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Abstract. These notes are intended to give an introduction to the
representation theory of finite and topological groups. We assume that
the reader is only familar with the basics of group theory, linear algebra,
topology and analysis. We begin with an introduction to the theory of
groups acting on sets and the representation theory of finite groups,
especially focusing on representations that are induced by actions. We
then proceed to introduce the theory of topological groups, especially
compact and amenable groups and show how the ”averaging” technique
allows many of the results for finite groups to extend to these larger
families of groups. We then finish with an introduction to the Peter-
Weyl theorems for compact groups.

1. Review of Groups

We will begin this course by looking at finite groups acting on finite sets,
and representations of groups as linear transformations on vector spaces.
Following this we will introduce topological groups, Haar measures, amenable
groups and the Peter-Weyl theorems.

We begin by reviewing the basic concepts of groups.

Definition 1.1. A group is a non-empty set G equipped with a map p :
G×G→ G, generally, denoted p(g, h) = g ·h, called the product satisfying:

• (associativity) (g · h) · k = g · (h · k), for every g, h, k ∈ G,
• (existence of identity) there is an element, denoted e ∈ G such that
g · e = e · g = g for every g ∈ G,
• (existence of inverses) for every g ∈ G, there exists a unique element,

denoted g−1, such that g · g−1 = g−1 · g = e.

Often we will write a group as, (G, ·), to denote the set and the specific
product.

Recall that the identity of a group is unique.

Definition 1.2. If G is a group, then a non-empty subset, H, of G is called
a subgroup provided that:

• e ∈ H,
• g, h ∈ H, then g · h ∈ H,
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• g ∈ H, then g−1 ∈ H.
A subgroup H ⊆ G is called normal provided that the set g · H · g−1 =
{g · h · g−1 : h ∈ H} is always a subset of H, for every g ∈ G.

A group, G, is called abelian, or commutative, provided, g · h = h · g
for every, g, h ∈ G. When G is abelian, then every subgroup is normal.

When N ⊆ G is a normal subgroup of G then we may define a quotient
group, G/N whose elements are left cosets, i.e., subsets of G of the form
g ·N = {g · h : h ∈ N}, and with the product defined by (g1 ·N) · (g2 ·N) =
(g1 · g2) ·N.

Following are a few examples of groups, subgroups and quotient groups,
that we assume that the reader is familiar with:

• (Z,+)–the additive group of integers, with identity, e=0,
• (nZ,+)–the normal, subgroup of Z, consisting of all multiples of n,
• (Z/(nZ),+)–the quotient group, usually denoted, (Zn,+) and often

called the cyclic group of order n.
• (Q,+)–the additive group of rational numbers, with identity, e=0,
• (R,+)–the additive group of real numbers, with identity, e=0,
• (C,+)–the additive group of complex numbers, with identity, e=0,
• (Q∗, ·)–the multiplicative group of non-zero rationals, with identity,

e=1,
• (R∗, ·)–the multiplicative group of non-zero reals, with identity, e=1,
• (R+, ·)–the multiplicative subgroup of (R∗, ·), consisting of positive

reals,
• (C∗, ·)–the multiplicative group of non-zero complex numbers, with

identity, e=1,
• (T, ·)–the multiplicative subgroup of complex numbers of modulus

1.

Definition 1.3. Given two groups, G1, G2, a map, π : G1 → G2 is called a
homomorphism, provided that π(g · h) = π(g) · π(h), for every g, h ∈ G1.
A homomorphism that is one-to-one and onto, is called an isomorphism.

Problem 1.4. Prove that if G is a group and g ∈ G satisfies, g ·g = g, then
g = e-the identity of G.

Problem 1.5. Prove that if π : G1 → G2 is a homomorphism, and ei ∈
Gi, i = 1, 2 denotes the respective identities, then

• π(e1) = e2,
• π(g−1) = π(g)−1,
• N = {g ∈ G1 : π(g) = e2} ⊆ G1 is a normal subgroup. The set N is

called the kernel of the homomorphism and is denoted ker(π).
• Prove that there is a well-defined homomorphism, π̃ : G1/N → G2

given by π̃(g ·N) = π(g). We call π̃ the induced quotient map.
• Prove that if π(G1) = G2, then π̃ is an isomorphism.

Problem 1.6. Prove that R∗/R+ and Z2 are isomorphic.



GROUP REPRESENTATION THEORY 3

Problem 1.7. Prove that the map, π : (R,+)→ (R+, ·) given by π(t) = et,
is an isomorphism.

Problem 1.8. Prove that the map π : (R,+) → (T, ·) given by π(t) =
e2πit = cos(2πt)+isin(2πt) is an onto homomorphism with kernel, Z. Deduce
that R/Z and T are isomorphic.

Problem 1.9. Prove that the map π : (C∗, ·) → (R+, ·) defined by π(z) =
|z| =

√
a2 + b2, where z = a + ib is a onto, homomorphism with kernel, T.

Deduce that C∗/T and R+ are isomorphic.

Problem 1.10. Let G1, G2 be groups and let G1 × G2 = {(g1, g2) : g1 ∈
G1, g2 ∈ G2} denote their Cartesian product. Show that G1 ×G2 is a group
with product, (g1, g2)·(h1, h2) = (g1h1, g2h2) and identity, (e1, e2). Show that
N1 = {(g1, e2) : g1 ∈ G1} is a normal subgroup and that (G1 × G2)/N1 is
isomorphic to G2. Prove a similar result for the other variable.

We now examine some other ways to get groups.
The Matrix Groups
We let Rn and Cn denote the vector spaces of real and complex n-tuples.

Recall that, using the canonical basis for Rn, we may identify the (real) linear
maps from Rn to Rn,L(Rn) with the real n× n matrices, which we denote,
Mn(R). Similarly, the (complex) linear maps, L(Cn) can be identified with
Mn(Cn). Under these identifications, composition of linear maps becomes
matrix multiplication.

Recall also, that the key properties of the determinant map, are that
det(A) 6= 0 if and only if the matrix A is invertible and that det(AB) =
det(A)det(B).

We let GL(n,R) = {A ∈ Mn(R) : det(A) 6= 0}, which by the above
remarks is a group under matrix multiplication, with identity the identity
matrix, I. This is called the general linear group. Using the fact that
det : GL(n,R)→ R∗ is a homomorphism, we see that the kernel of this map
is the normal subgroup, denoted SL(n,R) = {A ∈ GL(n,R) : det(A) = 1}
and called the special linear group.

The groups, GL(n,C), SL(n,C) are defined similarly.
Given a matrix, A = (ai,j), we let At = (aj,i) denote the transpose and

let A∗ = (āj,i) denote the conjugate, transpose, also called the adjoint.
The orthogonal matrices, O(n) are defined by O(n) = {A ∈ Mn(R) :

AtA = I}, which is easily seen to be a subgroup of GL(n,R) and the special
orthogonal matrices by SO(n) = {A ∈ O(n) : det(A) = 1}, which can be
easily seen to be a normal subgroup of O(n).

Similarly, the unitary matrices, U(n) are defined by U(n) = {A ∈
Mn(C) : A∗A = I} and the special unitary matrices, SU(n) are defined
by SU(n) = {A ∈ U(n) : det(A) = 1}.

Problem 1.11. Let SL(n,Z) denote the set of n × n matrices with inte-
ger entries whose determinant is 1. Prove that SL(n,Z) is a subgroup of
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SL(n,R), but is not a normal subgroup.(Hint: Cramer’s Rule.) Exhibit in-
finitely many matrices in SL(2,Z).

Problem 1.12. Prove that SO(n) is a subgroup of SL(n,R). Is it a normal
subgroup?

Problem 1.13. Let Hn = {A ∈ GL(n,C) : |det(A)| = 1}. Prove that Hn

is a normal subgroup of GL(n,C) and that SL(n,C) is a normal subgroup
of Hn. Identify the quotient groups, GL(n,C)/Hn and Hn/SL(n,C), up to
isomorphism.

The Permutation Groups
Let X be any non-empty set. Any one-to-one, onto function, p : X → X, is

called a permutation. Note that the composition of any two permutations
is again a permutation and that every permutation function has a function
inverse that is also a permutation. Also if idX : X → X denotes the identity
map, then p ◦ idX = idX ◦ p = p. Thus, the set of permutations of X, with
product defined by composition forms a group with identity, e = idX . This
group is denoted, Per(X).

Note that this group, up to isomorphism, only depends on the cardinality
of X. Indeed, if Y is another set of the same cardinality as X and φ : X → Y
is a one-to-one, onto map, then there is a group isomorphism, π : Per(X)→
Per(Y ) givien by π(p) = φ ◦ p ◦ φ−1.

Thus, when X is a set with n elements, Per(X) can be identified with
the set of permutations of the set {1, . . . , n} and this group is called the
symmetric group on n elements and is denoted Sn.

Free Groups with Generators and Relations
The free group F2 on two generators, say a,b, consists of all expres-

sions of the form ai1bj1 · · · aimbjm , where m is an arbitrary, non-negative
integer and i1, j1, . . . , im, jm are arbitrary integers. Such expressions are
called words. We identify a0bJ = bj and the multiplication of two such
expressions is called concatenation, which rather than trying to define for-
mally, we illustrate with a few examples, (aba2)(a−3b) = aba−1b, (ba)(ba3) =
baba3, (ba)(a−1b2a2) = b3a2, (ab2a−3)−1 = a3b−2a−1.

The reason that F2 is important is that it has the following “universal”
property. Given any group G and any two elements, g, h ∈ G there exists
a unique homomorphism π : F2 → G defined by setting π(a) = g, π(b) = h.
The range of π will be the subgroup generated by g and h.

Similarly, for any n ∈ N, there is a free group on n generators which is de-
noted Fn, which consists of words in n letters with a corresponding operation
of concatenation. If these generators are denoted a1, ..., an, then Fn enjoys
the universal property that given any group G and elements g1, ..., gn ∈ G,
there will exist a unique homomorphism π : Fn → G defined by setting
π(ai) = gi, i = 1, ..., n, and the range of π will be the subgroup generated by
the given set of elements.

It is fairly easy to see that F1 is just Z.
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Other groups are defined as free groups with generators and relations.
The relations really mean a set of equations that the generators must sat-
isfy. These groups have the universal property that whenever one is given a
group G and elements that satisfy the same relations, then there will exist
a homomorphism from the free group with generators and relations defined
by sending the generators to the given set of elements.

An example of such a group and the notation used, would be, K =<
a, b|a2 = e >. This group would behave like the free group on two generators,
but when concatenating words, every time an a2 appears it can be replaced
with the identity, so for example, (ba)(aba) = b2a, in this group.

This group has the universal property that whenever we are given a group
G and two elements g, h ∈ G, with g2 = e, then there will exist a unique
homomorphism π : K → G defined by setting π(a) = g, π(b) = h, and the
range of π will be the subgroup generated by g and h.

It is fairly easy to see that < a, b|ab = ba > is isomorphic to Z× Z.
Some examples of such groups that play a role in wavelet theory, are the

Baumslag-Solitar groups which are defined for each K,N ∈ N. For ex-
ample, BS(1, N) =< D,T |TND = DT > . Note that BS(1, 1) is isomorphic
to Z× Z.

In the groups, BS(1, N), every word is equivalent to a word of the form
T iDj . For example, in BS(1, 2) we would have that DT 2D = (DT )TD =
(T 2D)TD = T 2(DT )D = T 4D2.

Another important family of free groups with relations are the groups,
D(k, n) =< R,F |Rn = e, F k = e,RF = FRn−1 > .

New Groups from Old

We’ve already seen several ways to get new groups from old groups. One
way is by taking quotients by normal subgroups. Another is to take the
product of two given groups.

Given groups Gi, i = 1, 2 with respective identities e1 and e2, we let
G1 × G2 denote the group that as a set is the Cartesian product and has
a binary operation defined by (g1, g2) · (h1, h2) = (g1h1, g2h2). It is easy to
see that this operation is associative that e = (e1, e2) is an identity and that
(g1, g2) has an inverse given by (g1, g2)−1 = (g−1

1 , g−1
2 ). More, generally, if

one is given a collection of groups Gi, i ∈ I, where I is some index set, then
this same “entrywise” product makes the Cartesian product Πi∈IGi into a
group. This group is called the direct product of the groups Gi, i ∈ I.

There is a subgroup of the direct product that often plays a role, especially
when all of the groups are abelian. Suppose that we are given abelian
groups, (Gi,+), i ∈ I, then we let

∑
i∈I ⊕Gi ⊂ Πi∈IGi denote the subgroup

consisting of all elements of the Cartesian product that are non-zero for only
finitely many entries. To see that it is a subgroup, note that it contains the
identity element. Also, if g is an element that has n1 non-zero entries and h
is an element with n2 non-zero entries, then g+ h has at most n1 + n2 non-
zero entries and −g has n1 non-zero entries. Thus, the sum of two elements



6 VERN PAULSEN

of this subset and the (additive) inverse of an element of this subset are
both back in the subset. This group is called the direct sum of the groups,
Gi, i ∈ I.

We now record a couple of other ways to obtain new groups that will play
a role.

First, given any group G, the set Z(G) = {g ∈ G : gh = hg, for every h ∈
G} is a normal, subgroup called the center of G.

Also, given any group G, the subgroup generated by all elements of the
form, ghg−1h−1, is called the commutator subgroup of G and is denoted,
[G,G].

Given any group, G, an isomorphism, π : G → G is called an auto-
morphism of G. Clearly, the composition of automorphisms is again an
automorphism, the function inverse of an automorphism is again an au-
tomorphism and the identity map on G plays the role of an identity for
composition. Thus, the set of all automorphisms of G, Aut(G) is a new
group obtained from G.

If g ∈ G, then there is an automorphism πg : G→ G defined by πg(h) =
ghg−1 with inverse, (πg)−1 = πg−1 . The map, ρ : G → Aut(G) defined by
ρ(g) = πg is a homomorphism and the subgroup of Aut(G) that is the range
of this map, i.e., the set consisting of {πg : g ∈ G}, is a subgroup of Aut(G),
called the inner automorphisms and denoted, Auti(G).

Finally, given groups, G and H, and a homomorphism θ : G → Aut(H),
the semidirect product is the group H ×θ G = {(h, g) : h ∈ H, g ∈ G}
with product defined by, (h1, g1) · (h2, g2) = (h1 · θ(g1)(h2), g1 · g2).

Problem 1.14. • Prove that H ×θ G is a group,
• prove that K = {(h, e) : h ∈ H} is a normal subgroup of H×θG and

that K is isomorphic to H,
• prove that the quotient group (H ×θ G)/K is isomorphic to G.

It is known that if L is any group, with a normal subgroup H and if L/H
is isomorphic to G, then there exists a homomorphism, θ : G → Aut(H),
such that L is isomorphic to the semidirect product, H ×θ G.

2. Groups Acting on Sets

A (left) action of a group, G, on a set, X, is a map α : G × X → X
satisfying α(e, x) = x and α(g, α(h, x)) = α(gh, x) for every x ∈ X and every
g, h ∈ G. Usually, we will write α(g, x) = g · x, so that the first property is
that e · x = x and the second property is g · (h · x) = (gh) · x which can be
seen to be an associativity property.

Some books also discuss right actions of a group G on a set X. This is
a map, β : X × G → X satisfying β(x, e) = x and β(β(x, h), g) = β(x, hg)
and these are, generally, denoted, β(x, g) = x · g.

The following exercise shows the correspondence between the theories of
left and right actions on sets.



GROUP REPRESENTATION THEORY 7

Problem 2.1. Let β : X ×G→ X be a right action of G on X and define
α : G ×X → X, by α(g, x) = β(x, g−1). Prove that α is a left action of G
on X. Conversely, given α : G × X → X, a left action of G on X, prove
that β(x, g) = α(g−1, x) defines a right action of G on X.

When we only say that G acts on X, we shall always mean that there is
a left action of G on X.

The following problem gives an alternative way to define group actions
on sets.

Problem 2.2. Let α : G×X → X be an action of G on X. For each g ∈ G,
define π(g) : X → X by π(g)(x) = g · x. Prove that π(g) ∈ Per(X) and that
the map, π : G→ Per(X) is a group homomorphism. Conversely, prove that
if π : G→ Per(X) is a group homomorphism and we set α(g, x) = π(g)(x),
then α is an action of G on X.

One important group action is the action of a group G on itself by either
left or right multiplication.

Problem 2.3. Let G be a group, define αl : G×G→ G by αl(g, h) = g · h
and αr : G × G → G by αr(g, h) = h · g−1. Prove that αl and αr are both
actions of G on G.

Definition 2.4. Let G be a group. We call αl the action of G on itself
given by left multiplication and αr the (left) action of G on itself
given by right multiplication.

Note that as in the problem relating right and left actions, to define a left
action of G on itself by a right multiplication, i.e., αr, we had to introduce
an inverse.

If G is a finite group, say |G| = n, so that Per(G) = Sn, then the ac-
tion αl gives rise to a homomorphism, πl : G → Sn that is easily seen to
be one-to-one. This homomorphism is generally, called the Cayley repre-
sentation or sometimes the Jordan representation of G.(It seems that
Jordan actually did it first.)

Several important actions arise when one is given a subgroup H of a group
G. First, the map αl : H×G→ G, defined by αl(h, g) = hg defines an action
of H on G which is the restriction of the action of G on tself given by left
multiplication. Similarly, αr : H ×G→ G defined by αr(h, g) = gh−1 is the
restriction to H of the action of G on itself given by right multiplication.

In addition to actions of H on G, there is an action of G on the left cosets
of H. Recall that given k ∈ G, then the left coset of H in G generated
by k is the set kH = {kh : h ∈ H}. Recall also that the left cosets of H
in G form a partition G into subsets and that k1H = k2H if and only if
k1 ∈ k2H. We let G/H denote the collection of left cosets of H in G, i.e.,
G/H = {kH : k ∈ G}.

Problem 2.5. Let G be a group and let H be a subgroup of G. Prove that
the map α : G × G/H → G/H given by α(g, kH) = (gk)H, defines a left
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action of G on G/H. This action is called the action of G on G/H given
by left multiplication.

2.1. Effective and Free Actions.

Definition 2.6. An action of a group G on a set X is called effective if
whenever g 6= e, then there exists x ∈ X, such that g · x 6= x. An action is
called free if for each x ∈ X, g · x = x, implies that g = e.

Problem 2.7. Show that an action is effective if and only if the homo-
morphism π : G → Per(X), is one-to-one. Show that every free action is
effective.

Problem 2.8. Let G be a group. Show that the action of G on itself given
by left multiplication is free.

Problem 2.9. Let G be a group, let H be a subgroup, let α : G × G/H →
G/H be the action of G on G/H given by left multiplication and let π : G→
Per(G/H), be the homomorphism induced by α. Prove that the kernel of π
is equal to ∩k∈Gk−1Hk and that this set is the largest normal subgroup of G
that is contained in H.

2.2. Groups Defined by Actions. Many groups are naturally defined as
subgroups of Per(X), or, equivalently, by specifying their actions on a set
X. More precisely, the map α : Per(X)×X → X, defined by α(p, x) = p(x),
is a left action of Per(X) on X. To see this note that the identity element of
Per(X) is the identity map and hence, α(e, x) = e(x) = x. Moreover, given
p, q ∈ Per(X), we have thatα(p, α(q, x)) = α(p, q(x)) = p(q(x)) = p◦q(x) =
α(p ◦ q, x). Thus, each time that we specify a subgroup of Per(X), we are
really defining a group action on X.

One example of a group defined this way is the dihedral group, D4.
This group is defined as the group of rigid motions of a square. Since a rigid
motion of a square is determined by what happens to the four corners of the
square, D4 is really being defined as a group acting on the set X, consisting
of the 4 corners. If we label these corners as X = {1, 2, 3, 4}, then we are
really defining D4 as a subgroup of Per(X) = S4.

We adopt the following notation. A permutation p : {1, 2, 3, 4} → {1, 2, 3, 4}

will be represented by the matrix
(

1 2 3 4
p(1) p(2) p(3) p(4)

)
. Thus, the iden-

tity is the matrix e =
(

1 2 3 4
1 2 3 4

)
.

Labelling the vertices of the square in counterclockwise notation, begin-
ning with 1 in the Northeast corner. We see that D4 has 8 elements, since
every rigid motion is determined by sending 1 to one of the four corners,
say k, and then the corner 2, must either go to k+1(mod 4) or k-1(mod 4)
and this choice determines where the remaining corners must be sent. We
call the first 4 maps, direction preserving and the other four maps direction
reversing.
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We have that the rigid direction preserving map, R, of counterclockwise

rotation through angle π/4, is given by R =
(

1 2 3 4
2 3 4 1

)
and its powers

are R2 =
(

1 2 3 4
3 4 1 2

)
, R3 =

(
1 2 3 4
4 1 2 3

)
, R4 = e. Thus the direction

preserving maps are e,R,R2, R3.
To get the direction reversing maps of the square to the square, we can

first perform a flip along the axis joining 1 to 3, this is the permutation,

F =
(

1 2 3 4
1 4 3 2

)
which serves to reverse direction and then rotate to

get a map that sends 1 to k and 2 to k-1. Thus, the 4 direction reversing
maps are F,RF,R2F,R3F, and these last three maps are the permutations,

RF =
(

1 2 3 4
2 1 4 3

)
, R2F =

(
1 2 3 4
3 2 1 4

)
, R2F =

(
1 2 3 4
4 3 2 1

)
.

Finally, we can see that RF = FR3.
Similarly, the group Dn is defined to be the rigid motions of a regu-

lar n-gon. Again only the corners matter and so Dn is represented as a
subgroup of Sn. As above this group has 2n elements, n that are direc-
tion preserving and these are given by the rotation, R, through an angle
2π/n, and n that are direction reversing, and these are given by a flip that
fixes 1, followed by a rotation. Thus, the elements of Dn are given by,
e,R, . . . , Rn−1, F,RF, . . . , Rn−1F. The rotation and flip satisfy the relation,
RF = FRn−1.

Problem 2.10. Prove that Dn is isomorphic to the free group with genera-
tors and relations, D(2, n). HINT: Use the universal properties to show that
there is a homomorphism of D(2, n) onto Dn, then show that D(2, n) has at
most 2n elements.

A second example of a group defined by actions on a set is the group
of affine maps of R, also known as the ax+b group. For each a ∈ R∗
and b ∈ R we define a map, φ(a,b) : R → R by setting, φ(a,b)(x) = ax + b.
Composing two functions, φ(c,d) ◦φ(a,b)(x) = φ(c,d)(ax+b) = cax+(cb+d) =
φ(ca,cb+d)(x), we see that ca ∈ R∗ and so we obtain another such function.
The identity map is given by φ(1,0). Solving ax + b = y for x, we obtain,
x = (1/a)y+(−b/a) and so the inverse satisfies, (φ(a,b))−1 = φ(1/a,−b/a). This
last calculation shows that the set G = {φ(a,b) : a ∈ R∗, b ∈ R} is a group
under composition and since every function in this group has a function
inverse, it must be one-to-one and onto, hence G ⊆ Per(R) is a subgroup,
and so by our earlier equivalence can be thought of as coming from an action
on R. The set G+ = {φ(a,b) : a ∈ R+, b ∈ R} is a subgroup of G, called the
affine direction preserving maps of R.

Note that we could have defined G = R∗ × R with product given by
(c, d) · (a, b) = (ca, cb + d) and rather tediously verified that this indeed
defines a product making G a group, but then all of the geometric intuition
would be lost.
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Problem 2.11. Verify that for a ∈ R∗, setting θ(a)(t) = at defines an
element, θ(a) ∈ Aut((R,+)) and that the map θ : (R∗, ·) → Aut((R,+)) is
a homomorphism. Prove that G is isomorphic to R×θ R∗.

A third example of a group defined by actions on a set is the group,
E(n), of all isometric maps of Rn, this group is also called the group
of Euclidean motions. It can be shown that a map T : Rn → Rn is an
isometry if and only if there exists, U ∈ On and a vector b ∈ Rn such that
T (x) = Ux+ b. The group of rigid motions of Rn also called the proper
Euclidean group is the subgroup E+(n) ⊆ E(n) such that T (x) = Ux+ b
with U ∈ SOn.

Problem 2.12. Prove that E(n) is a group and that E+(n) is a normal
subgroup.

2.3. Orbits, Orbit Equivalence and Transitive Actions. Given an ac-
tion of G on X, α : G×X → X with α(g, x) = g · x, for each x ∈ X, the set
Ox = {g · x : g ∈ G} is called the orbit of x.

Proposition 2.13. Let G act on X and let x, y ∈ X. Then the following
are equivalent:

i) y ∈ Ox,
ii) x ∈ Oy,
iii) Ox = Oy.

