0.$$
Corollary (Brehmer 1961)

Let $T : \mathbb{N}^k \to \mathcal{B}(\mathcal{H})$ be a contractive representation where $T(e_i) = T_i$, then T is regular if one of the following conditions is met:
Corollary (Brehmer 1961)

Let $T : \mathbb{N}^k \to \mathcal{B}(\mathcal{H})$ be a contractive representation where $T(e_i) = T_i$, then T is regular if one of the following conditions is met:

1. T is an isometric representation.
Corollary (Brehmer 1961)

Let $T : \mathbb{N}^k \to \mathcal{B}(\mathcal{H})$ be a contractive representation where $T(e_i) = T_i$, then T is regular if one of the following conditions is met:

1. T is an isometric representation.
2. T_1, \ldots, T_k are doubly commuting, in the sense that T_i^* also commutes with T_j for $i \neq j$.
Corollary (Brehmer 1961)

Let $T: \mathbb{N}^k \rightarrow \mathcal{B}(\mathcal{H})$ be a contractive representation where $T(e_i) = T_i$, then T is regular if one of the following conditions is met:

1. T is an isometric representation.
2. T_1, \cdots, T_k are doubly commuting, in the sense that T_i^* also commutes with T_j for $i \neq j$.
3. T_1, \cdots, T_k forms a column contraction, in the sense that $\sum_{i=1}^k T_i^* T_i \leq I$.

Question

Can we extend this to representations on lattice ordered semigroups?
Corollary (Brehmer 1961)

Let $T : \mathbb{N}^k \to \mathcal{B}(\mathcal{H})$ be a contractive representation where $T(e_i) = T_i$, then T is regular if one of the following conditions is met:

1. T is an isometric representation.
2. T_1, \cdots, T_k are doubly commuting, in the sense that T_i^* also commutes with T_j for $i \neq j$.
3. T_1, \cdots, T_k forms a column contraction, in the sense that $\sum_{i=1}^k T_i^* T_i \leq I$.

Question

Can we extend this to representations on lattice ordered semigroups?
Definition (Davidson & Fuller & Kakariadis 2014)

A contractive representation T of a lattice ordered semigroup P is called **Nica-covariant** if for any $p, q \in P$ with $p \wedge q = e$, T_p commutes with T_q^*.

Question (Davidson & Fuller & Kakariadis, Question 2.5.11)

Is contractive Nica-covariant representation of abelian lattice ordered semigroups automatically regular? It is known to be regular in some cases. For example, N_k [Brehmer], totally ordered semigroups [Mlak, 1966], and products of totally ordered semigroups [Fuller, 2013].
Definition (Davidson & Fuller & Kakariadis 2014)

A contractive representation T of a lattice ordered semigroup P is called **Nica-covariant** if for any $p, q \in P$ with $p \land q = e$, T_p commutes with T_q^*.

Nica-covariant coincides with doubly commuting on \mathbb{N}^k.
Definition (Davidson & Fuller & Kakariadis 2014)

A contractive representation T of a lattice ordered semigroup P is called **Nica-covariant** if for any $p, q \in P$ with $p \land q = e$, T_p commutes with T_q^*.

Nica-covariant coincides with doubly commuting on \mathbb{N}^k.

Question (Davidson & Fuller & Kakariadis, Question 2.5.11)

Is contractive Nica-covariant representation of abelian lattice ordered semigroups automatically regular?
Definition (Davidson & Fuller & Kakariadis 2014)

A contractive representation T of a lattice ordered semigroup P is called **Nica-covariant** if for any $p, q \in P$ with $p \wedge q = e$, T_p commutes with T_q^*.

Nica-covariant coincides with doubly commuting on \mathbb{N}^k.

Question (Davidson & Fuller & Kakariadis, Question 2.5.11)

Is contractive Nica-covariant representation of abelian lattice ordered semigroups automatically regular?

It is known to be regular is some cases. For example, \mathbb{N}^k [Brehmer], totally ordered semigroups [Mlak, 1966], and products of totally ordered semigroups [Fuller, 2013].
There is no known analogue of column contraction in the context of lattice ordered semigroups. Notice $p \land q = e$ is kind of saying p, q are made from different generators.
There is no known analogue of column contraction in the context of lattice ordered semigroups. Notice \(p \land q = e \) is kind of saying \(p, q \) are made from different generators.

