TOPOLOGICAL GROUPS

MATH 519

The purpose of these notes is to give a mostly self-contained topological background
for the study of the representations of locally compact totally disconnected groups, as in
[BZ] or [B, Chapter 4]. These notes have been adapted mostly from the material in the
classical text [MZ, Chapters 1 and 2], and from [RV, Chapter 1]. An excellent resource
for basic point-set topology is [M].

1. BASIC EXAMPLES AND PROPERTIES

A topological group G is a group which is also a topological space such that the multi-
plication map (g, h) +— gh from G x G to G, and the inverse map g — ¢~! from G to G,
are both continuous. Similarly, we can define topological rings and topological fields.

Example 1. Any group given the discrete topology, or the indiscrete topology, is a
topological group.

Example 2. R under addition, and R* or C* under multiplication are topological
groups. R and C are topological fields.

Example 3. Let R be a topological ring. Then GL(n, R) is a topological group,
and M, (R) is a topological ring, both given the subspace topology in R™.

If G is a topological group, and t € G, then the maps g +— tg and g — gt are
homeomorphisms, and the inverse map is a homeomorphism. Thus, if U C G, we have

U is open <= tU is open <= Ut is open <= U ' is open.

A topological space X is called homogeneous if given any two points z,y € X, there is
a homeomorphism f : X — X such that f(x) = y. A homogeneous space thus looks
topologically the same near every point. Any topological group G is homogeneous, since
given x,y € G, the map t — yz~'t is a homeomorphism from G to G which maps z to y.

If X is a topological space, * € X, a neighborhood of x is a subset U of X such
that x is contained in the interior of U. That is, U is not necessarily open, but there is
an open set W C X containing x such that W C U.

If G is a group, and S and T are subsets of G, we let ST and S~! denote
ST ={st | s€S,teT} and S '={s']| seS}

The subset S is called symmetric if S~ = S. We will let 1 denote the identity element of
a group unless otherwise stated. The following result, although innocent enough looking,
will be the most often used in all of the results which follow.
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Proposition 1.1. Let G be a topological group. Every neighborhood U of 1 contains an
open symmetric neighborhood V' of 1 such that VV C U.

Proof. Let U’ be the interior of U. Consider the multiplication map u : U’ x U — G.
Since 1 is continuous, then g1 (U’) is open and contains (1,1). So, there are open sets
Vi, Vo C U such that (1,1) € Vi x Vo, and ViV, C U. If we let V3 = ViNVs, then V3V C U
and V3 is an open neighborhood of 1. Finally, let V = V5 N V5, which is open, contains
1, is symmetric, and satisfies V'V C U. O

Proposition 1.2. IfG is a topological group, then every open subgroup of G is also closed.

Proof. Let H be an open subgroup of G. Then any coset xH is also open. So,

Y:UxH

z€G\H
is also open. From elementary group theory, H = G \ 'Y, and so H is closed. O]

Proposition 1.3. If GG is a topological group, and if K1 and K, are compact subsets of
G, then K1K5 is compact.

Proof. The set K; x Ky is compact in G x G, and multiplication is continuous. Since the
continuous image of a compact set is compact, K1 K5 is compact. 0

If X is a topological space, and A is a subset of X, recall that the closure of A,
denoted A, is the intersection of all closed subsets containing A. A necessary and sufficient
condition for = to be an element of A is for every open neighborhood U of x, U N A is
nonempty, which may be seen as follows. If z & A, then there is a closed set F which
contains A, but x ¢ F. Then U = X \ F is an open neighborhood of z such that
UNA = @. Conversely, if U is an open neighborhood of z such that U N A = &, then
X\ U is a closed set containing A which does not contain z, so z & A.

Proposition 1.4. If G is a topological group, and H is a subgroup of G, then the topo-
logical closure of H, H, is a subgroup of G.

