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DEFINITION

Let X and Y be graphs with vertex sets V(X) and V(Y)
respectively.

DEFINITION

A homomorphism f from X to Y is a map from V(X) to V(Y)
such that whenever u and v are adjacent vertices in X, the
vertices f (u) and f (v) are adjacent in Y.

Our graphs do not have loops, so the images of adjacent
vertices under a homomorphism are always distinct.
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TRIVIAL EXAMPLES

Any isomorphism from X to Y is a homomorphism.
If X is a subgraph of Y then the identity map from V(X) to
V(Y) is a homomorphism.
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A BETTER EXAMPLE
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FIBERS

DEFINITION

If f : X → Y is a homomorphism and y ∈ V(Y), the preimage
f−1(y) is the fibre of f at y.

Thus f is an isomorphism if its fibres are either single vertices
or empty.
More importantly, the subgraph of X induced by a fibre is an
independent set (or coclique).

CHRIS GODSIL HOMOMORPHISMS AND CORES



INTRODUCTION VERTEX-TRANSITIVE GRAPHS HOMOMORPHISMS CORES

COLOURINGS

Since the fibres of a homomorphism are cocliques, any
homomorphism f defined on X determines a partition of V(X)
into cocliques—one for each vertex in the image of f .

Hence a graph X has a proper colouring with m colours if and
only if there is a homomorphism from X to the complete graph
Km.
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FOLDINGS

DEFINITION

If u and v are two vertices at distance two in X, and Y is the
graph we get by identifying u and v, then there is a
homomorphism from X to Y. This a simple folding. We say f is
folding if it is a composition of simple foldings.
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EXAMPLE
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NOT AN EXAMPLE
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EQUIVALENCE

DEFINITION

Two graphs X and Y are homomorphically equivalent if there
are homomorphisms f and g such that

f : X → Y, g : Y → X.

If X and Y are homomorphically equivalent, we write X ↔ Y.
We will also find it useful to use X → Y to denote that there is a
homomorphism from X to Y.
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EXAMPLES

X ↔ K2 if and only if X is bipartite and has at least one edge.

X ↔ Km if and only if χ(X) = ω(X) = m.
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EQUIVALENCE CLASSES

Let [X] denote the homomorphic equivalence class of X.

LEMMA

Let Y1 and Y2 be graphs in [X] with the least possible number of
vertices. Then Y1 ∼= Y2.
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PROOF.
Suppose f : Y1 → Y2 and g : Y2 → Y1.

gf : Y1 → Y1.
Since Y1 ↔ gf (Y1), the map gf is surjective.
Similarly fg must be surjective.
Therefore f and g are isomorphisms.
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THE CORE OF A GRAPH

DEFINITION

The core of X is any graph in [X] with the minimal number of
vertices.

The core of X will be denoted by X•. Note that it is an induced
subgraph of X.
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CORES

LEMMA

If Y is a graph such that any endomorphism of Y is an
automorphism, then Y is the core of any graph in [Y].

If Y has no proper endomorphisms, we will say that it is a core.
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EXAMPLES

Complete graphs.
Odd cycles.
Colour-critical graphs, e.g., the previous two classes or, for
variety, the circulant on 13 vertices with connection set
{1, 5, 8, 12}.
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RETRACTS

A subgraph Y of X is a retract of X if there is a homomorphism
f : X → Y such that f �V(Y) = 1Y . We say that f is a retraction.

LEMMA

The core of a graph is a retract.
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RETRACTS AND FOLDINGS

LEMMA

If X is connected than any retraction of X is a folding.

In particular, if f : X → Z is a retraction then there vertices u and
v at distance two in X such that f (u) = f (v).
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QUESTIONS

1 What is the core of the Petersen graph?

2 What is the core of L(Kn)?
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ANOTHER GRAPH

Let P(3×3) be the graph defined as follows:

VERTICES The 280 partitions of {1, . . . , 9} into three triples.
EDGES Two partitions are adjacent if they are skew: each

cell in one partition contains one point from each
of the cells in the second.
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THE SAME QUESTION

What is the core of P(3×3)?
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SOME THEORY

THEOREM

If X is a vertex-transitive graph then:
1 X• is vertex transitive.
2 |V(X•)| divides |V(X)|.
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COROLLARY

If X is connected, vertex transitive and cubic, then X• is vertex
transitive with valency 1, 2 or 3:
VALENCY=1 X• = K2 and X is bipartite.
VALENCY=2 X• is an odd cycle (and χ(X) = 3).
VALENCY=3 X = X•.
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PETERSEN

If X is the Petersen graph, then either it is a core or X• = C5.

We see that if f : X → X•, then the restriction of f to an
induced 5-cycle must be injective.
Since each path in X with length two lies in a 5-cycle, f
cannot identify two vertices at distance two.
Since f is a folding, we conclude that the Petersen graph is
a core. :-)
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A GENERALIZATION

THEOREM

If each pair of vertices at distance two in X lies in a shortest odd
cycle, then X is a core.

One consequence of this is that if X is triangle-free with
diameter two and no two distinct vertices have the same
neighbors, then X is a core.

CHRIS GODSIL HOMOMORPHISMS AND CORES



INTRODUCTION VERTEX-TRANSITIVE GRAPHS INTRODUCTION CORE-COMPLETE GRAPHS CUBELIKE GRAPHS

A GENERALIZATION

THEOREM

If each pair of vertices at distance two in X lies in a shortest odd
cycle, then X is a core.

One consequence of this is that if X is triangle-free with
diameter two and no two distinct vertices have the same
neighbors, then X is a core.

