Quantum Colouring and Derangements

Chris Godsil University of Waterloo

Waterloo, October 15, 2019

Outline

1 Colourings and Derangements

- Colourings
- Derangements

Quantum Colourings

- Projections
- Rank-1 Colourings
- Colouring Erdős-Rényi graphs
- Derangements of index k
- Permutations

Outline

1 Colourings and Derangements

Colourings

Derangements

2 Quantum Colourings

- Projections
- Rank-1 Colourings
- Colouring Erdős-Rényi graphs
- Derangements of index \boldsymbol{k}
- Permutations

Sources

- Cameron, Newman, Montanaro, Severini, Winter. "On the quantum chromatic number of a graph". arXiv:quant-ph/0608016. (2006)
- Manciňska, Roberson. "Quantum homomorphisms". arXiv:1212.1742. (2016)
- Manciňska, Roberson. "Oddities of quantum colorings". arXiv:1801.03542. (2018)
- David E. Roberson (2013). Variations on a Theme: Graph Homomorphisms. UWSpace. http://hdl.handle.net/10012/7814

Graph colouring

Definition

A *c*-colouring of a graph X is a function φ from V(X) to $\{1, \ldots, c\}$ such that if u and v are adjacent vertices in X, then $\varphi(u) \neq \varphi(v)$.

The matrix of a colouring

Definition

The matrix $M(\varphi)$ of a $c\text{-colouring }\varphi$ of a graph X is the $|V(X)|\times c$ matrix such that

$$(M(\varphi))_{a,i} = \begin{cases} 1, & \varphi(a) = i; \\ 0, & \text{otherwise.} \end{cases}$$

For C_5

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Properties of the colouring matrix

We use e_u to denote the standard basis vector indexed by the vertex u.

Suppose M is the matrix of a c-colouring of X. Then

- **1** M**1** = **1**.
- **②** If a and b are adjacent in X, then $e_a^T M$ and $e_b^T M$ are orthogonal.

It follows that the map $a \mapsto e_a^T M$ is an orthogonal representation of X in \mathbb{R}^c .

Orthogonality graphs

Definition

Assume S is a subset of a real or complex inner product space. The orthogonality graph based on S is the graph with vertex set S, with two elements of S adjacent if they are orthogonal.

For us, S will usually be either the unit vectors in \mathbb{C}^d or \mathbb{R}^d , or the set of $d \times d$ projections (real or complex).

Graph homomorphisms

Definition

Let X and Y be graphs. A map φ from V(X) to V(Y) is a graph homomorphism if it maps adjacent vertices in X to adjacent vertices in Y. We write $X \to Y$ to denote that there is a homomorphism from X to Y. If $X \to Y$ and $Y \to X$, then X and Y are homomorphically equivalent.

A graph X is c-colourable if and only $X \to K_c$. If X and Y are homomorphically equivalent, then $\chi(X) = \chi(Y)$.

Orthogonal rank

Definition

We use $\Omega(d)$ to denote the graph with the unit vectors in \mathbb{C}^d as vertices, with two unit vectors adjacent if and only if they are orthogonal. The least value of d such that X admits a homomorphism into $\Omega(d)$ is the orthogonal rank of X, denoted $\xi(X)$.

Flat orthogonal rank

Definition

A vector (or matrix) is flat if all its entries have the same absolute value. We use $\xi^{\flat}(X)$ to denote the least d such that there is a homomorphism from X into the subgraph $\Omega^{\flat}(d)$ induced by the flat unit vectors.

Summary: $\xi(X)$, $\xi^{\flat}(X)$.

Some easy bounds

We use $\chi(X)$ to denote the chromatic number of X.

Lemma

```
For any graph X,
```

$\xi(X) \le \xi^{\flat}(X) \le \chi(X).$

(The second inequality needs proof, be patient.)

Outline

1 Colourings and Derangements

- Colourings
- Derangements

Quantum Colourings

- Projections
- Rank-1 Colourings
- Colouring Erdős-Rényi graphs
- Derangements of index \boldsymbol{k}
- Permutations

A graph on permutations

Definition

A derangement is a permutation with no fixed points. The vertices of the derangement graph $\mathcal{D}(n)$ are the elements of the symmetric group $\operatorname{Sym}(m)$, two permutations σ and τ are adjacent in $\mathcal{D}(n)$ if $\tau \sigma^{-1}$ is a derangement.

Thus $\mathcal{D}(n)$ has n! vertices and valency $\lfloor n!/e \rfloor$.

