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1 Tails of Graphs

1.1 The Rooted Product

Assume we are given a graph X with V (X ) = {1, . . . ,n} and a sequence Y of

rooted graphs Y1, . . . ,Yn , each with with at least one vertex. Let X Y denote

the graph obtained by merging the root of Yr with the vertex r of X , for

each r ; we call it the rooted product of X with Y .

Let D(t ) denote the n ×n diagonal matrix with r r -entry equal to φ(Yr , t )

and let D1(t ) be the n ×n diagonal matrix with r r -entry equal to φ(Yr \r , t ).

The following result comes from 1. 1

1.1 Theorem. If X is a graph on n vertices with adjacency matrix A and Y

is a sequence of n rooted graphs, then

φ(X Y , t ) = det(D(t )−D1(t )A).

Proof. Let Y1 denote the sequence we get by replacing Y1 with K1, let ψ =
φ(Y1, t ) and ψ1 =φ(Y1 \1, t ). We set

M(X ,F ) = D(Y )−D1(Y )A(X

(for any pair X and Y ). The first row of D(Y )−D1(Y )A is equal to

(ψ− tψ1)eT
1 +ψ1eT

1 M(X ,Y1).

If Y ′ denotes the sequence we get by deleting the first term from Y , then

by induction we have

det(D(Y )−D1(Y )A) = (ψ− tψ1)det(M(X \1,Y ′))+ψ1 det(M(X ,Y1)).

Observe now that X Y is the 1-sum of Y1 and X Y1 , whence

φ(X Y , t ) =φ(Y1)φ(X Y1 )+φ(Y )φ((X \1)Y
′
)− tφ(Y1)φ((X \1)Y

′
).

On comparing these last two equations, the result follows.

The graphs we will actually be concerned with are rooted products of

some graph X with a collection of c copies of the path Pn+1. We use C to

denote the vertices of X at which these paths are attached. We say that X is

formed by attaching c tails to the vertices in the subset C of V (X ). Let ϕn(t )

denote φ(Pn , t ).
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1.2 Corollary. Assume Z is obtained by adding c tails to X at the vertices

in C . Let D be the diagonal matrix where Du,u is the number of tails on u.

Then Right now the number of tails is 0 or 1. We
will become more flexible.φ(Z , t ) =φ(Pn , t )c det

(
t I − A− ϕn−1(t )

ϕn(t )
D

)
.

Proof. From the theorem, we have

φ(Z , t ) =φ(Pn , t )c det(D1(t )−1D(t )− A).

As

ϕn+1(t ) = tϕn(t )−ϕn−1(t ),

we have The rational function
t−1ϕn−1(t−1)/ϕn (t−1) is the generat-
ing function for closed walks on Pn that
start at vertex 1; its limit as n → ∞ is
the generating function for the Catalan
numbers

ϕn+1(t )

ϕn(t )
= t − ϕn−1(t )

ϕn(t )

and the result follows.

1.2 Mutants

We may allow multiple tails on each vertex. In this case each vertex in C has

a multiplicity, which will be a positive integer. If u ∈C we define Fu,u to be

the number of tails on u.

Let Qr ,n denotes the graph formed when we merge the first vertices of r

copies of Pn . Qr ,n is a subdivision of the star K1,r

1.3 Lemma.

φ(Qr ,n , t ) =φ(Pn−1, t )r−1(tφ(Pn , t )− rφ(Pn−1, t ))

If Q1
r ,n denote the graph we get by deleting the vertex of degree r , then

Q1
r ,n

Qr ,n
= t − r

φ(Pn−1, t )

φ(Pn , t )
.

It follows that, with our revised definition of F , Corollary 1.2 still holds.

2 Limits

2.1 Real Limits

We can write the recurrence for the characteristic polynomial of a path in

matrix form: (
ϕn+1

ϕn

)
=

(
t −1

1 0

)(
ϕn

ϕn−1

)
, (n ≥ 1) (2.1)

whence (
ϕn+1

ϕn

)
=

(
t −1

1 0

)n (
t

1

)
. (n ≥ 0).
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Set

M(t ) =
(

t −1

1 0

)
.

The eigenvalues of M are the roots of the quadratic

z2 − t z +1,

that is
1

2
(t ±

√
t 2 −4).

We set

α= 1

2
(t −

√
t 2 −4),

and then the second root is α−1 and

t =α+α−1.

If t 6= 2, the eigenvalues of M(t ) are distinct, and it follows that there are

idempotent matrices F0 and F1 such that F0 +F1 = I and

M(t )n =αnF0 +α−nF1.