Proof. If y ∈ Ox, then there exists g ∈ G, such that y = g · x. But then
g−1 · y = g−1 · (g · x) = e · x = x, by associativity. Hence, x ∈ Oy, and i)
implies ii). the equivalence of i) and ii) follows by reversing the roles of x
and y.

Since y = e · y ∈ Oy, we see that iii) implies i).
Finally, assuming i), we have that y = h · x, and hence, Oy = {g · y : g ∈

G} = {gh · x : g ∈ G} = {k · x : k ∈ Gh} = Ox, since Gh = G, and so iii)
follows. �

Proposition 2.14. Let G act on X and let x, y ∈ X. If Ox ∩ Oy is non-
empty, then Ox = Oy.

Proof. Let z ∈ Ox ∩ Oy, then by iii) of the above, Ox = Oz = Oy. �

Definition 2.15. We set x ∼G y if and only if Ox = Oy and call this
relation orbit equivalence.

It is easily seen that orbit equivalence is indeed an equivalence relation
on X and by the above results that the equivalence class of a point is its
orbit.

If H is a subgroup of a group G and we consider the two actions αl and
αr of H on G given by left and right multiplication, respectively, then the
orbit of k ∈ G under αl is Ok = {h · k : h ∈ H} = Hk the right coset
generated by k, while the orbit of k under αr is Ok = {k · h−1 : h ∈ H} =
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{k · h : h ∈ H} = kH is the left coset generated by k. If one applies the
above results about orbit equivalence to the action αr, then one can deduce
the earlier well-known statements about left coset equivalence.

Definition 2.16. Let G act on the set X. the action is called transitive
if given x, y ∈ X, there is g ∈ G, such that g · x = y. The action is
called n-transitive, if given any two sets of n distinct points in X, i.e.,
x1, . . . , xn, y1, . . . yn with xi 6= xj and yi 6= yj , when i 6= j, then there exists
g ∈ G, such that for every i, g · xi = yi.

Note that the group Sn, which is defined as all permutations of a set of n
elements, is n-transitive.

Proposition 2.17. Let α : G ×X → X be an action. Then the following
are equivalent:

i) α is transitive,
ii) for every x ∈ X,Ox = X,
iii) there exists an x ∈ X, such that Ox = X.

Proof. If α is transitive, x ∈ X is fixed and y ∈ X is arbitrary, then there
exists, g ∈ G with g · x = y. Hence, Ox = X.

Clearly, 2) implies 3). Finally, if Ow = X and x, y ∈ X are arbitrary,
then there exists, g, h ∈ G with g · w = x, h · w = y. Hence, (hg−1) · x =
h · (g−1 · x) = h · w = y and so α is transitive. �

Example 2.18. Let α : G×G→ G be defined by α(g, h) = gh. This action
is transitive, since Oe = {ge : g ∈ G} = G. However, if card(G) > 2, then
this action is not 2-transitive, since given g1 6= g2, h1 6= h2, when gg1 = h1

we have that gg2 = h1g
−1
1 g2 6= h2, in general.

Example 2.19. Consider the group G = {φ(a,b)} of affine maps of R. Since,
φa,b)(0) = b, we see that O0 = R, and so G acts transitively. It is also 2-
transitive. To see this note that given any, x1 6= x2, y1 6= y2, we need to be
able to find a, b that solve, axi+b = yi, i = 1, 2. In matrix form this becomes,(

x1 1
x2 1

)(
a
b

)
=
(
y1

y2

)
.

Since, det(
(
x1 1
x2 1

)
) = x1 − x2 6= 0, these equations have a solution,(

a
b

)
=
(
x1 1
x2 1

)−1(
y1

y2

)
.

We still need to see that a 6= 0, but this follows by either explicitly inverting
the matrix and computing a, or more readily by noting that if a = 0, then
y1 = b = y2, contradiction.

If we consider instead the subgroup of order preserving affine transforms,
then it is transitive, but not 2-transitive, since if φ(a,b)(xi) = yi, i = 1, 2 and
x1 < x2, then necessarily, y1 < y2.
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Example 2.20. The actions of the dihedral groups, Dn on the n-gon are
transitive for every n. But they are not 2-transitive, when n > 3. To see
this, note that if n > 3, then we may take x1 = 1, x2 = 2, y1 = 1, y2 = 3,
and then the only group elements such that gx1 = y1 are the identity which
has gx2 = 2, or the flip which has gx2 = n 6= y2, since n > 3.

Note that D3 = S3 which is 2-transitive and 3-transitive.

2.4. Stabilizer Subgroups. Given x ∈ X the set Gx = {g ∈ G : g ·x = x}
is called the stabilizer subgroup. In other texts, this is sometimes called the
isotropy subgroup or stationary subgroup.

Proposition 2.21. Let G be a group acting on X.
(1) Gx is a subgroup of G.
(2) If y = h · x, then Gy = h ·Gx · h−1.
(3) If G acts transitively, then Gx is isomorphic to Gy, for all x, y ∈ X.

Problem 2.22. Prove the above proposition.

Example 2.23. When G acts on G by left multiplication, then for any
g ∈ G,Gg = {e}.

Example 2.24. When the dihedral group, D4 acts on the four vertices of

the square, {1, 2, 3, 4}, then (D4)1 = {e, F =
(

1 2 3 4
1 4 3 2

)
} ' Z2. Since D4

acts transitively, we have that (D4)i ' Z2 for every corner of the square, but
in general, these are not the same subsets of D4, in fact, (D4)1 = (D4)3 6=
(D4)2 = (D4)4.

Example 2.25. Let G be the group of affine transformations acting on R,
then G0 = {φ(a,0) : a 6= 0} ' R∗. Note that Gx = {φ(a,b) : ax + b = x}, but
since G acts transitively, this subgroup is also isomorphic to R∗.

Problem 2.26. Prove that E(n) and E+(n) act transitively, but not 2-
transitively, on Rn. Find the (unique up to isomorphism) stabilizer subgroup
for E(n) and E+(n) of any point.

Let G be a group, H ⊆ G, be a subgroup(not necessarily normal). For
g ∈ G let g · H be the (left) coset generated by g. Recall that defining
g1 ∼H g2 if and only if g1H = g2H defines an equivalence relation on G
called (left) coset equivalence(mod H).

Note that card(gH) = card(H).

Proposition 2.27 (Lagrange). Let G be a finite group, H ⊆ G be a sub-
group, then card(H) divides card(G) and the number of coset equivalence
classes is equal to card(G)

card(H) .

Proof. Assume that there are k coset equivalence classes, and choose g1, . . . , gk
such that, g1H, . . . , gkH, are the equivalence classes. Since G is the dis-
joint union of these sets, and card(giH) = card(H), for all i, we have that
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card(G) = card(g1H) + · · · + card(gkH) = k · card(H), and the result fol-
lows. �

Proposition 2.28. Let G be a finite group, acting on a finite set, X and
let x ∈ X. Then:

• g1 · x = g2 · x if and only if g1Gx = g2Gx,
• card(Ox) · card(Gx) = card(G).

Proof. We have that g1 · x = g2 · x if and only if g−1
2 g1 ∈ Gx if and only if

g1 ∈ g2Gx if and only if g1Gx = g2Gx, and the first result follows.
Let k = card(G)

card(Gx) , which is equal to the number of cosets of Gx. Hence,
we may pick g1, . . . , gk, such that G is the disjoint union of giGx. Hence,
Ox = {g ·x : g ∈ G} =

⋃k
j=1{g ·x : g ∈ gjGx} = {g1 ·x}∪ · · · ∪ {gk ·x}. But,

gi · x 6= gj · x when i 6= j.
Thus, card(Ox) = k. �

Example 2.29. Look at D4 acting on the corners of a square. We’ve seen
that card((D4)1) = 2, and card(O1) = 4. Thus, card(D4) = 2 · 4 = 8.

Example 2.30. Look at the symmetric group, Sn acting on {1, . . . , n}.
Since, (Sn)n ' Sn−1 and card(On) = n, it follows that card(Sn) = n ·
card(Sn−1), and so we have another way to see that card(Sn) = n!.

Problem 2.31. Let G3 be the group of rigid motions of a cube, viewed as
acting on its 8 corners, so that G3 ⊆ S8. Compute card(G3). (Careful: many
permutations of the vertices can not be done on an actual cube.)

Problem 2.32. Let Cn = {(x1, . . . , xn) : 0 ≤ xi ≤ 1} denote the cube in
n-dimensions. How many corners does it have? The group of rigid motions
of Cn is defined to be the subgroup of E+(n) that maps Cn back onto itself.
Compute the order of this group.

2.5. The Action of Conjugation. Define, α : G × G → G by α(g, h) =
ghg−1. Since, α(g1, α(g2, h)) = α(g1, g2hg

−1
2 ) = g1g2hg

−1
2 g−1

1 = α(g1g2, h),
we see that this defines an action of G on G. This action is called the action
of conjugation.

Two elements, h1, h2 of G are called conjugate if there exists g ∈ G, such
that h2 = gh1g

−1, which is equivalent to h2 being in the orbit of h1 under
the action of conjugation. Thus, conjugacy is an equivalence relation on G.
The conjugacy orbit of h ∈ G,Oh = {ghg−1 : g ∈ G}, is called the conjugacy
class of h and c(h) = card(Oh) is called the conjugacy order of h.

The set CG(h) = {g ∈ G : ghg−1 = h} is called the centralizer of h.
Note that CG(h) is the stabilizer subgroup of h, for the action of conjugacy,
which is one way to see that it is a subgroup. Also, by the above results,
c(h) = card(Oh) = card(G)

card(CG(h)) .

Problem 2.33. For the dihedral group D4 find the conjugacy classes.
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Problem 2.34. For the dihedral groups, Dn find the conjugacy classes.

Problem 2.35. For the groups, GL(n,C) and Un, find the conjugacy classes.

Problem 2.36. For the group of affine maps of R, find the conjugacy
classes.

Problem 2.37. For the groups, E(n) and E+(n) find the conjugacy classes.

Problem 2.38. For the group of rigid motions of a cube, find the conjugacy
classes.

3. Representation Theory of Finite Groups

We will assume throughout this section that all vector spaces are over
either the field, R or C. When we wish to state a result that is true for
either field, we say that it is a vector space over, F. Mnay of the results that
we prove are true over any field of characteristic 0.

Definition 3.1. Let V be a vector space over the field F and let L(V ) denote
the linear transformations of V into V. We let GL(V ) denote the group of
invertible linear maps. If G is a group, then a representation of G on V,
is a homomorphism, π : G→ GL(V ). A representation is called faithful if
π is one-to-one.

When V = Fn, we have that L(V ) = Mn(F) the set of n × n matrices
with entries from F, and GL(V ) = GL(n,F).

For a basic example, let V be any vector space and let A ∈ GL(V ). Then
π : Z → GL(V ) given by π(n) = An, defines a representation of Z on V. If
An = IV for some positive integer n, then by quotienting out the kernel of
π, one obtains an induced homomorphism, π̃ : Zn → GL(V ), and hence a
representation of Zn on V.

Thus, we have a representation of Z2 on R2 given by π(k) =
(

0 1
1 0

)
.

Similarly, we have a representation ofZ4 on R2 given by π(k) =
(

0 1
−1 0

)
.

Example 3.2. Let G ⊆ (F,+) be any additive subgroup. For example, we
could have, G = Z,Q,Z+ iZ,R. Then we have a representation of G on F2

defined by π(g) =
(

1 g
0 1

)
.

Example 3.3. Let G = {φ(a,b) : a 6= 0, b ∈ R} denote the group of affine
maps of R. Then we have a representation of G on R2 defined by π(φ(a,b)) =(
a b
0 1

)
.

Example 3.4. If we regard the square as the subset of R2 given by the set
{(x, y) : −1 ≤ x, y ≤ +1}, then each of the rigid motions of the square,
naturally extends to define an invertible linear map on all of R2. In this
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manner we obtain a representation π of D4 on R2. For example, the map
R of the square naturally extends to the counterclockwise rotation through
π/2. This map sends the basis vector e1 to e2 and the basis vector e2 to

−e1. Thus, we have that π(R) =
(

0 −1
1 0

)
. The flip F of the square, can be

extended to the linear map of R2 that is the reflection about the line x = y,

this sends e1 to e2 and e2 to e1 and so has matrix given by π(F ) =
(

0 1
1 0

)
.

Problem 3.5. For the above representation of D4 on R2, write down the
matrices of all 8 elements of D4. Deduce that this representation is faithful.

Problem 3.6. Find a representation of E(n) on Rn+1.

3.1. Free Vector Spaces. Given a set X, we can form a vector space of
dimension card(X) with a basis, {ex : x ∈ X}. A vector in this space is
just a finite linear combination of the form,

∑
i λiexi , where two such sums

are equal if and only if the set of x’s(with non-zero coeficients) appearing
in the sums are the same and the coefficients of the corresponding ex’s are
the same. This is often called the free vector space over X and is denoted
F(X). Another, concrete way, to present this space, is to regard it as the set
of all functions, f : X → F which are finitely supported, i.e., such that the
set of x ∈ X, with f(x) 6= 0 is finite. Clearly, the usual sum of two finitely
supported functions is finitely supported and a scalar multiple of a fintely
supported function will be finitely supported.

These two different representations of F(X) are identified in the following
way. If we let δx be the function that is 1 at x and 0 elsewhere, then if f
is any finitely supported function, say f is non-zero at {x1, . . . , xk}, then as
functions, f =

∑n
i=1 λiδxi , where λi = f(xi). Clearly, the functions, δx are

linearly independent. Thus, {δx : x ∈ X} is a basis for the space of finitely
supported functions. Clearly, then the map δx → ex defines a vector space
isomorphism between the space of finitely supported functions on X and the
free vector space over X.

We will identify these two different presentations of F(X) and sometimes
we will use one presentation and sometimes we will use the other.

3.2. The Representation Induced by an Action. Let G be a group,
acting on a set X. We have seen that each element of G induces a permutation
of the elements of x, via x → g · x. This permutation extends to a linear
map, π(g) : F(X)→ F(X) by setting π(g)(

∑
i λiexi) =

∑
i λiegxi .

It is easy to see that π(e) is the identity map on F(X) and that π(g)π(h) =
π(gh). Thus, each π(g) is invertible and the map, π : G → GL(F(X)) is a
homomorphism.

Definition 3.7. Let G act on a set X. Then the representation of G on
F(X) as above is called the permutation representation induced by
the action.
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For a first example, consider the action of D4 on the four vertices of the
square and we look at the induced permutation action. If we keep our earlier
notation and let R denote the rotation, counterclockwise through angle π/2
and F denote the flip about the line x=y, then for the representation, π :

D4 → GL(F4), we have, π(R) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , π(F ) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

The matrices of the other six elements of D4 given by this representation
can be computed by taking appropirate products of these matrices or from
their actions on the vertices.

Problem 3.8. Find the matrices of the other six elements of D4 given by
this representation.

Problem 3.9. The group D4 can also be regarded as acting on the four edges
of the square. Number the edges so that the i-th edge is between the i-th and
(i+1)-th vertices, modulo four. Let π : D4 → GL(F4) be the permutation
representation induced by this action. Find the matrices for π(R) and π(F )
in this case.

Definition 3.10. Let G act on itself via left multiplication αl and consider
the induced permutation representation on F(G). This representation is de-
noted λ : G→ GL(F(G)) and is called the (left) regular representation.

Thus, we have that λ(g)eh = egh. Note that this representation is faithful,
since λ(g1)eh = λ(g2)eh if and only if g1 = g2. Also every vector in the
canonical basis is cyclic since λ(G)eh spans F(G). Algebraists sometimes
refer to the left regular representation as the Cayley representation.

Definition 3.11. Let G be a group and let αr(g, h) = hg−1 be the left action
of G on G given by right multiplication. The permutation representation
induced by this action is denoted ρ : G → GL(F(G)) and is called the right
regular representation.

Thus, we have that ρ(g)eh = ehg−1 . This action is also faithful.
When we discuss the “regular representation” of a group, we will always

mean the left regular representation.
It is also valuable to see what the induced permutation representation

looks like when we regard F(X) as functions on X. Since π(g)δx = δgx, we

have that (π(g)δx)(y) =

{
1 iff y=gx,
0 iff y 6= x

=

{
1 iff g−1y = x

0 iff g−1y 6= x
= δx(g−1y).

Since every finitely supported function is a linear combination of such func-
tions, we have that (π(g)f)(y) = f(g−1y). Thus, from the point of view
of functions, the induced permutation representation is translation of the
variable by g−1.
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Many texts simple regard F(X) as finitely supported functions on X and
define the induced representation by (π(g)f)(y) = f(g−1y), with no moti-
vation for the appearance of the inverse.

We now have five representations of the group D4, the left and right
regular, which are on 8 dimensional vector spaces, the permutation repre-
sentation induced by its action on the vertices of the square, the permutation
representation induced by its action on the edges of the square, which are
both on a four dimensional vector space and the representation on R2 de-
scribed in an earlier example.

One of the key problems in representation thoery is determining the rela-
tionships between these various representations and determining when one
has a complete set of ”building block” representations that can be used to
construct all representations. These building block representations are called
irreducible representations and they serve as the building blocks for all rep-
resentations in much the same way that the prime numbers can be used to
construct all integers. The study of irreducible representations will be the
topic of the next section. For now we content ourselves with constructing a
few more examples of representations of groups.

Problem 3.12. Let Z4 = {0, 1, 2, 3} denote the cyclic group of order 4.
Write out the 4 × 4 matrices of each of these 4 elements for the left and
right regular representations.

Problem 3.13. Let S3 denote the group of all permutations of 3 objects.
Regard S3 as actomg on X = {1, 2, 3} and write down the matrices of the in-

duced permutation representation for the group elements, g =
(

1 2 3
2 3 1

)
, h =(

1 2 3
1 3 2

)
, k =

(
1 2 3
2 1 3

)
.

Problem 3.14. We have that Dn ⊆ Sn. Show that in fact D3 = S3.

For the next problem, we recall that the matrix for the linear transfor-
mation on R2 of counterclockwise rotation through angle θ is given by

R(θ) =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

Problem 3.15. Let X = {v1, v2, v3} be the three vertices of the equilat-
eral triangle in R2, where v1 = (1, 0), v2 = (cos(2π/3), sin(2π/3)), v3 =
(cos(4π/3), sin(4π/3)). Regard D3 = S3 as acting on this set. This induces
a 2 dimensional representation of S3. Find the 2 × 2 matrices for this rep-
resentation for the elements g,h and k given in the above problem.

3.3. A Representation from P.D.E.. One of the important reasons for
wanting to understand group representations, is that often solutions to many
problems have a group acting on them and an understanding of the repre-
sentations of this group often gives rise to a deeper understanding of the
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set of all solutions. We illustrate this with an example from P.D.E. Let

u : R2 → R, be a function. Given a 2 × 2 matrix A =
(
a b
c d

)
we set A · u

to be the new function, (A · u)(x, y) = u(ax+ cy, bx+ dy) = u((x, y)A).
Note that A · (u1 + u2) = A · u1 + A · u2, and given another matrix B,

[A · (B ·u)](x, y) = (B ·u)((x, y)A) = u([(x, y)A]B) = [(AB) ·u](x, y). Thus,
this operation behaves associatively. Hence if we restrict, A ∈ GL(2,R) then
we have an action of this group on the vector space of functions from R2 to
R.

A C∞-function, u : R2 → R is called harmonic, if uxx+uyy = 0 where the
subscripts denote partial derivatives. These functions form a vector space,
which we will denote by VH . We will show that if A ∈ O2, and u ∈ VH , then
A · u ∈ VH .

To see this, first note that (A · u)x(x0, y0) = aux(ax0 + cy0, bx0 + dy0) +
buy(ax0 + cy0, bx0 + dy0). Hence,

(A·u)xx(x0, y0) = a2uxx(ax0+cy0, bx0+dy0)+abuxy(ax0+cy0, bx0+dy0)+

bauyx(ax0 + cyo, bx0 + dy0) + b2uyy(ax0 + cy0, bx0 + dy0).

Similar calculations, show that

(A·u)yy(x0, y0) = c2uxx(ax0+cy0, bx0+dy0)+cduxy(ax0+cy0, bx0+dy0)+

dcuyx(ax0 + cy0, bx0 + dy0) + d2uyy(ax0 + cy0, bx0 + dy0).

Since A is an orthogonal matrix, a2 + c2 = b2 + d2 = 1, while the first
and second columns of A must be orthogonal and hence, ab+ cd = 0. Thus,
recalling that uxy = uyx, we see that the (A ·u)xx+(A ·u)yy = 1uxx+0uxy+
1uyy = 0, since u was harmonic.

Hence, we have a representation, π : O2 → GL(VH) and a deeper under-
standing of how to decompose representations on O2 into smaller represen-
tations, would lead to a decomposition theory for harmonic functions.

It is also worth remarking that since derivatives remain unchanged under
translations by constants, that we actually have a representation of the group
E(2) on VH .

3.4. One-Dimensional Representations. Note that L(F) ' F and that
GL(F) ' F∗, the multiplicative group of F. Thus, one-dimensiona represen-
tations of a group are nothing more than homomorphisms into the multi-
plicative group of the underlying field.

The homomorphism, π(g) = 1 for all g ∈ G, is called the trivial represen-
tation.

If G is a finite group and π : G → R∗, then since every element of G
is of finite order and the only elements of R∗ of finite order are {±1}, we
have that π(G) ⊆ {±1} ' Z2. Suppose that an element of g ∈ G has odd
order, say gl = e with l odd, the necessarily, π(g) = 1 for if π(g) = −1 then
1 = π(e) = π(gl) = π(g)l = (−1)l = −1, a contradiction. These observations
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show that for a general finite group, there are generally a very limited set
of homomorphisms into R∗. For example, since every element of Z3 has odd
order the only homomorphism is π(Z3) = {1}.

If G is a finite group and π : G → C∗, then π(G) ⊆ T, since the only
elements of finite order in C∗ are the roots of unity, which all lie on the unit
circle. In fact, for every g ∈ G, π(g) must be a root of unity. This allows for
a considerably larger number of one-dimensional complex representations.

For example, if G = Zn = {[0], [1], . . . , [n − 1]}, and ω is any n-th root
of unity, then setting π([k]) = ωk, uniquely defines a representation of Zn.
Thus, there are exactly n different one-dimensional complex representations.

Things are very different when the group is infinite. For example, if a ∈ C∗
is any number then one obtains, π : Z→ C∗ by setting π(n) = an. Similarly,
if G is the “ax+b” group, then one has an onto homomorphism π : G→ R∗,
by setting π(φ(a,b)) = a.

Note that since F∗ is abelian, for any group G, if π : G → F∗ is a ho-
momorphism, then for any, g, h ∈ G, ghg−1h−1 is in the kernel of π. Recall
that the normal subgroup of G generated by all such elements is called the
commutator subgroup and is denoted by [G,G]. Thus, every one-dimensional
representation π of a group G, has [G,G] ⊆ ker(π).

Problem 3.16. For the dihedral group D4, find the commutator subgroup.

Problem 3.17. For the group of affine maps of R, find the commutator
subgroup.

3.5. Subrepresentations. Let π : G → GL(V ) be a representation. A
vector subspace, W ⊆ V is called invariant or sometimes, π(G)-invariant,
provided that π(g)W ⊆W, i.e., for any w ∈W and any g ∈ G, we have that
π(g)w ∈ W. In this case we define πW (g) : W → W to be the restriction of
the map π(g) to W. It is easy to see that πW (g1)πW (g2) = πW (g1g2) and
that πW (e) = IW . From these facts it follows that πW (g) ∈ GL(W ) and
that πW : G → GL(W ) is a representation. This representation is called a
subrepresentation of π.

Example 3.18. Look at the group, G, of affine maps of R. We have seen

that setting, π(φ(a,b)) =
(
a b
0 1

)
defines a representation of G on R2. If we

let W ' R denote the subspace spanned by the first basis vector, then W is
invariant, and the induced representation, is the map, πW (φ(a,b)) = a ∈ R∗.
Note that πW (G) ' R∗ and ker(πW ) = {φ(0,b)} ' (R,+). From these facts
and general group theory it follows that G is a semidirect product, R∗ ×θ R.

Example 3.19. Let G act on a finite set X and let, π : G→ GL(F(X)) be
the induced permutation representation. Let w =

∑
x∈X ex and let W be the

one-dimensional space spanned by w. Then π(g)w =
∑

x∈X egx = w, since
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x → gx is a permutation of X. Thus, W is invariant and πW is the trivial
representation.

Thus, the trivial representation is a subrepresentation of every induced
permutation when the set X is finite.