$\mathcal{D}(n)$ as an orthogonality graph

If A and B are $m \times n$ complex matrices, the map

$$(A,B) \mapsto \operatorname{tr}(A^*B)$$

is an inner product whose value we will denote by $\langle A,B\rangle$. If we represent permutations σ and τ of $\mathrm{Sym}(n)$ by $n\times n$ permutation matrices, S and T respectively, then $\mathrm{tr}(S^{-1}T)$ is the number of points fixed by $\sigma^{-1}\tau$ and therefore $\sigma^{-1}\tau$ is a derangement if and only if

$$\langle S,T\rangle = 0.$$

Cliques in $\mathcal{D}(n)$

If σ and τ are two elements of Sym(n), then $\tau\sigma^{-1}$ is a derangement if and only if the $2 \times n$ matrix

$$\begin{pmatrix} \sigma_1 & \dots & \sigma_n \\ \tau_1 & \dots & \tau_2 \end{pmatrix}$$

has different entries in each column. Hence an *n*-clique in $\mathcal{D}(n)$ corresponds to an $n\times n$ Latin square, and there are no cliques in $\mathcal{D}(n)$ with more than n vertices.

$$\chi(\mathcal{D}(n))$$

The map that assigns the value σ_1 to a permutation σ from Sym(n) is an *n*-colouring of $\mathcal{D}(n)$. Accordingly:

Lemma $\omega(\mathcal{D}(n)) = \chi(\mathcal{D}(n)) = n.$

More complex derangements...

Definition

We use U(d) to denote the group of $d \times d$ unitary matrices; the subgroup consisting of the real matrices in U(d) is the orthogonal group O(d). A unitary derangement is a unitary matrix with all diagonal entries zero.

... and a more complex graph

Definition

The unitary derangement graph $\mathcal{UD}(n)$ has the elements of U(n) as its vertices, and two matrices A and B are adjacent if and only if BA^{-1} is a unitary derangement.

The derangement graph $\mathcal{D}(n)$ is an induced subgraph of $\mathcal{UD}(n)$.

Outline

Colourings and Derangements

- Colourings
- Derangements

Quantum Colourings

Projections

- Rank-1 Colourings
- Colouring Erdős-Rényi graphs
- Derangements of index \boldsymbol{k}
- Permutations

A review of projections

A square complex matrix P is a projection if $P = P^2 = P^*$.

A review of projections

A square complex matrix P is a projection if $P = P^2 = P^*$.

- If P and Q are projections then $tr(PQ) \ge 0$ and $tr(PQ) = 0 \iff PQ = 0$.
- ② If P_1, \ldots, P_r are $d \times d$ projections and $\sum_i P_i = I_d$, then $P_i P_j = 0$ if $i \neq j$.
- **③** If P is a $d \times d$ projection with rank r, there is a $d \times r$ matrix U such that $P = UU^*$ and $U^*U = I_r$.

Replacing 0 and 1 by bigger projections

Definition

A graph X has a quantum c-colouring if there is a $|V(X)|\times c$ matrix M with entries $d\times d$ projections such that

- Each row of M sums to I_d .
- If a and b are adjacent vertices of X, then $M_{a,i}M_{b,i} = 0$ for $i = 1 \dots, c$.

The least c for which a quantum c-colouring of X exists is the quantum chromatic number of X, denoted $\chi_q(X)$.

Since 0 and 1 are the 1×1 projections, a classical c-colouring is a quantum c-colouring with d=1 and so $\chi_q(X)\leq \chi(X).$

Quantum colourings and orthogonality

Lemma

Let X be a graph and let M be a $|V(X)| \times c$ matrix of $d \times d$ projections. The matrix M defines a quantum c-colouring of a graph if whenever a and b are adjacent vertices in X, then $\sum_i M_{a,i}M_{b,i} = 0.$

Proof of the lemma

Proof.

Clearly the stated condition is necessary. For sufficiency, if $\sum_i M_{a,i} M_{b,i} = 0$, then

$$0 = \sum_{i} \operatorname{tr}(M_{a,i}M_{b,i}).$$

As projections are positive semidefinite, $tr(M_{a,i}M_{b,i}) \ge 0$, and therefore this implies that $tr(M_{a,i}M_{b,i}) = 0$ for each *i*, and hence that $M_{a,i}M_{b,i} = 0$.

Quantum colourings with rank r

Lemma

If there is a quantum c-colouring of X, there is a quantum c-colouring where all projections have the same rank.

A rank-r quantum c-colouring is a quantum c-colouring where all projections have rank r. The least integer c such that X admits a rank-r quantum c-colouring is denoted $\chi_q^{(r)}$.

For a rank-r $c\text{-colouring using }d\times d$ projections, rc=d. If r=1, then c=d.

Outline

Colourings and Derangements

- Colourings
- Derangements

Quantum Colourings

Projections

Rank-1 Colourings

- Colouring Erdős-Rényi graphs
- \bullet Derangements of index k
- Permutations

Derangements and rank-1 colourings

Theorem

A graph has a rank-1 quantum d-colouring if and only if it admits a homomorphism into $\mathcal{UD}(d)$.