Therefore (
ϕn+1

ϕn

)
=αnF0

(
t

1

)
+α−nF1

(
t

1

)
2.1 Lemma. If t ∈R and t > 2, then

lim
n→∞

ϕn−1(t )

ϕn(t )
= 1

2

(
t −

√
t 2 −4

)
;

if t < 2 we have

lim
n→∞

ϕn−1(t )

ϕn(t )
=−1

2

(
t −

√
t 2 −4

)
;

Proof. If |t | > 2, then αn → 0 as n →∞ and hence

‖M(t )n −α−nF0‖→ 0

as n →∞. Consequently (
ϕn−1(t )

ϕn(t )

)
−αnF0

(
t

1

)

convergs to zero and this proves that

lim
n→∞

ϕn−1(t )

ϕn(t )

exists. From (2.1), we deduce that this limit must be an eigenvector for

M(t ) with eigenvalue equal to the limit. As the eigenvalues of M(t ) are α

and α−1, our limit must be α.
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ϕn−1(t )/ϕn (t ) < 1 when n is large

We note that

M(t )

(
α

1

)
=

(
tα−1

α

)
and tα−1 =α2, therefore

M(t )

(
α

1

)
=α

(
α

1

)
.

2.2 Corollary. If t > 2,

lim
n→∞ t I − A− ϕn−1(t )

ϕn(t )
F = t I − A− 1

2

(
t −

√
t 2 −4

)
.

If we assume ζ= eu and t = ζ+ζ−1, then

t I − A− 1

2

(
t −

√
t 2 −4

)
F = (ζ+ζ−1)I − A−ζF .

What the scattering papers tell us is that, if ζ is complex with norm one

and the columns of the n × c matrix P are the vectors er for r in C , then

S(ζ) := (z − z−1)P T ((ζ+ζ−1)I − A−ζF )−1)P − I .

is unitary. In fact

S(ζ)S(ζ−1) = I

for any value of ζ.

2.2 Some Complexity

If t = 2cos(θ), the eigenvalues of (
t −1

1 0

)

are e±iθ, and then(
t −1

1 0

)n (
t

1

)
= e i nθF0

(
t

1

)
+e−i nθF1

(
t

1

)
.

Accordingly

φ(Pn ,2cos(θ)) = Ae i nθ+Be−i nθ

for some scalars A and B (with A +B = 1). We see that ϕn−1(t )/ϕn(t ) does

not converge in this case. We can still use Corollary 1.2 to compute the

eigenvalues of the rooted product when the tails are finite, but we can say

nothing intelligent about limits.
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3 Graphs with Infinite Tails

3.1 Spectrum of an Infinite Graph

We restrict ourselves to graphs with an upper bound on their valency. If Z

is a graph and f is a complex function on V (Z ), the adjacency operator A

maps f to a function A f such that

(A f )(u) = ∑
v∼u

f (v).

The spectrum of A is the set of complex scalars λ such that λI − A is not

invertible.

There are two ways in which λI − A might fail to be invertible:

(i) It might not be injective.

(ii) It might not be surjective.

When an operator acts on a finite dimensional space, it is injective if and

only if it is surjective. By way of examples, if V is the space of real poly-

nomials in t , multiplication by t is a linear map that is injective but not

surjective; differentiation with respect to t is surjective but not injective.

We prefer that our linear operators act on Banach spaces, and there are

three at hand. First is `∞(Z ), the space of bounded functions on Z . The

second is `1(Z ), the space of functions f such that∑
v∈V (Z )

| f (v)| <∞.

Finally we have `2(Z ), consisting of the functions f such that∑
v∈V

| f (v)|2 <∞.

We note that `∞(Z ) and `1(Z ) are Banach spaces, while `2(Z ) is a Hilbert

space. In quantum physics, the operators of interest are usually defined

only on a dense subspace of a Hilbert space. For example, consider differ-

entiation acting on square-integrable functions on the interval [0,1].

Now assume Z is formed by attaching infinite tails to vertices of a fi-

nite graph X . Functions in `2(Z ) are known as bound states. An eigen-

vector with support contained in V (X ) is a confined state (a confined

state is necessarily bound.) An eigenvector is a scattering state if it lies in

`∞(V (Z ))\`2(V (Z )).