Proof. Let g, h € H. Let U be an open neighborhood of the product gh. Let u: GxG — G
denote the multiplication map, which is continuous, so p=*(U) is open in G x G, and
contains (g, h). So, there are open neighborhoods V; of g and V; of h such that V; x Vo C
p~H(U). Since g,h € H, then there are points t € ViNH # @ and y € Vo N H # @.
Since x,y € H, we have ry € H, and since (z,y) € p~'(U), then zy € U. Thus,
xy € UNH # &, and since U was an arbitrary open neighborhood of gh, then we have
gh € H. Now let ¢ : G — G denote the inverse map, and let W be an open neighborhood
of h=t. Then :=*(W) = W~ is open and contains h, so there is a point 2 € HNW ™! # &.
Then we have 27! € HNW # @, and as before this implies h~" € H. O

Remark. Note that in the last part of the proof of Proposition 1.4, we have shown that
the closure of a symmetric neighborhood of 1 is again symmetric.

Lemma 1.1. Let G be a topological group, F' a closed subset of G, and K a compact
subset of G, such that F N K = &. Then there is an open neighborhood V' of 1 such that
FNVK =g (and an open neighborhood V' of 1 such that F N KV' = & ).
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Proof. Let x € K,sox € G\ F, and G\ F is open. So, (G\ F)z ! is an open neighborhood
of 1. By Proposition 1.1, there is an open neighborhood W, of 1 such that W, W, C
(G\ F)z™!'. Now, K C UyexgW,x, and K is compact, so there exists a finite number of
points x1,...,x, € K, such that K C U} ;W,z;, where we write W; = W,,. Now let

n
V=W
i=1
For any x € K, x € W,x; for some ¢. Now we have

Vo Wix Cc WWx; C G\ F.

In other words, F'NVx = &. Since this is true for any x € K, we now have FNV K =
. O

Remark. Note that from Proposition 1.1, the neighborhood V' in Lemma 1.1 may be
taken to be symmetric.

Proposition 1.5. Let G be a topological group, K a compact subset of G, and F a closed
subset of G. Then FK and KF are closed subsets of G.

Proof. If FK = G, we are done, so let y € G\ FK. This means FNyK~! = &. Since
K is compact, yK ! is compact. By Lemma 1.1, there is an open neighborhood V of 1
such that FNVyK~! = @, or FK NVy = @. Since Vy is an open neighborhood of y
contained in G\ FK, we have F K is closed. 0J

2. SEPARATION PROPERTIES AND FUNCTIONS

A topological space X is said to be T; if for any two distinct points x,y € X, there
is an open set U in X such that x € U, but y € U. This is equivalent to one-point sets
being closed. If G is a topological group, then G being Ty is equivalent to {1} being a
closed set in G, by homogeneity.

A topological space X is said to be Hausdorff (or Ts) if given any two distinct points
x,y € X, there are open sets U,V C X, x € U, y € V, such that U NV = &. Recall the
following basic properties of Hausdorff spaces.

Exercise 1. If X is a Hausdorff space, then every compact subset of X is closed.

Exercise 2. Let X be a topological space, and let A = {(z,z) |z € X} C X x X
be the diagonal in X x X. Then X is Hausdorff if and only if A is closed in X x X.

Of course, if X is Ty, then X is Ty, but the converse does not hold in general. If G
is a topological group however, the converse is true, which we now show.

Proposition 2.1. Let G be a T topological group. Then G is Hausdorff.

