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1 Introduction

These notes are meant to accompany a talk “Derangements and Qquantum
Colourings”. They are largely based on the following sources:

1. Cameron, Newman, Montanaro, Severini, Winter. “On the quantum
chromatic number of a graph”. arXiv:quant-ph/0608016. (2006)

2. Manciňska, Roberson. “Quantum homomorphisms”. arXiv:1212.1742.
(2016)

3. Manciňska, Roberson. “Oddities of quantum colorings”. arXiv:1801.03542.
(2018)

4. David E. Roberson (2013). Variations on a Theme: Graph Homomor-
phisms. UWSpace. http://hdl.handle.net/10012/7814

2 Colourings

A graph homomorphism from X to Y is a map ϕ : V (X)→ V (Y ) such that
if u and v are adjacent in X, then ϕ(u) and ϕ(v) are adjacent in Y . We write
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X → Y to denote that there is a homomorphism from X to Y . The most
familiar examples are colourings: an m-colouring of X is a homomorphism
from X to Km. For a second class of examples, any automorphism of X is a
homomorphism from X to itself.

We note that if X → Y , then χ(X) ≤ χ(Y ).
If ϕ : X → Y is a homomorphism and y ∈ V (Y ), the set

ϕ−1 := {x ∈ V (X) : ϕ(x) = y}

is the fibre of ϕ at y. Since all graphs we consider are free of loops, and
fibre of a homomorphism from X to Y is a coclique in X. It follows that
an m-colouring of X determines a partition of V (X) with exactly m cells
(where each cell is a coclique).

We choose to represent a partition π by a characteristic matrix, this is
the 01-matrix with i-th column equal to the characteristic vector of the i-th
cell of π. If M is the characteristic matrix of a partition, then the columns
of M sum to 1. If M is the characteristic matrix of a colouring, each column
is the characteristic vector of a coclique.

A quantum m-colouring of a graph X is a |V (X)| ×m matrix with d× d
projections as entries, such that

(a) If u ∈ V (X), then
∑m

i=1Mu,i = Id.

(b) If uv ∈ E(X), then Mu,iMv,i = 0 for i = 1, . . . ,m.

You may verify that, if d = 1, this is just a classical m-colouring. The
least integer m such that X admits a quantum m-colouring is the quantum
chromatic number of X, denoted χq(X). (Note that d is allowed to vary.)
We have

χq(X) ≤ χ(X).

It is an interesting exercise to verify that χq(X) = 2 if and only if χ(X) =
2.

2.1 Theorem. If X admits a quantum m-colouring, then it admits a quan-
tum m-colouring where all projections have the same rank.

If the common rank is r, then mr = d.
Using the previous theorem, it is not too difficult to prove that χq(Kn) =

n.
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3 Orthogonality Graphs

Suppose S is a subset of an inner product space, e.g., the unit vectors in Cd.
The orthogonality graph based on S have vertex set S, and two elements of S
are adjacent if they are orthogonal. If the inner product space has dimension
d, then cliques of size d are orthogonal bases and the clique number of the
graph is d. We use S(d) to denote the orthogonality graphs formed from the
unit vectors in Cd. A complex vector or matrix is flat if all its entries have the
same absolute value. We use S[(d) to denote the subgraph of S(d) induced
by the flat vectors. The cliques in S[(d) correspond to flat d × d matrices;
the character table of an abelian group of order d is flat and unitary (so
ω(S[(d)) = d).

We use SR(d) and S[
R(d) to denote the real analogs of S(d) and S[(d) (note

that the latter graph is finite). These real graphs are induced subgraphs of
the complex versions.

If M is the characteristic matrix of an m-colouring of X, then two rows
of M indexed by adjacent vertices are orthogonal. This the map that sends a
vertex u to eTuM is a homomorphism fromX to S(m). If define the orthogonal
rank ξ(X) of X to be the least integer k such that there is a homomorphism
from X to S(k). We have

ξ(X) ≤ χ(X).

3.1 Theorem (Gleason). If d ≥ 3, then χ(SR(d)) > d.

The surprising thing about Gleason’s theorem is that is a simple con-
sequence of an important result clarifying the nature of quantum measure-
ments.