3.2 Sequence Spaces
This section does not have much to do
with scattering; it’s more me reviewing my
analysis

For our purposes, there are three sequence spaces of interest: `1(V (X )),

`2(V (X )) and `∞(V (X )). These are Banach spaces (complete, normed) and

`2(V (X )) is a Hilbert space. We have the inclusions

`1(V (X )) ⊆ `2(V (X )) ⊆ `∞(V (X )).
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The dual space of `1 is `∞, and vice versa (while `2 is self-dual).

If the valency of X is bounded, then its adjacency matrix A is bounded

relative to all three norms. Scattering states lie in `∞(V (X )), but do not

usually lie in `2. We use ‖·‖p to denote the `p -norm.

If B is a normed space and A is a linear operator on B, the operator

norm of A is ∑
‖x‖B=1

‖Ax‖B .

3.1 Lemma. If X is finite then:

(a) ‖A‖1 = maxi‖Aei‖1.

(b) ‖A‖2 =σ1, the largest singular value of A.

(c) ‖A‖∞ = maxi‖eT
i A‖1.

We see that ‖A‖∞ = ‖AT ‖1. If x ∈ `1 and y ∈ `∞, we define 〈x, y〉 by

〈x, y〉 =∑
r

xr yr .

Hölder’s inequality gives us that

|〈x, y〉| ≤ ‖x‖1‖y‖∞;

It follows that we have a bilinear form on `1 ×`∞.

If x ∈ `1 and y ∈ `∞, define Lx,y by

Lx,y (z) = 〈x, z〉 y .

Then Lx,y is a linear operator on `∞; it is idempotent if 〈x, y〉 = 1.

3.3 Eigenvectors in `∞(V (Z ))

An eigenvector z is geometric on a tail if zr =Ce i rη for some positive scalar

η. If X has c tails, c ≥ 2, and θ = 2cos(η), then an `∞-eigenvector is a

scattering state with incoming on the i -th tail if it is geometric on all but

the i -th tail. We will assume that on the i -th tail,

zr = e−i rη+σi e i rη

and that on the j -th tail,

zr =σ j e i rη.

3.2 Theorem. Let Z be the rooted product of the graph X with c paths of

infinite length. Let z be an eigenvector of Z in `∞(V (Z )) with eigenvalue θ

and let (zr )r≥0 be the values of z on a tail. There are three cases:

(a) |θ| < 2: θ = 2cos(η), zr =Ce i rη+De−i rη; the eigenvector is geometric if

and only if z1/z0 = e iη.
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(b) |θ| = 2: either θ = 2 and yr is constant, or θ = −2 and zr = C (−1)r for

some real γ.

(c) |θ| > 2: θ = 2cosh(η), η> 0, zr = z0e−rη.

Proof. We work from the expression(
zr+1

zr

)
= Sr

(
b

a

)
.

with

S =
(
θ −1

1 0

)
.

Set

β=
(

b

a

)
.

Suppose θ = 2. Then (simple induction)

Sn =
(

n 1−n

n −1 2−n

)
and

Sn

(
b

a

)
=

(
n(b −a)+a

(n −1)(b −a)+a

)
;

hence Snβ is bounded if and only if b = a, and then z is constant. If θ =−2,

note that (
−2 −1

1 0

)
=−

(
−1 0

0 1

)(
2 −1

1 0

)(
−1 0

0 1

)
and then deduce that z is bounded if and only a + b = 0, in which case

zr = c(−1r ) for some c.

Assume |θ| 6= 2. Then the eigenvalues of S are distinct and their product

is det(S), which is 1. There is a 2×2 idempotent F such that

Sr =
(
θ+

p
θ2 −4

2

)r

F +
(
θ−

p
θ2 −4

2

)r

(I −F )

If |θ| < 2, both eigenvalues of S have absolute value 1, and therefore Srβ is

bounded.

As

Srβ=
(

zr+1

zr

)
,

we deduce that (
zr+1

zr

)
= e i rηFβ−e−i rη(I −F )β

and therefore z is geometric if and only if (I −F )β = 0, and this happens if

and only if β is a eigenvector for S with eigenvalue (θ+
p
θ2 −4)/2, i.e., with

eigenvalue e iη. To identify this eigenvector, note that

S

(
e iη

1

)
=

(
(e iη+e−iη)e iη−1

e iη

)
= e iη

(
e iη

1

)
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If |θ| > 2, then (θ+
p
θ2 −4)/2 is greater than 1 and

Smβ

is unbounded unless Fβ = 0, which happens if and only if (I −F )β = β,

that is, β is an eigenvector for S with eigenvalue of absolute value at most 1.

Hence the eigenvector z is bounded if |θ| > 2 and β is an eigenvector for S

with eigenvalue

µ= 1

2
(θ−

√
θ2 −4).

