
Chapter 33

Matrix Perturbation Theory

Let A and B be n£n Hermitian matrices. Our aim is to derive information about
the eigenvalues of matrices of the form A+ tB , for real t . The set of matrices

{A+ tB : t 2R}

is called a matrix pencil . If rk(B) = k, we say that A+B is a rank-k update of X .
We are interested in matrix pencils where A and B are n £n Hermitian and

t is real, we call these Hermitian pencils . It is known [?] that, for a Hermitian
pencil, there is an integer m and analytic functions µ1(t ), . . . ,µm(t ) such that
µi (t ) is an eigenvalue of A + tB (for each i ). There are corresponding orthogo-
nal projections F1(t ), . . . ,Fm(t ); these are analytic functions of t and Fr (t ) is the
projection onto the µr (t )-eigenspace of A+ tB .

33.1 Basics

The eigenvalues of a matrix A are continuous functions of the entries of A. If
the entries of A = A(t ) are analytic functions of t , of are the eigenvalues A

For any matrices A and B , there is an open neighbourhood of zero such that

rk(A+ tB) ∏ rk(A).

The key is that if A is invertible, then I + t A°1B is invertible for small t , and so

A+ tB = A(I + t A°1B)

is invertible.
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33.2 Rank-1 Updates

Let A be a Hermitian matrix with spectral decomposition A = P
r µr Er . The

eigenvalue support of a vector x is the set

{r : Er x 6= 0}.

Note that, since Er is a projection, Er x = 0 if and only if x§Er x = 0.

33.2.1 Theorem. Let A be a Hermitian matrix and let x be a vector in Cn . Then

(a) The eigenvalues of A+ t xxT interlace the eigenvalues of A.

(b) The function µr (t ) is constant if and only if µr (0) is not in the eigenvalue
support of x.

33.3 Commutants

Let A be Hermitian with spectral decomposition A =P
r µr Er . Define a map™A

on Matn£n(C) by
™(M) :=

X

r
Er MEr .

33.3.1 Theorem. If A is Hermitian, ™ is orthogonal projection on the commu-
tant of A.

Proof. As Er MEr commutes with A, it is immediate that the image of™ lies in
the commutant of A. If M commutes with A, it commutes with each idempo-
tent Er and accordingly

M = I M I =
X

r,s
Er MEs .

If r 6= s, then Er MEs = MEr Es = 0, and therefore the commutant of A is the
imnage of™.

It is also clear that ™2 =™, so ™ is idempotent. Now if M , N 2 Matn£n(C),
then

hN ,™(M)i= tr N T™(M) =
X

r
tr(N T Er MEr )

=
X

r
tr(Er N T Er M)

= h™(N ), Mi
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and so™ is self-adjoint.
If A is diagonal, then its Schur idempotents are diagonal 01-matrices. If

the i -th eigenvalue of A is µi and has mutiplicity mi (for i = 1, . . . ,k), then the
commutant of A consists of the block-diagonal matrices with k blocks, where
the i -th block is mi £mi . (Hence the dimension of the commutant is

P
i m2

i .)
The orthogonal complement to the commutant consists of the matrices Schur-
orthogonal to the block-diagonal matrix

Jm1 © · · ·© Jmk .

If H commutes with A, we can express the eigenvalues of A + tB in terms
of the eigenvalues of A and B . To help with determining the eigenvalues of the
pencil when A and B do not commute, we describe a more complicated way of
getting at the eigenvalues in the commutative case.

Assume A has spectral decomposition

A =
X

r
µr Er

If B commutes with A, then each eigenspace of A is B-invariant and therefore
has an orthogonal basis formed from eigenvectors of B . Let E be a spectral
idempotent of A and assume its rank is m and that the corresponding eigen-
value is µ. There is an n £m matrix U such that U§U = Im and UU§ = E ; its
column space is the eigenspace associated with E . The matrix that represents
the restriction of B to col(U ) is U§BU and, if its eigenvalues are

∫1, . . . ,∫r

with respective multiplicities

µ1, . . . ,µr ,

the eigenvalues of the restriction of A+ tB to col(U ) are

µ+ t∫1, · · · ,µ+ t∫r

with multiplicities as above. We will establish very similar expressions in the
case where A and B need not commute.
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33.4 The General Case

We assume A has spectral decomposition A = P
i µi Er , and that µi has multi-

plicity mi . Assume Er =Ur U§
r , as before. Let B0 be the orthogonal projection

of B onto the commutant of A and set B1 = B °B0. Then

B0 =
X

i
Ei BEi .

and
Ei B1Ei = 0

for all i . There is a constant ≤ > 0 such that the eigenspaces of A + tB0 are the
same for all t in the open interval (0,≤), and hence in this interval the projec-
tions onto the eigenspaces of A + tB0 are independent of t . Hence if F repre-
sents projection onto one of these eigenspaces, then F B1F = 0.