Example 3.20. Assume that G is acting on a set X and let π : G →
GL(F(X)) be the induced permutation representation. For x ∈ X, let Wx =
span({ey : y ∈ Ox}. Then Wx is invariant and the subrepresentation πWx is
the permutation representation that we would get by resticting the action of
G to the invariant subset, Ox ⊆ X.

A useful way to determine if a subspace is invariant, involves the notion
of a generating set for a group.

Definition 3.21. A subset S of a group G, is said to generate G, or be a
generating set for G, provided that every element of G/{e} can be written
as a finite product, allowing repetitions, of elements of S.

The phrase “allowing repetitions” means that if g, h ∈ S, then g2h3g
would be considered a finite product of elements in S. For example, {R,F}
is a generating set for D4, and {1,−1} is a generating for the (additive)
group Z, but {1} is not a generating set for Z.

Proposition 3.22. Let π : G → GL(V ) be a representation, let S be a
generating set for G, and let W ⊆ V be a subspace. If π(g)W ⊆ W, for
every g ∈ S, then W is π(G)-invariant.

Proof. If h ∈ G, then h = g1 · gk, for some finite set of elements of S. Hence,
π(h)W = [π(g1) · π(gk)]W = [π(g1) · π(gk−1)]π(gk)W ⊆ [π(g1) · π(gk−1)]W,
and we are done by an inductive argument. �

Example 3.23. Let λ : Z→ GL(F(Z)) be the left regular representation and
let W = span({en : n ≥ 0}), then λ(1)W ⊆W, but W is not λ(Z)-invariant,
since λ(−1)e0 /∈ W. Also, the restriction of λ(1) to W is not onto, and so
not invertible.

Problem 3.24. Let π : Z→ GL(V ) be a representation and let W ⊆ V be
a subspace. Prove that if π(1)W = W, then W is π(Z)-invariant.

Problem 3.25. Let π : Z → GL(V ) be a representation with V a finite
dimensional vector space. Prove that if π(1)W ⊆ W, then W is π(Z)-
invariant.

3.6. Internal and External Direct Sums. There are two kinds of direct
sums of vector spaces. Given vector spaces V and W, their Cartesian prod-
uct, V ×W = {(v, w) : v ∈ V,w ∈ W} is a vector space, with operations,
λ(v, w) = (λv, λw) and (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2). This vec-
tor space is called the (external) direct sum of V and W and is denoted by
V ⊕W.
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Note that Ṽ = {(v, 0) : v ∈ V } and W̃ = {(0, w) : w ∈ W} are vector
subspaces of V ⊕W that are isomorphic to V and W, respectively. These
subspaces satisfy, Ṽ ∩ W̃ = {0} and Ṽ + W̃ = V ⊕W.

Given a vector space, Z and two subspaces V,W ⊆ Z, if V +W = Z and
V ∩W = {0}, then we say that Z is the (internal) direct sum of V and W.

Note that if Z is the internal direct sum of V and W , then the map,
T : V ⊕W → Z defined by T ((v, w)) = v+w is a vector space isomorphism
between this internal direct sum of V and W and the external sum of V
and W. For this reason many authors do not distinguish between these two
objects.

There are also many reasons to want distinguish between these objects.
For example, when one identifies, R⊕R = R2, one usually thinks of the two
one-dimensional subspaces as perpendicular. But if one takes any two one
dimensional subspaces, i.e., lines, V,W ⊆ R2, such that R2 = V + W, then
these subspaces need not be perpendicular lines.

When Z is the internal direct sum of subspaces V and W , then we say
that W is a complement of V and that V and W are a complementary pair
of subspaces of Z. As the example of R2 shows, if V is any one-dimensional
subspace, then W could be any other line, except V . Thus, the complement
of a subspace is not unique.

When Z is the internal direct sum of V and W , then every z ∈ Z has
a unique decomposition as z = v + w with v ∈ V,w ∈ W. Hence, we have
well-defined maps, PV : Z → Z and PW : Z → Z, defined by PV (z) = v
and PW (z) = w. Note that to define the map PV we needed both V and a
complementary subspace W .

Example 3.26. Let Z = R2, V = span{(1, 0)},Wa = span{(a, 1)} for some
fixed a ∈ R. Then these subspaces are complementary, i.e., Z is their internal
direct sum. Given any z = (z1, z2) we have that it’s unique decomposition is
given by, z = z2(a, 1) + (z1 − az2)(1, 0). Thus, PV (z) = (z1 − az2)(1, 0) and
PW (z) = z2(a, 1). Which shows clearly the dependence of the maps, PV , PW
on the pair of subspaces.

The following result summarizes the properties of the maps, PV and PW .

Proposition 3.27. Let Z be the internal direct sum of subspaces, V and
W . Then:

(i) PV , PW ∈ L(Z),
(ii) PV + PW = IZ ,
(iii) P 2

V = PV , P
2
W = PW ,

(iv) PV z = z if and only if z ∈ V, PV z = 0 if and only if z ∈W.
Definition 3.28. A map P ∈ L(Z) is called a projection or idempotent,
if P 6= 0, P 6= IZ and P 2 = P.

Proposition 3.29. Let P ∈ L(Z), be a projection, let V = {z ∈ Z : Pz =
z},W = {z ∈ Z : Pz = 0}, then Z is the internal direct sum of V and W
and for this decomposition, P = PV , PW = IZ − P.
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Thus, given an idempotent P we have P = PV for some subspace V and
complement W. For this reason we shall refer to the idempotent, P, as a
projection onto V. Note that we always have that, V = range(P ).

Proposition 3.30. Every subspace of a vector space is complemented.

Proof. Let V be a subspace of Z. Choose a basis, {eα : α ∈ A} for V. By
Zorn’s lemma, there is a linearly independent set, {fβ : β ∈ B}, such that
the union of the two sets is a maximal independent set and hence a basis
for Z.

Let W be the span of {fβ : β ∈ B}, and check that Z is the internal direct
sum of V and W. �

Definition 3.31. Let π : G→ GL(Z) be a representation and let V ⊆ Z be
a π(G)-invariant subspace. We say that V is G-complemented if there is
a π(G)-invariant subspace, W ⊆ Z that is a complement for V.

Example 3.32. Not every π(G)-invariant subspace is π(G)-complemented.
Consider the representation of the affine maps of R on R2 as the matri-

ces,
(
a b
0 1

)
and let V be the span of e1, which is π(G)-invariant. Then

every complement of V, is a vector space of the form, Wc = span{
(
c
1

)
}.

But it is easy to check that none of these spaces are π(G)-invariant. For

if π(G)Wc ⊆ Wc, then for each matrix, we would have,
(
a b
0 1

)(
c
1

)
=(

ac+ b
1

)
= λ

(
c
1

)
. Equating the second components, forces λ = 1, and so,

ac+ b = c, which clearly cannot hold for all choices of a and b.

This phenomena does not happen for finite groups.

Theorem 3.33. Let G be a finite group and let π : G → GL(Z) be a
representation. If V ⊆ Z is a π(G)-invariant subspace, then V is π(G)-
complemented.

Proof. Let |G| = card(G). Pick any complementary subspace, W for V, and
let PV be the projection onto V obtained from this decomposition. Set

P =
1
|G|

∑
g∈G

π(g)PV π(g−1).

If z ∈ Z, then π(g)(PV π(g−1)z) = π(g)v, for some v ∈ V, and hence,
π(g)PV π(g−1)z ∈ V since V is π(G)-invariant. Thus, Pz ∈ V, for any
z ∈ Z.

Moreover, if v ∈ V, then π(g)PV π(g−1)v = π(g)π(g−1)v = v, and hence,
Pv = v, for every v ∈ V.

Hence, Pv = v if and only if v ∈ V. Thus, we have that P 2z = P (Pz) =
Pz, since Pz ∈ V. Therefore, P is a projection onto V.
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We claim that for any h ∈ G, π(h)Pπ(h−1) = P. To see this, note that,

π(h)Pπ(h−1) =
1
|G|

∑
g∈G

π(h)π(g)PV π(g−1)π(h−1) =
1
|G|

∑
g̃∈G

π(g̃)PV π(g̃−1) = P.

Thus, P is a projection that commutes with each of the matrices, π(h).
Using P, we get a (possibly) new complement for V, by setting, W = {z ∈
Z : Pz = 0}. Now we claim that W is π(G)-invariant. To see this, for
w ∈ W, we have Pπ(h)w = π(h)Pw = π(h)0 = 0, and hence, π(h)W ⊆ W
for any h ∈ G. �

The technique used in the above theorem of summing a formula over all
elements in the group is called averaging over the group.

Definition 3.34. Let G be a group and let, πi : G → GL(Wi), i = 1, 2, be
representations. The map, π : G→ GL(W1⊕W2) defined by π(g)(w1, w2) =
(π1(g)w1, π2(g)w2) is easily seen to be a representation. We let π1⊕π2 denote
π and we call this representation the direct sum of the representations,
π1 and π2.

Definition 3.35. Let G be a group and let πi : G → GL(Wi), i = 1, 2 be
representations. If there exists an invertible linear map, T : W1 →W2 such
that T−1π2(g)T = π1(g) for all g ∈ G, then we say that π1 and π2 are
equivalent representations and we write, π1 ∼ π2 to denote that π1 and
π2 are equivalent.

We leave it to the reader to check that the above definition really is an
equivalence relation on the set of representations of G.

Proposition 3.36. Let G be a group, let π : G → GL(V ) be a represen-
tation, and let Wi ⊆ V, i = 1, 2 be a complementary pair of π(G)-invariant
subspaces. Then π ∼ πW1 ⊕ πW2 .

Proof. Let T : W1 ⊕W2 → V be defined by T ((w1, w2)) = w1 + w2, then T
is one-to-one and onto. We will show that π(g)T = T (πW1 ⊕ πW2) for every
g ∈ G.

Now, π(g)T ((w1, w2)) = π(g)(w1+w2) = π(g)(w1)+π(g)(w2) = πW1(g)(w1)+
πW2(g)(w2), while, T (πW1(g)⊕πW2(g))((w1, w2)) = T ((πW1(g)(w1), πW2(g)(w2)) =
πW1(g)(w1) + πW2(g)(w2), and so we have shown the claimed equality. �

Irreducible Representations

Definition 3.37. A representation, π : G → GL(V ) is irreducible if the
only π(G)-invariant subspaces of V are V and (0).

Remark 3.38. This terminology is not absolutely standard. Some authors
define a representation to be reducible if V is the internal direct sum of two
non-zero π(G)-invariant subspaces. They then define irreducible to mean not
reducible. Thus, the representation of the group of affine transformations of
R as 2× 2 matrices is not irreducible in our sense, but is irreducible in this
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other sense. The difference is that while it has non-trivial π(G)-invariant
subspaces it does not have any π(G)-complemented subspaces. For finite
groups, we have shown that every π(G)-invariant subspace is complemented,
so these two definitions coincide in that case.

Note that every 1-dimensional representation is irreducible. The following
result shows that the irreducible representations are the ”building blocks”
of all representations in much the same way that prime numbers are the
building blocks of the integers.

Theorem 3.39. Let G be a finite group and let π : G → GL(V ) be a
finite dimensional representation of G. Then there exists an integer k and
π(G)-invariant subspaces, W1, . . . ,Wk of V , such that:

(i) V = W1 + · · ·+Wk, and Wi ∩ (
∑

j 6=iWj) = (0), for i 6= j,

(ii) the subrepresentations, πWi : G → GL(Wi), 1 ≤ i ≤ k, are irre-
ducible,

(iii) π ∼ πW1 ⊕ · · · ⊕ πWk
.

Proof. The proof of (i) and (ii) is by induction on the dimension of V. When
dim(V ) = 1, then π is irreducible and (i) and (ii) are met by setting k = 1
and W1 = V. Now assume that (i) and (ii) hold for any representation of G
on a vector space Z with dim(Z) ≤ n, and let dim(V ) = n+ 1.

If π is irreducible we are done. Otherwise, there exists a π(G)-invariant
subspace, Z1, with (0) 6= Z1 6= V. By Theorem 3.33, Z1 possesses a π(G)-
complement, Z2. Since 0 < dim(Z1) < dim(V ), we have that dim(Z1) ≤ n
and dim(Z2) ≤ n. Hence, by the inductive hypothesis, Z1 = W1 + · · ·+Wk

and Z2 = Wk+1 + · · ·+Wm, where each subrepresentation πWi is irreducible,
for 1 ≤ i ≤ k,Wi ∩ (

∑k
j=1,j 6=iWj) = (0), and for k + 1 ≤ i ≤ m,Wi ∩

(
∑m

j=k+1,j 6=iWj) = (0).
Moreover, V = Z1 + Z2 = W1 + · · · + Wm, and so it remains to show

that Wi ∩ (
∑m

j=1,j 6=i) = (0). We first consider the case that 1 ≤ i ≤ k. If a
vector v is in the intersection, then we have that v = wi =

∑m
j=1,j 6=iwj , with

wj ∈Wj . Hence, wi−
∑k

j=1,j 6=i =
∑m

j=k+1 . The vector on the left belongs to
Z1, while the vector on the right belongs to Z2. Since Z1∩Z2 = (0), they must
both be 0. Because (i) holds for W1, ...,Wk and for Wk+1, ...,Wm, separately,
we have that 0 = w1 = · · · = wm, and it follows that Wi ∩ (

∑m
j=1,j 6=iWj) =

(0). The proof for the case that k + 1 ≤ j ≤ m, is identical.
This proves (i) and (ii).
To prove (iii), assume that we have (i) and (ii) and consider the map

T : W1⊕ · · · ⊕Wk → V defined by T ((w1, . . . , wk)) = w1 + · · ·+wk. Clearly
T is onto. If (w1, . . . , wk) is in the kernel of T, then −w1 = w2 + · · ·+wk ∈
W1∩(

∑k
j=2Wj), and hence is 0. Thus, w1 = 0, and −w2 = w3+· · ·+wk, from

which it follows that w2 = 0. Inductively, one finds that w1 = · · · = wk = 0,
and so T is invertible. It is easily checked that T implements the similarity
that proves (iii). �
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The decomposition obtained in the above theorem is not unique. For
example, if ρ : G → F∗ is 1-dimensional and we define, π : G → GL(Fn)
by π(g) = ρ(g)In, where In denotes the identity matrix, then every one-
dimensional subspace of Fn will be irreducible and the above decomposition
can be obtained by taking any decomposition of Fn into n one-dimensional
subspaces.

Note that while the subspaces are not unique, if W ⊆ Fn is any one-
dimensional subspace, then πW = ρ.

We will prove that, in general, while the subspaces are not unique, the
irreducible representations that one obtains are unique, up to similarity.

First, we will need some further characterizations of irreducible represen-
tations.

Definition 3.40. Let S ⊆ L(V ) be any set. Then the commutant of S, is
the set S ′ = {T ∈ L(V ) : TS = ST for every S ∈ S}.

Note that since the scalar multiples of the identity commute with every
linear transformation, these always belong to the commutant of S. If these
are the only linear transformations in the commutant of S, then we say that
S has trivial commutant.

The following result is the first result where it really matters if the field
is R or C.

Theorem 3.41. Let G be a finite group and let π : G→ GL(V ) be a finite
dimensional representation of G.

(i) If π(G)′ = {λIV : λ ∈ F}, i.e., if π(G) has trivial commutant, then
π is irreducible.

(ii) When F = C, then π is irreducible if and only if π(G) has trivial
commutant.

Proof. If π is not irreducible, then there is a subspace, W , with 0 6= W 6= V
that is π(G)-invariant. In the proof of Theorem 3.33, we constructed a
projection, P , onto W that commutes with π(G). Thus, P ∈ π(G)′. (To see
how this follows from the statement of the theorem, instead of the proof,
take a π(G)-complement for W and construct a projection onto W using
this complementary subspace and then show that such a projection is in the
commutant.)

Hence, for any field, if the commutant is trivial, then the representation
is irreducible.

Next, assume that the field is C and that the commutant is non-trivial.
Let T ∈ π(G)′ be an operator that is not a scalar multiple of the identity.
In this case there exists an eigenvalue, λ of T, and necessarily, T −λIV 6= 0.
Let W = ker(T − λIV ), then 0 6= W 6= V. But, if w ∈ W, then (T −
λIV )(π(g)w) = π(g)(T − λIV )w = 0 and so W is π(G)-invariant. Hence,
V is not irreducible. Therefore, when F = C, if V is irreducible, then the
commutant of π(G) is trivial. �
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Problem 3.42. Let π : Z4 → GL(R2) be defined by π(k) =
(

0 1
−1 0

)k
.

Prove that π is irreducible, but π(Z4)′ = span{
(

1 0
0 1

)
,

(
0 1
−1 0

)
}. Thus,

the assumption that F = C is essential for Theorem 3.41(ii).

Problem 3.43. Let π : Z4 → GL(C2) be given by the same matrices as
in the last problem. Find a one-dimensional π(Z4)-invariant subspace and
its π(Z4)-complement. This determines a decomposition of π into two one-
dimensional subrepresentations, describe these representations explicitly as
functions from Z4 into the unit circle.

Problem 3.44. Prove that the representation of D4 on F2 given by π(R) =(
0 −1
1 0

)
, π(F ) =

(
0 1
1 0

)
is irreducible, whether F = R or F = C.

Problem 3.45. Let π : D4 → GL(C(X)) be the permutation representa-
tion induced by the action of D4 on the four vertices of the square, X =
{1, 2, 3, 4}. Find a decomposition of this representation into irreducible sub-
representations as given by Theorem 3.39.

Problem 3.46. Let λ : D4 → GL(C(D4)) be the left regular representa-
tion(so on an 8-dimensional space). Find a decomposition of λ into irre-
ducible subrepresentations as given by Theorem 3.39.

Problem 3.47. Let G be a finite group and let π : G → GL(V ) be a
representation. Prove that if dim(V ) > card(G), then π is not irreducible.

Definition 3.48. Let πi : G→ GL(Vi), i = 1, 2 be representations. The set
I(π1, π2) = {T ∈ L(v1, V2) : π2(g)T = Tπ1(g), for everyg ∈ G} is called the
space of intertwining maps between π1 and π2.

Note that when π1 = π2 = π, then I(π, π) = π(G)′.

Proposition 3.49. Let G be a group and let πi : G → GL(Vi), i = 1, 2
be representations. Then I(π1, π2) is a vector subspace of L(V1, V2), and
π1 ∼ π2 if and only if there exists an invertible linear transformation in
I(π1, π2).

Proof. Let Ti ∈ I(π1, π2) and let λ ∈ F. Then for any g ∈ G, π2(g)(λT1 +
T2) = λπ2(g)T1 + π2(G)T2 = (λT1 + T2)π1(g), and so I(π1, π2) is a vector
subspace.

If T ∈ I(π1, π2), is invertible, then T−1π2(g)T = π1(g), or every g ∈ G,
and so π2 ∼ π1. Conversely, if π2 ∼ π1 and this similarity is implemented by
T, then T ∈ I(π1, π2). �

Theorem 3.50 (Schur’s Lemma). Let G be a finite group and let πi : G→
GL(Vi), i = 1, 2 be irreducible representations. Then π1 ∼ π2 if and only if
I(π1, π2) 6= (0). In the case that Vi, i = 1, 2 are vector spaces over C, then
dim(I(π1, π2)) is either 0 or 1.
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Proof. Assume that π1 ∼ π2 and let π2(g)T = π1(g)T with T invertible.
Then T ∈ I(π1, π2) and so this set is not equal to (0).

Conversely, if I(π1, π2) 6= (0), then there exists T 6= 0 in this set. Since
T 6= 0, we have that W1 = ker(T ) ( V1. But for w1 ∈ W1, Tπ1(g)w1 =
π2(g)Tw1 = 0, and so W1is π1(G)-invariant. Since π1 is irreducible, W1 =
(0) and T is one-to-one. Similarly, let W2 = ran(T ) 6= (0), since T 6= 0 and
check that W2 is π2(G)-invariant. Since, π2 is irreducible, W2 = V2 and T
is onto.

Thus, T is invertible and hence π1 ∼ π2.
Now assume that we are dealing with vector spaces over C and that

I(π1, π2) 6= (0). Then by the first result, π1 ∼ π2. Let T ∈ I(π1, π2) be any
invertible that implements the similarity. Note that T−1 ∈ I(π2, π1). Now
suppose that S ∈ I(π1, π2) is any map. Then T−1S ∈ π1(G) and since π1 is
irreducible, there exists a scalar, λ such that T−1S = λIV1 , and so, S = λT.
Thus, I(π1, π2) = span{T}, and so is one-dimensional. �

Thus, by Schur’s Lemma, when π1, π2 are irreducible representations over
C, then dim(I(π1, π2)) is either 0 or 1 and these determine whether π1 � π2

or π1 ∼ π2. The following example, motivates our next theorem.

Example 3.51. Let π : G→ GL(V ) and ρi : G→ GL(Wi), i = 1, 2 be rep-
resentations and let ρ = ρ1⊕ ρ2 : G→ GL(W1⊕W2). Given T ∈ L(V,W1⊕
W2) there exists, Ti ∈ L(V,Wi), i = 1, 2 such that T (v) = (T1v, T2v).

Hence, Tπ(g)v = (T1π(g)v, T2π(g)v), while ρ(g)Tv = (ρ1(g)T1v, ρ2(g)T2v).
Thus, T ∈ I(π, ρ) if and only if Ti ∈ I(π, ρi), i = 1, 2.

Thus, as vector spaces, I(π, ρ) = I(π, ρ1) ⊕ I(π, ρ2), which shows, in
particular, that dim(I(π, ρ)) = dim(I(π, ρ1)) + dim(I(π, ρ2)).

Problem 3.52. Let π : G → GL(V ) and ρi : G → GL(Wi), i = 1, 2 be
representations and let ρ = ρ1 ⊕ ρ2 : G → GL(W1 ⊕ W2). Given T ∈
L(W1 ⊕ W2, V ) prove that there exists, Ti ∈ L(Wi, V ), i = 1, 2 such that
T ((w1, w2)) = T1w1 + T2w2.

Prove that T ∈ I(ρ, π) if and only in Ti ∈ I(ρi, π), i = 1, 2. Prove that as
vector spaces, I(ρ, π) and I(ρ1, π)⊕I(ρ2, π) are isomorphic and deduce the
corresponding result for the dimensions.

Problem 3.53. Let πi : G → GL(Vi), ρi : G → GL(Wi), i = 1, 2 be
representations, with π1 ∼ π2 and ρ1 ∼ ρ2. Prove that dim(I(π1, ρ1)) =
dim(I(π2, ρ2)).

Theorem 3.54. Let G be a finite group, let V,W be finite dimensional
vector spaces over C, let π : G → GL(V ) be an irreducible representation,
let ρ : G → GL(W ) be a representation and let W = W1 + · · · + Wm be
an internal direct sum decomposition of W into ρ(G)-invariant subspaces
such that each subrepresentation, ρWi is irreducible. Then dim(I(π, ρ)) =
card({i : ρWi ∼ π}), and consequently, this number is independent of the
particular decomposition of ρ into irreducible subrepresentations.
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Proof. We have that ρ ∼ ρW1 ⊕ · · · ⊕ ρWm where the later representation
is on the space, W1 ⊕ · · · ⊕ Wm. By the above example and problems,
dim(I(π, ρ)) = dim(I(π, ρW1)) + · · ·+ dim(I(π, ρWm)).

But by Schur’s Lemma, dim(I(π, ρWi)) is either 0 or 1, depending on
whether π � ρWi or π ∼ ρWi , and the result follows. �

Definition 3.55. Let G be a finite group, let V,W be finite dimensional
complex vector spaces, and let π : G → GL(V ), ρ : G → GL(W ) be repre-
sentations with π irreducible. We call dim(I(π, ρ)) the multipicity of π
in ρ.

The following result shows that the multiplicities determine ρ up to sim-
ilarity.

Corollary 3.56. Let G be a finite group, let W be a finite dimensional
complex vector space, let ρ : G → GL(W ) be a representation and sup-
pose that πi : G → GL(Vi), i = 1, ..., k are inequivalent, finite dimensional,
irreducible representations of G and represent all equivalence classes of fi-
nite dimensional irreducible representations, for which, dim(I(π, ρ)) 6= 0.
If dim(I(πi, ρ)) = mi, i = 1, ..., k, then ρ ∼ π

(m1)
1 ⊕ · · · ⊕ π

(mk)
k , where

π
(mi)
i = πi ⊕ · · · ⊕ πi, (mi times).

These results allow us to give a concrete formula for the dimension of the
intertwining space for any two finite dimensional, complex representations.

