
TOPOLOGICAL GROUPS

MATH 519

The purpose of these notes is to give a mostly self-contained topological background
for the study of the representations of locally compact totally disconnected groups, as in
[BZ] or [B, Chapter 4]. These notes have been adapted mostly from the material in the
classical text [MZ, Chapters 1 and 2], and from [RV, Chapter 1]. An excellent resource
for basic point-set topology is [M].

1. Basic examples and properties

A topological group G is a group which is also a topological space such that the multi-
plication map (g, h) 7→ gh from G×G to G, and the inverse map g 7→ g−1 from G to G,
are both continuous. Similarly, we can define topological rings and topological fields.

Example 1. Any group given the discrete topology, or the indiscrete topology, is a
topological group.

Example 2. R under addition, and R× or C× under multiplication are topological
groups. R and C are topological fields.

Example 3. Let R be a topological ring. Then GL(n,R) is a topological group,

and Mn(R) is a topological ring, both given the subspace topology in Rn2
.

If G is a topological group, and t ∈ G, then the maps g 7→ tg and g 7→ gt are
homeomorphisms, and the inverse map is a homeomorphism. Thus, if U ⊂ G, we have

U is open⇐⇒ tU is open⇐⇒ Ut is open⇐⇒ U−1 is open.

A topological space X is called homogeneous if given any two points x, y ∈ X, there is
a homeomorphism f : X → X such that f(x) = y. A homogeneous space thus looks
topologically the same near every point. Any topological group G is homogeneous, since
given x, y ∈ G, the map t 7→ yx−1t is a homeomorphism from G to G which maps x to y.

If X is a topological space, x ∈ X, a neighborhood of x is a subset U of X such
that x is contained in the interior of U . That is, U is not necessarily open, but there is
an open set W ⊂ X containing x such that W ⊂ U .

If G is a group, and S and T are subsets of G, we let ST and S−1 denote

ST = {st | s ∈ S, t ∈ T} and S−1 = {s−1 | s ∈ S}.

The subset S is called symmetric if S−1 = S. We will let 1 denote the identity element of
a group unless otherwise stated. The following result, although innocent enough looking,
will be the most often used in all of the results which follow.
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Proposition 1.1. Let G be a topological group. Every neighborhood U of 1 contains an
open symmetric neighborhood V of 1 such that V V ⊂ U .

Proof. Let U ′ be the interior of U . Consider the multiplication map µ : U ′ × U ′ → G.
Since µ is continuous, then µ−1(U ′) is open and contains (1, 1). So, there are open sets
V1, V2 ⊂ U such that (1, 1) ∈ V1×V2, and V1V2 ⊂ U . If we let V3 = V1∩V2, then V3V3 ⊂ U
and V3 is an open neighborhood of 1. Finally, let V = V3 ∩ V −1

3 , which is open, contains
1, is symmetric, and satisfies V V ⊂ U . �

Proposition 1.2. If G is a topological group, then every open subgroup of G is also closed.

Proof. Let H be an open subgroup of G. Then any coset xH is also open. So,

Y =
⋃

x∈G\H

xH

is also open. From elementary group theory, H = G \ Y , and so H is closed. �

Proposition 1.3. If G is a topological group, and if K1 and K2 are compact subsets of
G, then K1K2 is compact.

Proof. The set K1×K2 is compact in G×G, and multiplication is continuous. Since the
continuous image of a compact set is compact, K1K2 is compact. �

If X is a topological space, and A is a subset of X, recall that the closure of A,
denoted A, is the intersection of all closed subsets containing A. A necessary and sufficient
condition for x to be an element of A is for every open neighborhood U of x, U ∩ A is
nonempty, which may be seen as follows. If x 6∈ A, then there is a closed set F which
contains A, but x 6∈ F . Then U = X \ F is an open neighborhood of x such that
U ∩ A = ∅. Conversely, if U is an open neighborhood of x such that U ∩ A = ∅, then
X \ U is a closed set containing A which does not contain x, so x 6∈ A.

Proposition 1.4. If G is a topological group, and H is a subgroup of G, then the topo-
logical closure of H, H, is a subgroup of G.