3.2 Theorem. Assume n = 2k. We have ω(S[
R(n) = n). If k ≥ 4, then

χ(S[
R(n)) > n; further χ(S[

R(n)) increases exponentially with n.

Here the claim about the clique number is equivalent to the existence of
Hadamard matrices of order a power of two. The claims are the chromatic
number are much deeper, in particular the final claim follows from work of
Frankl and Rödl.

4 Derangements

A derangement is a permutation of a set with no fixed point. If D denotes
the set of derangements in Symn, then D is closed under inverses and does
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not contain the identity, so we may use D as the connection set for the Cayley
graph X(Symn,D); we denote this graph by D(n). We summarize somne
relevant properties of D(n).

4.1 Theorem. We have:

(a) The maximum size of a clique in D(n) is n; cliques of size n correspond
to n× n Latin squares.

(b) The maximum size of a coclique is (n− 1)!; the cocliques of size (n− 1)!
are cosets of the stabilizer of a point.

(c) The chromatic number of D(n) is n.

4.2 Corollary. For any graph X we have χ(X) ≤ n if and only if X →
D(n).

Two graphs X and Y are homomorphically equivalent if X → Y and
Y → X. The previous corollary may restated as the statement that D(n)
and Kn are homomorphically equivalent.

Let us represent elements of Symn by permutation matrices. The space
of n× n complex matrices is an inner product space, with inner product

〈M,N〉 := tr(M∗N).

If M is a permutation matrix, M∗ = M−1 and we see that if M and N are
permutation matrices and M−1N represents a derangement, then 〈M,N〉 =
0. Thus D(n) is an orthogonality graph.

5 Rank-1 Quantum Colourings and Unitary

Derangements

Suppose M defines a quantum m-colouring of X, where the entries of M
have rank one. Then the entries of M must be of order m×m. If

P1, . . . , Pm

are the projections in row i of M , then there are unit vectors x1, . . . , xm such
that

Pr = xrx
∗
r
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Since PrPs = 0 if r 6= s, the vectors x1, . . . , xm are pairwise orthogonal,
and therefore they form the columns of a unitary matrix, R say. If S is the
unitary matrix corresponding to row j of M , then the condition Mi,rMj,r = 0
holds for each r if and only the diagonal entries of R∗S are all zero. Since R
and S are unitary, so is R∗S.

We define a unitary derangement to be a unitary matrix with all diag-
onal entries zero. Any permutation matrix is unitary, and it is a unitary
derangement if and only if the permutation it represents is a derangement.
The inverse of a unitary derangement is its conjugate-transpose, and so it is
again a unitary derangement. Hence we may define a Cayley graph UD(n) on
the unitary group U(d), with connection set the set of unitary derangements.
Note that the derangement graph D(n) is an induced subgraph of UD(n).

5.1 Theorem. A graph X has a rank-1 quantum n-colouring if and only if
X → UD(n).

5.2 Lemma. If the matrices M1, . . . ,Mn form a clique in UD(n), let M
denote the n× n matrix of projections with

Mi,j = Miej(Miej)
∗.

Then M is a rank-1 quantum n-colouring of Kn.

In the context of quantum computing, rank-1 quantum n-colouring of
Kn are referred as quantum Latin squares. (The choice of term was not
motivated by any analogy to derangement graphs.) If L is an n × n Latin
square with entries from {1, . . . , n} we can convert L to a quantum Latin
square: if Li,j = r, replace the entry r by the projection eee

T
r .

If z is a unit vector in Cn, then the unitary matrices M with i-th row
equal to z form a coclique, for if Mei = Nei = z then

(M∗N)i,i = eTi M
∗Nei = zz∗ 6= 0

and M∗N is not a derangement.
You may find it interesting to prove that χ

(1)(X)
q = 3 if and only if χ(X) =

3.
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6 Three Homomorphisms

We use homomorphisms to relate some of the parameters at hand. One
observation is in order.