Corollary 3.57. Let G be a finite group, let Vi, i = 1, ..., k be finite dimen-
sional complex vector spaces, let πi : G → GL(Vi), i = 1, ..., k be irreducible
representations and let ρ ∼ π(m1)

1 ⊕ · · · ⊕ π(mk)
k , γ ∼ π(n1)

1 ⊕ · · · ⊕ π(nk)
k , then

dim(I(ρ, γ)) = m1n1 + · · ·mknk.

Proof. Since dim(I(ρ, γ)) is invariant under similarities, it is enough to as-
sume that ρ = π

(m1)
1 ⊕ · · · ⊕ π

(mk)
k and γ = π

(n1)
1 ⊕ · · · ⊕ π

(nk)
k . Now a

linear map T between a direct sum of vector space can be regarded as a
block matrix T = (Ti,j) where each Ti,j is a linear map from the j-th di-
rect summand of the domain into the i-th direct summand of the range.
Thus, any T = (Ti,j) ∈ I(ρ, γ) where each Ti,j : Vnj → Vni satisfies
πni(g)Ti,j = Ti,jπnj (g), for every g ∈ G.

Hence, by Shur’s Lemma, when nj 6= ni, we will have that Ti,j = 0, while
if nj = ni, then Ti,j = λi,jIVnj , for some choice of scalars, λi,j ∈ C.

From this it follows that as a vector space, I(ρ, γ) can be identified with
the direct sum of rectangular matrices given by Mn1,m1⊕· · ·⊕Mnk,mk , which
has dimension m1n1 + · · ·mknk. �

Corollary 3.58. Let G be a finite group, let W be a finite dimensional
complex vector space, let ρ : G → GL(W ) be a representation and sup-
pose that πi : G → GL(Vi), i = 1, ..., k are inequivalent, finite dimensional,
irreducible representations of G and represent all equivalence classes of fi-
nite dimensional irreducible representations, for which, dim(I(π, ρ)) 6= 0. If
dim(I(πi, ρ)) = mi, i = 1, ..., k, then dim(ρ(G)′) = m2

1 + · · ·+m2
k.
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Example 3.59. Let G be a finite group, V be a finite dimensional vector
space and let ρ : G → GL(V ). If dim(ρ(G)′) = 5, then what can be said
about the decomposition of ρ into irreducible representations?

Since there are only two ways to write 5 as a sum of squares, either
5 = 12 + 12 + 12 + 12 + 12, or 5 = 22 + 12, we see that either ρ decomposes
into 5 inequivalent irreducible representations each of multiplicity 1 or into
2 inequivalent irreducible representations, the first of multiplicity 2 and the
second of multiplicity 1.

If, in addition, we knew that dim(V ) = 4, then the first case would be
impossible. Thus, we must have the second case, ρ ∼ π

(2)
1 ⊕ π2. If πi is a

representation on a di dimensional space, then we also have that 4 = 2d1+d2,
which forces that d1 = 1, d2 = 2.

Thus, we see that the above theorems give a lot of information for comput-
ing the multiplicities and dimensions of the irreducible subrepresentations of
a given representation.

Problem 3.60. Let π : D4 → GL(2,C) be the two dimensional irreducible
representation of D4 given by regarding the square as embedded in the plane
and let λ : D4 → GL(8,C) be the left regular representation. Compute the
multiplicity of π in λ.

Problem 3.61. Prove that the two-dimensional representation of S3 = D3

given by regarding the triangle as embedded in the plane is irreducible. Com-
pute the multiplicity of this representation in the 6-dmensional, left regular
representation of S3.

Problem 3.62. Let G be a finite group, let V,W be finite dimensional com-
plex vector spaces, and let π : G → GL(V ), ρ : G → GL(W ) be representa-
tions. Prove that dim(I(π, ρ)) = dim(I(ρ, π)). Can you prove or disprove
the same statement for real vector spaces?

The Group Algebra
The vector space, F(G) is also naturally endowed with a product that

makes it into an algebra over F. This product is defined by

(
∑
g∈G

λgeg)(
∑
h∈G

µheh) =
∑
g,h∈G

λgµhegh =
∑
k∈G

[
∑
gh=k

λgµh]ek.

The basis vector corresponding to the identity element for G, is an identity
for this algebra.

The group algebra has the property that every representation of G, π :
G → GL(V ), extends uniquely to a unital algebra homomorphism, π̃ :
F(G)→ L(V ), by setting π̃(

∑
g∈G λgeg) =

∑
g∈G λgπ(g).

Conversely, given a unital algebra homomorphism, π̃ : F(G) → L(V ),
then setting, π(g) = π̃(eg) defines a representation of G on V.

It is important to see what this product becomes when we regard F(G) as
functions on G. Under this identification,

∑
g∈G λgeg is identified with the
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function, f1 : G → F, with f1(g) = λg. Similarly,
∑

h∈G µheh is identified
with the function, f2 satisfying, f2(h) = µh. Thus, the product of these two
elements of F(G) is the function, denoted f1 ∗ f2, satisfying,

(f1 ∗ f2)(k) =
∑
gh=k

λgµh =
∑
g∈G

λgµg−1k =
∑
g∈G

f1(g)f2(g−1k),

since gh = k implies that h = g−1k. Alternatively, solving for g instead,
g = kh−1, we see that,

(f1 ∗ f2)(k) =
∑
h∈G

f1(kh−1)f2(h).

This product on functions is called the convolution product.
One final remark. Note that dim(R(D4)) = card(D4) = 8. Thus, even

though the map, π : D4 → GL(2,R) is one-to-one, the map π̃ : R(D4) →
M2(R) cannot be one-to-one, since dim(M2) = 4 < dim(R(D4)).

4. Character Theory for Finite Groups

We will assume throughout this section that G is a finite group, unless
specifically stated otherwise.

Definition 4.1. Let A = (ai,j) ∈Mn(F), then the trace of A is the quan-
tity, Tr(A) =

∑n
i=1 ai,i.

The following summarizes the two most important properties of the trace.

Proposition 4.2. The map, Tr : Mn(F) → F is linear and for A =
(ai,j), B = (bi,j) in Mn(F), we have Tr(AB) = TR(BA).

Proof. The linearity of Tr is clear. We have that Tr(AB) =
∑n

i=1

∑n
k=1 ai,kbk,i =∑n

i=1

∑n
k=1 bi,kak,i = Tr(BA), after re-labeling the indices. �

Corollary 4.3. Let A ∈ Mn(F), S ∈ GL(n,F), then Tr(S−1AS) = Tr(A).
Consequently, Tr(A) is the sum of the eigenvalues of A.

Proof. We have that Tr(S−1AS) = Tr(SS−1A) = Tr(A). Now, we may
choose S ∈ GL(n,C)) such that S−1AS is upper triangular with the eigen-
values of A for the diagonal entries. �

Remark 4.4. If V is any n-dimensional space, then by choosing a basis for
V we may identify L(V ) with Mn(F) and in this way define the trace of a
linear map on V. If we choose a different basis for V, then the two matrix
representations for a linear map that we obtain in this fashion will differ by
conjugation by an invertible matrix. Thus, the value of the trace that one
obtains in this way is independent of the particular basis and by the above
corollary will always be equal to the sum of the eigenvalues of the linear
transformation. Hence, there is a well-defined trace functional on L(V ).

Definition 4.5. Let G be a group and let π : G→ GL(V ) be a representation
of G on a finite dimensional vector space. Then the character of π is the
function, χπ : G→ F defined by, χπ(g) = Tr(π(g)).
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Example 4.6. Let G act on a finite set X and let π be the corresponding
permutation representation on F(X). Then for any g ∈ G,χπ(g) = card({x :
g · x = x}) = χπ(g−1).

Example 4.7. Let G act on G by left multiplication and let λ be the left reg-
ular representation. Then for any g 6= e, χλ(g) = 0, while χλ(e) = card(G).

Example 4.8. Let G be the group of affine transformations of G and let

π(φa,b) =
(
a b
0 1

)
, then χπ(φa,b) = a+ 1, while χπ(φ−1

a,b) = a−1 + 1.

Example 4.9. Suppose that ρ : G → GL(V ) has been decomposed as ρ ∼
π

(n1)
1 ⊕· · ·⊕π(nk)

k , then as functions, χρ = n1χπ1+· · ·+nkχπk . Thus, for finite
groups we see that every character function is a linear combination with non-
negative integer coefficients of the characters of irreducible representations!

Example 4.10. Let D4 act on R2 as in Example 2.20, then χπ(R) =
χπ(F ) = 0, while χπ(R2) = −2. When D4 acts on the four vertices of
the square, then for the induced permutation representation, ρ, we have that
χρ(R) = 0, χρ(F ) = 2, χρ(R2) = 0. Thus, χρ 6= 2χπ and so we know that
ρ � π ⊕ π.

We now look at some general properties of characters.

Proposition 4.11. Let G be a finite group and let π : G → GL(V ) be a
representation where dim(V ) = n is finite. Then:

(i) χπ(e) = n,

(ii) χπ(g−1) = χπ(g),
(iii) χπ(h−1gh) = χπ(g),
(iv) when π ∼ ρ, then χπ = χρ.

Proof. We have that χπ(e) = Tr(IV ) = dim(V ) = n, and (i) follows.
Since G is a finite group, for any g ∈ G there exists k such that gk = e

and hence, π(g)k = IV . This fact forces all of the eigenvalues of π(g) to lie
on the unit circle. If {λ1, . . . , λn} denote the eigenvalues of π(g), then the
inverses of these numbers are the eigenvalues of π(g−1) and hence, χπ(g−1) =
λ−1

1 + · · ·+ λ−1
n = λ̄1 + · · ·+ λ̄n = χπ(g), and (ii) follows.

Items (iii) and (iv), follow from the similarity invariance of the trace. �

Note that for the representation of the group of affine maps of R, (ii) fails.
This happens because the eigenvalues of these matrices need not lie on the
unit circle.

4.1. Averaging Over Groups. Let G be a finite group and let πi : G →
GL(Vi), i = 1, 2 be representations. Given T ∈ L(V1, V2), we set EG(T ) =

1
|G|
∑

g∈G π2(g)Tπ1(g−1), where |G| = card(G).Note that EG(T ) ∈ L(V1, V2).

Definition 4.12. We call EG(T ) the expectation of T with respect to the
two representations.
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The following results summarize the key facts about the expectation.

Proposition 4.13. Let G be a finite group, let πi : G→ GL(Vi), i = 1, 2 be
representations on C vector spaces and let EG be the correspondingexpecta-
tion. Then:

(i) EG : L(V1, V2)→ L(V1, V2) is a linear map,
(ii) EG(T ) ∈ I(π1, π2),
(iii) E2

G = EG,
(iv) when πi, i = 1, 2 are irreducible with π1 � π2, then EG = 0,
(v) when π1 = π2 is irreducible and dim(V1) = n, then EG(T ) = Tr(T )

n IV1 .

Proof. The proof of (i) follows easily from the formula for EG.
To see (ii), note that π2(h) = 1

|G|
∑

g∈G π2(hg)Tπ1(g−1) =
1
|G|
∑

g1∈G π2(g1)Tπ1(g−1
1 h) = EG(T )π1(h), where g1 = hg. Hence, EG(T ) ∈

I(π1, π2).
Note that if T ∈ I(π1, π2), then EG(T ) = 1

|G|
∑

g∈G π2(g)Tπ1(g−1) =∑
g∈G Tπ1(g)π1(g−1) = T. Thus, by (ii), the range of EG is contained in

I(π1, π2) and EG leaves this space invariant. Hence, EG(EG(T )) = EG(T ),
and (iii) follows.

Result (iv) follows from (ii) and Schur’s lemma, that I(π1, π2) = (0).
Finally, to see (v), note that EG(T ) ∈ I(π1, π1) = π1(G)′ = {λIV1 : λ ∈

C}. So let, EG(T ) = λIV1 and compute, nλ = Tr(EG(T )) =
1
|G|
∑

g∈G Tr(π1(g)Tπ1(g−1)) = 1
|G|
∑

g∈G Tr(T ) = Tr(T ), from which the
result follows. �

4.2. The Schur Relations. Let π : G→ GL(n,F) and ρ : G→ GL(m,F).
Writing each matrix in terms of it’s entires, π(g) = (ri,j(g)), ρ(g) = (si,j(g)),
we obtain functions, ri,j : G → F, si,j : G → F. Now let T ∈ L(Cn,Cm) =
Mm,n(C) be an m×n matrix and let EG(T ) = (tGi,j) denote its matrix entries.

We have that, (tGi,j) = 1
|G|
∑

g∈G ρ(g)Tπ(g−1), and so,

tGi,j =
1
|G|

∑
g∈G

∑
k,l

si,k(g)tk,lrl,j(g−1).

Now suppose that T = Ek,l, the matrix that is 1 in the (k,l)-entry and 0
elsewhere, then we have that, tGi,j =

∑
g∈G si,k(g)tl,j(g−1).

If π, ρ are irreducible and inequivalent, then EG(T ) = 0, and so

(Schur 1)
1
|G|

∑
g∈G

si,k(g)rl,j(g−1) = 0 for all i, j, k, l.

If on the other hand, π = ρ is irreducible, then for k 6= l, EG(Ek,l) = 0, while

EG(Ek,k) = Tr(Ek,k)
n In = 1/nIn. Thus, when π = ρ is irreducible, then
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(Schur 2)
1
|G|

∑
g∈G

ri,k(g)rl,j(g−1) =
δk,lδi,j
n

,

where δi,j =

{
1, i = j

0 i 6= j
denotes the kronecker delta function.

4.3. Inner Products. Given two vectors,
∑
λgeg,

∑
µgeg in C(G), the

usual inner product of these vectors is given by

〈
∑

λgeg,
∑

µgeg〉 =
∑

λgµ̄g.

If we regard these vectors as functions instead then this inner product be-
comes,

〈f1, f2〉 =
∑
g∈G

f1(g)f2(g).

We wish to alter this definition slightly, thus we shall define,

(f1|f2) =
1
|G|

∑
g∈G

f1(g)f2(g).

Note that, |G|(f1|f2) = 〈f1, f2〉. We summarize the properties below.

Proposition 4.14. Let f1, f2, f3 ∈ C(G) and let λ ∈ C. Then:

(i) (f1|f1) ≥ 0 and is equal to 0 if and only if f1 = 0,
(ii) (f1 + f2|f3) = (f1|f3) + (f2|f3),
(iii) (f1|f2 + f3) = (f1|f2) + (f1|f3),
(iv) (λf1|f2) = λ(f1|f2),
(v) (f1|λf2) = λ(f1|f2),
(vi) (f1|f2) = (f2|f1).

Remark 4.15. If V is a complex vector space, then any map, (·, ·) : V ×V →
C, satisfying (ii)–(v) is called a sesquilinear form. A sesquilinear form
is called symmetric if it also satisfies (vi). A sesquilinear form is called
non-negative if (f1|f1) ≥ 0 and positive if it satisfies (i). A positive
sesquilinear form is also called an it inner product. It is easy to show that
any inner product automatically satisfies (vi). In fact, assuming (i)–(iv),
implies (v) and (vi).

Given a complex vector space with an inner product, vectors v, w are called
orthogonal or perpendicular if (v|w) = 0.

Also, if one sets ||v|| =
√

(v|v), then this defines a norm on V, and one
has the Cauchy-Schwarz inequality, |(v|w)| ≤ ||v|| · ||w||.

The following result shows the importance of the inner product on C(G).



34 VERN PAULSEN

Theorem 4.16. Let πi : G→ GL(Vi), i = 1, 2 be irreducible representations
on finite dimensional vector spaces and let χi, i = 1, 2 be the corresponding
characters. Then

(χ1|χ2) =

{
1 π1 ∼ π2

0 π1 � π2
.

Proof. Let π1(g) = (si,j(g)) and π2(g) = (ri,j(g)). Recall that χ(g) = χ(g−1).
If π1 � π2, then (χ1|χ2) = 1

|G|
∑

g∈G(
∑

i si,i(g))(
∑

j rj,j(g)) =
1
|G|
∑

g∈G(
∑

i si,i(g))(
∑

j rj,j(g
−1)) = 0, by Schur 1.

If π1 ∼ π2, then χ1(g) = χ2(g), and dim(V1) = dim(V2) = n, where n
denotes their common dimension. Thus,

(χ1|χ2) =
1
|G|

∑
g∈G

(
∑
i

ri,i(g))(
∑
j

rj,j(g−1)) =
n∑

i,j=1

δi,jδi,j
n

= 1,

by Schur 2. �

Corollary 4.17. Let G be a finite group and let ρ : G → GL(V ) be a
representation and assume that ρ ∼ π

(n1)
1 ⊕ · · · ⊕ π

(nk)
k , where π1, . . . , πk

are inequivalent irreducible representations, then (χρ|χπi) = ni, for all i =
1, . . . , k, and (χρ|χρ) = n2

1 + · · ·+ n2
k.

Proof. We have that χρ = n1χπ1 + · · ·+ nkχπk , and the result follows from
the above theorem. �

Corollary 4.18. Let G be a finite group and let ρ : G→ GL(V ) be a finite
dimensional representation. Then ρ is irreducible if and only if (χρ|χρ) =

1
|G|
∑

g∈G |Tr(ρ(g))|2 = 1.

Corollary 4.19. Let G be a finite group and let ρi : G → GL(Vi), i = 1, 2
be finite dimensional representations of G. Then ρ1 ∼ ρ2 if and only if
χρ1 = χρ2 .

Proof. If they are similar, then we have that their characters agree. So as-
sume that their characters are equal, let π1, . . . , πk be a set of inequivalent
irreducible representations such that every irreducible representation that
occurs as a subrepresentation of ρ1 or ρ2 is included in the set. Then we
have that, ρ1 ∼ π

(n1)
1 ⊕ · · · ⊕ π

(nk)
k and ρ2 ∼ π

(m1)
1 ⊕ · · · ⊕ π

(mk)
k where

we set ni(respectively, mi) equal to 0 if πi is not a subrepresentation of
ρ1(respectively, ρ2). Since the characters are equal, ni = (χρ1 |χπi) =
(χρ2 |χπi) = mi, and hence, ρ1 ∼ ρ2. �
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4.4. The Left Regular Representation. Recall that the left regular rep-
resentation, λ : G → GL(C(G)) is the induced permutation representation
given by left multiplication on G. Thus, λ(g)eh = egh, or in terms of func-
tions, (λ(g)f)(h) = f(g−1h).

We will see that studying the left regular representation yields a great
deal of information about the irreducible representations of G.

Theorem 4.20. Let G be a finite group and let π : G → GL(n,C) be an
irreducible representation of G. Then π is a subrepresentation of λ with
multiplicity n.

Proof. Note that χλ(g) =

{
|G|, g = e

0 g 6= e
. Thus, (χλ|χπ) = 1

|G|
∑

g∈G χλ(g)χπ(g) =

χπ(e) = n. �

Theorem 4.21 (Sum of Squares). Let G be a finite group. Then there exists
a finite number of finite dimensional irreducible representations. If these are
on spaces of dimensions, n1, . . . , nk, then

n2
1 + · · ·+ n2

k = |G|.
Proof. Since every irreducible representation of G is a subrepresentation of
λ there can be a most a finite number of inequivalent irreducible represen-
tations. Moreover, since each of these is of multiplicity, ni, we have that
|G| = (χλ|χλ) = n2

1 + · · ·+ n2
k. �

Definition 4.22. Let G be a group. Then the set of similarity equivalence
classes of irreducible representations is called the spectrum of G and is
denoted by Ĝ. A set {πα : α ∈ A} of irreducible representations of G is
called a complete set of irreducible representations, if it contains a
representative of each equivalence class in Ĝ. That is, if every irreducible
representation of G is equivalent to one of the representations in the set and
for α 6= β, we have πα � πβ. We call the corresponding set of characters,
{χπα : α ∈ A} a complete set of characters of G.

Note that for every group, we have a trivial one-dimensional representa-
tion, π(g) = 1, and hence in the decomposition of |G| as a sum of squares,
one of the terms is always, 12.

Example 4.23. Find a complete set of irreducible representations of S3 =
D3. We have seen that this group has a 2-dimensional irreducible represen-
tation and we always have the trivial 1-dimensional. Since |S3| = 6 and
12 + 22 = 5, we see that the only possiblity is that there is an additional
1-dimensional irreducible representation of S3. Recall that for every permu-
tation, we have the notion of the sign of the permutation, which is always
±1 and that the sign of a product is the product of the signs. This defines
the other representtion, by π(g) = sign(g).

Thus, the set of these three irreducible representations is a complete set
of irreducible representations of S3, and so |Ŝ3| = 3.
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χ0 χ1 χ2

e 1 1 2
R 1 1 -1
R2 1 1 -1
F 1 -1 0

RF 1 -1 0
R2F 1 -1 0

Table 1. The Character Table for D3

Example 4.24. Find a complete set of irreducible representations of D4.
We know that we have the trivial representation and at least one 2-dimensional
irreducible. Since |D4| = 8, we see that the only possible decomposition into
a sum of squares is, 8 = 22+12+12+12+12. Thus, we see that we altogether,
we need four 1-dimensional representations and that |D̂4| = 5.

Using the relations, F 2 = e,R4 = e and FR = R3F, we see that if π :
D4 → T, then π(F ) = ±1. Using the last relation, we see that π(F )π(R) =
π(R)3π(F ) and since the range is abelian, π(R) = π(R)3. Cancelling, yields,
π(R)2 = 1, or π(R) = ±1.

Thus, we have two potential values for π(F ) and two potential values
for π(R). Taking all possible choices for F and R, yields four possible 1-
dimensional representations, which is exactly the number that we need!!

Thus, each of these four possibilities MUST yield a well-defined 1-dimensional
representation of D4 and these four one-dimensional representation together
with the known 2-dimensional irreducible representation constitutes a com-
plete set of irreducible representations for D4.

The values of the characters of a complete set of characters are often
summarized in a table called the character table of the group.

We record the character tables for the groups D3 and D4 below. Since
χ(g) = χ(h−1gh) these are generally, only given for each conjugacy class.
However, since we have yet to work out the conjugacy classes, we will just
give the character for each group element. Note that the character of e
always tells the dimension of the representation. We use the canonical gen-
erators, R and F.

In the table for D3, the first column is the trivial character, the second
column is the sign of a permutation and the third column is the character
of the 2-dimensional irreducible representation that arises from embedding
the triangle in the plane.

In the table for D4, the first four columns are the characters of the four 1-
dimensional representations that arise from sending R and F to ±1 and the
fifth column is the character of the 2-dimensional irreducible representation
that arises from embedding the square in the plane.
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χ0 χ1 χ2 χ3 χ4

e 1 1 1 1 2
R 1 1 -1 -1 0
R2 1 1 1 1 -2
R3 1 1 -1 -1 0
F 1 -1 1 -1 0

RF 1 -1 -1 1 0
R2F 1 -1 1 -1 0
R3F 1 -1 -1 1 0

Table 2. The Character Table for D4

4.5. The Space of Class Functions. We get further information on the
dimensions by studying the space of class functions.

Definition 4.25. A function f ∈ C(G) is called a class function if it is
constant on conjugacy classes, i.e., if f(h−1gh) = f(g) for every, g, h ∈ G.
The set of class functions is denoted by H(G).

Note that the set of class functions is a subspace of C(G) and that char-
acters and linear combinations of characters are class functions.

Proposition 4.26. The dimension of H(G) is equal to the number of con-
jugacy equivalence classes in G.

Proof. Let {Ci : i ∈ I} denote the conjugancy equivalence classes and define

fi ∈ C(G) by fi(g) =

{
1 if g ∈ Ci
0 if g /∈ Ci

. Then clearly, the functions {fi : i ∈ I}

are a basis for H(G). �

Proposition 4.27. Let π : G→ GL(V ) be a representation of G and let π̃ :
C(G)→ L(V ), be the extension of π to the group algebra. If f ∈ H(G), then
π̃(f) ∈ π(G)′. If π is also irreducible and f ∈ H(G), then π̃(f) = (χπ |f̄)|G|

n IV ,

where f̄(g) = f(g), and n = dim(V ).

Proof. Note that π(g−1)π̃(f)π(g) =
∑

h∈G π(g−1)f(h)π(h)π(g) =∑
h∈G f(g−1hg)π(g−1hg) =

∑
k∈G f(k)π(k) = π̃(f), where k = g−1hg is a

re-indexing of G. This calculation shows that π̃(f) commutes with π(g) and
hence, π̃(f) ∈ π(G)′.

Now if π is irreducible, then π(G)′ = {αIV : α ∈ C} and hence, π̃(f) =
αIV , for some scalar α. To compute α, we note that nα = Tr(αIV ) =
Tr(π̃(f)) =

∑
h∈G f(h)χπ(h) = |G|(χπ|f̄), and the result follows. �

Corollary 4.28. Let π be irreducible and let f ∈ H(G). If (f̄ |χπ) = 0, then
π̃(f) = 0.