We now appeal to Theorem 7.9.1 of Lancaseer “Theory of Matrices”, which
tells us that if

P
i Ei BEi = 0, then the linear terms in the series expansions of the

eigenvalues of A + tB are zero. Equivalently, the linear terms depend only on
the eigenvalues of

P
i Ei BEi .



The Inertia Bound for 

For any graph  the size of a coclique is bounded (above) by the minimum of the number of non-negative eigenvalues and the number of non-positive eigenvalues of
any symmetric matrix  such that  only if . This is the inertia bound, which is due to Dragos Cvetkovic. Following Elzinga, we prove that the
inertia bound for  is tight.

We take the vertex set of  to be . There is a partition of the vertices of  into three cliques. The first clique consists of the vertices that contain 0.
The remaining six vertices split into the  formed by the vertices that contain 1, and a second  formed by the vertices that do not contain 1. These three cliques
form a spanning subgraph of  with 12 edges; let  denote its adjacency matrix. Let  be the adjacency matrix of .

Now compute the eigenvalues of the matrix

In sage we can do this with the magic words

import scipy
from scipy import linalg

lk5 = graphs.CompleteGraph(5).line_graph()
A = lk5.am()
c0 = lk5.subgraph([vx for vx in lk5.vertices() if 0 in vx])
c1 = lk5.subgraph([vx for vx in lk5.vertices() if 0 not in vx and 1 in vx])
c2 = lk5.subgraph([vx for vx in lk5.vertices() if 0 not in vx and 1 not in vx])
clqs = c0.disjoint_union(c1.disjoint_union(c2))
C = clqs.am()

def evals(t):
return vector(linalg.eigh( C +t*(A-C), eigvals_only = True))

# sage: evals(-0.9)
# (-2.8, -2.8, -1.31661554144, -1.01151297144, -0.1, -0.1, -0.1, -0.1, 4.11661554144, 4.21151297144)

If  is not invertible,  is an eigenvalue of ; we calculate these by

vector(linalg.eig( C^(-1)*(A-C), right=False))

Here the real eigenvalues determine the values where the inertia of  changes. They are:

Now we find the eigenvalues of  for  in , and we see that if t is one of -0.9, -0.8, -0.7 then  has only two
non-negative eigenvalues. Therefore the inertia bound is tight for . [Each row of the table is the value of  followed by the 10 eigenvalues.]

-1.5 -4.0 -4.0 -3.18330013267 -1.67423461417 0.5 0.5 0.5 0.5 5.18330013267 5.67423461417

-1.4 -3.8 -3.8 -2.82045915678 -1.61140997322 0.4 0.4 0.4 0.4 5.02045915678 5.41140997322

-1.3 -3.6 -3.6 -2.45786823163 -1.54962684489 0.3 0.3 0.3 0.3 4.85786823163 5.14962684489

-1.2 -3.4 -3.4 -2.09558536927 -1.48904374382 0.2 0.2 0.2 0.2 4.69558536927 4.88904374382

-1.1 -3.2 -3.2 -1.73368792320 -1.42985148151 0.1 0.1 0.1 0.1 4.5336879232 4.62985148151

-1.0 -3.0 -3.0 -1.37228132327 -1.37228132327 0.0 0.0 0.0 0.0 4.37228132327 4.37228132327

-0.9 -2.8 -2.8 -1.31661554144 -1.01151297144 -0.1 -0.1 -0.1 -0.1 4.11661554144 4.21151297144

-0.8 -2.6 -2.6 -1.2632011236 -0.651595203261 -0.2 -0.2 -0.2 -0.2 3.8632011236 4.05159520326

-0.7 -2.4 -2.4 -1.21246761636 -0.3 -0.3 -0.3 -0.3 -0.292844953646 3.61246761636 3.89284495365

-0.6 -2.2 -2.2 -1.16495033058 -0.4 -0.4 -0.4 -0.4 0.0642440249314 3.36495033058 3.73575597507