6.1 Lemma. If W is a flat unitary matrix and D1 and D2 are diagonal
matrices (all of the same order), then

〈D1,W
∗D2W 〉 = tr(D1) tr(D2).

6.2 Theorem. We have homomorphisms as follows:

Kn → S[(n)→ UD(n)→ S(n).

Proof. The n-cliques in S[(n) are exactly the flat unitary matrices of order
n× n. This takes care of the first homomorphism.

For the second, if z ∈ Cn, let Dz be the diagonal matrix with

(Dz)i,i = zi.

If z ∈ S[(n), then Dz is unitary and the map

z 7→ DzW

takes elements of S[(n) to unitary matrices. Consider the matrix

Q = (DyW )∗DzW.

We have

Qi,i = tr(eie
T
i Q) = 〈eieTi , (DyW )∗DzW 〉 = 〈eieTi ,W ∗D∗yDzW 〉

and, applying the lemma (with D1 = eie
T
i ), we deduce that

〈eieTi ,W ∗D∗yDzW 〉 = tr(W ∗D∗yDzW ) = tr(D∗yDz) = 〈y, z〉.

Accordingly if y and z are orthogonal, then Q is a derangement.
The third homomorphism is again simple. As

〈Me1, Ne1〉 = (M∗N)1,1

we may use the map M 7→Me1 as the homomorphism.

6.3 Corollary. For any graph X,

χ(X) ≥ ξ[(X) ≥ χ(1)
q (X) ≥ ξ(X).
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7 Separating χ and χq

Let q be an odd prime power. The vertices of the Erdős-Rényi graph ER(q)
are the 1-dimensional subsoace of the 3-dimensional vectors over GF (q); two
subspaces spanned by nonzero vectors x and y are adjacent if xTy = 0. (Note:
this is not an Erdős-Rényi random graph.) We see that ER(q) has q2 + q+ 1
vertices and each vertex has q + 1 neighbours but, unfortunately perhaps,
there are q + 1 vertices with loops on them.

The graph we use is ER(3), on 13 vertices. Each vertex is represented
by a vector length three with entries 0, 1 and −1. We normalize the vectors
by assuming that the first non-zero entry is 1. Now we view these vectors
as vectors over R, and work with the orthogonality graph on these vectors.
Denote it by Y . Clearly ξ(Y ) ≤ 3.

Cameron et al. prove the following, using properties of the quaternions.

7.1 Lemma. There is a homomorphism from SR(4) into the subgraph of
UD(4) induced by the real orthogonal matrices.

7.2 Corollary. If ξR(x) ≤ 4, then χ
(1)
q (X) ≤ 4.

A direct computation shows that χ(Y ) = 4. Consider the cone Ŷ over
Y . Here ξR(Ŷ ) ≤ 4, whence χq(Ŷ ) ≤ 4. However χ(Ŷ ) must be five. Thus
we have established that χ and χq can differ and, also, that a graph and its
cone may have the same quantum chromatic number. We have not rules out
the possibility that χq(Y ) = 3, this is done in the oddities paper.

8 Derangements of Index k

We have seen that rank-1 colourings give rise to unitary derangements. What
of rank-k colourings?

A d × d projection P of rank k can be written as P = UU∗, where U is
d× k and its columns of are an orthonormal basis for im(P ). So U∗U = Ik.
If the matrix M represents a rank-k quantum m-colouring of X, there are
d× k matrices Ua,i (for a ∈ V (X) and i = 1 . . . ,m) such that

U∗a,iUa,i = Ik, Ua,iU
∗
a,i = Ma,i.
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We see that if i 6= j, then U∗a,iUa,j = 0 and if ab ∈ E(X), then U∗a,iUb,i = 0.
Let U be the matrix with ai-entry equal to Ua,i. Since mk = d, each row of
U is a d× d unitary matrix. If ab ∈ E(X), then(

Ua,1 . . . Ua,m

)∗ (
Ub,1 . . . Ub,m

)
is a unitary matrix of order mk ×mk with k diagonal blocks of zeros.

We define a unitary matrix M to be a unitary derangement of index k if
it has order mk ×mk and

M ◦ (Im ⊗ Jk) = 0.