Proof. Given distinct g, h € G, take an open set U containing 1, such that gh™' & U,
which we may do since G is T;. Applying Proposition 1.1, let V' be an open symmetric
neighborhood containing 1, such that V'V C U. Now, Vg is open and contains g, and Vh
is open and contains h. We must have VgNVh = &, otherwise there are v,,vy € V such
that v1g = v9h, which would mean

gh™ ' =vut e VV I =VV CU,
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while gh™! was chosen to be not an element of U. Thus G is Hausdorff. U

We can say even more than Proposition 2.1. A topological space X is called regular or
Ts if X is Ty, and for any point € X and any closed subset F' C X such that x € F,
there is an open set U containing x and an open set V' containing F' such that UNV = @.
The space X is called completely regular or Tychonoff or T3% if it is T; and for any
point x € X and any closed set F' C X such that z € F, there is a continuous function
f X — [0,1] such that f(x) = 0 and f(y) = 1 for every y € F. Every space which is
completely regular is also regular, since, for example, f~1([0,1/3)) and f~*((2/3,1]) are
disjoint open sets in X containing x and F', respectively. We now see that any topological
group which is T is also completely regular, and thus regular.

Theorem 2.1. Let G be a topological group, let 1 denote the identity element in G,
and let I be a closed subset of G such that 1¢ & F. Then there is a continuous function
f:G —[0,1] such that f(1g) =0 and f(y) =1 for everyy € F.

Proof. See Problem Set 1. O

Corollary 2.1. If G is a topological group which is Ty, then G is completely regular and
thus reqular.

Proof. Let x € G and let F be a closed subset of G such that ¢ F. Then z7'F is
a closed subset of G not containing 14, and from Theorem 2.1, there is a continuous
function f : G — [0, 1] such that f(1g) = 0 and f(y) = 1 for y € z7'F. Now the function
h(g) = f(z7'g) is the desired continuous function, and since G is also Ty, G is completely
regular, and so is also regular. U

Let f be an R-valued continuous function on a topological group G (we could also
consider C-valued functions). The left and right translates of f, written L, f and Ryf,
respectively, are given by

Luf(g)=f(h7'g) and Ry,f(g) = f(gh).

The function f is left uniformly continuous if for every € > 0, there is a neighborhood V'
of 1 such that
hev:>Hth_fHoo<5>
where || f||o denotes the supremum norm. We may define a function to be right uniformly
continuous similarly.
The support of a function f on a topological group G, written supp(f), is defined to be
the topological closure of the set of points in G for which f is nonzero. That is,

supp(f) ={g€ G | f(g9) # 0}.

We let C.(G) denote the set of continuous R-valued functions on G with compact support.
That is,

CAG)={f:G— TR | fiscontinuous, supp(f) is compact}.

Proposition 2.2. Let G be a topological group, and let f € C.(G). Then f is left and
right uniformly continuous.

Proof. We will prove that f is right uniformly continuous, as the proof for left uniformly
continuous is exactly analogous. Let K = supp(f), and let ¢ > 0. Let g € G, and let
B./3(f(g)) be the open ball of radius £/3 in R centered at f(g). Then f~'(B./3(f(g))) is
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an open neighborhood of g, call it W,. Let U, = g~ 'W,, which is an open neighborhood
of 1, and if h € U,, then gh € W,. So, we have

he U, = |f(gh) — f(g)] <e/3.
In other words, f(g') is within £/3 of f(g) whenever g~'¢' € U,, or

(2.1) g €Uy =1f(g) — flg)l <e/3.
Applying Proposition 1.1, let V, be an open symmetric neighborhood of 1 such that
Vy,Vy C Uy. K is compact, and

K c gV,
geK
so we may take a finite number of g € K, say ¢, ..., g,, such that

K C U 9i V-
j=1
Let us write V; = V. and U; = U,;. Now let V' = Ny_,V;, which is an open symmetric
neighborhood of 1. This will be the neighborhood which will give right uniform continuity.
Let g € K, so that g € g;V; for some j, and let h € V. Since V; C Uj, we have
g;lg € U;. Since h € V; and V;V; C Uj;, we also have g;lgh € U;. From (2.1) and our
choice of U;, we have, for any h € V,

[f(g;) = f(9)l <&/3 and [f(gh) — f(g;)| <e/3.
The triangle inequality now gives

|f(gh) = F(g) < [f(gh) — f(gi)| + [ (g5) — flg)| < 2¢/3,
for any h € V.