-0.5 -2.0 -2.0 -1.12132034356 -0.5 -0.5 -0.5 -0.5 0.418861169916 3.12132034356 3.58113883008

-0.4 -1.8 -1.8 -1.08242276016 -0.6 -0.6 -0.6 -0.6 0.769586530435 2.88242276016 3.43041346957

-0.3 -1.6 -1.6 -1.04932420089 -0.7 -0.7 -0.7 -0.7 1.11372195088 2.64932420089 3.28627804912

-0.2 -1.4 -1.4 -1.02336879396 -0.8 -0.8 -0.8 -0.8 1.44559962547 2.42336879396 3.15440037453

-0.1 -0.1 -1.2 -1.00623784042 -0.9 -0.9 -0.9 -0.9 1.75192593016 2.20623784042 3.04807406984

0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 3.0

0.1 -1.1 -1.1 -1.1 -1.1 -1.00712472795 -0.8 -0.8 1.80712472795 2.13095842402 3.06904157598

L( )K5

X
S ≠ 0Si,j ij ∈ E(X)

L( )K5

K5 {0, 1, 2, 3, 4} L( )K5
K3 K3

L( )K5 C A L( )K5

C + t(A − C).

C + t(A − C)) −1/ t (A − C)C −1

(1.61803398875, −0.5 + 0.866025403784 ∗I, −0.5 − 0.866025403784 ∗I, −0.61803398875, 1.0, −2.0, −2.0, 1.0, 1.0, 1.0)

C + t(A − C)

t = −1,  − 0.618,  0.5,  1.618

C + t(A − C)) t −1.5, −1.4, … , 1.9, 2.0 C + t ∗(A − C)
L( )K5 t



0.2 -1.2 -1.2 -1.2 -1.2 -1.03041346957 -0.6 -0.6 1.63041346957 2.12554373535 3.27445626465

0.3 -1.3 -1.3 -1.3 -1.3 -1.07279220614 -0.4 -0.4 1.47279220614 2.03842268941 3.56157731059

0.4 -1.4 -1.4 -1.4 -1.4 -1.13693168769 -0.2 -0.2 1.33693168769 1.91511421982 3.88488578018

0.5 -1.5 -1.5 -1.5 -1.5 -1.22474487139 0 0 1.22474487139 1.77525512861 4.22474487139

0.6 -1.6 -1.6 -1.6 -1.6 -1.33693168769 0.2 0.2 1.13693168769 1.62690801373 4.57309198627

0.7 -1.7 -1.7 -1.7 -1.7 -1.47279220614 0.4 0.4 1.07279220614 1.47373234984 4.92626765016

0.8 -1.8 -1.8 -1.8 -1.8 -1.63041346957 0.6 0.6 1.03041346957 1.31757723984 5.28242276016

0.9 -1.9 -1.9 -1.9 -1.9 -1.80712472795 0.8 0.8 1.00712472795 1.15946434976 5.64053565024

1.0 -2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 6.0

1.1 -2.20623784042 -2.1 -2.1 -2.1 -2.1 0.839565251632 1.00623784042 1.2 1.2 6.36043474837

1.2 -2.42336879396 -2.2 -2.2 -2.2 -2.2 0.678411014052 1.02336879396 1.4 1.4 6.72158898595

1.3 -2.64932420089 -2.3 -2.3 -2.3 -2.3 0.516708968124 1.04932420089 1.6 1.6 7.08329103188

1.4 -2.88242276016 -2.4 -2.4 -2.4 -2.4 0.354580419753 1.08242276016 1.8 1.8 7.44541958025

1.5 -3.12132034356 -2.5 -2.5 -2.5 -2.5 0.192113447068 1.12132034356 2.0 2.0 7.80788655293

1.6 -3.36495033058 -2.6 -2.6 -2.6 -2.6 0.0293735125905 1.16495033058 2.2 2.2 8.17062648741

1.7 -3.61246761636 -2.7 -2.7 -2.7 -2.7 -0.133589736004 1.21246761636 2.4 2.4 8.533589736

1.8 -3.8632011236 -2.8 -2.8 -2.8 -2.8 -0.296737973824 1.2632011236 2.6 2.6 8.89673797382

1.9 -4.11661554144 -2.9 -2.9 -2.9 -2.9 -0.460041152089 1.31661554144 2.8 2.8 9.26004115209

2.0 -4.37228132327 -3.0 -3.0 -3.0 -3.0 -0.62347538298 1.37228132327 3.0 3.0 9.62347538298