(If k = 1 we recover our previous derangements.) We can apply this term to
permutation matrices, since they are unitary, and we will refer to them simply
as derangements of index k. Since the set of mk×mk unitary derangements
with index k is closed under conjugate transpose and does not contain the
identity, we can use it as the connection set for a Cayley graph for the full
unitary group; if n = km, we denote it by UDk(n).

8.1 Theorem. Let n = mk. A graph X has a rank-k quantum m-colouring
if and only if there is a homomorphism X → UDk(n).

If M is a unitary derangement (of index one) and Q is unitary of order
k × k, then M ⊗Q is a unitary derangement of index k.

9 Grassmann Graphs

The Grassmann graphGr(d, k) is the graph with the k-dimensional subspaces
of Cd as vertices, with two subspaces adjacent if they are orthogonal. We
may, and will, choose to represent the vertices of Gr(d, k) by d×d projections
of rank k. If P and Q are two such projections, then

‖P −Q‖2 = 〈P −Q,P −Q〉 = tr(P +Q− PQ−QP ) = 2k − 2〈P,Q〉.

Hence P and Q are at maximum distance if and only if they are orthogonal.
(Since P and Q are positive semidefinite, 〈P,Q〉 ≥ 0.) Consequently we may
view Gr(d, k) as an analog of the Kneser graph Kd:k. Since the fractional
chromatic number of a graph is determined by homomorphisms into Kneser
graphs this suggests, correctly, that homomorphisms to Grassmann graphs
will provide a quantum analog to fractional chromatic number.
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9.1 Theorem. There is a homomorphism UDk(mk)→ Gr(mk, k).

Proof. Define

D =

(
Ik 0
0 0

)
.

If M is a md×md unitary matrix, then

MDM∗

represents orthogonal projection onto the column space of MD, i.e., onto the
span of the first k columns of M .

10 Quantum Homomorphisms

Since colourings can be usefully viewed as a special case of graph homomor-
phisms, it seems natural to look for quantum homomorphisms.

The definition is an extension of the definition of a quantum colouring, as
it should be. A quantum homomorphism from X to Y is a |V (X)| × |V (Y )|
matrix with entries d× d projections, such that:

(a) For each vertex a of X, we have
∑

y∈V (Y )Ma,y = Id.

(b) If a and b are adjacent vertices in X and y and z are vertices in Y that
are not adjacent, then Ma,yMb,z = 0.

You might check that, if d = 1, we recover the usual definition of a graph
homomorphism.

It is important to note that a quantum homomorphism from X to Y
is not a function from V (X) to V (Y ). One symptom of this issue is that
it is not obvious how we might compose quantum homomorphisms. Before
discussing this, we offer a second definition of quantum homomorphism.

A measurement on Y is an assignment of a d×d projection to each vertex
in Y , such that if Pu denote the projection indexed by u in V (), then∑

u∈V (Y )

Pu = Id.

Given this condition, projections associated to different vertices are orthog-
onal. For a physicist a measurement indexed by Y would be referred to
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as a projective measurement, where the outcome of an actual measurement
would be a vertex of Y . Two measurements {Pu}u∈V (Y ) and {Qu}u∈V (Y ) are
compatible if when u and v are vertices in Y that are not adjacent,

PuQv = 0.

(So PuQu = 0 for each vertex u.) The vertices of the measurement graph
Md(Y ) are the measurements on Y , where two measurements are adjacent
if they are compatible. We have immediately:

10.1 Lemma. There is a quantum homomorphism X
q−→ Y if and only if

X →Md(Y ) for some d.

We turn to quantum composition. Assume M and N respectively repre-
sents quantum homomorphisms from X to Y and Y to Z. We define M ?N
to be the matrix with rows indexed by V (X), columns indexed by V (Z) and
with

(M ?N)x,z =
∑

y∈V (Y )

Mx,y ⊗Ny,z, (x ∈ V (X), z ∈ V (Z)).

You need to verify that M ?N represents a quantum homomorphism from X
to Z, and that this product is associative. (It then follows that graphs and
quantum homomorphisms are the objects and arrows of a category.)
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