CHRIS GODSIL HOMOMORPHISMS AND CORES



INTRODUCTION VERTEX-TRANSITIVE GRAPHS INTRODUCTION CORE-COMPLETE GRAPHS CUBELIKE GRAPHS

OUTLINE

1 INTRODUCTION
Homomorphisms
Cores

2 VERTEX-TRANSITIVE GRAPHS
Introduction
Core-Complete Graphs
Cubelike Graphs

CHRIS GODSIL HOMOMORPHISMS AND CORES



INTRODUCTION VERTEX-TRANSITIVE GRAPHS INTRODUCTION CORE-COMPLETE GRAPHS CUBELIKE GRAPHS

L(Kn)

Assume X = L(Kn) and Z = X•. We claim that either X• = X or
X• is a complete graph. Asume by way of contradiction that
Z = X• is not complete and let z1 and z2 be two vertices in Z at
distance two.

If Z 6= X, we may assume there is a retraction f : X → Z
such that f (x1) = f (x2) for some pair of vertices x1 and x2 at
distance two in X.
There is an automorphism γ of X that maps z1 to x1 and z2
to x2.
The composition of γ followed by f is an endomorphism of
Z that maps z1 and z2 to the same vertex. But since Z has
no proper endomorphisms, this is impossible.
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L(K2m)•

If n = 2m, then Kn has a 1-factorization. The image in L(Kn) of a
1-factor of Kn is a coclique of size m and we have a
homomorphism

L(K2m)→ Km−1.

From this we conclude that L(K2m)• = Km−1.
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L(K2m+1)
•

Suppose n = 2m + 1. Then |V(L(K2m+1)| = m(2m + 1), which is
not divisible by 2m. So although L(K2m+1) contains cliques of
size 2m, they cannot be cores. Since ω(L(K2m+1)) = 2m, the
core of L(K2m+1) cannot be a clique of size 2m + 1 or more. We
conclude that L(K2m+1)• = L(K2m+1).
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EXTENSIONS

CAMERON & KAZANIDIS:
If X is distance transitive with diameter two, then
either X is a core or X• is complete.

GODSIL & ROYLE:
If X is distance transitive, then either X is a core or
X• is complete.

GODSIL & ROYLE:
Block graphs of Steiner systems and orthogonal
arrays are either cores, or their cores are
complete.
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SOME SPECIAL CAYLEY GRAPHS

We consider Cayley graphs for Zd
2. Such a Cayley graph is

specified by a subset C of the non-zero vectors in Zd
2, as follows

VERTICES: Zd
2.

EDGES: u ∼ v ⇐⇒ v− u ∈ C.
The Cayley graph is connected if and only if C spans Zd

2. If C is
a basis, then the graph is the d-cube.
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LINEAR ALGEBRA

Since we are working over the vector space Zd
2, it is natural to

represent a connection set C by a d × |C| matrix D over Z2 (with
no zero columns). From this view point Zd

2 is the column space
of D, and two vectors in Zd

2 are adjacent if their difference is a
column of D.
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EXAMPLE

If we have

D =


1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1


Then D has rank four and our Cayley graph will have 16
vertices and valency 5.
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EXAMPLE,CTD

Applying elementary row operations to D will not change the
graph. If we add each of the first four rows to the one below it,
D becomes

D′ =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0


From this we see that the Cayley is graph obtained from the
4-cube by joining each pair of vertices at distance four: it is the
Clebsch graph.
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FREE CAYLEY GRAPHS

We have the following particular case of an unpublished result,
due to Nasrasr and Tardif:

THEOREM

Let X be a graph on v vertices with d edges and incidence
matrix D over Z2. Let F(X) denote the Cayley graph for Zd

2 with
connection matrix D.

If there is a graph homomorphism f from X into a Cayley graph
Y for Zk

2, then there is a graph homomorphism from F(X) into Y
whose underlying map is a Z2-linear map from Zd

2 to Zk
2.
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HOMOMORPHISMS

The subgraph of F(X) induced by the vectors in the
standard basis is isomorphic to X. Thus X → F(X).

If X → Y then F(X)→ F(Y).
If X is cubelike then X ↔ F(X).
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AN APPLICATION

Suppose Y is a cubelike graph that is not bipartite.

Y contains an odd cycle, C2r+1 say. Hence C2r+1 → Y.
By the theorem, F(C2r+1)→ Y.
χ(F(C2r+1)) = 4. (Payan.)
Hence χ(Y) ≥ 4. Thus a cubelike graph cannot have
chromatic number three!
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ODD CYCLES

Since C2r+1 → K3, it follows that F(C2r+1)→ F(K3).
As F(K3) = 2K4, we have χ(F(C2r+1) ≤ 4.
F(C2r+1) is distance transitive and its odd girth is 2r + 1.
So if r ≥ 2, its core cannot be complete, and therefore it is
a core.
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CLIQUES

SinceF(K3) = 2K4, it follows that if X is cubelike and
contains a triangle, then it contains K4. (So the clique
number of X cannot be three.)

Since K4 → K4 and K4 is cubelike, F(K4)→ K4 and so
χ(F(K4) = 4.
However F(K5) is the complement of the Clebsch graph
and χ(F(K5)) = 8. Thus if X is cubelike and contains K5,
then χ(X) ≥ 8.
F(Kn) is the “distance-1 or -2” graph of the (n− 1)-cube.
If n is a power of two, then F(Kn)• = Kn (easy); otherwise
F(Kn) is a core (hard).
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QUESTIONS

1 Is the core of a cubelike graph cubelike?

2 Are there any more “excluded values” for the chromatic
number of a cubelike graph? (Probably not.)

3 Is there a primitive vertex-transitive graph X which is not a
core and whose core is not complete?

4 We can define free Cayley graphs over Z3 (using signed
incidence matrices). About all we know is that the free
Cayley graph for K4 over Z3 has chromatic number seven.
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