The adjugate of S −µI is

R =
(
−µ 1

−1 θ−µ

)
and since

(S −µI )R = det(S −µI )I = 0,

the columns of R are eigenvectors for S with eigenvalue µ. Therefore

b

a
= 1

2

(√
θ2 −4−θ)

.

In case (c), the vector z is a bound state.

3.3 Corollary. An eigenvector z in `∞(V (Z )) with eigenvalue θ lies in `1 if

and only if |θ| > 2 or z is zero on C and on all tails.

3.4 Another Quadratic

We show that

ζ(ζ+ζ−1)I − A−ζF ) = (I −ζA+ζ2(I −F ))

provides information about scattering states.

3.4 Theorem. Let X be a graph with c tails, and let C be the set of vertices

of attachment of the tails. Let z be a scattering state on X , incoming on the

j -tail, with eigenvalue θ. Assume ζ = e iθ (so ζ+ ζ−1 = 2cos(θ)). Let zu,r

denote the value of z on vertex r of the tail attached to u in X , and let x

denote the restriction of z to X . Let F be the diagonal matrix with Fu,u = 1

if u ∈C and Fu,u = 0 otherwise. Then (I −ζA+ζ2(I −F ))x = (1−ζ2)e j .

Proof. Let θ = 2cos(η) be the eigenvalue for z. If u ∈V (X )\C , then xu = zu,0.

Hence, if u ∉C ,

θxu = ∑
v∼u,v∈X

xv = (A(X )x)u

and, if u ∈ S, then

θxu = ∑
v∼u,v∈X

xv + zu,1 = (A(X )x)u + zu,1.
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We have zu,1 = e iηxu if u 6= i ; if u = i , then

zu,r =σue i rη+e−iηr .

Now

θzu,1 = zu,0 + zu,2

and so

(e iη+e−iη)(σue iη+e−iη) = xu +σue2iη+e−2iη,

yielding that σu = xu −1. Therefore

zu,1 = e iηxu −e iη+e−iη

Let R be the diagonal matrix with Ru,u = 1 if u ∈ C and Ru,u = 0 other-

wise. The above equations can be written as

θx = Ax +e iηRx − (e iη−e−iη)e j .

Set ζ= e iη. Then

(ζ+ζ−1)x = Ax +ζRx − (ζ−ζ−1)e j

and so

(−(ζ+ζ−1)I +ζR + A)x = (ζ−ζ−1)e j

and therefore

(I −ζA+ζ2(I −R))x = (1−ζ2)e j .

If, for each j in C , the function z( j ) is a scattering state with incoming

on tail j , then the set

{z( j ) : j ∈ S}

is linearly independent—any linear combination of scattering states geo-

metric on tail i is geometric on tail i , and so cannot be a scattering state

with incoming on tail i .

3.5 Playing with Blocks

We develop some formulas for 2×2 Hermitian block matrices (with square

diagonal blocks).

3.5 Lemma. If C is invertible, the (1,1)-block of(
A B∗

B C

)−1

is equal to (A−B∗C−1B)−1.
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Proof. We have the factorization(
A B∗

B C

)
=

(
I 0

0 C

)(
I B∗

0 1

)(
A−B∗C−1B 0

C−1B I

)

and therefore(
A B∗

B C

)−1

=
(

A−B∗C−1B 0

C−1B I

)−1 (
I −B∗

0 1

)(
I 0

0 C−1

)
,

from which our claim follows.

The matrix A −B∗C−1B is the Schur complement of C . One conse-

quence of the proof of the lemma is that

det

(
A B∗

B C

)
= det(C ) det(A−B∗C−1B).

3.6 Lemma. Assume

M =
(

A B∗

B C

)
and that the diagonal blocks of M are square. If

z =
(

x

y

)

is an eigenvector for M with eigenvalue λ and λ is not an eigenvalue of C ,

then

(λI − A−B∗(λI −C )−1B)x = 0, y = (λI −C )−1B x.

Proof.

M z =
(

Ax +B∗y

B x +C y

)
=

(
λx

λy

)
yielding

B∗y = (λI − A)x, B x = (λI −C )y .

Hence

y = (λI −C )−1B x

and

(λI − A)x = B∗y = B∗(λI −C )−1B x

and the lemma follows.

We see from this lemma that if λ is an eigenvalue of M but not of C , then

it is an eigenvalue of the Schur complement of C .
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3.6 The Scattering Matrix

We apply the results on block matrices to S(ζ).