Definition

Let \(T : P \to \mathcal{B}(\mathcal{H}) \) be a contractive representation of a lattice ordered semigroup \(P \). \(T \) is called **column contractive** if for any \(p_1, \ldots, p_n \in P \) where \(p_i \neq e \) and \(p_i \land p_j = e \) for all \(i \neq j \),

\[
\sum_{i=1}^{n} T^* p_i T p_i \leq I.
\]
There is no known analogue of column contraction in the context of lattice ordered semigroups. Notice $p \land q = e$ is kind of saying p, q are made from different generators.

Definition

Let $T : P \to \mathcal{B}(\mathcal{H})$ be a contractive representation of a lattice ordered semigroup P. T is called **column contractive** if for any $p_1, \ldots, p_n \in P$ where $p_i \neq e$ and $p_i \land p_j = e$ for all $i \neq j$,

$$\sum_{i=1}^{n} T_{p_i}^* T_{p_i} \leq I.$$

Dually, T is called **row contractive** if for such p_i,

$$\sum_{i=1}^{n} T_{p_i} T_{p_i}^* \leq I.$$
For a contractive representation $T : P \rightarrow \mathcal{B}(\mathcal{H})$ on a lattice ordered semigroup P in G, define $\tilde{T}(g) = T(g^-)T(g^+)$. Recall, T is regular when \tilde{T} is a completely positive definite map on G.
For a contractive representation $T : P \to \mathcal{B}(\mathcal{H})$ on a lattice ordered semigroup P in G, define $\tilde{T}(g) = T(g_-)T(g_+)$. Recall, T is regular when \tilde{T} is a completely positive definite map on G.

Theorem (L.)

Let P be a lattice ordered semigroup and $T : P \to \mathcal{B}(\mathcal{H})$ be a contractive representation. Then T is regular if and only if for any $p_1, \ldots, p_n \in P$ and $g \in P$ where $g \wedge p_i = e$ for all $i = 1, 2, \ldots, n$, we have

$$\left[T(g)\tilde{T}(p_ip_j^{-1})T(g) \right] \leq \left[\tilde{T}(p_ip_j^{-1}) \right].$$

(*)
Proof Sketch: Assuming T is a contractive representation that satisfies equation (\ast).

Lemma

If $p_1, \ldots, p_n \in P$ satisfies $p_i \land p_j = e$ for any $i \neq j$, then $[\tilde{T}(p_ip_j^{-1})] \geq 0$.
Proof Sketch: Assuming T is a contractive representation that satisfies equation (\ast).

Lemma

If $p_1, \ldots, p_n \in P$ satisfies $p_i \land p_j = e$ for any $i \neq j$, then $[\tilde{T}(p_ip_j^{-1})] \geq 0$.

Lemma

Let $p_1, \ldots, p_n \in P$ where for any $J \subseteq \{1, 2, \ldots, n\}$ with $|J| > k$, $\land_{j \in J} p_j = e$. Let $g = \land_{j=1}^k p_j$ and define $q_1 = p_1g^{-1}, \ldots, q_k = p_kg^{-1}, q_{k+1} = p_{k+1}, \ldots, q_n = p_n$. Then $[\tilde{T}(p_ip_j^{-1})] \geq 0$ if $[\tilde{T}(q_iq_j^{-1})] \geq 0$.
Corollary (L.)

Let $T: P \to \mathcal{B}(\mathcal{H})$ be a representation of a lattice ordered semigroup. Then T is regular if one of the following conditions is met:
Corollary (L.)

Let $T : P \to B(H)$ be a representation of a lattice ordered semigroup. Then T is regular if one of the following conditions is met:

1. T is an isometric representation.
Corollary (L.)

Let \(T : P \to \mathcal{B}(\mathcal{H}) \) be a representation of a lattice ordered semigroup. Then \(T \) is regular if one of the following conditions is met:

1. \(T \) is an isometric representation.
2. \(T \) is a contractive Nica-covariant representation.
Corollary (L.)

Let $T : P \rightarrow \mathcal{B}(\mathcal{H})$ be a representation of a lattice ordered semigroup. Then T is regular if one of the following conditions is met:

1. T is an isometric representation.
2. T is a contractive Nica-covariant representation.
3. T is column contractive.
Corollary (L.)

Let \(T : P \rightarrow B(\mathcal{H}) \) be a representation of a lattice ordered semigroup. Then \(T \) is regular if one of the following conditions is met:

1. \(T \) is an isometric representation.
2. \(T \) is a contractive Nica-covariant representation.
3. \(T \) is column contractive.

Corollary

For a \(C^* \)-dynamical system \((A, \alpha, P)\), the semi-crossed product algebra given by Nica-covariant pairs agrees with that given by isometric Nica-covariant pairs. In other words,

\[
A \times_{\alpha}^{nc} P \cong A \times_{\alpha}^{nc,iso} P.
\]
Thank you