Now suppose g ¢ K, h € V, and that f(gh) # 0 (otherwise |f(gh) — f(g)| = 0). For
some j, we have gh € g;Vj, so gj’l(gh) € V; C U;, and by continuity f(gh) is within /3
of f(g;). Now, h™! € Vj_1 =V}, since V; is symmetric, and so we have

9; 9 =gy 'ghh™ € V;V; C U;.
By (2.1), f(g;) is within €/3 of f(g) = 0. Finally, we have
[f(gh)l < [f(gh) = fgi)l + [ f(g5)| < 2¢/3.
Now, for any g € G, h € V, we have |f(gh) — f(g9)| < 2¢/3. So,
heV = |[Rnf - fllo < 2¢/3 <&,

and f is right uniformly continuous. O

3. QUOTIENTS

If X is a topological space, and ~ is an equivalence relation on X, let X/ ~ denote the
set of equivalence classes in X under ~, and if x € X, let [z] denote the equivalence class
of z under ~. We may give the set X/ ~ the quotient topology as follows. Let

p: X — X/~ plr)=z],

be the natural projection map. Define U C X/ ~ to be open if and only if p~(U) is open
in X (forcing p to be continuous). Note that this implies that F' C X/ ~ is closed if and
only if p~!(F) is closed in X.
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Now let GG be a topological group, and H a subgroup of G. We can look at the collection
G/H of left cosets of H in G (or the collection H\G of right cosets), which defines an
equivalence relation on G. So, we can put the quotient topology on G/H as above. Recall
that G/H is not a group under coset multiplication unless H is a normal subgroup of G.

Proposition 3.1. Let G be a topological group, and H a subgroup of G.

(1) G/H is a homogeneous space under translation by G.

(2) The map p: G — G/H is an open map.

(3) If H is compact, then p: G — G/H is a closed map.

(4) G/H is a Hausdorff space if and only if H is closed.

(5) H is open in G if and only if G/H is a discrete space. If G is compact, then H is
open in G if and only if G/H is a finite and discrete space.

(6) If H is a normal subgroup of G, then G/H is a topological group.

(7) If H is the closure of the trivial subgroup, H = {1}, then H is a normal subgroup
of G and G/H is Hausdorff.

Proof. (1): For x € G, left translation by « on G/H gives a map gH +— xgH. The inverse
of this map is also a left translation, by 27!, so to show this is a homeomorphism, we
just need to show that it maps open sets to open sets, or is an open map. Let U C G/H
be open. By definition of the quotient topology, p~'(U) C G is open. It may be directly
checked that we have p~'(zU) = xp~!(U), which is also open. Since p~'(zU) is open,
then zU is open by the definition of quotient topology, and so translation is an open map.

(2): Let V C G be open. By the definition of quotient topology, p(V) C G/H is open if
and only if p~!(p(V)) C G is open. It may be checked that p~'(p(V)) = VH. Since V is
open, Vh is open for every h € H. Since VH = UpcgVh, V H is open, and so p(V) is open.

(3): As in the proof of (2), we are reduced to showing that if F' C G is closed, then
F'H is closed. But H is compact, and so by Proposition 1.5, F'H is closed.

(4): Suppose G/H is Hausdorff, so that it is Ty, and one point sets in G/H are closed. In
particular, { H} is closed in G/H. By the definition of the quotient topology, {H} C G/H
is closed if and only if p™*({H}) = H C G is closed.

From Exercise 2, to show that G/H is Hausdorff, it is enough to show that the diagonal
A = {(gH,gH) | gH € G/H} is closed in G/H x G/H. Through the natural map
f:(g1H,92H) — (g1, 92)(HxH), the space G/H xG/H is homeomorphic to GXG/H x H,
and the image of the diagonal A under this map is f(A) = {(g9,9)(H x H) | g € G}.
From the definition of the quotient topology, f(A) is closed if and only if

pH(f(A) ={(g1.92) EGX G | q1g5" € H}

is closed. But this is the inverse image of H of the continuous map from G x G to G
which maps (g1, 92) to g1g5 . Since H is closed, then this set is closed as well.