Theorem 4.29. Let G be a finite group and let {πi : i = 1, . . . ,m} be a
complete set of irreducible representations of G. Then dim(H(G)) = m and
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the corresponding complete set of characters, {χπi : i = 1, . . . ,m} is an
orthonormal basis for H(G).

Proof. Note that the characters of these irreducible representations are or-
thogonal by Theorem 4.16. If the complete set of characters is not a basis
for H(G), then there exists f1 ∈ H(G), with (f1|χπi) = 0, i = 1, . . . ,m. Set
f = f̄1, then f ∈ H(G) and (χπi |f̄) = 0, for all i and so, π̃i(f) = 0 for
all i. But since these are a complete set of irreducible representations of G,
every representation decomposes as a direct sum of these representations
and hence, π̃(f) = 0 for every finite dimensional representation of G.

Thus, in particular, λ̃(f) = 0, for the left regular representation. Let
ee ∈ C(G) be the basis vector corresponding to the identity of G. Then,
0 = λ̃(f)ee =

∑
g∈G f(g)λ(g)ee =

∑
g∈G f(g)eg = f. Thus, any function

that is perpendicular to the complete set of character functions is 0, and
hence they span H(G). �

Corollary 4.30. Let G be a finite group, then the cardinality of |Ĝ|, i.e., the
cardinality of any complete set of irreducible representations of G is equal to
the number of conjugacy equivalence classes in G.

Proof. Recall that dim(H(G)) is equal to the number of conjugacy equiva-
lence classes. �

Thus, we have a direct group thoeretic means, without referring to repre-
sentations at all, to compute the cardinality of a complete set of irreducible
representations. Or conversely, if we know the cardinality of such a set,
then that gives us a means to use the representation theory to determine
the number of conjugacy classes.

Thus, for example, we see that S3 has 3 conjugacy classes and D4 has 4
conjugacy classes.

Problem 4.31. Compute the number of conjugacy classes in D5. Use this
result together with the sum of squares theorem to determine the number and
dimensions of a complete set of irreducible representations.

Problem 4.32. Compute the number of conjugacy classes in Dn.

Dimensions of Irreducible Representations
The above results can be used to give some sharper estimates on the

dimensions of irreducible representations.

Proposition 4.33. Let G be a finite abelian group. Then every irreducible
representation is 1-dimensional and there are |G| inequivalent irreducible
representations.

Proof. Since G is abelian, the conjugacy equivalence classes are singletons.
Thus, the number of equivalency classes is |G| and this is also the number of
inequivalent irreducible representations. By the sum of squares result, every
irreducible representation must be 1-dimensional. �
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Theorem 4.34. Let G be a finite group and assume that, A ⊆ G is an
abelian subgroup. If π : G → GL(V ) is an irreducible representation, then
dim(V ) ≤ |G||A| .

Proof. Look at the restriction of π to A, πA : A → GL(V ). Since A is
abelian, every irreducible representation of A is 1-dimensional. Hence, V
will decompose into an internal direct sum of 1-dimensional subspaces that
are all π(A)-invariant. Let v1 ∈ V be any non-zero vector that is invariant
under π(A). Let ρ : A→ T be a homomorphism, such that π(a)v1 = ρ(a)v1.

Let m = |G|
|A| . Then there are m left cosets in G/A. Choose, g1, . . . , gm ∈ G,

representatives from each coset and then G will be the disjoint union of the
sets, giA. Let W = span{π(g1)v1, . . . , π(gm)v1}. Given g ∈ G and any i,
there will exist j and a ∈ A such that ggi = gja. Hence, π(g)[π(gi)v1] =
π(gj)π(a)v1 = π(gj)ρ1(a)v1 ∈W.

Therefore, π(G)W ⊆ W, but since V is irreducible, W = V. Hnece,
dim(V ) = dim(W ) ≤ m. �

Example 4.35. Since |Dn| = 2n and A = {e,R, . . . , Rn−1} is an abelian
subgroup, every irreducible of Dn is at most 2-dimensional.

Recall that the bf center of G, Z(G) is the set of all elements in G that
commute with every element of G. In particular, Z(G) is an abelian subgroup
and so the dimension of every irreducible representation is at most, |G|

|Z(G)| ,

by the above result. The next result improves on this bound.

Theorem 4.36. Let G be a finite group, Z(G) the center of G and let
π : G → GL(V ) be an irreducible representation with n = dim(V ), then
n2 ≤ |G|

|Z(G)| .

Proof. Let h ∈ Z(G), then π(h) ∈ π(G)′. But since π is irreducible, this
implies that π(h) = λIV , for some scalar, λ ∈ T. Hence, |χπ(h)| = n, for
every, h ∈ Z(G).

Thus, n2|Z(G)| =
∑

h∈Z(G) |χπ(h)|2 ≤
∑

g∈G |χπ(g)|2 = |G|(χπ|χπ) =
|G|, since π is irreducible. This inequality yields the result. �

Problem 4.37. Let G be a finite group and let H be a subgroup. Let k be
the maximum dimension of an irreducible representation of H. Prove that if
π : G→ GL(V ) is an irreducible representation of G, then dim(V ) ≤ k|G|

|H| .

4.6. The Isotypic Decomposition. The group algebra can also be used
to define a canonical decomposition of every representation in sums of irre-
ducible representations.

Theorem 4.38. Let G be a finite group, let {π1, . . . , πm} be a complete set
of irreducible representations of G on spaces of dimensions, {n1, . . . , nm},
with {χ1, . . . , χm} the corresponding characters and let ρ : G → GL(V ) be
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any representation with ρ̃ : C(G)→ L(V ) the extension to the group algebra.
If we set, Pi = ni

|G| ρ̃(χ̄i), then

(i) each Pi ∈ ρ(G)′ and is a projection,
(ii) PiPj = 0 for i 6= j,
(iii) P1 + · · ·+ Pm = IV ,
(iv) Vi = Pi(V ) is ρ(G)-invariant,
(v) the subrepresentation, ρi = ρ|Vi

is equivalent to π
(ki)
i where ki =

(ρ|χπi).

Definition 4.39. The decomposition of V into subrepresentations given by
the above theorem is called the isotypic decomposition.

Proof. We know that there exists an invertible S, so that ρ(g) = S−1π(g)S,
where π = π

(k1)
1 ⊕ · · · ⊕ π(km)

m , for some integers, ki.
Note that Pi = ni

|G|S
−1π̃(χ̄i)S. By Proposition 4.27, we have that π̃j(χ̄i) =

|G|
nj

(χj |χi)Inj = 0, when i 6= j and π̃i(χ̄i) = |G|
ni
Ini .

Hence, ni
|G| π̃(χ̄i) = 0 ⊕ · · · ⊕ 0 ⊕ I ⊕ 0 ⊕ · · · ⊕ 0, which is the projection

onto the subspace where π(ki)
i acts. Since Pi is similar to this projection,

the result follows. �

The following result explains the importance of this decomposition.

Corollary 4.40. Let ρ and V be as above and let V = W1 + · · ·+Wp be any
internal direct sum decomposition into irreducible subrepresntations. Let Ui
be the sum of all of the Wl’s for which the subrepresentation is equivalent to
πi, then Ui = Vi.

4.7. Tensor Products of Representations and the Clebsch-Gordan
Integers. We assume that the reader has some familiarity with the concept
of the tensor product of vector spaces and only review some of the key
facts. Given two vector spaces, V and W, we let V ⊗W denote their tensor
product. Recall that if {v1, . . . , vn} is a basis for V and {w1, . . . , wm} is
a basis for W, then {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for
V ⊗W. In particular, dim(V ⊗W ) = dim(V ) · dim(W ). If A : V → V and
B : W → W are linear maps, then there is a unique, well-defined linear
map, A⊗B : V ⊗W → V ⊗W satisfying (A⊗B)(v ⊗ w) = (Av)⊗ (Bw).

Note that each of the sets, Zi = {vi⊗w : w ∈W} is a subspace of V ⊗W of
dimension m with basis {vi⊗wj : 1 ≤ j ≤ m} and that V ⊗W =

∑n
i=1 Zi, is

an internal direct sum decomposition. With respect to these bases and direct
sum decomposition, if A = (ai,j) and B = (bk,l), then the matrix for A⊗B is
given in block form by (ai,jB). If instead we let Xj = {v⊗wj : v ∈ V }, then
this is a subspace of dimension n and V ⊗W =

∑m
j=1Xj is an internal direct

sum decomposition and the block matrix of A⊗B for this decomposition is
given by (bk,lA).
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Alternatively, if one recalls that to write down a matrix for a linear trans-
formation, one must choose, not just a basis, but an ordered basis, then
one sees that the above block matrices are obtained from the ordered bases,
{v1 ⊗ w1, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , v2 ⊗ wm, v3 ⊗ w1, . . . . . . , vn ⊗ wm} and
{v1⊗w1, . . . , vn⊗w1, v1⊗w2, . . . , vn⊗w2, v1⊗w3, . . . . . . , vn⊗wm}, respec-
tively.

From either of these representations, one sees that Tr(A⊗B) = Tr(A) ·
Tr(B).

Proposition 4.41. Let V and W be finite dimensional vector spaces, let G
be a group, and let π : G→ GL(V ) and ρ : G→ GL(W ) be representations.
Then setting (π ⊗ ρ)(g) = π(g)⊗ ρ(g) defines a representation π ⊗ ρ : G→
GL(V ⊗W ), with character χπ⊗ρ(g) = χπ(g) · χρ(g).

Proof. First note that if A ∈ GL(V ) and B ∈ GL(W ), then (A−1)⊗(B−1) =
(A ⊗ B)−1, and so A ⊗ B ∈ GL(V ⊗ W ). This shows that (π ⊗ ρ)(g) ∈
GL(V ⊗W ). Also, it is readily checked that (A⊗B)(C⊗D) = (AC)⊗(BD)
and hence, (π(g)⊗ρ(g))(π(h)⊗ρ(h)) = π(gh)⊗ρ(gh), so that the map π⊗ρ
is a group homomorphism. Finally, the formula for the characters follows
from the statement about traces. �

Now let G be a finite group and let {π1, . . . , πk} be a complete set of
irreducible representations of G. The representation πi ⊗ πj , need not be
irreducible but will always decompose, up to similarity, as a direct sum of
the irreducible representations where the irreducible representation πl will
occur with some multiplicity, say n(l)

i,j . This triply indexed set of integers are
called the Clebsch-Gordan integers. Indeed, by our earlier results we
have that,
n

(l)
i,j = (χπi⊗πj |χπl) = (χπiχπj |χπl).

4.8. The Irreducible Representations of Sn. In this section, we outline
the theory of Young tableaux and their relation to the irreducible represen-
tations of Sn.

Given g ∈ Sn, it will be more convenient to use it’s decomposition into cy-

cles. Recall that if, say a permutation g ∈ S5 is given by g =
(

1 2 3 4 5
2 3 1 5 4

)
,

then it would be represented in cycle notation as g = (1, 2, 3)(4, 5).
We will need the following result from group theory, which is fairly easy

to prove.

Proposition 4.42. Let g, h ∈ Sn, then g and h are conjugate if and only if
they have the same number of cycles of the same lengths.

We do not prove the theorem, but only illustrate. Say, g ∈ S5 is given by
g = (1, 2, 3)(4, 5) and h ∈ S5 is arbitrary. Then one can see that hgh−1 =
(h(1), h(2), h(3))(h(4), h(5)). Thus, every element conjugate to g has the
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same cycle structure. Conversely, if k = (a1, a2, a3)(a4, a5) has the same
cycle structure, then setting h(i) = ai, yields hgh−1 = k.

Thus, the number of conjugacy classes in Sn is determined by the num-
ber of possible cycle structures. If we list the cycles in a permutation from
longest to shortest, then we see that the number of possible cycle struc-
tures and hence the number of conjugacy equivalence classes is given by the
number of integer solutions to, n = α1 + . . . + αm, with α1 ≥ . . . ≥ αm.
Thus, for n = 3 we have 3 solutions given by 3 = 3 = 2 + 1 = 1 + 1 + 1,
and hence 3 conjugacy classes in S3. While for n = 4, we have 5 solutions,
4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1, and hence 5 conjugacy
equivalence classes in S4.

Each such solution is called a Young frame for Sn. Thus, formally,
a Young frame for Sn is just a set of numbers α1 ≥ · · · ≥ αm, with n =
α1 + · · ·+αm and the number of Young frames for Sn is equal to the number
of conjugacy equivalence classes of Sn, and hence, by our earlier results, is
also equal to the number of irreducible representations of Sn.

Problem 4.43. Compute the number of conjugacy equivalence classes in
S5.

One way to picture all Young frames is by Young schemes. We illustrate
the Young schemes for n = 3, 4, below.

INSERT PICTURE
Given a Young scheme, one forms a Young tableaux, by entering the

numbers, 1–n, into each of the boxes in any order. Thus, to every Young
scheme, there are n! Young tableaux. A Young tableaux is called standard
if the numbers in each row increase when we go from left to right and if the
numbers in each column increase as we go from top to bottom.

For the Young scheme for n = 5 corresponding to 5 = 3 + 2, we illustrate

two different Young tableaux, T1 = 1 2 4
3 5 , T2 = 2 3 4

1 5 . Note that T1 is

standard, while T2 is not.
Given a tableau, T, we let R(T) denote the set of all possible permutations

that only permute numbers appearing in the rows of the tableau. So, for
T1 a permutation that sent 1 to 3 would NOT belong to R(T1). Similarly,
C(T) is defined to be the set of all permutations that only permute numbers
belonging to the columns. So for example for T1, every permutation in C(T1)
would have to fix 4.

We list these permutations for T1 in cycle notation.

R(T1) = {(1, 2, 4), (1, 4, 2), (1, 2), (1, 4), (2, 4), (3, 5), (1, 2, 4)(3, 5),

(1, 4, 2)(3, 5), (1, 2)(3, 5), (1, 4)(3, 5), (2, 4)(3, 5)}

C(T1) = {(1, 3), (2, 5), (1, 3)(2, 5)}
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Given a tableau T, we define two elements of the group algebra, C(Sn),

PT =
∑

p∈R(T )

ep,

and
QT =

∑
q∈C(T )

(−1)sqn(q)eq.

Theorem 4.44 (Young-vonNeumann). Let λ : Sn → GL(C(Sn)) be the left
regular representation and let T be a Young tableau. Then:

(i) ET = λ̃(PT ·QT ) ∈ L(C(Sn)) is a projection,
(ii) VT = range(ET ) is λ(Sn)-invariant,
(ii) the restriction of λ to VT is equivalent to π(k) for some irreducible

representation π,
(iii) if T1, T2 are different tableau for the same Young frame, then the

irreducible representations obtained as in (ii) are equivalent and their
multiplicities are the same,

(iv) if T1, T2 are tableau for different Young frames, then the irreducible
representations obtained as in (ii) are inequivalent.

Thus, by choosing one tableau for each Young frame and proceeding as
above one obtains a complete set of irreducible representations of Sn. The
next theorem tells us how to compute the dimension of the irreducible rep-
resentation corresponding to a particular young frame.

Theorem 4.45. Let F = {α1 ≥ . . . ≥ αm} be a Young frame for Sn. Then
the dimension of the irreducible representation corresponding to F given by
the Young-vonNeumann theorem is equal to the number of standard Young
tableaux for F , and is equal to

n!

∏
i<j(αi − i− αj + j)∏

i(αi − i+m)!

5. Topological Groups

In this Chapter we cover the basic facts about topological groups. We
assume that the reader is familar with all of the basic facts and definitions
from topology.

Definition 5.1. A topological group is a group G together with a topology
on G that satisfies the following two properties:

(i) the map p : G×G → G defined by p(g, h) = gh is continuous when
G×G is endowed with the product topology,

(ii) the map inv : G→ G defined by inv(g) = g−1 is continuous.

We remark that to (i) is equivalent to the statement that, whenever U ⊆ G
is open, and g1g2 ∈ U , then there exist open sets V1, V2 such that g1 ∈
V1, g2 ∈ V2 and V1V2 = {h1h2 : h1 ∈ V1, h2 ∈ V2} ⊆ U. Also (ii) is equivalent
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to showing that whenever U ⊆ G is open, then U−1 = {g−1 : g ∈ U} is
open.

Example 5.2. Following are some examples that are easily checked to be
topological groups.

1 Let G be any group and endow G with the discrete topology.
2 Let G be any group and endow G with the indiscrete topology.
3 (R,+) with the usual topology is a topological group.
4 (R∗, ·) with the usual topology is a topological group.
5 Similarly, (C,+) and (C∗, ·) are topological groups.
6 Every subgroup of a topological group, endowed with the subspace

topology, is a topological group.

Here is an example that is not a topological group. Let G = (Z2,+), and
endow it with the topology where the only open sets are the empty set, {0}
and the whole group. Then p−1({0}) = {(0, 0), (1, 1)} which is not open in
the product topology.

We now look at some examples that are harder to show are topological
groups. For these the following will be useful.

Proposition 5.3. Let G be a group and assume that the topology on G
comes from a metric, d. Then G is a topological group if and only if the
following hold:

(i) for every ε > 0, and g1, g2 ∈ G, there exists δ > 0 such that if
d(g1, h1) < δ and d(g2, h2) < δ, then d(g1g2, h1h2) < ε,

(ii) for every ε and g ∈ G there exists δ so that whenever d(g, h) < δ
then d(g−1, h−1) < ε.

Let GL(n,R) be endowed with the Euclidean metric that it inherits by
identifying every matrix with a vector in Rn2

. Similarly, we endow GL(n,C)
by identifying every matrix with a vector in R2n2

.

Proposition 5.4. GL(n,R) and GL(n,C) are topological groups.

Proof. We only do the real case. To see that the product is continuous, fix
matrices A = (ai,j), B = (bi,j) and ε > 0. Using the continuity of the product
on R, we may choose for every 1 ≤ i, k, j ≤ n a number δi,k,j such that if
|ai,k − ci,k| < δi,k,j and |bk,j − dk,j | < δi,k,j then |ai,kbk,j − ci,kdk,j | < ε/n3.
Then we have that |(AB − CD)(i,j)| = |

∑n
k=1 ai,kbk,j − ci,kdk,j | < ε/n2.

Since each of the n2 entries of the products are this close, we have that
d(AB,CD) < ε and so the product is continuous.

To see the continuity of the inverse, first check that the map, det : Mn →
R is continuous and then use Cramer’s formula for the inverse. �

Proposition 5.5. Let G be a topological group, fix g ∈ G. Then the maps
Lg : G → G and Rg : G → G defined by Lg(h) = gh and Rg(h) = hg are
homeomorphisms. Consequently, V ⊆ G is open(closed) if and only if gV is
open(closed) if and only if V g is open(closed).
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Proof. The map γg : G→ G×G defined by γg(h) = (g, h) is clearly contin-
uous. Hence, Lg = p◦γg is continuous. To see that Lg is a homeomorphism,
note that (Lg)−1 = Lg−1 is continuous.

The results for right multiplication follow similarly.
Finally, the last equivalences follow since, L−1

h (V ) = h−1V with h = g−1

and similarly for right multiplication. �

Proposition 5.6. Let G be a topological group, with V ⊆ G. Then V is
open(closed) if and only if V −1 is open(closed).

Proof. These statements follow by noticing that since inv◦inv is the identity,
inv is a homeomorphism. �

Proposition 5.7. Let G be a topological group and let U ⊆ G be an open
set with e ∈ U . Then there exists an open set V , with e ∈ V such that
V = V −1 and V · V ⊆ U.
Proof. Since p is continuous, p−1(U) is open in G×G and (e, e) ∈ p−1(U).
Hence, there exist open sets V1, V2 with e ∈ V1, e ∈ V2 such that V1 ·V2 ⊆ U.

By the above results, V −1
1 , V −1

2 are also open, hence, V = V1∩V2∩V −1
1 ∩

V −1
2 is also open, e ∈ V , V = V −1 and V · V ⊆ V1 · V2 ⊆ U. �

Recall that if a topological space satisfies the first separation axiom, then
every singleton is a closed set, but this latter property is generally weaker
and both of these properties are much weaker than being Hausdorff. This
makes the following result somewhat surprising.

Proposition 5.8. Let G be a topological group. Then G is Hausdorff if and
only if {e} is closed.

Proof. If G is Hausdorff, then every singleton is closed. Conversely, assume
that {e} is closed, then {g} = Lg({e}) is closed for every g.

We now show that e 6= g can be separated by disjoint open sets. Since
{g} is closed there is an open set U with e ∈ U and g /∈ U . By an earlier
result there exists V = V −1 open with e ∈ V and V · V ⊆ U. Now g ∈ gV
and we claim that V ∩ gV is empty. Suppose that h is in the intersection,
then h = gh1, h1 ∈ V . Hence, g = hh−1

1 ∈ V · V ⊆ U, contradiction. Thus,
we’ve shown that e and g can be separated by disjoint open sets.

Now let g1 6= g2 be any points in G. Then there exists U1, U2 disjoint,
open with e ∈ U1 and g−1

1 g2 ∈ U2. But then g1 ∈ g1U1 and g2 ∈ g1U2 and
these are disjoint, open sets. �

Quotient Spaces and Quotient Groups
Let X be a topological space and let ∼ be an equivalence relation on X.

There is a natural topology on the space of equivalence classes, X/ ∼ . To
define this topology, let q : X → X/ ∼ be the quotient map and then we
declare a set U ⊆ X/ ∼ to be open if and only if q−1(U) is open in X.

An equivalence relation is called closed, if all of its equivalence classes are
closed sets. It is fairly easy to see that if X is Hausdorff, but the equivalence
relation is not closed, then X/ ∼ will not be Hausdorff.
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Finally, we recall that a map between topological spaces, f : X → Y is
called open provided, for every open set U in X, f(U) is open in Y.

Note that the above map q is open if and only if for every U open in X,
q−1(q(U)) is open in X.

Let G be a topological group and let H be a subgroup, and recall left
coset equivalence. We write G/H = G/ ∼ for the coset space.

Proposition 5.9. Let G be a topological group and let H be a subgroup.
Then the quotient map q : G→ G/H is open.

Proof. Let U be open G. Check that q−1(q(U)) = U ·H =
⋃
h∈H Uh, which

expresses the set as a union of open sets and hence it is open. �

Proposition 5.10. Let G be a Hausdorff, topological group and let H be a
closed subgroup, then G/H is Hausdorff.

Proof. Let g1H 6= g2H be two points in G/H. Then g−1
1 g2 /∈ H and hence

there is an open set U with g−1
1 g2 ∈ U and U ∩H empty.

Hence, e ∈ g1Ug
−1
2 and we may choose an open set V = V −1 with e ∈ V

and V · V ⊆ g1Ug
−1
2 . Thus, g−1

1 V · V g2 ⊆ U. Let V1 = g−1
1 V and V2 = V g2.

These sets are both open, g1 ∈ V −1
1 and g2 ∈ V2.

Hence, g1H ∈ q(V −1
1 ) and g2H ∈ q(V2) and because q is an open map

both of these sets are open in G/H.
It remains to show that they are disjoint, but this follows since, q−1(q(V −1

1 ))∩
q−1(q(V2)) = V −1

1 ·H ∩V2 ·H and any point in the intersection would satisfy
v−1

1 h1 = v2h2 which implies that h1h
−1
2 = v1v2. But the left-hand side of this

equation is in H and the right-hand side is in U, which is a contradiction. �

Theorem 5.11. Let G be a (Hausdorff) topological group, H a (closed)
normal subgroup, then G/H is a(Hausdorff) topological group.

Proof. Let U be open in G/H and letO = q−1(U). Suppose that, g1H, g2H ∈
G/H with g1Hg2H = g1g2H ∈ U, then g1g2 ∈ O. Hence, there exist, V1, V2

open in G, such that g1 ∈ V1, g2 ∈ V2 and V1·V2 ⊆ O. Then g1H ∈ q(V1), g2 ∈
q(V2) are open in G/H and q(V1)q(V2) = {v1h1v2h2 : vi ∈ Vi, hi ∈ H} =
{v1v2h : vi ∈ Vi, h ∈ H} = q(V1V2) ⊆ q(O) = U. Hence, the product is
continuous in G/H.

The proof that the inverse is continuous is similar. �

Recall that R/Z is isomorphic to the circle group, T. By the above results,
both groups are topological groups, so it is natural to ask if the natural
isomorphism is also a homeomorphism. The fact that it is will follow from
the following results.