Let C be the first c vertices of X and let A1 and A2 respectively be the

respective adjacency matrices of the subgraphs of X induced by C and

V (X )\C . Then

((ζ+ζ−1)I − A−ζD)−1 =
(

(ζ+ζ−1)I − A1 −ζD B∗

B (ζ+ζ−1)I − A2

)−1

We recall that if the columns of the n × c matrix P are the vectors e1, . . . ,ec ,

then

S(ζ) := (ζ−ζ−1)P T (
(ζ+ζ−1)I − A−ζD)−1)P − I .

Here P T ((ζ+ζ−1)I − A−ζD)−1)P is the inverse of the Schur complement

of the (2,2)-block of(
(ζ+ζ−1)I − A1 −ζD B∗

B (ζ+ζ−1)I − A2

)
.

We denote this complement by Q(ζ) and observe that

Q(ζ) = (ζ+ζ−1)I − A−ζD −B∗((ζ+ζ−1)I − A2)−1B .

and accordingly

S(ζ) = (ζ−ζ−1)Q(ζ)−1 − Ic .

3.7 Lemma. If D = Ic , then

S(ζ)S(ζ−1) = Ic .

If in addition |z| = 1, then S(ζ) is unitary.

Proof. We have

Q(ζ) = (ζ+ζ−1)Ic − A−ζD −B∗(
(ζ+ζ−1)I − A2

)−1B ,

and so

Q(ζ)−Q(ζ−1) = (ζ−1 −ζ)D .

Hence

Q(ζ−1)−1Q(ζ)− Ic = (ζ−1 −ζ)Q(ζ−1)−1D

and therefore

−Q(ζ)−1Q(ζ−1) = (ζ−ζ−1)Q(z)−1D − Ic .

If D = Ic , this yields

S(ζ) =−Q(ζ)−1Q(ζ−1).

When D = Ic ,

Q(ζ) = ζ−1Ic − A−B∗((ζ+ζ−1)In−c − A2)−1B ,
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and

Q(ζ−1) = ζIc − A−B∗((ζ+ζ−1)I − A2)−1B .

This implies that Q(ζ) and Q(ζ−1) commute, and this in turn implies that

S(ζ)S(ζ−1) =Q(ζ)−1Q(ζ−1)Q(ζ−1)−1Q(ζ) = Ic

We conclude also that if |z| = 1, then S(ζ) is unitary.

3.7 Reduced Walks

A walk in a graph X is reduced if it does not contain a subsequence of the

form uvu. (The second and second-last vertices in a reduced closed walk

of length greater than two might be the same.) If |V (X )| = n, then the ma-

trix generating series Φ(X , t ) is defined by declaring that (Φ(X , t ))u,v is the

generating series for the reduced walks in X from u to v , for all vertices

u and v of X . We see that if X is a tree, there is exactly one reduced walk

between a given pair of vertices, and the length of the walk is the distance

between the vertices. Hence if T is a tree, the entries of Φ(T , t ) are polyno-

mials of degree at most the diameter of T . Equivalently we can write

Φ(T , t ) = ∑
r=0

t r Dr ,

where (Dr )u,v = 1 if dist(u, v) = r and is otherwise zero. If T is a tree, then

Φ′(T ,1) = D(T ).

If A = A(X ), define pr (A) to be the matrix (of the same order as A) such

that (pr (A)u,v ) is the number of reduced walks in X from u to v . Thus

Φ(X , t ) =∑
r

t r pr (A).

Observe that

p0(A) = I , p1(A) = A, p2(A) = A2 −∆,

where ∆ is the diagonal matrix of valencies of X . If r ≥ 3 we have the recur-

rence

Apr (A) = pr+1(A)+∆1pr−1(A).

These calculations were first carried out by Biggs, who observed the impli-

cation that pr (A) is a polynomial in A and ∆, of degree r in A.

We define ∆1 to be ∆− I . Our next theorem combines two results from

Chan and Godsil 2. 2

3.8 Theorem. For any graph X on at least two vertices,

Φ(X , t )(I − t A+ t 2∆1) = (1− t 2)I .

Furthermore, det(I − t A+ t 2∆1) = 1− t 2 if and only if T is a tree.
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Note that

(ζ+ζ−1)I − A−ζD)−1 = ζ−1(I −ζA−ζ2(D − I )).

The diffence in sign of the quadratic term (compared to that in the the-

orem) means we are unlikely to be able to relate the entries of (I − ζA −
ζ2(D − I ))−1 to the numbers of some class of walks.
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