(5): See Problem Set 1.

(6): Let T, denote left multiplication by g, so that T,(x) = gz, let + and ' denote
the group inverse maps in G' and G/ H, respectively, and let p : G — G/H be the natural
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projection map. Since for any z € G we have

(poTy)(z) = grH = (gH)(xH) = (Tyg op)(z) and (po)(z) =a""H = (J/op)(x),
the following diagrams are commutative:

T

¢ . ¢ G — G
lp lp lp l”
G/H 222, G/H G/H —— G/H

Since p is an open map by (2), and T, and ¢ are continuous, this means T},,) and ¢/ must
also be continuous, making GG/H a topological group.

(7): By Proposition 1.4, H = m is a subgroup of GG. H is then the minimal closed
subgroup of G containing 1, while for any = € G, vHz~! is also a closed subgroup of G

containing 1. Thus H C xHx™ !, and so 2 'Hx C H for any € G, and H is a normal
subgroup of G. Now, G/H is a topological group by (6), and G/H is Hausdorff by (4). O

4. LOCAL COMPACTNESS AND CONNECTEDNESS

A topological space X is called locally compact if for every x € X, there is a compact
neighborhood U C X of x. Before proving a few basic properties of locally compact
spaces, recall the following, which we will need.

Exercise 3. If X is a compact space, then every closed subset of X is compact.

Lemma 4.1. Let X be a locally compact Hausdorff space. Then X is reqular, and any
neighborhood V' of any point x € X contains a compact neighborhood K of x.

Proof. Let x € X, and let F' be a closed subset in X such that x ¢ F'. Let K be a compact
neighborhood of z. Since K is closed (by Exercise 1), then M = K N F is closed, and so
M C K is compact (by Exercise 3). For every y € M, choose an open neighborhood U,
of y, and an open neighborhood UY of = such that U, N UY = &, which we can do since
X is Hausdorff. Since M is compact, there are a finite number of points yq,...,y, € M
such that M C U ,U;, where U; = U,,. Writing UY = U!, we have

reW=\Ui, and Wn|JU =g,
i=1 i=1
where W is an open neighborhood of z. Now, if K’ = K\ (U,U;), then K’ is a
closed subset of K, and so is compact, and it is a neighborhood of = since W C K’. In
particular, K’ is disjoint from F. Now let V' = int(K’) be the interior of K’, which is an
open neighborhood of . Then V' = X \ K’ is an open set containing F', and VNV’ = @.
Thus X is regular.

For the second statement, let V' be any neighborhood of z € X, and let V' = int(V)
be the interior of V. Let C' be a compact neighborhood of z, and let U’ = int(C'). Then
U =U'NV is an open neighborhood of . Now X \ U is closed, and since we have shown
that X is regular, then there are open sets Vi, V5 such that X \ U C V;, x € V5, and
VinV, = @. Now let K = V3. Since Vo € X \ Vi, which is closed, then K € X \ Vi.
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Then K C U since X \ U C V4, and so K C C. Since C' is compact and K is closed, K
is also compact. Now K is a compact neighborhood of x and K Cc U C V. O

A topological group G is called a locally compact group if it is a locally compact space
and it is Hausdorff.

Proposition 4.1. Let G be a Hausdorff topological group. Any subgroup H of G which
is locally compact (in the subspace topology) is closed.

Proof. Let K be a compact neighborhood of 1 in H. Then K is closed in H by Exercise
1. By the definition of subspace topology, there is a closed neighborhood F' of 1 in G such
that K = FF'N H. Since K is compact in H, it is compact in GG, and so K is closed in G.
Applying Proposition 1.1, let V' be an open neighborhood of 1 such that V'V C F.