Proof

Proof.

A rank-1 projection is equal to xx* for some unit vector x.
 Vectors x and y are orthogonal if and only xx*yy* = 0.

Proof

Proof.

- A rank-1 projection is equal to xx* for some unit vector x.
 Vectors x and y are orthogonal if and only xx*yy* = 0.
- Each row of a rank-1 quantum *d*-colouring corresponds to an orthonormal basis of \mathbb{C}^d , hence to a unitary matrix.

Proof

Proof.

- A rank-1 projection is equal to xx* for some unit vector x.
 Vectors x and y are orthogonal if and only xx*yy* = 0.
- Each row of a rank-1 quantum *d*-colouring corresponds to an orthonormal basis of \mathbb{C}^d , hence to a unitary matrix.
- If U_a and U_b are the unitary matrices corresponding to the aand b-rows of the colouring and $a \sim b$, then $U_a^* U_b$ is a unitary derangement.

More homomorphisms

Theorem

$$K_n \to \Omega^{\flat}(n) \to \mathcal{UD}(n) \to \Omega(n)$$

More homomorphisms

Theorem

$$K_n \to \Omega^{\flat}(n) \to \mathcal{UD}(n) \to \Omega(n)$$

Corollary

$$\xi(X) \le \chi_q^{(1)}(X) \le \xi^{\flat}(X) \le \chi(X).$$

Proofs

 $K_n\to \Omega^\flat(n)$: the columns of a flat unitary matrix form a clique in $\Omega^\flat(n).$

Proofs

$$\begin{split} K_n &\to \Omega^\flat(n) \text{: the columns of a flat unitary matrix form a clique in} \\ \Omega^\flat(n) &\to \mathcal{UD}(n) \text{: Let } W \text{ be a flat unitary. If } z \in \Omega^\flat(n) \text{, let } D_z \text{ be} \\ & \text{the diagonal matrix with } (D_z)_{i,i} = z_i. \text{ Then} \\ & \sqrt{n} D_z W \text{ is a unitary matrix (easy) and if } y \text{ and } z \text{ are} \\ & \text{vectors in } \Omega^\flat(n) \text{, we have that } (D_z W)^* D_z W \text{ is a} \\ & \text{derangement if } y \text{ and } z \text{ are orthogonal (harder). So} \\ & \Omega^\flat(n) \to \mathcal{UD}(n). \end{split}$$

Proofs

 $K_n \to \Omega^{\flat}(n)$: the columns of a flat unitary matrix form a clique in $\Omega^{\flat}(n)$. $\Omega^{\flat}(n) \to \mathcal{UD}(n)$: Let W be a flat unitary. If $z \in \Omega^{\flat}(n)$, let D_z be the diagonal matrix with $(D_z)_{i,i} = z_i$. Then $\sqrt{n}D_zW$ is a unitary matrix (easy) and if y and z are vectors in $\Omega^{\flat}(n)$, we have that $(D_zW)^*D_zW$ is a derangement if y and z are orthogonal (harder). So $\Omega^{\flat}(n) \to \mathcal{UD}(n)$.

 $\mathcal{UD}(n) \to \Omega(n)$: if $M, N \in U(d)$, then $\langle Me_1, Ne_1 \rangle = (M^*N)_{1,1}$, and Me_1 and Ne_1 are orthogonal if M^*N is a derangement. Hence $\mathcal{UD}(n) \to \Omega(n)$.

2-colourings, 3-colourings

Lemma

$$\chi_q(X) = 2 \iff \chi(X) = 2.$$

The proof of this left as an exercise. For the next result, the key is that derangements in U(3) are monomial matrices, and in consequence, $\mathcal{UD}(3)$ and $\mathcal{D}(3)$ are homomorphically equivalent.

Lemma

$$\chi_q^{(1)} = 3 \iff \chi(X) = 3.$$

Quantum Latin squares

Definition

A quantum Latin square is a square matrix with rank-1 projections of order $d \times d$ as entries, such that each row and each column sums to I_d .

If L is an $n \times n$ Latin square with entries $1, \ldots, n$ and (for each i) we replace by the matrix $E_{i,i} = e_i e_i^T$, the result is a quantum Latin square.

Quantum Latin squares from unitary matrices

If A is an $n\times n$ unitary matrix with columns $a_1,\ldots,a_n,$ then the matrices

$$a_1a_1^*,\ldots,a_na_n^*$$

are a set of n rank-1 projections with sum I_d . If B is a second $n \times n$ unitary matrix with columns b_1, \ldots, b_n and corresponding projections

$$b_1b_1^*,\ldots,b_nb_n^*,$$

then $a_r a_r^* b_r b_r^* = 0$ for each r if and only if $A^* B$ is a unitary derangement.