Homomorphisms and Isomorphisms of Topological Groups
Let G, K be two topological groups, we want to study continuous homo-

morphisms. We say that G and K are topologically isomorphic if there
exists a map, π : G→ K that is both a group isomorphism and a topological
homeomorphism. Such a map is called a topological isomorphism.
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Example 5.12. Let G = K = (R,+) as groups, but let G have the discrete
topology, and K the usual topology. Then the identity map is a continuous,
algebraic isomorphism, but its inverse is not continuous, so that this map is
not a topological isomorphism.

Example 5.13. Let G be any topological group and let g ∈ G, then the map
π(h) = ghg−1 is a topological isomorphism.

Note that when K is Hausdorff, if π : G → K is any continuous homo-
morphism, then ker(π) = π−1({e}) is a closed, normal subgroup of K.

Proposition 5.14. Let π : G→ K be a homomorphism. If π is continuous
at e, then π is continuous.

Proof. Since π is continuous at e, given any open subset U ⊆ K with eK ∈ U ,
then π−1(U) is open in G. We show that π is continuous at an arbitrary
g ∈ G.

Let U ⊆ K be open with π(g) ∈ K. Then π(eG) = eK ∈ π(g)−1U
which is open in K. Hence, by continuity at e, there exists V ⊆ G, open
with π(V ) ⊆ π(g)−1U. But then gV is an open neighborhood of g, with
π(gV ) = π(g)π(V ) ⊆ π(g)π(g)−1U = U. Hence, π is continuous at g and
since g was arbitrary, π is continuous on G. �

Proposition 5.15. Let π : G → K be a continuous, homomorphism, with
H = ker(π). Then, π̃ : G/H → K is a continuous, homomorphism.

Proposition 5.16. Let π : G → K be a continuous, onto homomorphism,
with H = ker(π). If π is an open map, then π̃ : G/H → K is a topological
isomorphism.

Proof. All that remains to be shown is that π̃−1 is continuous. But this will
follow if we can show that π̃ is an open map. Note that U is open in G/H
if and only if V = q−1(U) is open in G. Hence, if U is open in G/H, then
π̃(U) = π(V ) is open in K. �

Example 5.17. Consider π : (R,+)→ T defined by π(t) = e2πit. This map
is a continuous, homomorphism, onto with kernel Z. It is easily checked
that π carries open intervals to open arcs and hence is an open map. Thus,
π̃ : R/Z→ T is a topological isomorphism.

Example 5.18. Give the group, G = {φa,b : a 6= 0, b ∈ R
¯
} a topology by

identifying it with a subset of R×R. The homomorphism, π : G→ GL(2,R)

defined by
(
a b
0 1

)
is clearly a homeomorphism onto its range. But its range

is a subgroup of the topological group GL(2,R) and hence a topological group.
Hence, G is a topological group with its given topology.

Problem 5.19. Let G1, G2 be topological groups and let G1×G2 = {(g1, g2) :
g1 ∈ G1, g2 ∈ G2} denote the product of the two groups with product,
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(g1, g2)(h1, h2) = (g1h1, g2h2). Prove that if G1 × G2 is given the product
topology, then it is a topological group.

Problem 5.20. Let G be a Hausdorff topological group, A,B ⊆ G subsets.
Prove that:

(i) A compact and B closed, implies that A ·B is closed,
(ii) A,B compact, implies that A ·B is compact,
(iii) A open, implies that A ·B is open,
(iv) give an example to show that A closed and B closed does not guar-

antee that A ·B is closed.

Problem 5.21. Let G be a Hausdorff topological group and let A,B ⊆ G
be connected subsets. Prove:

(i) A ·B is connected,
(ii) A−1 is connected.

Problem 5.22. Let G be a Hausdorff topological group and let C denote the
connected component of e. Prove:

(i) g · C is the connected component of g,
(ii) C is a normal subgroup of G,
(iii) C is obth open and closed in G.

6. Representations of Topological Groups

Let V be a finite dimensional vector space over R with dim(V ) = n. If we
fix a basis, v1, . . . , vn for V then we have a group isomorphism, π : GL(V )→
GL(n,R) by letting π(T ) be the matrix for T ∈ GL(V ) with respect to
the ordered basis. Endowing GL(V ) with the topology of GL(n,R) makes
GL(V ) into a topological group. If we choose a different basis, w1, . . . , wn
for V, we will get a different map ρ : GL(V ) → GL(n,R) and we can also
use ρ to endow GL(V ) with a topology, but it is fairly easy to see that the
two topologies that one obtains in this fashion are really the same. This
is because the maps π and ρ will only differ by conjugation by an element
of GL(n,R) and this map is a topological isomorphism of GL(n,R). Thus,
we define a unique topology making GL(V ) into a topological group that is
topologically isomorphic to GL(n,R).

In an analogous fashion, if V is a finite dimensional vector space over C
then we may also endow GL(V ) with a unique topology.

Definition 6.1. Let G be a topological group and let V be a finite dimen-
sional vector space. By a continuous representation of G on V we mean
a continuous, homomorphism π : G→ GL(V ).

Note that if π : G → GL(V ) and we pick a basis so that we have a
matrix representation, π(g) = (fi,j(g)) then π is continuous if and only if
the functions fi,j are all continuous.

One Dimensional Representations of R and T
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We now take a careful look at the one dimensional representations of R.
First consider, homomorphisms π : (R,+) → GL(R) = (R∗, ·). We have
that π(0) = 1, π(t + s) = π(t)π(s). One way to obtain such a map is to set
π(t) = eat for some real a. We shall see that these are all of the continuous
representations.

Example 6.2. Here we exhibit some non-continuous representations of R.
First, note that R is a vector space over the field of rationals, Q. Choose
a basis(necessarily uncountable) {rβ} for R over Q and also choose real
numbers {aβ}. We may then define a homomorphism, π : R→ R∗ by setting,

π(
∑
β

qβrβ) =
∏
β

eaβqβ .

Note that if π is any continuous representation of R, then by the density
of Q, the map π is determined by its values on the rationals. But the above
maps allow us to send a irrational real number to any value, independent of
the values of rationals. In particular, by choosing one of the basis vectors
to be 1, we could assign a = 0 for this ”vector” and then the above map π
would send every rational to e0 = 1 but still send other reals to arbitrary
values.

Thus, we see that there are many discontinuous representations of (R,+).

Proposition 6.3. Let f : R → R be any continuous function, such that
f(x + y) = f(x)f(y) and f(0) = 1. Then there exists, a ∈ R such that
f(x) = eax.

Proof. There is a unique number a such that f(1) = ea. Then f(n) = ean.
Let g(x) = f(x)e−ax, then g(0) = 1, g(x + y) = g(x)g(y), g(n) = 1 and g is
continuous.

Hence, for any m, g(n/m)m = g(n) = 1. Thus, g(n/m) = 1 for all
rationals and by continuity for all x ∈ R. Thus, f(x) = eax. �

Corollary 6.4. Let π : (R,+) → (R∗, ·) be a continuous homomorphism,
then there exists a unique a ∈ R, such that π(t) = eat.

We now turn our attention to the one dimensional complex representa-
tions of (R,+). Recall that if λ = a + bi, a, b ∈ R is any complex number
then eλ = ea(cos(b) + isin(b)). Thus, for every λ ∈ C, we have a continuous,
homomorphism, π : (R,+)→ GL(C) = (C∗, ·), given by π(t) = eλt.

We shall prove that these are all of the continuous representations. To do
this we will first consider continuous homomorphisms into T.

Lemma 6.5. Let δ > 0 and let f : [−δ,+δ] → R be a continuous function
such that f(0) = 0 and f(t + s) = f(t) + f(s) for all |t|, |s| ≤ δ/2. Then
there exists a unique r ∈ R such that f(t) = rt, for all, −δ ≤ t ≤ +δ.

Proof. Let f(δ) = a, if f has the desired form, then r = a/δ. Look at
g(t) = at/δ. We have that f(0) = g(0), f(δ) = g(δ).
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Since a = f(δ) = f(δ/2 + δ/2) = 2f(δ/2), we have that f(δ/2) = a/2 =
g(δ/2). Inductively, we find, f(δ/2n) = g(δ/2n) = a/2n. Now if k is an
integer, k < 2n, then f(kδ/2n) = kf(δ/2n) = ka/2n = g(kδ/2n).

Since the numbers of the form kδ/2n are dense in [0, δ], by continuity, we
have that f(t) = g(t), 0 ≤ t ≤ δ. the case for negative t is similar. �

Recall that T is topologically isomorphic to R/Z with the quotient map
given by t→ e2πit. Moreover, since the quotient map is open, we have that
(−1/2,+1/2) is homeomorphic to T??{−1}. Hence there exists a continu-
ous function, L : T??{−1} → (−1/2,+1/2) that is the inverse map, i.e.,
e2πiL(z) = z for z in this set. (For those familiar with complex, this is just a
branch of the logarithm.)

Theorem 6.6. Let ρ : (R,+) → T be a continuous homomorphism. Then
there exists b ∈ R, such that ρ(t) = eibt.

Proof. Let U = ρ−1(T\{−1}), so that this set is open and contains 0. Let
δ > 0 be chosen small enough that [−δ,+δ] ⊆ U, and so that the func-
tion f : [−δ,+δ] → R defined by f(t) = L(ρ(t)) satisfies, f([−δ,+δ]) ⊆
(−1/4,+1/4).

If |t|, |s| ≤ δ/2, then f(t), f(s) and f(t + s) are the unique numbers in
(−1/2,+1/2) satisfying e2πif(t) = ρ(t), e2πis = ρ(s) and e2πif(t+s) = ρ(t+s).
Hence, e2πif(t+s) = ρ(t + s) = ρ(t)ρ(s) = e2πif(t)e2πif(s) = e2πi(f(t)+f(s)).
Since f(t), f(s) are both in (−1/4,+1/4), f(t) + f(s) is in (−1/2,+1/2) so
by the uniqueness in this interval, f(t+ s) = f(t) + f(s).

Hence, by the lemma, there exists r ∈ R such that f(t) = rt, for |t| ≤ δ.

Thus, we have that ρ(t) = e2πif(t) = e2πirt = eibt, where b = 2πr for any
|t| ≤ δ.

Now given any s ∈ R, there exists an integer n so that |s/n| ≤ δ and so
ρ(s) = ρ(s/n)n = (eib(s/n))n = eibs. �

Theorem 6.7. Let π : (R,+)→ C∗ be a continuous homomorphism. Then
there exists λ ∈ C such that π(t) = eλt.

Proof. Let π1 : (R,+) → R∗ be defined by π1(t) = |π(t)|. Then π1 is a
continuous homomorphism and so there exists, a ∈ R such that π1(t) = eat.

Now let ρ(t) = π(t)eat, then ρ : (R,+) → T and so there exists b ∈ R
such that ρ(t) = eibt.

Hence, π(t) = π1(t)ρ(t) = eateibt = e(a+ib)t and set λ = a+ ib. �

Corollary 6.8. Let π : (R,+) → C∗ be a bounded, continuous homomor-
phism, then π(R) ⊆ T and there exists b ∈ R such that π(t) = eibt.

Proof. Note that the fact that π is bounded forces a = 0 in the above
theorem. �

Theorem 6.9. Let γ : T→ C∗ be a continuous homomorphism, then there
exists an integer n, such that γ(z) = zn.
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Proof. Let ρ(t) = γ(e2πit), then ρ is a continuous hommomorphism of R.
Moreover, since T is compact, γ(T) is compact and hence bounded. Thus,
there exists, b ∈ R such that ρ(t) = eibt. But since eib = ρ(1) = γ(1) = 1
we see that b = 2πn for some integer n. Now if z = e2πiθ ∈ T, then
γ(z) = ρ(θ) = e2πinθ = zn. �

Theorem 6.10. Let π : (Rn,+) → C∗ be a continuous homomorphism,
then there exist, λ1, . . . , λn ∈ C, such that, π((t1, . . . , tn)) = eλ1t1+···+λntn .

Proof. Define πj : (R,+) → C∗ by setting, πj(t) = π((0, . . . , 0, t, 0, . . . , 0))
where t occurs in the j-th component. Clearly, πj is continuous and so there
exists λj ∈ C such that πj(t) = eλjt. The proof is completed by noting that
π((t1, . . . , tn)) = π1(t1) · · ·πn(tn) = eλ1t1+···+λntn . �

Finite Dimensional Representations of R and T
Let A ∈ Mn(C), then the exponential of A, is given by the convergent

power series,

eA = I +A+
A2

2!
+ · · · =

∞∑
n=0

An

n!
.

Proposition 6.11. Let A ∈Mn, then setting π(t) = eAt defines a continu-
ous, homomorphism π : (R,+)→ GL(n,C).

Proof. Using the Cauchy product of power series, we have that, etAesA =∑∞
n=0

∑
k+j=n

(tA)k

k!
(sA)j

j! =
∑∞

n=0[
∑

k+j=n
tksj

k!j! ]An =
∑∞

n=0[
∑n

k=0
tksn−k

k!(n−k)! ]A
n =∑∞

n=0[
∑n

k=0
n!

k!(n−k)! t
ksn−k]A

n

n! =
∑∞

n=0
(t+s)nAn

n! = e(t+s)A.Hence, π(t)π(s) =
π(t+ s) and so the map is multiplicative and since π(t)π(−t) = I the range
is contained in GL(n,C).

The continuity of π follows from facts about power series. �

The converse of the above theorem is also true, but is a bit beyond our
means.

Theorem 6.12. (M.Stone) Let π : (R,+) → GL(n,C) be a continuous,
homomorphism. Then limt→0

π(t)−I
t exists and if we denote this limit by A,

then π(t) = etA.

Thus, to understand these representations we need to understand the
behavior of matrix exponentials. This is often covered in undergraudate
differential courses and we review the key facts. If A = S−1JS where J
is the Jordan canonical form of A, then etA = S−1etJS so it is enough to
understand the exponential of a Jordan cell.

If A is diagonalizable, i.e., if each Jordan block for A is 1 × 1, so that
J = Diag(λ1, . . . , λn), then etJ = Diag(etλ1 , . . . , etλn).

If for example J =
(
λ 1
0 λ

)
is a 2×2 Jordan cell, then etJ =

(
etλ tetλ

0 etλ

)
.



52 VERN PAULSEN

Proposition 6.13. Let A ∈ Mn. Then the set {etA : t ∈ R} is bounded if
and only if A is similar to a diagonal matrix and all the eigenvalues of A
are purely imaginary.

Proof. If any of the Jordan blocks in the Jordan form of A is larger than
1×1, then etJ will contain a coefficient of the form tetλ which is unbounded
as a function of t, for every λ.

Hence, each of the Jordan cells is 1× 1, which means that A is similar to
a diagonal matrix, J = Diag(λ1, . . . , λn) where the λ′is are the eigenvalues
of A. But in order for etλ to be bounded, λ must be purely imaginary. �

Theorem 6.14. Let π : T → GL(n,C) be a continuous, homomorphism,
then there exist integers, k1, . . . , kn and an invertible matrix, S, such that
π(z) = S−1Diag(zk1 , . . . , zkn)S.

Proof. Look at ρ : R → GL(n,C) defined by ρ(t) = π(eit). Since T is
compact the image of π is a bounded set and hence ρ is bounded. Hence by
the above, ρ(t) = S−1Diag(eib1t, . . . , eibnt)S.

Arguing as in the 1-dimensional case, each bj = 2πkj for an integer kj .
Thus, if z = eiθ, then π(z) = ρ(θ) = S−1Diag(e2πik1θ, . . . , e2πiknθ)S =
S−1Diag(zk1 , . . . , zkn)S. �

Problem 6.15. Let G1, G2 be topological groups and let G1 × G2 be the
product group. Prove that π : G1 × G2 → GL(n,C) is a continuous homo-
morphism if and only if there exist continuous homomorphisms, πi : Gi →
GL(n,C), i = 1, 2 with π1(g1)π2(g2) = π2(g2)π1(g1) for all g1 ∈ G1, g2 ∈ G2

such that π((g1, g2)) = π1(g1)π2(g2).

Problem 6.16. Let Tm denote the group that is the product of m copies
of the circle group(often called the m-torus). Given z = (z1, . . . , zm) ∈
Tm and K = (k1, . . . , km) an m-tuple of integers, we set zK = zk11 · · · zkmm .
Prove that if π : Tm → GL(n,C) is a continuous homomorphism, then
there exists an invertible S and m-tuples of integers, K1, . . . ,Kn, such that
π(z) = S−1Diag(zK1 , . . . , zKn)S

Problem 6.17. Prove that every continuous, homomorphism from T into
R∗ is constant.

Problem 6.18. Find analogues of the above results for continuous, homo-
morphisms of C∗ into R∗,T and C∗.

7. Compact and Amenable Groups

In this section we will show that many results from the representation
theory of finite groups can be extended to compact and amenable groups.

Recall that a(Hausdorff) topological space, X, is called compact, if every
open cover of X has a finite subcover. A space, X, is called locally compact,
if for every x ∈ X, there is an open set, U, with x ∈ U such that the closure
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of U is compact. For example, R is locally compact, but not compact, while
the circle group T is compact. If G is a discrete group, then it is compact
if and only if it is a finite set, while every discrete group is locally compact.
In this chapter we study the properties and representations of compact and
amenable groups.

First, we take a look at a couple of important examples of such groups.

Definition 7.1. The unitary group, U(n), is the subgroup of GL(n,C),
defined by,

U(n) = {A ∈ GL(n,C) : A∗A = I}.
The special unitary group, SU(n) is the subgroup of U(n), defined by

SU(n) = {A ∈ U(n) : det(A) = 1}.
The orthogonal group, O(n), is the subgroup of GL(n,R) defined by,

O(n) = {A ∈ GL(n,R) : AtA = I}.
The special orthogonal group, SO(n) is the subgroup of O(n), defined
by,

SO(n) = {A ∈ O(n) : det(A) = 1}.

It is easily checked that a matrix A ∈ U(n)(respectively,O(n)) if and
only if the columns are an orthonormal basis for Cn(respectively,Rn). Thus,
both of these subgroups are compact, because they are closed and bounded
subsets of the corresponding spaces of matrices.

Since det : U(n) → C∗ is a continuous, homomorphism, and SU(n) is
the kernel of this homomorphism it is a closed, normal subgroup of U(n).
Similarly, O(n) is a closed, normal subgroup of O(n).

Let’s first take a closer look at O(2) as a group and topological space.

If for any angle θ, we set R(θ) =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, then R(θ) ∈ SO(2)

and it is the matrix of the linear map given by counterclockwise rotation
through the angle θ. The map π : T → SO(2) defined by π(eiθ) = R(θ) is
a continuous, homomorphism. Also, given any matrix in O(2), if its first

column is the unit vector,
(
cos(θ)
sin(θ)

)
, then since its second column must

be perpindicular to this vector, we see that the second column is either

±
(
−sin(θ)
cos(θ)

)
. If we let F =

(
1 0
0 −1

)
, then we see that O(2) = {R(θ) :

0 ≤ θ < 2π} ∪ {R(θ)F : 0 ≤ θ < 2π} and so topologically, O(2) is the
union of two circles. Since, det(R(θ)F ) = −1, we see that the image of the
circle group is SO(2) and , thus, this map defines a continuous, isomorphism
between T and SO(2). It follows that O(2) is a semidirect product of T by
Z2. Also, note that FR(θ)F−1 = R(−θ).

Now let’s look at U(2). Given any a, b ∈ C with |a|2 + |b|2 = 1, if we let

R(a, b) =
(
a −b̄
b ā

)
, then R ∈ SU(2). Moreover, if we multiply any two such
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matrices together, then we get another such matrix!!(Check this yourself.)
Thus, we get a closed(and hence compact) subgroup of SU(2).

What is a little surprising, is that the set of such pairs, (a, b) ∈ C2 = R4

corresponds to the unit sphere in R4, which is 3-dimensional. Hence, in this
manner, we see the 3-sphere, S3 can be made into a compact topological
group.

Now in a manner similar to the above, we see that if
(
a
b

)
is the first

column of any matrix in U(2) then the second column must have the form(
−eiθ b̄
eiθā

)
. Thus, if we set F (θ) =

(
1 0
0 eiθ

)
, then these matrices generate

another representation of T and every matrix in U(2) is uniquely of the form
R(a, b)F (θ).

Thus, as above, we see that SU(2) = {R(a, b) : |a|2 + |b|2 = 1} and
topologically, SU(2) is homeomorphic to S3. Also, topologically, U(2) is
homeomorphic to S3×T. We have that F (θ)R(a, b)F (θ)−1 = R(a, eiθb) and
that U(2) is isomorphic to the semidirect product of S3 by T.

Given a topological space, X, we let C(X) denote the set of continuous,
functions from X to C. It is easy to see that C(X) is a vector space over
C, that is, sums and scalar multiplies of continuous functions are again
continuous. Given f ∈ C(X), the support of f, denoted supp(f) is the
closure of the set, {x ∈ X : f(x) 6= 0}. A function is said to have compact
support provided that supp(f) is compact. We let Cc(X) ⊆ C(X) denote
the set of continuous functions with compact support. A function f is called
bounded provided that there is a constant,M, such that |f(x)| ≤M and we let
Cb(X) denote the set of continuous, bounded functions on X. Note that every
function with compact support is bounded, so Cc(X) ⊆ Cb(X) ⊆ C(X) and
when X is compact, Cc(X) = Cb(X) = C(X).

Proposition 7.2. The sets Cc(X), Cb(X) are vector subspaces of C(X).

Proof. If f1, f2 ∈ Cc(X), then supp(f1 +f2) ⊆ supp(f1)∪supp(f2). Since the
union of two compact sets is again compact and closed subsets of compact
sets are compact, we have that supp(f1 +f2) is compact and hence, f1 +f2 ∈
Cc(X).

If f ∈ Cc(X) and λ ∈ C, then supp(λf) = supp(f) when λ 6= 0 and when
λ = 0, supp(λf) is the empty set(which is closed). Thus, Cc(X) is a vector
subspace.

The proof for Cb(X) is similar. �

If G is a topological group, f ∈ C(G) and g ∈ G then we define functions
g · f and f · g by setting (g · f)(h) = f(g−1h) and (f · g)(h) = f(hg−1). The
reason for using the inverses in these definitions is for associativity, that is,
with the above definitions, we have that g1 · (g2 · f) = (g1g2) · f, (f · g1) · g2 =
f · (g1g2). Thus, these definitions yield actions of G on C(G), as soon as we
have shown that these new functions are actually continuous. Also, we set
f̃(h) = f(h−1).
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Proposition 7.3. Let f ∈ C(G), then g · f, f · g and f̃ are in C(G). More-
over, if f ∈ Cc(X)(respectively, Cb(X)), then g · f, f · g and f̃ are all in
Cc(G)(respectively, Cb(X)).

Proof. Recall that Lg−1 : G → G defined by Lg−1(h) = g−1h is continuous
and hence g · f = f ◦Lg−1 is continuous. Also supp(g · f) = {h : (g · f)(h) 6=
0}− = {h : f(g−1h) 6= 0}− = g ·supp(f) and so if the support of f is compact,
then so is the support of g · f.

The proofs for f · g and f̃ are similar and use the continuity of Rg−1 and
inv.

The proofs for Cb(X) are similar. �

Definition 7.4. A linear map from a complex vector space into C is called
a linear functional. When G is a topological group, a linear functional,
L whose domain is either, Cc(G), Cb(G) or C(G) is called left invariant
provided that L(f) = L(g · f) for every f and g ∈ G. Similarly, L is called
right invariant if L(f · g) = L(f) and invariant if it is both left and right
invariant. Finally, L is called positive if L(f) ≥ 0 whenever f ≥ 0, i.e,
whenever f(h) ≥ 0, for every h ∈ G. If L is both positive and invariant then
it is called an invariant mean. When there exists a non-zero invariant
mean on Cb(G), the group G is called amenable.

Example 7.5. If G is finite, then C(G) = C(G) and we obtain an invariant
mean on C(G), by setting,

L(f) =
1
|G|

∑
h∈G

f(h).

Example 7.6. For G = (R,+) and f ∈ Cc(R), note that
∫ +∞
−∞ f(t)dt is

well-defined and finite since supp(f) ⊆ [a, b] and so the integration is really
only over the interval [a,b]. Also if s ∈ R, then (s·f)(t) = (f ·s)(t) = f(t−s)
and we have

∫ +∞
−∞ f(t − s)dt =

∫ +∞
−∞ f(t′)dt′ by doing the substitution t′ =

t− s, dt′ = dt.
Thus, if we let L(f) denote this integral, then it is easy to see that L is

an invariant mean on Cc(R).