Now, H is a subgroup of G by Proposition 1.4. Let € H. To show H is closed, it is
enough to show that € H. Now ! € H, and so every neighborhood of 2! intersects
H. In particular, Va~! is a neighborhood of 27!, so take some point y € Vo' N H. Now
consider yz, and let W be a neighborhood of yz. Now y ='W and zV are neighborhoods
of x, and so y~'W NV is a neighborhood of z. Since € H, there is a point

z€ (y 'WnaV)NH.

Now,y € Vzland z € 2V, so yz € (Va')(2V) =VV C F. Also yz € W N H, since
2z € y W, and both y and z are in the subgroup H. Therefore we have

yze WN(FNH)=WnNK,
which is thus nonempty. Since K is closed and W was an arbitrary neighborhood of yzx,
then we must have yr € K C H. Since y,yx € H, then x € H, and so H is closed. O

We will need to apply the following technical lemma later.

Lemma 4.2. Let G be a locally compact group, K a compact subset of G, and U an open
neighborhood of 1 in G. Then there is a neighborhood V' of 1 in G such that = 'Vz C U
for every x € K.

Proof. Let x € K. Then zUxz~! is an open neighborhood of 1. Since G is a locally compact
group, there is a compact neighborhood V,, of 1 such that V, C Uz~ ! by Lemma 4.1.
Let F = G\ U, then x7'V,z N FF = @. From Lemma 1.1, there is a neighborhood W/ of
1, which may be chosen to be compact by Lemma 4.1, and symmetric by Proposition 1.1
and the remark after Proposition 1.4 (along with Exercise 3), such that

(27 'V )W, N F = @.
The fact that W, is symmetric implies that we also have

v Ve NFW, = .

From Proposition 1.5, FW/ is closed, since F' is closed and W/ is compact. So, again by
Lemma 1.1 and Proposition 1.1, there is a symmetric neighborhood W' of 1 such that

(4.1) W/ (x™'V2) N FW, = @.
Now let W, = W, N W/, which is a symmetric neighborhood of 1. Then we must have
(4.2) W, (z~ V)W, N F = @,

otherwise (4.1) would be violated (since W, and W, are symmetric).
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For each = € K, let U, = int(W,) be the interior of W,. Then, the collection of all
zU,, v € K, constitutes an open cover of K, and so there is a finite number of points,
say T1,T2,...,Ty, such that, writing W, = W,, and U,, = U;,

=1 =1

Now let V. = N,V;, where V; = V,.. If v € K, then z € x;W,; for some i, and so
x~t € Wiz, ', since W; is symmetric. Now, by (4.2), we have

v 'WVr C Wy Wi W; cG\F=U. O

A topological space X is connected if whenever X = UUV where U and V' are nonempty
open sets, then U NV # @&. That is, X is connected when X has no nonempty proper
subsets which are both closed and open (or clopen). A maximal connected subset of X is
called a connected component of X. The space X is totally disconnected if each one-point
subset in X is its own connected component. Of course, every discrete space is totally
disconnected. One familiar example of a totally disconnected space which is not discrete
is the Cantor middle-thirds set.

Exercise 4. If A C X is connected, then A is connected. That is, connected com-
ponents are closed sets.

If G is a topological group, then G is totally disconnected if and only if {1} is a con-
nected component, by homogeneity. The connected component of 1 in G will be denoted
G°, and its basic properties are as follows.

Proposition 4.2. If G is a topological group, then G° is a normal subgroup of G, the
connected components of G are all of the form xG° for x € G, and G/G° is a totally
disconnected group.

Proof. See Problem Set 1. 0

Finally, we turn to the study of spaces which are locally compact and totally dis-
connected. Before proving the main statements, we first need a few more preliminary
lemmas.

A topological space X is called normal or T} if it is Ty (one point sets are closed) and
for any disjoint closed subsets E and F' of X, there are open sets U and V' such that
EFEcU FcV,andUNV = 0.