Proof. Let g, h ∈ H. Let U be an open neighborhood of the product gh. Let µ : G×G→ G
denote the multiplication map, which is continuous, so µ−1(U) is open in G × G, and
contains (g, h). So, there are open neighborhoods V1 of g and V2 of h such that V1×V2 ⊂
µ−1(U). Since g, h ∈ H, then there are points x ∈ V1 ∩ H 6= ∅ and y ∈ V2 ∩ H 6= ∅.
Since x, y ∈ H, we have xy ∈ H, and since (x, y) ∈ µ−1(U), then xy ∈ U . Thus,
xy ∈ U ∩H 6= ∅, and since U was an arbitrary open neighborhood of gh, then we have
gh ∈ H. Now let ι : G→ G denote the inverse map, and let W be an open neighborhood
of h−1. Then ι−1(W ) = W−1 is open and contains h, so there is a point z ∈ H∩W−1 6= ∅.
Then we have z−1 ∈ H ∩W 6= ∅, and as before this implies h−1 ∈ H. �

Remark. Note that in the last part of the proof of Proposition 1.4, we have shown that
the closure of a symmetric neighborhood of 1 is again symmetric.

Lemma 1.1. Let G be a topological group, F a closed subset of G, and K a compact
subset of G, such that F ∩K = ∅. Then there is an open neighborhood V of 1 such that
F ∩ V K = ∅ (and an open neighborhood V ′ of 1 such that F ∩KV ′ = ∅).
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Proof. Let x ∈ K, so x ∈ G\F , and G\F is open. So, (G\F )x−1 is an open neighborhood
of 1. By Proposition 1.1, there is an open neighborhood Wx of 1 such that WxWx ⊂
(G \ F )x−1. Now, K ⊂ ∪x∈KWxx, and K is compact, so there exists a finite number of
points x1, . . . , xn ∈ K, such that K ⊂ ∪ni=1Wixi, where we write Wi = Wxi

. Now let

V =
n⋂
i=1

Wi.

For any x ∈ K, x ∈ Wixi for some i. Now we have

V x ⊂ Wix ⊂ WiWixi ⊂ G \ F.
In other words, F ∩ V x = ∅. Since this is true for any x ∈ K, we now have F ∩ V K =
∅. �

Remark. Note that from Proposition 1.1, the neighborhood V in Lemma 1.1 may be
taken to be symmetric.

Proposition 1.5. Let G be a topological group, K a compact subset of G, and F a closed
subset of G. Then FK and KF are closed subsets of G.

Proof. If FK = G, we are done, so let y ∈ G \ FK. This means F ∩ yK−1 = ∅. Since
K is compact, yK−1 is compact. By Lemma 1.1, there is an open neighborhood V of 1
such that F ∩ V yK−1 = ∅, or FK ∩ V y = ∅. Since V y is an open neighborhood of y
contained in G \ FK, we have FK is closed. �

2. Separation properties and functions

A topological space X is said to be T1 if for any two distinct points x, y ∈ X, there
is an open set U in X such that x ∈ U , but y 6∈ U . This is equivalent to one-point sets
being closed. If G is a topological group, then G being T1 is equivalent to {1} being a
closed set in G, by homogeneity.

A topological space X is said to be Hausdorff (or T2) if given any two distinct points
x, y ∈ X, there are open sets U, V ⊂ X, x ∈ U , y ∈ V , such that U ∩ V = ∅. Recall the
following basic properties of Hausdorff spaces.

Exercise 1. If X is a Hausdorff space, then every compact subset of X is closed.

Exercise 2. Let X be a topological space, and let ∆ = {(x, x) |x ∈ X} ⊂ X × X
be the diagonal in X ×X. Then X is Hausdorff if and only if ∆ is closed in X ×X.

Of course, if X is T2, then X is T1, but the converse does not hold in general. If G
is a topological group however, the converse is true, which we now show.

Proposition 2.1. Let G be a T1 topological group. Then G is Hausdorff.

Proof. Given distinct g, h ∈ G, take an open set U containing 1, such that gh−1 6∈ U ,
which we may do since G is T1. Applying Proposition 1.1, let V be an open symmetric
neighborhood containing 1, such that V V ⊂ U . Now, V g is open and contains g, and V h
is open and contains h. We must have V g ∩ V h = ∅, otherwise there are v1, v2 ∈ V such
that v1g = v2h, which would mean

gh−1 = v2v
−1
1 ∈ V V −1 = V V ⊂ U,
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while gh−1 was chosen to be not an element of U . Thus G is Hausdorff. �

We can say even more than Proposition 2.1. A topological space X is called regular or
T3 if X is T1, and for any point x ∈ X and any closed subset F ⊂ X such that x 6∈ F ,
there is an open set U containing x and an open set V containing F such that U ∩V = ∅.
The space X is called completely regular or Tychonoff or T3 1

2
if it is T1 and for any

point x ∈ X and any closed set F ⊂ X such that x 6∈ F , there is a continuous function
f : X → [0, 1] such that f(x) = 0 and f(y) = 1 for every y ∈ F . Every space which is
completely regular is also regular, since, for example, f−1([0, 1/3)) and f−1((2/3, 1]) are
disjoint open sets in X containing x and F , respectively. We now see that any topological
group which is T1 is also completely regular, and thus regular.

Theorem 2.1. Let G be a topological group, let 1G denote the identity element in G,
and let F be a closed subset of G such that 1G 6∈ F . Then there is a continuous function
f : G→ [0, 1] such that f(1G) = 0 and f(y) = 1 for every y ∈ F .

Proof. See Problem Set 1. �

Corollary 2.1. If G is a topological group which is T1, then G is completely regular and
thus regular.

Proof. Let x ∈ G and let F be a closed subset of G such that x 6∈ F . Then x−1F is
a closed subset of G not containing 1G, and from Theorem 2.1, there is a continuous
function f : G→ [0, 1] such that f(1G) = 0 and f(y) = 1 for y ∈ x−1F . Now the function
h(g) = f(x−1g) is the desired continuous function, and since G is also T1, G is completely
regular, and so is also regular. �

Let f be an R-valued continuous function on a topological group G (we could also
consider C-valued functions). The left and right translates of f , written Lhf and Rhf ,
respectively, are given by

Lhf(g) = f(h−1g) and Rhf(g) = f(gh).

The function f is left uniformly continuous if for every ε > 0, there is a neighborhood V
of 1 such that

h ∈ V =⇒ ||Lhf − f ||∞ < ε,

where ||f ||∞ denotes the supremum norm. We may define a function to be right uniformly
continuous similarly.

The support of a function f on a topological group G, written supp(f), is defined to be
the topological closure of the set of points in G for which f is nonzero. That is,

supp(f) = {g ∈ G | f(g) 6= 0}.
We let Cc(G) denote the set of continuous R-valued functions on G with compact support.
That is,

Cc(G) = {f : G→ R | f is continuous, supp(f) is compact}.

Proposition 2.2. Let G be a topological group, and let f ∈ Cc(G). Then f is left and
right uniformly continuous.

Proof. We will prove that f is right uniformly continuous, as the proof for left uniformly
continuous is exactly analogous. Let K = supp(f), and let ε > 0. Let g ∈ G, and let
Bε/3(f(g)) be the open ball of radius ε/3 in R centered at f(g). Then f−1(Bε/3(f(g))) is
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an open neighborhood of g, call it Wg. Let Ug = g−1Wg, which is an open neighborhood
of 1, and if h ∈ Ug, then gh ∈ Wg. So, we have

h ∈ Ug =⇒ |f(gh)− f(g)| < ε/3.

In other words, f(g′) is within ε/3 of f(g) whenever g−1g′ ∈ Ug, or

(2.1) g−1g′ ∈ Ug =⇒ |f(g′)− f(g)| < ε/3.

Applying Proposition 1.1, let Vg be an open symmetric neighborhood of 1 such that
VgVg ⊂ Ug. K is compact, and

K ⊂
⋃
g∈K

gVg,

so we may take a finite number of g ∈ K, say g1, . . . , gn, such that

K ⊂
n⋃
j=1

gjVgj
.

Let us write Vj = Vgj
and Uj = Ugj

. Now let V = ∩nj=1Vj, which is an open symmetric
neighborhood of 1. This will be the neighborhood which will give right uniform continuity.

Let g ∈ K, so that g ∈ gjVj for some j, and let h ∈ V . Since Vj ⊂ Uj, we have
g−1
j g ∈ Uj. Since h ∈ Vj and VjVj ⊂ Uj, we also have g−1

j gh ∈ Uj. From (2.1) and our
choice of Uj, we have, for any h ∈ V ,

|f(gj)− f(g)| < ε/3 and |f(gh)− f(gj)| < ε/3.

The triangle inequality now gives

|f(gh)− f(g)| ≤ |f(gh)− f(gj)|+ |f(gj)− f(g)| < 2ε/3,

for any h ∈ V .
Now suppose g 6∈ K, h ∈ V , and that f(gh) 6= 0 (otherwise |f(gh) − f(g)| = 0). For

some j, we have gh ∈ gjVj, so g−1
j (gh) ∈ Vj ⊂ Uj, and by continuity f(gh) is within ε/3

of f(gj). Now, h−1 ∈ V −1
j = Vj, since Vj is symmetric, and so we have

g−1
j g = g−1

j ghh−1 ∈ VjVj ⊂ Uj.

By (2.1), f(gj) is within ε/3 of f(g) = 0. Finally, we have

|f(gh)| ≤ |f(gh)− f(gj)|+ |f(gj)| < 2ε/3.

Now, for any g ∈ G, h ∈ V , we have |f(gh)− f(g)| < 2ε/3. So,

h ∈ V =⇒ ||Rhf − f ||∞ ≤ 2ε/3 < ε,

and f is right uniformly continuous. �

3. Quotients

If X is a topological space, and ∼ is an equivalence relation on X, let X/ ∼ denote the
set of equivalence classes in X under ∼, and if x ∈ X, let [x] denote the equivalence class
of x under ∼. We may give the set X/ ∼ the quotient topology as follows. Let

p : X → X/ ∼, p(x) = [x],

be the natural projection map. Define U ⊂ X/ ∼ to be open if and only if p−1(U) is open
in X (forcing p to be continuous). Note that this implies that F ⊂ X/ ∼ is closed if and
only if p−1(F ) is closed in X.
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Now let G be a topological group, and H a subgroup of G. We can look at the collection
G/H of left cosets of H in G (or the collection H\G of right cosets), which defines an
equivalence relation on G. So, we can put the quotient topology on G/H as above. Recall
that G/H is not a group under coset multiplication unless H is a normal subgroup of G.

Proposition 3.1. Let G be a topological group, and H a subgroup of G.

(1) G/H is a homogeneous space under translation by G.
(2) The map p : G→ G/H is an open map.
(3) If H is compact, then p : G→ G/H is a closed map.
(4) G/H is a Hausdorff space if and only if H is closed.
(5) H is open in G if and only if G/H is a discrete space. If G is compact, then H is

open in G if and only if G/H is a finite and discrete space.
(6) If H is a normal subgroup of G, then G/H is a topological group.

(7) If H is the closure of the trivial subgroup, H = {1}, then H is a normal subgroup
of G and G/H is Hausdorff.

Proof. (1): For x ∈ G, left translation by x on G/H gives a map gH 7→ xgH. The inverse
of this map is also a left translation, by x−1, so to show this is a homeomorphism, we
just need to show that it maps open sets to open sets, or is an open map. Let U ⊂ G/H
be open. By definition of the quotient topology, p−1(U) ⊂ G is open. It may be directly
checked that we have p−1(xU) = xp−1(U), which is also open. Since p−1(xU) is open,
then xU is open by the definition of quotient topology, and so translation is an open map.

(2): Let V ⊂ G be open. By the definition of quotient topology, p(V ) ⊂ G/H is open if
and only if p−1(p(V )) ⊂ G is open. It may be checked that p−1(p(V )) = V H. Since V is
open, V h is open for every h ∈ H. Since V H = ∪h∈HV h, V H is open, and so p(V ) is open.

(3): As in the proof of (2), we are reduced to showing that if F ⊂ G is closed, then
FH is closed. But H is compact, and so by Proposition 1.5, FH is closed.

(4): Suppose G/H is Hausdorff, so that it is T1, and one point sets in G/H are closed. In
particular, {H} is closed in G/H. By the definition of the quotient topology, {H} ⊂ G/H
is closed if and only if p−1({H}) = H ⊂ G is closed.

From Exercise 2, to show that G/H is Hausdorff, it is enough to show that the diagonal
∆ = {(gH, gH) | gH ∈ G/H} is closed in G/H × G/H. Through the natural map
f : (g1H, g2H) 7→ (g1, g2)(H×H), the spaceG/H×G/H is homeomorphic toG×G/H×H,
and the image of the diagonal ∆ under this map is f(∆) = {(g, g)(H × H) | g ∈ G}.
From the definition of the quotient topology, f(∆) is closed if and only if

p−1(f(∆)) = {(g1, g2) ∈ G×G | g1g
−1
2 ∈ H}

is closed. But this is the inverse image of H of the continuous map from G × G to G
which maps (g1, g2) to g1g

−1
2 . Since H is closed, then this set is closed as well.

(5): See Problem Set 1.

(6): Let Tg denote left multiplication by g, so that Tg(x) = gx, let ι and ι′ denote
the group inverse maps in G and G/H, respectively, and let p : G→ G/H be the natural
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projection map. Since for any x ∈ G we have

(p ◦ Tg)(x) = gxH = (gH)(xH) = (Tp(g) ◦ p)(x) and (p ◦ ι)(x) = x−1H = (ι′ ◦ p)(x),

the following diagrams are commutative:

G
Tg−−−→ Gyp

yp

G/H
Tp(g)−−−→ G/H

G
ι−−−→ Gyp

yp

G/H
ι′−−−→ G/H

Since p is an open map by (2), and Tg and ι are continuous, this means Tp(g) and ι′ must
also be continuous, making G/H a topological group.

(7): By Proposition 1.4, H = {1} is a subgroup of G. H is then the minimal closed
subgroup of G containing 1, while for any x ∈ G, xHx−1 is also a closed subgroup of G
containing 1. Thus H ⊂ xHx−1, and so x−1Hx ⊂ H for any x ∈ G, and H is a normal
subgroup of G. Now, G/H is a topological group by (6), and G/H is Hausdorff by (4). �

4. Local compactness and connectedness

A topological space X is called locally compact if for every x ∈ X, there is a compact
neighborhood U ⊂ X of x. Before proving a few basic properties of locally compact
spaces, recall the following, which we will need.

Exercise 3. If X is a compact space, then every closed subset of X is compact.

Lemma 4.1. Let X be a locally compact Hausdorff space. Then X is regular, and any
neighborhood V of any point x ∈ X contains a compact neighborhood K of x.

Proof. Let x ∈ X, and let F be a closed subset in X such that x 6∈ F . Let K be a compact
neighborhood of x. Since K is closed (by Exercise 1), then M = K ∩ F is closed, and so
M ⊂ K is compact (by Exercise 3). For every y ∈ M , choose an open neighborhood Uy
of y, and an open neighborhood Uy

x of x such that Uy ∩ Uy
x = ∅, which we can do since

X is Hausdorff. Since M is compact, there are a finite number of points y1, . . . , yn ∈ M
such that M ⊂ ∪ni=1Ui, where Ui = Uyi

. Writing Uyi
x = U i

x, we have

x ∈ W =
n⋂
i=1

U i
x, and W ∩

n⋃
i=1

Ui = ∅,

where W is an open neighborhood of x. Now, if K ′ = K \ (∪ni=1Ui), then K ′ is a
closed subset of K, and so is compact, and it is a neighborhood of x since W ⊂ K ′. In
particular, K ′ is disjoint from F . Now let V = int(K ′) be the interior of K ′, which is an
open neighborhood of x. Then V ′ = X \K ′ is an open set containing F , and V ∩V ′ = ∅.
Thus X is regular.

For the second statement, let V be any neighborhood of x ∈ X, and let V ′ = int(V )
be the interior of V . Let C be a compact neighborhood of x, and let U ′ = int(C). Then
U = U ′ ∩V is an open neighborhood of x. Now X \U is closed, and since we have shown
that X is regular, then there are open sets V1, V2 such that X \ U ⊂ V1, x ∈ V2, and
V1 ∩ V2 = ∅. Now let K = V2. Since V2 ⊂ X \ V1, which is closed, then K ⊂ X \ V1.
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Then K ⊂ U since X \ U ⊂ V1, and so K ⊂ C. Since C is compact and K is closed, K
is also compact. Now K is a compact neighborhood of x and K ⊂ U ⊂ V . �

A topological group G is called a locally compact group if it is a locally compact space
and it is Hausdorff.

Proposition 4.1. Let G be a Hausdorff topological group. Any subgroup H of G which
is locally compact (in the subspace topology) is closed.

Proof. Let K be a compact neighborhood of 1 in H. Then K is closed in H by Exercise
1. By the definition of subspace topology, there is a closed neighborhood F of 1 in G such
that K = F ∩H. Since K is compact in H, it is compact in G, and so K is closed in G.
Applying Proposition 1.1, let V be an open neighborhood of 1 such that V V ⊂ F .

Now, H is a subgroup of G by Proposition 1.4. Let x ∈ H. To show H is closed, it is
enough to show that x ∈ H. Now x−1 ∈ H, and so every neighborhood of x−1 intersects
H. In particular, V x−1 is a neighborhood of x−1, so take some point y ∈ V x−1 ∩H. Now
consider yx, and let W be a neighborhood of yx. Now y−1W and xV are neighborhoods
of x, and so y−1W ∩ xV is a neighborhood of x. Since x ∈ H, there is a point

z ∈ (y−1W ∩ xV ) ∩H.
Now, y ∈ V x−1 and z ∈ xV , so yz ∈ (V x−1)(xV ) = V V ⊂ F . Also yz ∈ W ∩ H, since
z ∈ y−1W , and both y and z are in the subgroup H. Therefore we have

yz ∈ W ∩ (F ∩H) = W ∩K,
which is thus nonempty. Since K is closed and W was an arbitrary neighborhood of yx,
then we must have yx ∈ K ⊂ H. Since y, yx ∈ H, then x ∈ H, and so H is closed. �

We will need to apply the following technical lemma later.

Lemma 4.2. Let G be a locally compact group, K a compact subset of G, and U an open
neighborhood of 1 in G. Then there is a neighborhood V of 1 in G such that x−1V x ⊂ U
for every x ∈ K.

Proof. Let x ∈ K. Then xUx−1 is an open neighborhood of 1. Since G is a locally compact
group, there is a compact neighborhood Vx of 1 such that Vx ⊂ xUx−1 by Lemma 4.1.
Let F = G \ U , then x−1Vxx ∩ F = ∅. From Lemma 1.1, there is a neighborhood W ′

x of
1, which may be chosen to be compact by Lemma 4.1, and symmetric by Proposition 1.1
and the remark after Proposition 1.4 (along with Exercise 3), such that

(x−1Vxx)W ′
x ∩ F = ∅.

The fact that W ′
x is symmetric implies that we also have

x−1Vxx ∩ FW ′
x = ∅.

From Proposition 1.5, FW ′
x is closed, since F is closed and W ′

x is compact. So, again by
Lemma 1.1 and Proposition 1.1, there is a symmetric neighborhood W ′′

x of 1 such that

(4.1) W ′′
x (x−1Vxx) ∩ FW ′

x = ∅.
Now let Wx = W ′

x ∩W ′′
x , which is a symmetric neighborhood of 1. Then we must have

(4.2) Wx(x
−1Vxx)Wx ∩ F = ∅,

otherwise (4.1) would be violated (since Wx and W ′
x are symmetric).
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For each x ∈ K, let Ux = int(Wx) be the interior of Wx. Then, the collection of all
xUx, x ∈ K, constitutes an open cover of K, and so there is a finite number of points,
say x1, x2, . . . , xn, such that, writing Wxi

= Wi, and Uxi
= Ui,

K ⊂
n⋃
i=1

xiUi ⊂
n⋃
i=1

xiWi.

Now let V = ∩ni=1Vi, where Vi = Vxi
. If x ∈ K, then x ∈ xiWi for some i, and so

x−1 ∈ Wix
−1
i , since Wi is symmetric. Now, by (4.2), we have

x−1V x ⊂ Wix
−1
i VixiWi ⊂ G \ F = U. �

A topological space X is connected if whenever X = U∪V where U and V are nonempty
open sets, then U ∩ V 6= ∅. That is, X is connected when X has no nonempty proper
subsets which are both closed and open (or clopen). A maximal connected subset of X is
called a connected component of X. The space X is totally disconnected if each one-point
subset in X is its own connected component. Of course, every discrete space is totally
disconnected. One familiar example of a totally disconnected space which is not discrete
is the Cantor middle-thirds set.

Exercise 4. If A ⊂ X is connected, then A is connected. That is, connected com-
ponents are closed sets.

If G is a topological group, then G is totally disconnected if and only if {1} is a con-
nected component, by homogeneity. The connected component of 1 in G will be denoted
G◦, and its basic properties are as follows.

Proposition 4.2. If G is a topological group, then G◦ is a normal subgroup of G, the
connected components of G are all of the form xG◦ for x ∈ G, and G/G◦ is a totally
disconnected group.

Proof. See Problem Set 1. �

Finally, we turn to the study of spaces which are locally compact and totally dis-
connected. Before proving the main statements, we first need a few more preliminary
lemmas.

A topological space X is called normal or T4 if it is T1 (one point sets are closed) and
for any disjoint closed subsets E and F of X, there are open sets U and V such that
E ⊂ U , F ⊂ V , and U ∩ V = ∅.

Exercise 5. Every compact Hausdorff space is normal. Note that from Lemma 4.1, we
already know compact Hausdorff spaces are regular.

Lemma 4.3. Let X be a compact Hausdorff space, and let x ∈ X. Let Ux denote the
collection of compact open neighborhoods of x. Then ∩U∈UxU is the connected component
of x.

Proof. Let F = ∩U∈UxU , which is a nonempty closed set since X itself is a compact open
neighborhood of x, and each U ∈ Ux is compact and thus closed (by Exercise 3). Suppose
that V ′ and W ′ are closed and open subsets of F (in the subspace topology of F ) such
that

F = V ′ ∪W ′, and V ′ ∩W ′ = ∅.
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Since F is closed, then V ′ and W ′ are closed subsets in X. Since X is normal by Exercise
5, then there are disjoint open sets V and W of X such that V ′ ⊂ V and W ′ ⊂ W . To
show F is connected, we must show that one of V ′ or W ′ is empty.

Now, B = X \ (V ∪W ) is closed, and thus compact, and does not intersect F . So, the
sets X \U , U ∈ Ux, cover B, and are all open (and closed) since each U is compact (thus
closed) and open. Since B is compact, there are a finite number of neighborhoods of x,
U1, . . . , Un ∈ Ux, such that B ⊂ ∪ni=1(X \ Ui). In other words, if we let A = ∩ni=1Ui, then
A ∩B = ∅, x ∈ A, and A is compact and open. Now A ⊂ X \B = V ∪W , and so

A = (A ∩ V ) ∪ (A ∩W ),

where A ∩ V and A ∩W are disjoint open sets. Since A is closed, A ∩ V and A ∩W are
also both closed (and thus compact). So, x can only be an element of one of them, say
x ∈ A ∩ V , which means that F ⊂ A ∩ V (since A ∩ V is a compact open neighborhood
of x), while F ∩ (A ∩W ) = ∅. This means we must have F = V ′ and W ′ = ∅, so that
F is connected.

Now let C be the connected component of x, so that F ⊂ C. Suppose that F 6= C, so
that there is a point y ∈ C \ F . Then there must be a compact open neighborhood M of
x such that y 6∈M . Now M ∩ C is closed and open in C, while (X \M) ∩ C contains y,
contradicting the fact that C is connected. Thus F is the connected component of x. �

Lemma 4.4. Let X be a compact Hausdorff space, let C be a connected component of X,
and let F be a closed subset of X such that F ∩C = ∅. Then there is a compact open set
V such that C ⊂ V and F ∩ V = ∅.

Proof. We have F is compact (Exercise 3), and if x ∈ C, then C = ∩U∈UxU , where Ux is
the collection of compact open neighborhoods of x, by Lemma 4.3. The open sets X \U ,
U ∈ Ux cover F , and so for a finite number of sets in Ux, say U1, . . . , Un, F is covered by
∪ni=1(X \ Ui). If we let V = ∩ni=1Ui, we have F ∩ V = ∅, and C ⊂ V , as desired. �

Theorem 4.1. Let X be a Hausdorff space. Then X is locally compact and totally dis-
connected if and only if every neighborhood of every point x ∈ X contains a compact open
neighborhood of x.

Proof. (⇒): Let x ∈ X, and let U be the interior of an arbitrary neighborhood of x. By
Lemma 4.1, there is a compact neighborhood K of x contained in U . Now let V be an
open neighborhood of x, V ⊂ K, and let F = K \ V . If F = ∅, then V is open and
compact, and we are done. The set F is closed, and {x} is a connected component of
X since X is totally disconnected, and so {x} is a connected component of the compact
subset K. Since F ∩ {x} = ∅, then by Lemma 4.4, there is a compact open set W
containing x such that F ∩W = ∅. That is, W ⊂ V ⊂ U , and W is a compact open
neighborhood of x.

(⇐): First, since every point x ∈ X has a compact neighborhood, then X is locally
compact. Now let S be the connected component of x ∈ X. Suppose that y 6= x and
y ∈ S. Since X is Hausdorff, it is T1, and so x has an open neighborhood W such that
y 6∈ W . Let U be a compact open neighborhood of x which is contained in W . Since X
is Hausdorff, U is closed. So, U ′ = U ∩ S is closed and open in S. But y 6∈ U ′, and so
U ′ is a proper nonempty clopen subset of S, contradicting the fact that S is connected.
Thus, S = {x}, and X is totally disconnected. �
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Corollary 4.1. Let G be a locally compact totally disconnected group, and H a subgroup
of G. Then H is closed if and only if H is a locally compact totally disconnected group,
if and only if G/H is a locally compact totally disconnected Hausdorff space.

Proof. First, suppose H is closed, and let x ∈ H, and U any neighborhood of x in H.
Then U = H ∩ V , where V is a neighborhood of x in G. By Theorem 4.1, V contains a
compact open neighborhood of x, say F . By definition, H ∩ F is an open neighborhood
of x in H, and it is contained in U . Since F is compact and G is Hausdorff, then F is
closed, and so F ∩H is closed in G. Moreover, F ∩H is compact in G since it is closed and
contained in F , which is compact. Thus F ∩H is compact in H. Now F ∩H is a compact
open neighborhood of x in H which is contained in U , and H is locally compact and
totally disconnected by Theorem 4.1. Conversely, if H is locally compact in the subspace
topology, then it is automatically closed by Proposition 4.1.

For the second part, suppose that H is closed. Since p : G → G/H is an open map
by part (2) of Proposition 3.1, and is continuous by definition, then the image under p of
compact open sets of G are compact open sets of G/H. If U is an open neighborhood of
xH ∈ G/H, then p−1(U) is an open neighborhood of x ∈ G, which contains a compact
open neighborhood K of x, by Theorem 4.1. Then p(K) is a compact open neighborhood
of xH contained in p(p−1(U)) = U . Thus G/H is locally compact and totally disconnected
by Theorem 4.1. Since H is assumed to be closed, then G/H is Hausdorff by part (4) of
Proposition 3.1. Conversely, if G/H is Hausdorff, then H is automatically closed also by
part (4) of Proposition 3.1. �

Theorem 4.2. Let G be a locally compact totally disconnected group. Every neighborhood
of 1 contains a compact open subgroup of G. If G is a compact totally disconnected group,
then every neighborhood of 1 contains a compact open normal subgroup of G.

Proof. Since G is a locally compact totally disconnected group, each neighborhood of
1 contains a compact open neighborhood V of 1, from Theorem 4.1. Let us denote
V n = V V n−1 for n ≥ 2. Let F = (G \ V ) ∩ V 2. Since V is open, G \ V is closed, and
since G is Hausdorff and V is compact, V is closed and so V 2 is closed, by Proposition
1.5. Thus F is closed.

We have V ∩F = ∅, where V is compact and F is closed. By Lemma 1.1 and Proposition
1.1, there is an open symmetric neighborhood W of 1, W ⊂ V , such that VW ∩ F = ∅.
Since W ⊂ V , then VW ⊂ V 2. Because F = (G \ V ) ∩ V 2, and VW ∩ F = ∅, then we
must have VW ⊂ V . Now we have

VW 2 ⊂ VW ⊂ V,

and by induction we must have VW n ⊂ V for every integer n ≥ 0. Since W was chosen
to be symmetric, then in fact VW n ⊂ V for every integer n. In particular, since 1 ∈ V ,
we have ⋃

n∈Z

W n ⊂ V.

Now, H = ∪n∈ZW
n is a subgroup of G contained in V . Since each W n is open, then H is

an open subgroup, and is thus closed by Proposition 1.2. Since H ⊂ V and V is compact
and H is closed, then H must be compact. Thus, H is a compact open subgroup of G.

Suppose now that G is compact and totally disconnected. Since G is locally compact
and totally disconnected, then any neighborhood of 1 contains a compact open subgroup
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H ′, as we have just shown. Now consider

H =
⋂
x∈G

xH ′x−1.

By Lemma 4.2, there is a neighborhood U of 1 such that U ⊂ xH ′x−1 for every x ∈ G
(since G is compact). In other words, H contains an open neighborhood of 1, and is
thus open. H is a subgroup, since it is the intersection of subgroups, and is normal
by construction. Since xH ′x−1 is closed (since it is compact) for every x ∈ G, then H is
closed, and is thus compact since G is compact. So, H is a compact open normal subgroup
of G. �

The following characterization of locally compact totally disconnected groups follows
immediately from Theorems 4.1 and 4.2.

Corollary 4.2. A Hausdorff topological group G is locally compact and totally discon-
nected if and only if every neighborhood of 1 contains a compact open subgroup.
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