Cliques and quantum Latin squares

Theorem

Cliques of size n in UD(n) correspond to quantum Latin squares of order $n \times n$.

Outline

Colourings and Derangements

- Colourings
- Derangements

Quantum Colourings

- Projections
- Rank-1 Colourings

• Colouring Erdős-Rényi graphs

- Derangements of index k
- Permutations

Erdős-Rényi graphs

Definition

Let $\mathbb{F} = GF(q)$ be a finite field of odd order. The vertices of the Erdős-Rényi graph ER(q) are the 1-dimensional subspaces of $V(3,\mathbb{F})$; subspaces $\langle x \rangle$ and $\langle y \rangle$ are adjacent if $x^T y = 0$.

The Erdős-Rényi graphs have loops, in fact there are exactly q + 1 vertices with loops in them. We will work with the graph obtained by deleting the loops; this graph is not regular, there are q + 1 vertices with valency q, the remainder have valency q + 1. In total there are $q^2 + q + 1$ vertices.

ER(3): a picture

ER(3): vectors

The 13 columns of the following matrix span the 13 1-dimensional subspaces of V(3,3).

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & -1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & -1 & 0 & 0 & 1 & 1 & 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 \end{pmatrix}$$

If we view the entries of the above matrix as real numbers, the orthogonality graph F of the 13 real vectors is isomorphic to ER(3) with the loops deleted. Clearly $\xi(F) \leq 3$. The computer tells us that $\chi(F) = 4$ and consequently $\chi_q^{(1)}(F) = 4$. Further, $\chi_q(ER(3)) = 4$ (but this is not trivial).

Help from the quaternions

Cameron et al. prove the following, using properties of the quaternions.

Lemma

There is a homomorphism from $S_{\mathbb{R}}(4)$ into the subgraph of $\mathcal{UD}(4)$ induced by the real orthogonal matrices.

Corollary

If
$$\xi_{\mathbb{R}}(x) \leq 4$$
, then $\chi_q^{(1)}(X) \leq 4$.

The cone over ER(13)

The cone \hat{X} of a graph X is the graph we get by adding one new vertex to X, and joining it each of the old vertices.

•
$$\chi(\hat{X}) = \chi(X) + 1.$$

• $\xi(\hat{X}) \leq \xi(X) + 1$: use a standard basis vector.

• The cone over ER(3) has an orthogonal embedding in \mathbb{R}^4 ; as $\Omega_{\mathbb{R}}(4)$ is homomorphically equivalent to $\mathcal{OD}(4)$ the rank-1 quantum chromatic number of the cone is four, and its chromatic number is five.

Outline

Colourings and Derangements

- Colourings
- Derangements

Quantum Colourings

- Projections
- Rank-1 Colourings
- Colouring Erdős-Rényi graphs
- Derangements of index \boldsymbol{k}
- Permutations

Generalizing derangements

Definition

A unitary matrix M is a unitary derangement of index k if it has order $mk \times mk$ and

$$M \circ (I_m \otimes J_k) = 0.$$

(Thus it has m diagonal blocks of zeros, each of order $k \times k$.)

What we have been calling a unitary derangement is now a unitary derangement of index 1.

Another Cayley graph

Since the set of $mk \times mk$ unitary derangements of index k is closed under conjugate transpose and does not contain the identity, we can use it as the connection set for a Cayley graph, which we denote by $\mathcal{UD}_k(m)$.

Theorem

A graph X has a rank k quantum m-colouring if and only if there is a homomorphism $X \to \mathcal{UD}_k(m)$.

Grassmann graphs

Definition

The Grassmann graph Gr(d, k) is the graph with the *k*-dimensional subspaces of \mathbb{C}^d as vertices, with two subspaces adjacent if they are orthogonal.

We can view Gr(d, k) as a continuous analog of the Kneser graph $K_{d:k}$, and then homomorphisms into Gr(d, k) will be related to fractional colourings.

Theorem

There is a homomorphism $\mathcal{UD}_k(m) \to Gr(mk,k)$.

Outline

Colourings and Derangements

- Colourings
- Derangements

Quantum Colourings

- Projections
- Rank-1 Colourings
- Colouring Erdős-Rényi graphs
- Derangements of index \boldsymbol{k}
- Permutations

Not just colourings: quantum permutations

Definition

A quantum permutation is a square matrix with entries $d \times d$ projections, such that the entries in a given row, or column, sum to I_d .

When d = 1, we have our usual permutation matrices. (Quantum permutations are also referred to as "magic unitary" matrices.)

Lemma

A matrix is a quantum permutation of order $n \times n$ if and only if it is the matrix of a quantum *n*-colouring of K_n .

The End(s)