Exercise 5. Every compact Hausdorff space is normal. Note that from Lemma 4.1, we
already know compact Hausdorff spaces are regular.

Lemma 4.3. Let X be a compact Hausdorff space, and let x € X. Let U, denote the
collection of compact open neighborhoods of x. Then Ny, U is the connected component
of x.

Proof. Let F' = Nyey, U, which is a nonempty closed set since X itself is a compact open
neighborhood of x, and each U € U,, is compact and thus closed (by Exercise 3). Suppose
that V' and W’ are closed and open subsets of F' (in the subspace topology of F') such
that

F=V'UW' and V' NW =@.
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Since F'is closed, then V' and W' are closed subsets in X. Since X is normal by Exercise
5, then there are disjoint open sets V and W of X such that V' € V and W' c W. To
show F'is connected, we must show that one of V' or W’ is empty.

Now, B = X \ (VUW) is closed, and thus compact, and does not intersect F. So, the
sets X \U, U € U,, cover B, and are all open (and closed) since each U is compact (thus
closed) and open. Since B is compact, there are a finite number of neighborhoods of z,
Ui, ..., U, € Uy, such that B C U (X \ U;). In other words, if we let A =N ,U;, then
ANB =g,z € A, and A is compact and open. Now A C X \ B=V UW, and so

A=(ANV)U(ANW),

where ANV and AN W are disjoint open sets. Since A is closed, ANV and ANW are
also both closed (and thus compact). So, x can only be an element of one of them, say
x € ANV, which means that ¥ C ANV (since ANV is a compact open neighborhood
of z), while F N (ANW) = @. This means we must have F' = V' and W’ = @, so that
F'is connected.

Now let C' be the connected component of z, so that F' C C. Suppose that F' # C, so
that there is a point y € C'\ F'. Then there must be a compact open neighborhood M of
x such that y ¢ M. Now M N C is closed and open in C, while (X \ M) N C contains y,
contradicting the fact that C' is connected. Thus F' is the connected component of . [

Lemma 4.4. Let X be a compact Hausdorff space, let C' be a connected component of X,
and let F' be a closed subset of X such that FNC = @. Then there is a compact open set
V' such that C CV and FNV = @.

Proof. We have F is compact (Exercise 3), and if x € C, then C' = Ny, U, where U, is
the collection of compact open neighborhoods of x, by Lemma 4.3. The open sets X \ U,

U € U, cover F, and so for a finite number of sets in U, say Uy, ..., U,, F is covered by
U (X \ ;). If welet V =n7,U;, we have FNV =@, and C' C V, as desired. O

Theorem 4.1. Let X be a Hausdorff space. Then X is locally compact and totally dis-
connected if and only if every neighborhood of every point x € X contains a compact open
netghborhood of x.

Proof. (=): Let z € X, and let U be the interior of an arbitrary neighborhood of z. By
Lemma 4.1, there is a compact neighborhood K of z contained in U. Now let V be an
open neighborhood of z, V' C K, and let F = K\ V. If F' = &, then V is open and
compact, and we are done. The set F' is closed, and {z} is a connected component of
X since X is totally disconnected, and so {z} is a connected component of the compact
subset K. Since F'N {x} = &, then by Lemma 4.4, there is a compact open set W
containing x such that F N W = @. That is, W Cc V C U, and W is a compact open
neighborhood of x.

(«<): First, since every point x € X has a compact neighborhood, then X is locally
compact. Now let S be the connected component of x € X. Suppose that y # x and
y € S. Since X is Hausdorft, it is Ty, and so x has an open neighborhood W such that
y € W. Let U be a compact open neighborhood of x which is contained in W. Since X
is Hausdorff, U is closed. So, U’ = U N S is closed and open in S. But y ¢ U’, and so
U’ is a proper nonempty clopen subset of S, contradicting the fact that S is connected.
Thus, S = {2z}, and X is totally disconnected. O
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Corollary 4.1. Let G be a locally compact totally disconnected group, and H a subgroup
of G. Then H 1s closed if and only if H is a locally compact totally disconnected group,
if and only if G/H is a locally compact totally disconnected Hausdorff space.

Proof. First, suppose H is closed, and let x € H, and U any neighborhood of z in H.
Then U = H NV, where V is a neighborhood of z in G. By Theorem 4.1, V contains a
compact open neighborhood of z, say F. By definition, H N F' is an open neighborhood
of x in H, and it is contained in U. Since F' is compact and G is Hausdorff, then F' is
closed, and so F'N H is closed in G. Moreover, F'N H is compact in G since it is closed and
contained in F', which is compact. Thus F'N H is compact in H. Now F'N H is a compact
open neighborhood of x in H which is contained in U, and H is locally compact and
totally disconnected by Theorem 4.1. Conversely, if H is locally compact in the subspace
topology, then it is automatically closed by Proposition 4.1.

For the second part, suppose that H is closed. Since p : G — G/H is an open map
by part (2) of Proposition 3.1, and is continuous by definition, then the image under p of
compact open sets of G are compact open sets of G/H. If U is an open neighborhood of
rH € G/H, then p~'(U) is an open neighborhood of z € G, which contains a compact
open neighborhood K of z, by Theorem 4.1. Then p(K) is a compact open neighborhood
of xH contained in p(p~(U)) = U. Thus G/H is locally compact and totally disconnected
by Theorem 4.1. Since H is assumed to be closed, then G/H is Hausdorff by part (4) of
Proposition 3.1. Conversely, if G/H is Hausdorff, then H is automatically closed also by
part (4) of Proposition 3.1. O

Theorem 4.2. Let G be a locally compact totally disconnected group. Every neighborhood
of 1 contains a compact open subgroup of G. If G is a compact totally disconnected group,
then every neighborhood of 1 contains a compact open normal subgroup of G.

Proof. Since G is a locally compact totally disconnected group, each neighborhood of
1 contains a compact open neighborhood V' of 1, from Theorem 4.1. Let us denote
Vr=VV"»lforn > 2 Let F=(G\V)NV2 Since V is open, G\ V is closed, and
since G is Hausdorff and V is compact, V is closed and so V2 is closed, by Proposition
1.5. Thus F'is closed.

We have VNFE = &, where V' is compact and F'is closed. By Lemma 1.1 and Proposition
1.1, there is an open symmetric neighborhood W of 1, W C V, such that VW N F = &.
Since W C V, then VW C V2. Because F = (G\V)NV? and VW N F = &, then we
must have VIW C V. Now we have

VW2 c VW CV,

and by induction we must have VW™ C V for every integer n > 0. Since W was chosen
to be symmetric, then in fact VW™ C V for every integer n. In particular, since 1 € V,
we have

Ywrcw

nezZ
Now, H = U,czW™ is a subgroup of G contained in V. Since each W™ is open, then H is
an open subgroup, and is thus closed by Proposition 1.2. Since H C V and V is compact
and H is closed, then H must be compact. Thus, H is a compact open subgroup of G.

Suppose now that G is compact and totally disconnected. Since G is locally compact

and totally disconnected, then any neighborhood of 1 contains a compact open subgroup
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H’, as we have just shown. Now consider

H= m cH'z™ L.
zeG
By Lemma 4.2, there is a neighborhood U of 1 such that U C zH'z™! for every z € G
(since G is compact). In other words, H contains an open neighborhood of 1, and is
thus open. H is a subgroup, since it is the intersection of subgroups, and is normal
by construction. Since zH'x~! is closed (since it is compact) for every x € G, then H is

closed, and is thus compact since G is compact. So, H is a compact open normal subgroup

The following characterization of locally compact totally disconnected groups follows
immediately from Theorems 4.1 and 4.2.

Corollary 4.2. A Hausdorff topological group G is locally compact and totally discon-
nected if and only if every neighborhood of 1 contains a compact open subgroup.
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