Example 7.7. The group (R,+) is actually amenable, that is, there exists
a non-zero invariant mean on Cb(R), not just on C0(R). The proof requires
a bit of functional analysis and we sketch the main ideas for the interested
student. For each natural number N, define LN : Cb(R) → C, by LN (f) =

1
2N

∫ +N
−N f(t)dt. This defines a sequence of bounded linear functionals in the

unit ball of the dual space Cb(R)∗ of Cb(R). By the Banach-Alaoglu theorem
the unit ball of the dual space is compact in the weak*-topology. Hence, this
set of functionals has a limit point, L, since LN (1) = 1 for all N, we have
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that L(1) = 1, and hence, L 6= 0. Fix, s ∈ R and f and note that,

|LN (f)− LN (s · f)| = 1
2N
|
∫ +N

−N
f(t)− f(t− s)dt|

=
1

2N
|
∫ −N
−N−s

f(t)dt+
∫ N

N−s
f(t)dt| ≤ ‖f‖∞|s|

N
→ 0,

as N → +∞. This implies that the limit point L, satisfies L(f) = L(s·f), and
hence, is invariant. If f ≥ 0, then LN (f) ≥ 0, for all N and hence, L(f) ≥ 0.
Thus, L is an invariant mean on (R,+). Note that when f ∈ C0(R), we have
that LN (f)→ 0, and it will follow that, L(f) = 0. This shows that the limit
L cannot be given as an integration, even though it is a functional obtained
as a limit of integrals.

Example 7.8. Let G = T, and for f ∈ C(T) set

L(f) =
1

2π

∫ 2π

0
f(eit)dt.

If z = eis ∈ T, then (z · f)(eit) = (f · z)(eit) = f(ei(t−s)) and again a simple
substitution shows that L(z · f) = L(f). Thus, it readily follows that L is an
invariant mean on C(T).

Example 7.9. Let G = (R+, ·) ⊆ (R∗, ·). For f ∈ Cc(R+) we set L(f) =∫∞
0 f(t)dtt . If s ∈ R+ then L(s · f) =

∫∞
0 f(s−1t)dtt =

∫∞
0 f(t′)dt

′

t′ , where
t′ = s−1t. It is easily checked that L is linear and, thus, L is an invariant
mean.

Example 7.10. One can also define an invariant mean on Cb(R∗), in a
method analogous to the one used for (R,+). One sets LN (f) = 1

2ln(N)

∫ N
1/N

f(t)
t dt,

and takes a weak*-limit point of this sequence of bounded, linear functionals.

Definition 7.11. An invariant mean L is called normalized, provided its
domain contains Cb(G) and L(1) = 1, where 1 denotes the function that is
constantly equal to 1.

Thus, the above examples show that every finite group, (R,+), (R∗, ·)
and T have normalized,invariant means. Note that the normalized invariant
mean on Cb(R), does not arise from any sort of integration, even though it
was a limit of integrals. Similarly, Z is also known to be an amenable group,
the invariant mean can be obtained as a limit of finite sums, but also is not
given as a sum.

In fact, it is known that every abelian group is amenable. We will see be-
low that one consequence of Haar’s Theorem, presented below, is that every
compact group is amenable. Some familiar groups that are not amenable,
are the free groups on two or more generators. There are some “good” char-
acterizations of amenable groups, but there is also a great deal that is not
known. One conjecture is that a group is not amenable if and only if it
contains a subgroup isomorphic to the free group on two generators.
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The proof of the following theorem uses results from measure theory and
functional analysis and so is beyond our current background.

Theorem 7.12. (Haar) Let G be a compact topological group, then there is
a unique normalized, left invariant mean M : C(G)→ C.

Corollary 7.13. (Haar) Let G be a compact topological group, then the
unique normalized left invariant mean, M , is right invariant. Thus there is
a unique normalized, invariant mean on G and so every compact group is
amenable. In addition, for any f ∈ C(G), we have that M(f̃) = M(f).

Proof. Fix g ∈ G and define, Mg : C(G) → C, by setting Mg(f) = M(f ·
g). We will show that Mg is a normalized, left invariant mean and hence,
M(f) = Mg(f) = M(f · g), so that M is right invariant.

It is clear that Mg is normalized and linear. Also, (g1 ·f) ·g2 = g1 · (f ·g2),
hence Mg(g1 · f) = M((g1 · f) · g) = M(g1 · (f · g)) = M(f · g) = Mg(f).
Thus, Mg is left invariant. Finally, if f(h) ≥ 0 for all h, then f · g(h) ≥ 0
for all h and hence, f ≥ 0 implies that Mg(f) = M(f · g) ≥ 0, and so Mg is
a normalized, left invariant mean on G and hence, M = Mg.

Next, define M̃(f) = M(f̃). Similar arguments show that M̃ is a normal-
ized, left invariant mean on G and hence, M(f) = M̃(f) = M(f̃). �

Definition 7.14. Let G be a compact, topological group. The unique, nor-
malized, invariant mean on G is called the Haar mean on G.

Thus, the first and third examples are the unique Haar means.
We well see that normalized, invariant means on compact groups allow

us to prove many of the results for finite groups that required ”averaging”
also hold for compact groups.

Problem 7.15. Find the unique invariant mean on Tm.

Problem 7.16. Show that the unique normalized, invariant mean on O(2)
is given by its identification with two circles and then taking the average of
the two integrals over the circles.

Measure Theoretic Interpretation
For those of you familiar with concepts from measure theory, we give

a measure theoretic interpretation of Haar’s theorem. Given a compact
topological space, X, the σ-algebra generated by the open subsets of X is
called the Borel sets and denoted B.

One version of the Riesz Representation Theorem, says that for every,
positive, linear functional, L : C(X) → C there exist a unique positive
measure, µ, on B, such that L(f) =

∫
X f(x)dµ(x), and conversely every such

measure gives rise to such a positive linear functional. Note that L(1) =
µ(X).

Moreover, L is invariant, if and only if µ has the property that, µ(g ·B) =
µ(B · g) = µ(B), for every Borel set, B and every g ∈ G. Such measures are
called invariant measures or Haar measures.
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Thus, Haar’s theorem is equivalent to the fact that given a compact group
G, there is a unique invariant measure µ with µ(G) = 1. This measure is
called, the normalized, Haar measure on G.

Thus, we see that Lebesgue measure on R is a Haar measure on (R,+),
but we cannot normalize this measure, since m(R) = +∞ and arc length
measure on T is the unique, normalized Haar measure on T.

For the fourth example, (R+, ·), we see that the Haar measure satisfies,
µ([a, b]) =

∫ b
a 1dtt = ln(b) − ln(a) = ln(b/a) and again this measure cannot

be normalized since µ(R+) = +∞.
By the above problem, the unique normalized Haar measure on O(2) is

the average of the arc length measures on its two circles.
Since (R,+) is an amenable group, there is a normalized mean on Cb(R),

but this mean is not given by a measure on R.

Matrix-Valued Functions

Let π : G → GL(n,C) be a continuous, bounded homomorphism. If
we write, π(h) = (ti,j(h)) in terms of its coordinate functions, then the
continuity of π is equivalent to the continuity of ti,j for all i and j, and
the fact that π is bounded guarantees that ti,j ∈ Cb(G). We shall often
need to consider expressions of the form π(h)Aπ(h−1) where A ∈ Mn. A
moments reflection shows that the above expression is a matrix of continuous
functions. Explicitly, if we let A = (ai,j), then π(h)Aπ(h−1) = (fi,j(h))
where, fi,j(h) =

∑n
k,l=0 ti,k(h)ak.ltl,j(h−1). Thus, as functions, we have that

fi,j =
∑n

k,l=0 ti,kak,lt̃l,j .

We will often think of a matrix of continuous functions, (fi,j(h)) from G
to C, as a continuous, function F = (fi,j) from G to Mn.

Now given F = (fi,j), we may apply an invariant mean, M, to each
function to obtain a scalar-matrix, (M(fi,j)) we shall denote this scalar
matrix as M (n)(F ). When F is rectangular, say m×n, the same ideas apply
and we denote the scalar matrix obtained by M (m,n)(F ). An example helps
to solidfy this idea.

Example 7.17. Let π : T → GL(2,C) be defined by π(z) =
(
z 0
0 z2

)
, let

ρ : T → GL(3,C) be defined by ρ(z) =

z 0 0
0 z3 0
0 0 z2

 , let A = (ai,j) be a

2 × 3 matrix of scalars, let F (z) = π(z)Aρ(z−1) and compute M (2,3)(F ),
where M is the unique Haar mean on the circle group.

We see that F (z) =
(
za1,1z

−1 za1,2z
−3 za1,3z

−2

z2a2,1z
−1 z2a2,2z

−3 z2a2,3z
−2

)
. Since, M(zn) =∫ 1

0 e
2πintdt = 0, for n 6= 0, we have that M (2,3)(F ) =

(
a1,1 0 0
0 0 a2,3

)
.
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Lemma 7.18. Let B = (bi,j) ∈ Mn and let F = (fi,j) be an n × n matrix
of functions, then M (n)(BF ) = BM (n)(F ) and M (n)(FB) = M (n)(F )B.

Proof. The (i,j)-th entry of BF is
∑n

k=0 bi,kfk,j and so the (i,j)-th entry
of M (n)(BF ) is M(

∑n
k=0 bi,kfk,j) =

∑n
k=0 bi,kM(fk,j) which is the (i,j)-th

entry of the product BM (n)(F ).
The proof for multiplication on the right is identical. �

Note that in the above result, we don’t need the matrices to all be square,
just of compatible sizes so that we can do the matrix multiplications.

Proposition 7.19. Let G be an amenable group, with normalized, invariant
mean, M, let π : G→ GL(n,C), ρ : G→ GL(m,C) be continuous, bounded,
homomorphisms and let A be a n ×m matrix of scalars. If we set F (h) =
π(h)Aρ(h−1), then the scalar matrix M (n,m)(F ) ∈ I(π, ρ).

Definition 7.20. We shall denote the above scalar matrix by AG.

Proof. Fix g ∈ G. Then by the above lemma, π(g)M (n,m)(F ) = M (n,m)(π(g)F ).
But π(g)F (h) = π(gh)Aρ(h−1) = π(gh)Aρ((gh)−1)ρ(g) = F (gh)ρ(g).

Note that if F = (fi,j), then F (gh) = (fi,j(gh)) = ((g · fi,j)(h)). Thus,
π(g)F = (g · fi,j)ρ(g).

Finally, we have that, π(g)M (n,m)(F ) = M (n,m)(π(g)F ) = M (n,m)((g ·
fi,j)ρ(g)) = (M(g · fi,j) · ρ(g) = (M(fi,j)) · ρ(g) = M (n,m)(F ) · ρ(g). �

Note Example 6.15 actually computed, AG. The following result gives an
instance where one can definitely determine AG.

Proposition 7.21. Let G be an amenable group with a normalized, invari-
ant mean, M, let π : G → GL(n,C) be a continuous, bounded, irreducible
representation of G and let A ∈Mn. Then AG = Tr(A)

n In.

Proof. Since π is irreducible, π(G)′ = {λIn : λ ∈ C}. Hence, AG = λIn for
some λ.

Note that for any h ∈ G,Tr(F (h)) = Tr(π(h)Aπ(h−1)) = Tr(A). Hence,
nλ = Tr(AG) = Tr(M (n)(F )) = M(Tr(F )) = M(Tr(A)) = Tr(A), and we
have that λ = Tr(A)

n , as was to be shown. �

Theorem 7.22. Let G be an amenable group with normalized, invariant
mean, M, let π : G→ GL(V ) be a continuous, bounded, representation of G
on a finite dimensional vector space, V, and let W ⊆ V be a π(G)-invariant
subspace. Then there exists a projection onto W that is π(G)-invariant.

Proof. We identify V = Cn and GL(V ) = GL(n,C). By choosing any com-
plementary subspace for W, we may define a n × n projection matrix, P
from V = Cn onto W.

Let F (h) = π(h)Pπ(h−1), and let PG = M (n)(F ). Then by the above
lemma, π(g)PG = PGπ(g) for any g ∈ G. We will show that PG is a projec-
tion onto W.
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For any vector w ∈W,PGw = M (n)(F )w = M (n,1)(F ·w), where we have
applied the lemma to the n×1 matrix-valued function F (h)w. But, since w ∈
W and this space is invariant, F (h)w = π(h)Pπ(h−1)w = π(h)π(h−1)w =
w. Thus, M (n,1)(Fw) = w and we have that Pgw = w for all w ∈W.

Hence, for any v ∈ V, PG(Pv) = Pv, and so, PGP = P. Now, P 2
G =

PGM
(n)(F ) = M (n)(PGF ), but PGF (h) = PGπ(h)Pπ(h−1) = π(h)PGPπ(h−1) =

F (h). Thus, M (n)(PGF ) = M (n)(F ) = PG, and we have that P 2
G = PG.

Thus, PG is a projection, is invariant and fixes W. We just need to see
that it doesn’t project onto a larger space. Now, Pπ(h)P = π(h)P since
W is invariant, and hence, PF (h) = Pπ(h)Pπ(h−1) = F (h). Thus, PPG =
PM (n)(F ) = M (n)(PF ) = M (n)(F ) = PG. Thus, if PGv = v, then v =
PGv = P (PGv) ∈W.

This shows that the range of PG is contained in W and so it must be a
projection onto W. �

Corollary 7.23. Let G be amenable, π : G → GL(V ) be a continuous,
bounded representation with V finite dimensional. If W ⊆ V is a π(G)-
invariant subspace, then W is π(G)-complemented.

Proof. Let PG be a π(G)-invariant projection onto W. Then I − PG is a
projection onto a π(G)-invariant complementary subspace. �

Corollary 7.24. Let G be an amenable group, and let π : G → GL(V ) be
a continuous, bounded representation with V finite dimensional. Then there
exists π(G)-invariant subspaces, W1, . . . ,Wk of V, such that Wi ∩Wj = (0)
for i 6= j, V = W1 + · · · + Wk and the restriction of the π to each Wi is
irreducible.

Proof. If π is not irreducible, then there exists a π(G)-invariant subspace, W
with a π(G)-complement. Clearly, the restriction of a continuous, bounded
representation to a subspace is still bounded and continuous. So unless W
is irreudcible, we may repeat. �

Recall that over C a representation is irreducible if and only if π(G)′ =
{λI : λ ∈ C}.

Theorem 7.25. (Schur’s Lemma) Let G be an amenable group, and let
πi : G→ GL(Vi) be continuous, bounded irreducible representations, with Vi
finite dimensional, complex vector spaces for i = 1, 2. Then either:

(1) π1 and π2 are inequivalent and dim(I(π1, π2)) = 0 or,
(2) π1 and π2 are equivalent and dim(I(π1, π2)) = 1.

Proof. Let A ∈ L(V1, V2) and look at AG ∈ I(π1, π2) and proceed exactly
as in the proof of Schur’s lemma for finite groups. �

Theorem 7.26. Let G be an amenable group and let π : G → GL(V ), ρ :
G → GL(W ) be bounded, continuous representations on finite dimensional
spaces with π irreducible. If W = W1+· · ·+Wk is a direct sum decomposition
of W into invariant subspaces such that each subrepresentation ρi = ρ|Wi is
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irreducible for each i, then dim(I(π, ρ)) = #{i : ρi ∼ π}, and consequently,
this number is independent of the particular decomposition of ρ into irre-
ducible subrepresentations.

Proof. The proof is the same as for Theorem 2.23. Given T ∈ L(V,W ) write
Tv = (T1v, . . . , Tkv) where Ti ∈ L(V,Wi). �

8. Character Theory for Amenable Groups

Many of our earlier results on characters for finite groups also hold for
amenable groups.

Given π : G → GL(V ) be a continuous, bounded representation, with
V finite dimensional, the character of π, χπ is the continuous function,
χπ(g) = Tr(π(g)). Note that if π : G → GL(n,C) and we write π(g) =
(ri,j(g)), then χπ =

∑n
i=1 ri,i as functions.

The Ugly Identities play a key role again. Let π : G → GL(n,C), ρ :
G → GL(m,C) be continuous, bounded, irreducible, representations with
π(g) = (ri,j(g)), ρ(g) = (ti,j(g)), then when π and ρ are not equivalent,

M(ri,k t̃l,j) = 0,

and, when π = ρ,

M(ri,kr̃l,j) =
δi,jδk,l
n

.

To prove these identities, we consider the n × m matrix Ek,l and let
F (h) = π(h)Ek,lρ(h−1) = (ri,k(h)tl,j(h−1)). When π and ρ are inequivalent,
then M (n,m)(F ) = 0.

If they are equivalent, then n=m and M (n)(F ) = λIn, for some λ ∈
C. But, nλ = Tr(M (n)(F ) = M(Tr(F )) = M(Tr(Ek,l)) = δk,l, since
Tr(F (h)) = Tr(π(h)Ek,lπ(h−1)) = Tr(Ek,l) = δk,l. Thus, λ = δk,l/n and
examining the entries of F (h) yields the result.

Inner Products
Given f1, f2 ∈ Cb(G) we define an inner product by setting (f1|f2) =

M(f1f̄2). It is easily checked that it has the following properties.

Proposition 8.1. Let G be an amenable group with an invariant mean M,
and let f1, f2, f3 ∈ Cb(G) and let λ ∈ C, then:

• (f1|f1) ≥ 0,
• (f1 + f2|f3) = (f1|f3) + (f2|f3), (f1|f2 + f3) = (f1|f2) + (f1|f3),
• (λf1|f2) = λ(f1|f2), (f1|λf2) = λ̄(f1|f2),
• (f1|f2) = ¯(f2|f1).

For a general amenable group, there can exist non-zero functions for which
(f |f) = 0. In fact, Z is amenable and (f |f) = 0 for every f ∈ Cc(Z).
However, for compact groups we can say more.

Proposition 8.2. Let G be a compact group and let M be the Haar mean.
If f ∈ C(G) and (f |f) = 0, then f = 0.
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Proof. Let f 6= 0, and say that f(h0) 6= 0. then for δ = |f(h0)|/2, there
exists an open set U, h0 ∈ U such that |f(h)| > δ for every h ∈ U.

The collection of sets, {gU : g ∈ G} is an open cover of G and hence,
there exist g1, . . . , gn ∈ G such that G ⊆ g1U ∪ · · · ∪ gnU.

Let fi(h) = f(g−1
i h) = gi · f, so that each fi is continuous and M(|fi|2) =

M(gi · |f |2) = M(|f |2) = (f |f).
For h ∈ giU, h = giu, u ∈ U and so we have, |fi(h)| = |f(g−1

i h)| =
|f(u)| > δ. Thus, if we let p(h) = |f1(h)|2 + · · · + |fn(h)|2, then p(h) > δ2

for every h ∈ G. Hence, by the positivity property, M(p) ≥ M(δ21) = δ2,
but M(p) = nM(|f |2). �

Lemma 8.3. Let G be an amenable group, π : G → GL(n,C) be a contin-
uous, bounded homomorphism, then for each g ∈ G the eigenvalues of π(g)
are on the unit circle.

Proof. Fix S so that ρ(g) = Sπ(g)S−1 = (ti,j(g)) is upper triangular. Then
each diagonal entry is an eigenvalue of π(g). But since π is bounded, so is
ρ and hence ti.i(g)n = ti,i(gn) is bounded, which forces ti,i(g) to be on the
unit circle. �

Theorem 8.4. Let G be an amenable group, let πi : G → GL(Vi), i = 1, 2
be bounded, continuous, irreducible representations with Vi, i = 1, 2 finite
dimensional, complex vector spaces. Then:

• when π1 and π2 are inequivalent, (χπ1 |χπ2) = 0,
• when π1 and π2 are equivalent, (χπ1 |χπ2) = 1.

Proof. Let π1(g) = (ri,j(g)), π2(g) = (ti,j(g)), then (χπ1 |χπ2) =
∑

i,jM(ri,itj,j) =
0 by the first ugly identity, when the representations are inequivalent.

Note that for any bounded representation, since χ(g) is the sum of the
eigenvalues of π(g) and these are all of modulus one, we have that ¯χ(g) =
λ̄1 + · · · + λ̄n = λ−1

1 + · · · + λ−1
n = χ(g−1), where λ1, . . . , λn denote the

eigenvalues of π(g).
If π1 and π2 are equivalent, then χπ1(g) = χπ2(g) and hence, (χπ1 |χπ2) =

(χπ1 |χπ1) =
∑n

i,j=1M(ri,i ¯rj,j) =
∑n

i,j=1M(ri,i ˜rj,j) = 1, by the second ugly
identity. �

Corollary 8.5. Let G be an amenable group, let ρ : G → GL(V ), π :
G→ GL(W ) be continuous, bounded representations on finite dimensional,
complex vector spaces with π irreducible, then dim(I(π, ρ)) = (χρ|χπ).

Proof. Write V = V1 + · · · + Vk as a direct sum of irreducible subrepre-
sentations, ρ1, . . . , ρk, then χρ = χρ1 + · · · + χρk and hence, (χρ|χπ) =∑

i(χρi |χπ) = #{i : ρi ∼ π} = dim(I(ρ, π)). �

Corollary 8.6. Let G be an amenable group, let ρi : G → GL(Vi), i =
1, 2 be continuous, bounded representations, with Vi, i = 1, 2 finite dimen-
sional,complex vector spaces, then ρ1 and ρ2 are equivalent if and only if
χρ1 = χρ2 .
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Corollary 8.7. Let G be an amenable group, ρ : G → GL(V ) be a contin-
uous, bounded representation, with V a finite dimensional, complex vector
space and assume that ρ is equivalent to π(n1)

1 ⊕· · ·⊕π(nk)
k , where π1, . . . , πk

are irreducible, then (χρ|χρ) =
∑k

i=1 n
2
i .

We will need the following result later.
Recall that a (complex) matrix is called unitary if U∗ = U−1 and a (real)

matrix is orthogonal if U t = U−1. A representation, π : G → GL(n,C) is
called a unitary representation if π(g) is a unitary matrix for every g ∈ G
and π : G → GL(n,R) is called a orthogonal representation if π(g) is a
orthogonal matrix for every g ∈ G.

Finally, recall that given a given a (finite) dimensional vector space with
an inner product, via the Gramm-Schmidt orthogonalization process, one can
choose a basis that is also an orthonormal set, i.e., (vi|vj) = 0, when i 6= j,
and (vi|vi) = 1, for alli.

Theorem 8.8. Let G be an amenable group, and let π : G→ GL(n,C) be a
bounded, continuous homomorphism, then there exists an invertible matrix
S, such that, ρ(g) = S−1π(g)S is a unitary representation. In the case that,
π : G→ GL(n,R), is a bounded, continuous homomorphism, there exists an
invertible S, such that ρ(g) = S−1π(g)S is a orthogonal representation.

Proof. We only prove the complex case.
For each pair of vectors x, y ∈ Cn define fx,y ∈ Cb(G) by setting fx,y(h) =<

π(h)x, π(h)y >, where ¡,¿ denotes the usual inner product on Cn.
Note that these functions satisfy, fx,x ≥ 0, fx1+x2,y = fx1,y+fx2,y, fx,y1+y2 =

fx,y1 + fx,y2 , fλx,y = λfx,y, fx,λy = λ̄fx,y for all vectors, x, x1, x2, y, y1, y2 and
scalars λ.

We define, [x, y] = M(fx,y) and claim that this is a new inner product on
Cn. To see this note that, [x1 + x2, y] = M(fx1+x2,y) = M(fx1,y + fx2,y) =
[x1, y] + [x2, y]. The other properties of an inner product follow similarly.

Now, for any fixed g ∈ G, fπ(g)x,π(g)y(h) =< π(h)π(g)x, π(h)π(g)y >=
fx,y(hg) = (fx,y · g)(h). Hence, [π(g)x, π(g)y] = M(fx,y · g) = M(fx,y) =
[x, y].

This last equation shows that π(g) is a unitary matrix in the [,] inner
product. To see this note that if {vi} is an orthonormal basis for Cn in this
new inner product, then [π(g)vi, π(g)vj ] = [vi, vj ] and so, {π(g)vi} is also an
orthonormal set.

Now let {ei} be the usual orthonormal basis for Cn in the usual inner
product, ¡,¿ and let S ∈ GL(n,C) be defined by Sei = vi, S

−1vi = ei be the
matrix for this change of basis.

Given, x =
∑

i αiei, y =
∑

j βjej , we have that [Sx, Sy] = [
∑

i αivi,
∑

j βjvj ] =∑
i,j αiβ̄j [vi, vj ] =

∑
i αiβ̄i =< x, y > . Similarly, < S−1u, S−1w >= [u,w].

Now let ρ(g) = S−1π(g)S, we claim that ρ is unitary on Cn with the usual
inner product. To see this, compute, < ρ(g)ei, ρ(g)ej >=< S−1π(g)vi, S−1π(g)vj >=
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[π(g)vi, π(g)vj ] = [vi, vj ] =< ei, ej > . Thus, ρ(g) carries an orthonormal set
to an orthonormal set, and hence is unitary. �

9. Tensor Products

We assume that the reader has seen the tensor product of vector spaces
before and only review their key properties.

If V,W are vector spaces, then one can form a new vector space called
their tensor product, V ⊗W. The tensor product is the linear span of vectors
of the form, {v ⊗ w : v ∈ V,w ∈ W} that are called, elementary tensors.
Elementary tensors obey the following rules:

• (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,
• v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,
• λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw),

where v, v1, v2 ∈ V,w,w1, w2 ∈W and λ is a scalar.
Moreover, if {vi : i ∈ I} is a basis for V and {wj : j ∈ J} is a basis for

W, then {vi ⊗ wj : i ∈ I, j ∈ J} is a basis for for V ⊗W. Consequently,
dim(V ⊗W ) = dim(V )dim(W ).

Finally, if A ∈ L(V ) and B ∈ L(W ) are linear maps, then there is a map
denoted, A⊗B ∈ L(V ⊗W ) such that A⊗B(v ⊗ w) = (Av)⊗ (Bw).

Now, if C ∈ L(V ), D ∈ L(W ), then (A⊗B)(C⊗D) = (AC)⊗ (BD), and
it follows that (A⊗ IW )(IV ⊗B) = A⊗B = (IV ⊗B)(A⊗ IW ).

When V and W are finite dimensional vector spaces, then V ⊗W is also
finite dimensional and hence A⊗B can be represented by a matrix, as soon
as we choose an ordered basis for V ⊗ W. If {v1, . . . , vn} is a basis for V
and A = (ai,j) is the n× n matrix for A, {w1, . . . , wm} is a basis for W and
B = (bi,j) is the matrix for B, then {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a
basis for V ⊗W and as soon as we order it, we may represent A ⊗ B by a
matrix. When we order the basis for V ⊗W by, {v1 ⊗w1, v1 ⊗w2, . . . , v1 ⊗
wm, v2 ⊗ w1, . . . , v2 ⊗ wm, . . . , vn ⊗ w1, . . . , vn ⊗ wm}, then the nm × nm
matrix for A⊗B is given in block form by,a1,1B . . . a1,nB

...
...

an,1B . . . an,nB

 .

The matrix obtained from (ai,j), (bi,j) in this fashion is called the Kronecker
tensor of A and B. When we order the basis for V ⊗W by, {v1⊗w1, . . . , vn⊗
w1, v1⊗w2, . . . , vn⊗w2, . . . , v1⊗wm, . . . wm}, then the block matrix for A⊗B
in this basis is,  b1,1A . . . b1,mA

...
...

bm,1A . . . bm,mA

 ,

which is the Kronecker tensor of the matrices (bi,j) and (ai,j)(with the order
reversed).
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Example 9.1. Let A =
(

1 2
0 −1

)
and B =

1 2 1
0 −1 0
1 0 −1

 , then the Kro-

necker tensor is

A⊗B =
(
B 2B
0 −B

)
=


1 2 1 2 4 2
0 −1 0 0 −2 0
1 0 −1 2 0 −2
0 0 0 −1 −2 −1
0 0 0 0 1 0
0 0 0 0 0 1

 ,

while the Kronecker tensor,

B ⊗A =

A 2A A
0 −A 0
A 0 −A

 =


1 2 2 4 1 2
0 −1 0 −2 0 1
0 0 −1 −2 0 0
0 0 0 1 0 0
1 2 0 0 −1 −2
0 −1 0 0 0 1

 .

Proposition 9.2. Let G be a group and let π : G → GL(V ) and ρ : G →
GL(W ) be homomorphisms, then setting γ(g) = π(g) ⊗ ρ(g), defines a ho-
momorphism, γ : G → GL(V ⊗W ). If G is a topological group, V and W
are finite dimensional, and π, ρ are continuous, (bounded), homomorphisms,
then γ is a continuous,(bounded), homomorphism.

Proof. We have that γ(gh) = π(gh) ⊗ ρ(gh) = (π(g)π(h)) ⊗ (ρ(g)ρ(h)) =
(π(g)⊗ ρ(g))(π(h)⊗ ρ(h)) = γ(g)γ(h), and so γ is a homomorphism.

If V and W are finite dimensional, then we may choose bases so that
π(g) = (ri,j(g)), ρ(g) = (ti,j(g)) and the fact that these maps are contin-
uous (bounded) is equivalent to all of the functions ri,j , ti,j being contin-
uous (bounded) functions. But the matrix for γ, is of the form, γ(g) =
(ri,j(g)tk,l(g)) and since the products of (bounded) continuous are again
(bounded) and continuous, the proof is complete. �

We set π ⊗ ρ = γ.
Note that when we consider the characters of these representations, then

we have that,
χπ⊗ρ(g) = χπ(g)χρ(g).

Thus, products of characters are again characters! Hence, the linear span of
the character functions is an algebra of functions on G.

Problem 9.3. Let π denote the 2-dimensional irreducible representation of
D4. Compute the decomposition of the 4-dimensional representation, π ⊗ π
into a sum of irreducible representations. Let ρ denote the 4-dimensional
representation of D4 obtained as permutations on the 4 vertices of the square.
Compute the decomposition of ρ⊗ρ into a sum of irreducible representations.



66 VERN PAULSEN

There is one other way to obtain a new representation from an old repre-
sentation that plays a role.

Let π : G → GL(n,C), say, π(g) = (ri,j(g)), be a homomorphism and
define π̄ : G → GL(n,C) by π̄(g) = ( ¯ri,j). It is easily checked that π̄
is also a homomorphism and that if G is a topological group and π is a
continuous(bounded) homomorphism, then π̄ is also a continuous(bounded)
homomorphism.

Note that χπ̄ = χπ, so that the complex conjugate of a character is also
a character.

Problem 9.4. Prove that if π is irreducible, then π̄ is irreducible.

10. The Peter-Weyl Theory for Compact Groups

In this section, we discuss a collection of results for compact groups at-
tributed to Peter and Weyl. This collection of theorems form the basis for
what is often referred to as ”abstract harmonic analysis on groups”. The
key fact is that these theorems, generalize classical Fourier theory, which
can be seen as the application of the Peter-Weyl theorems to the group T.

Theorem 10.1 (Peter-Weyl 1). Let G be a compact group, let g 6= h be
elements of G. Then there exists n and a continuous, irreducible homomor-
phism, π : G→ GL(n,C) such that π(g) 6= π(h).

Thus, there are enough continuous, irreducible representations on finite
dimensional to separate the elements of G.

A proof of this theorem is beyond us at this stage, since the proof uses
the theory of compact operators on on Hilbert space. However, we will be
able to prove most of the rest of the Peter-Weyl theory using this theorem
as the basis.

Given π : G→ GL(n,C), write π(g) = (ri,j(g)), the the functions, ri,j are
called the coefficients of π.

Theorem 10.2 (Peter-Weyl 2). Let G be a compact group, then every con-
tinuous, complex-valued function on G, is a uniform limit of finite linear
combinations of coefficients of finite dimensional, irreducible representations
of G.

Proof. We shall use the Stone-Weierstrass theorem, which says that if a set
of continuous functions on a compact space X is an algebra that separates
points, contains the function that is constantly equal to one, and is closed
under the taking of conjugates, then it is uniformly dense in C(X). To this
end we let A ⊆ C(G) denote the set of functions that are linear combinations
of coefficients of irreducible representations.

Clearly, A is a vector space.
Now by the first Peter-Weyl theorem, given two points there is π = (ri,j)

such that π(g) 6= π(h) and so for some coefficient, we must have that
ri,j(g) 6= ri,j(h), and thus A separates points.
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Since the function that is constantly equal to 1, is a one-dimensional
irreducible representation, it belongs to A.

Now if f1 = ri,j is a coefficient of the irreducible, π and f2 = tk,l is a
coefficient of the irreducible, representation, ρ, then f1f2 is a coefficient of
the representation π ⊗ ρ. Now this later representation is not necessarily
irreducible, but it can be decomposed into a direct sum of irreducible rep-
resentations and this decomposition expresses f1f2 as a sum of coefficients
of the irreducible representations appearing in the decomposition of π ⊗ ρ.
Thus, A is an algebra of functions that separates points.

Finally, if f is a coefficient of π, then f̄ is a coefficient of π̄ and one can
argue as in the last paragraph that this is a sum of coefficients of irreducible
representation, or use the last problem. Thus, A is closed under the taking
of conjugates. �

Example 10.3. Consider G = T. We have shown that every irreducible
of T is one-dimensional and they are all of the form, πn(z) = zn. Thus, by
Peter-Weyl 2, we have that every continuous function on T, can be uniformly
approximated by a function of the form,

∑+N
n=−N anz

n, where an are scalars.

Example 10.4. More generally, for Tk, we have that every irreducible rep-
resentation is of the form πN (z) = zN where we are using multi-index no-
tation, z = (z1, . . . , zk), N = (n1, . . . , nk) and zN = zn1

1 · · · z
nk
k . Thus, by

Peter-Weyl 2, every continuous function on Tk can be approximated by a
function that is a finite sum of the form

∑
aNz

N , where aN are scalars.

There is another characterization of A that is often useful. Note that if
π : G → GL(n,C) is a continuous, representation with π(g) = (ti,j(g)), the
coefficient functions and x = (a1, . . . , an) and y = (b1, . . . , bn) are vectors in
Cn, then the function, f(g) = 〈π(g)x, y〉 =

∑
aib̄jti,j(g) is in A.

Conversely, if f is any function in A, then f is a sum of coefficients of
continuous representations and we claim that by considering the represen-
tation that is the direct sum of these representations and choosing vectors
x and y, appropriately, we can write f(g) = 〈π(g)x, y〉.

We illustrate how to do this when f = at1,2 + br3,4 where π = (ti,j), ρ =
(rk,l). We have that f(g) = 〈π(g)(ae1), e2〉 + 〈ρ(g)(be3), e4〉 = 〈(π(g) ⊕
ρ(g))x, y〉, where x = (ae1)⊕ (be3), y = e2 ⊕ e4.

Thus, we have shown that A = {〈π(g)x, y〉 : πcontinuous, x, yvectors}.
The Space L2(G)
For these results, we will need some basic results about Hilbert spaces.
Let G be a compact group and let m be the unique, normalized Haar

measure on G. The there are two ways that we can define the space, L2(G),
for those familiar with measure theory,

L2(G,m) = {[f ] : fmeasurable,
∫
G
|f |2dm < +∞},

where [f ] = [g] if and only if f = g, a.e.m.
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For those unfamiliar, recall that for f1, f2 ∈ C(G), setting (f1|f2) =
M(f1f̄2) =

∫
G f1f̄2dm, defines an inner product on C(G) and so we have a

natural metric on C(G), d(f1, f2) = (f1−f2|f1−f2)1/2. The set C(G) is not
complete in this metric and so it has a completion as a metric space and
that is L2(G).

In either case, it is important to know that L2(G,m) is a complete, inner
product space, i.e., a Hilbert space with inner product, (f1|f2) =

∫
G f1f̄2dm,

metric, d(f1, f2) = (
∫
G |f1−f2|2dm)1/2 and C(G) ⊆ L2(G) is a dense subset.

Recall that if we are given a complete inner product space, V, then a
collection of vectors {ei : i ∈ I} is called orthonormal provided, (ei|ej) = 0
when i 6= j and ‖ei‖2 = (ei|ei) = 1. An orthonormal set is called complete
provided v ∈ V and (v|ei) = 0 for all i ∈ I, implies that v = 0. A complete
orthonormal set is also called an orthonormal basis for V.

One of the key facts about orthonormal bases is Parseval’s theorem, which
is just a natural extension of Pythagoras’ theorem.

Theorem 10.5 (Parseval). Let V be a Hilbert space and assume that {en :
n ∈ N} is an orthonormal basis for V. Then for every v ∈ V , we have:

• ‖v‖2 =
∑+∞

n=1 |(v|en)|2,
• v =

∑+∞
n=1(v|en)en, in norm.

The second statement means that, limN→+∞‖v −
∑N

n=1(v|en)en‖ = 0.

Definition 10.6. Given a compact group, G, we let Ĝ denote the set of
equivalence classes of finite dimensional, continuous, irreducible representa-
tions of G. The set Ĝ is called the dual of G. A collection {πα : α ∈ A}
of finite dimensional, continuous irreducible representations of G is called
complete, provided that πα � πβ for α 6= β, and Ĝ = {[πα] : α ∈ A}, where
[π] denotes the equivalence class of a representation π.

By an earlier, result, every continuous bounded representation of a com-
pact group is equivalent to a unitary representation, so we may choose a
complete set consisting of unitary representations.

Example 10.7. For G = T, we have that T̂ = {[πn] : n ∈ Z}, where
πn(z) = zn. Thus, we may identify, T̂ with Z. Moreover, since πn takes
values on the unit circle, it is a unitary representation.

Example 10.8. More generally, for Tk, we have that T̂k = {[πN ] : N ∈ Zk},
where πN (z) = zN , in multi-index notation. Thus, we may identify, T̂k with
Zk. Again this is a complete set of unitary representations.

We can now state the third Peter-Weyl result.

Theorem 10.9 (Peter-Weyl 3). Let G be a compact group, and let πα :
G → GL(nα,C), α ∈ A be a complete set of unitary representations for G,
with πα(g) = (t(α)

i,j (g)) the coefficients of πα. Then the set {√nαt(α)
i,j : 1 ≤

i, j ≤ nα, α ∈ A} is an orthonormal basis for L2(G).
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Before proving this theorem, we tie it into classical Fourier theory. By
the above theorem, πn(z) = zn is an orthonormal basis for L2(T,m) where,
recall that arc-length measure is the Haar measure for the T. By identifying
T with the interval, [0, 2π) via the map, t → eit, we identify L2(T,m) with
L2([0, 2π), µ) where µ([0, 2π)) = 1, so that µ is 1

2π times Lebesgue measure.
Thus, we see that the functions, fn(t) = πn(eit) = eint = cos(nt) + isin(nt)
are a complete orthonormal set with respect to this measure.

Similar results hold for Tk and [0, 2π)k.

Proof. Since each πα is unitary, (t(α)
i,j (g−1)) = πα(g−1) = πα(g)∗ = (t(α)

j,i (g)).

Thus, we have that, t(α)
j,i = t̃

(α)
i,j .

Now by the ugly idenities, it follows that, (t(α)
i,j |t

(β)
k.l ) = M(t(α)

i,j t̃
(β)
l,k ) ={

0, α 6= β
δi,kδj,l
nα

, α = β
, which proves that the set of functions is orthonormal.

We set, e(α)
i,j =

√
nαt

(α)
i,j .

It remains to show that if f ∈ L2(G,m) and (f |e(α)
i,j ) = 0 for all, i, j, α,

then f=0.
Note that if {fn} is a sequence in L2(G,m) such that ‖f − fn‖ → 0,

then (fn|f̃) → (f |f̃) for any f̃ ∈ L2(G,m). By the second property of
L2(G,m), we may choose such a sequence of functions with fn ∈ C(G).
However, by Peter-Weyl 2, we may choose functions, hn ∈ A such that,
|fn(g)−hn(g)| < 1/n for every g ∈ G. Hence, ‖fn−hn‖2 = (fn−hn|fn−hn) =∫
G |fn(g)− hn(g)|2dm(g) ≤

∫
G

1
n2dm = 1

n2 . Hence, ‖fn − hn‖ < 1/n and so,
‖f − hn‖ → 0.

Note that since each hn is a linear combination of coefficients, (f |hn) = 0.
But, ‖hn‖2 = (hn|hn) = (hn|hn)− (f |hn) = (hn − f |hn) ≤ ‖f − hn‖ · ‖hn‖.
Therefore, ‖hn‖ ≤ ‖f − hn‖ → 0, and so ‖hn‖ → 0.

Finally, ‖f‖2 = (f |f) = limn(hn|f) ≤ limn‖hn‖ · ‖f‖ = 0 and it follows
that ‖f‖ = 0 and so f=0. �

There are many other theorems that relate properties of L2(G,m) to
properties of G. The following one is typical, but is beyond our current
methods.

Theorem 10.10. Let G be a compact group. Then the following are equiv-
alent:

(i) Ĝ is countable,
(ii) L2(G,m) is a separable, Hilbert space,
(iii) L2(G,m) has a countable orthonormal basis,
(iv) G is a metrizable topological space.

Those of you familiar with Hilbert spaces, should recognize that the equiv-
alence of (ii) and (iii) is true in general. Also, that (i) implies (iii) follows
from the Peter-Weyl 3. The fact that (iii) implies (i) follows from the fact
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that any two complete orthonormal sets in a Hilbert space, must have the
same cardinality. So the real depth in this theorem is the equivalence of
(i)-(iii) with (iv).

We close this section with a result that is useful for finding a complete
set of unitary representations of a compact group.

Theorem 10.11. Let G be a compact group and suppose that π : G →
GL(n,C) is a continuous, unitary representation of G with the property that
for any g 6= h, we have π(g) 6= π(h), i.e., that π separates points. Let
π(m) : G → GL(nm,C) denote the continuous unitary representation of G
that is obtained by tensoring π with itself m times. Then every continuous,
finite dimensional, irreducible representation of G is equivalent to a subrep-
resentation of π(m) ⊗ π̄(k), for some integers m and k, where π̄ denotes the
complex conjugate of the representation π.

Proof. Let S = {πα : α ∈ A} be a set that contains one representation from
each equivalence class of irreducible, representations that can be obtained
as subrepresentations of the set of representations, π(m)⊗π̄(k)

.
Assume that πα : G → GL(nα,C) and that πα = (t(α)

i,j ), so that the

functions, {√nαt(α)
i,j : α ∈ A} are an orthonormal set in L2(G,m). We will

show that these are a complete orthonormal set.
Note that linear combinations of these functions will contain all of the

functions that occur as coefficients in any of the representations, π(m)⊗ π̄(k).
But if π = (ti,j), then using the Kronecker tensor, we see that the coefficients
of π(2) are all products of any two of the functions, ti,jtk,l. Similarly, the
coefficients of π(m) are all products of m coefficient functions. Thus, the
coefficients of π(m)⊗ π̄(k) contain all products of m coefficient functions and
of k complex conjugates of coefficient functions.

Thus, the linear combinations of the above set of orthonormal functions
is the subalgebra B of C(G), generated by the coefficients of π and their
complex conjugates. Since π separates points, this subalgebra separates
points and the complex conjugates of functions in B are again in B. Finally,
the constant function belongs to B, since it is equal to |det(π(g))|2, which
belongs to B. Hence, by the generalized Stone-Weierstrass theorem, B is
uniformly dense in C(G).

From this it follows that if a continuous function is orthogonal to the above
orthonormal set, then that function is 0. But since the continuous functions
are dense in L2(G,m), this set of functions is a complete orthonormal set.

Now suppose that S was not a complete set of irreducible representations.
Then there would exist ρ = (ri,j) an irreducible, unitary representation, that
was not equivalent to any representation in S. But this would imply that
the functions, ri,j are orthogonal to the functions obtained from S, a con-
tradiction. Hence, S contains every a representative from every irreducible,
finite dimensional, continuous representation of G. �
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Thus, for example, for the groups, U(n) and SU(n) we see that their
identity representations as subsets ofGL(n,C), separate points. Hence every
irreducible representation of these groups can be found by tensoring the
identity representation and its complex conjugate representation with itself
finitely many times and restricting to subspaces that are irreducible.

Class Functions

Let G be a compact group, then for any g ∈ G, the conjugacy class of g,
Cg = {h−1gh : h ∈ G} is a compact subset of G, since it is the image of the
compact set G under the continuous function, f(h) = h−1gh.

Recall conjugacy equivalence, g1 ∼ g2 if and only if Cg1 = Cg2 which is
also if and only if g2 ∈ Cg1 . Since each equivalence class is closed, we get
that the space of cosets, G̃ = G/̃, is aalso a compact (Hausdorff) space. We
let q : G→ G̃ denote the quotient map.

A function f : G→ C is called a class function if it is constant on equiv-
alence classes, i.e., if f(h−1gh) = f(g). We let Cinv(G) ⊆ C(G) denote the
set of continuous, class functions(in this setting inv stands for ”invariant”).
From general topology, we know that f ∈ Cinv(G) if and only if there exists,
f̃ ∈ C(G̃) such that f = f̃ ◦ q.

Proposition 10.12. Let G be a compact topological group, then Cinv(G) is
a uniformly closed subalgebra of C(G).

Proof. Easy! �

When G was a finite group, Cinv(G) was our space, H ⊆ C(G).

Theorem 10.13 (Peter-Weyl 4). Let G be a compact group.

(i) Finite linear combinations of characters of continuous, finite dimen-
sional, irreducible representations are uniformly dense in Cinv(G),

(ii) If f ∈ Cinv(G) and (f |χπ) = 0 for all such characters, then f=0.

Proof. Given f ∈ Cinv(G) and ε > 0, there exists, f1 ∈ A, such that |f(g)−
f1(g)| < ε for every g ∈ G. By the remarks following Peter-Weyl 2, there
exists a continuous, homomorphism, π : G → GL(n,C) and vectors, x, y ∈
Cn, such that f1(g) = 〈π(g)x, y〉.

Fix g ∈ G and let h ∈ G be arbitrary. Since f(h−1gh) = f(g), we have
that |f(g)−〈π(h−1gh)x, y〉| < ε. Regarding these as functions of h and inte-
grating with respect to Haar measure, we obtain |f(g)−

∫
G〈π(h−1gh)x, y〉dm(h)| <

ε. We now prove that the function represented by the integral is a sum of
characteristic functions, which will complete the proof of (i).

Note that,
∫
G〈π(h−1gh)x, y〉 = 〈[

∫
G π(h−1)π(g)π(h)dm(h)]x, y〉.

Recall that if π is irreducible andA is any matrix, then
∫
G π(h−1)Aπ(h)dm(h) =

Tr(A)
n In. So, if π was irreducible, then

∫
G〈π(h−1)π(g)π(h)x, y〉dm(h) =

χπ(g)
n 〈x, y〉. For a general, π, write π = π1 ⊕ · · · ⊕ πk with each πi irre-

ducible and on a space of dimension ni, and decompose x = x1 ⊕ · · · ⊕ xk



72 VERN PAULSEN

and y = y1 ⊕ · · · ⊕ yk. Then we have that,∫
G
〈π(h−1)π(g)π(h)x, y〉dm(h) =

k∑
i=1

∫
G
〈πi(h−1)πi(g)πi(h)xi, yi〉dm(h) =

k∑
i=1

χπi(g)
ni
〈xi, yi〉,

which completes the proof of (i).
To prove (ii), given f ∈ Cinv(G), we can find functions, fn that are

finite linear combinations of characters such that |f(g) − fn(g)| < 1/n for
all n and all g ∈ G. This implies that ‖f − fn‖22 = (f − fn|f − fn) =∫
G |f(h)−fn(h)|2dm(h) < 1/n2. But since, (f |χπ) = 0, for all π, we have that

(f |fn) = 0, and hence, 0 = limn→∞(f − fn|f − fn) = limn→∞(f |f) + (fn|fn)
and it follows that

∫
G |f(h)|2dm(h) = ‖f‖22 = 0, But since f is continuous,

by an earlier result, this implies that f = 0. �

Definition 10.14. Let G be a compact group, then L2
inv(G,m) = {f ∈

L2(G,m) : f(h−1gh) = f(g), a.e.m} is called the space of square inte-
grable class functions.

The following useful characterization of L2
inv(G) is sometimes used as the

definition.

Proposition 10.15. Let G be a compact group, then L2
inv(G) is the closure

of Cinv(G) in L2(G).

Proof. Since C(G) ⊆ L2(G) is a dense subset, given any f ∈ L2
inv(G) there

is a sequence of functions, fn ∈ C(G) such that, ‖f − fn‖ < 1/n. Set
f̃n(g) =

∫
G fn(h−1gh)dm(h), then f̃n ∈ Cinv(G) and ‖f − f̃n‖ < 1/n. �

Corollary 10.16. Let G be a compact group and let {πα : α ∈ A} be a
complete set of finite dimensional irreducible representations for G. Then
{χπα : α ∈ A} is an orthonormal basis for L2

inv(G,m).

Proof. Assume that f ∈ L2
inv(G) is perpendicular to all such characters, then

we must show that ‖f‖2 = 0. By the above proposition, there exists fn ∈
Cinv(G) such that ‖f − fn‖2 → 0. But since each fn can be approximated
in sup norm by a linear combination of characters, we can assume that each
fn is actually a linear combination of characters. But then (f |fn) = 0 and
the fact that ‖f‖ = 0 follows as in earlier arguments. �


