HOMOMORPHISMS AND CORES OF VERTEX-TRANSITIVE GRAPHS

Chris Godsil

Combinatorics & Optimization University of Waterloo

> Maribor April 2008

CHRIS GODSIL HOMOMORPHISMS AND CORES

OUTLINE

1 INTRODUCTION

- Homomorphisms
- Cores

2 VERTEX-TRANSITIVE GRAPHS

- Introduction
- Core-Complete Graphs
- Cubelike Graphs

OUTLINE

INTRODUCTION Homomorphisms Cores

2 VERTEX-TRANSITIVE GRAPHS

- Introduction
- Core-Complete Graphs
- Cubelike Graphs

DEFINITION

Let *X* and *Y* be graphs with vertex sets V(X) and V(Y) respectively.

DEFINITION

A homomorphism f from X to Y is a map from V(X) to V(Y) such that whenever u and v are adjacent vertices in X, the vertices f(u) and f(v) are adjacent in Y.

Our graphs do not have loops, so the images of adjacent vertices under a homomorphism are always distinct.

TRIVIAL EXAMPLES

- Any isomorphism from *X* to *Y* is a homomorphism.
- If *X* is a subgraph of *Y* then the identity map from *V*(*X*) to *V*(*Y*) is a homomorphism.

A BETTER EXAMPLE

ヘロア 人間 アメヨア 人間 アー

æ

FIBERS

DEFINITION

If $f : X \to Y$ is a homomorphism and $y \in V(Y)$, the preimage $f^{-1}(y)$ is the fibre of f at y.

Thus f is an isomorphism if its fibres are either single vertices or empty.

More importantly, the subgraph of *X* induced by a fibre is an independent set (or coclique).

COLOURINGS

Since the fibres of a homomorphism are cocliques, any homomorphism f defined on X determines a partition of V(X) into cocliques—one for each vertex in the image of f.

Hence a graph *X* has a proper colouring with *m* colours if and only if there is a homomorphism from *X* to the complete graph K_m .

FOLDINGS

DEFINITION

If u and v are two vertices at distance two in X, and Y is the graph we get by identifying u and v, then there is a homomorphism from X to Y. This a simple folding. We say f is folding if it is a composition of simple foldings.

CHRIS GODSIL HOMOMORPHISMS AND CORES

EXAMPLE

< 日 > < 聞 > < 臣 > < 臣 > 、

æ

NOT AN EXAMPLE

ヘロア 人間 アメヨア 人間 アー

æ

OUTLINE

2 VERTEX-TRANSITIVE GRAPHS

- Introduction
- Core-Complete Graphs
- Cubelike Graphs

< ∃ >

ъ

EQUIVALENCE

DEFINITION

Two graphs X and Y are homomorphically equivalent if there are homomorphisms f and g such that

$$f: X \to Y, \quad g: Y \to X.$$

If *X* and *Y* are homomorphically equivalent, we write $X \leftrightarrow Y$. We will also find it useful to use $X \rightarrow Y$ to denote that there is a homomorphism from *X* to *Y*.

EXAMPLES

$X \leftrightarrow K_2$ if and only if X is bipartite and has at least one edge.

EXAMPLES

 $X \leftrightarrow K_2$ if and only if X is bipartite and has at least one edge. $X \leftrightarrow K_m$ if and only if $\chi(X) = \omega(X) = m$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

EQUIVALENCE CLASSES

Let [X] denote the homomorphic equivalence class of X.

LEMMA

Let Y_1 and Y_2 be graphs in [X] with the least possible number of vertices. Then $Y_1 \cong Y_2$.

Suppose $f: Y_1 \rightarrow Y_2$ and $g: Y_2 \rightarrow Y_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

```
Suppose f: Y_1 \to Y_2 and g: Y_2 \to Y_1.
```

```
\blacksquare gf: Y_1 \to Y_1.
```

Suppose $f: Y_1 \rightarrow Y_2$ and $g: Y_2 \rightarrow Y_1$.

$$\blacksquare gf: Y_1 \to Y_1.$$

Since $Y_1 \leftrightarrow gf(Y_1)$, the map gf is surjective.

<ロト <問 > < 臣 > < 臣 > 三臣

Suppose $f: Y_1 \rightarrow Y_2$ and $g: Y_2 \rightarrow Y_1$.

$$\bullet gf: Y_1 \to Y_1.$$

Since $Y_1 \leftrightarrow gf(Y_1)$, the map gf is surjective.

■ Similarly *fg* must be surjective.

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

3

Suppose $f: Y_1 \rightarrow Y_2$ and $g: Y_2 \rightarrow Y_1$.

$$gf: Y_1 \to Y_1.$$

Since $Y_1 \leftrightarrow gf(Y_1)$, the map gf is surjective.

Similarly *fg* must be surjective.

• Therefore f and g are isomorphisms.

イロト イ押ト イヨト イヨトー

THE CORE OF A GRAPH

DEFINITION

The core of X is any graph in [X] with the minimal number of vertices.

The core of *X* will be denoted by X^{\bullet} . Note that it is an induced subgraph of *X*.

CORES

LEMMA

If *Y* is a graph such that any endomorphism of *Y* is an automorphism, then *Y* is the core of any graph in [*Y*].

If *Y* has no proper endomorphisms, we will say that it is a core.

EXAMPLES

- Complete graphs.
- Odd cycles.
- Colour-critical graphs, e.g., the previous two classes or, for variety, the circulant on 13 vertices with connection set {1,5,8,12}.

RETRACTS

A subgraph *Y* of *X* is a retract of *X* if there is a homomorphism $f: X \to Y$ such that $f \upharpoonright V(Y) = 1_Y$. We say that *f* is a retraction.

Lemma

The core of a graph is a retract.

RETRACTS AND FOLDINGS

LEMMA

If X is connected than any retraction of X is a folding.

In particular, if $f : X \to Z$ is a retraction then there vertices u and v at distance two in X such that f(u) = f(v).

OUTLINE

INTRODUCTION Homomorphisms Cores

2 VERTEX-TRANSITIVE GRAPHS

Introduction

- Core-Complete Graphs
- Cubelike Graphs

QUESTIONS

What is the core of the Petersen graph?

< □ > < 同 >

QUESTIONS

What is the core of the Petersen graph? What is the core of *L*(*K_n*)?

ANOTHER GRAPH

Let $\mathcal{P}(3 \times 3)$ be the graph defined as follows:

ANOTHER GRAPH

Let $\mathcal{P}(3 \times 3)$ be the graph defined as follows: VERTICES The 280 partitions of $\{1, \dots, 9\}$ into three triples.

ANOTHER GRAPH

Let $\mathcal{P}(3 \times 3)$ be the graph defined as follows:

VERTICES The 280 partitions of $\{1, \ldots, 9\}$ into three triples.

EDGES Two partitions are adjacent if they are skew: each cell in one partition contains one point from each of the cells in the second.

THE SAME QUESTION

What is the core of $\mathcal{P}(3 \times 3)$?

CHRIS GODSIL HOMOMORPHISMS AND CORES

SOME THEORY

THEOREM

If X is a vertex-transitive graph then:

- 1 X[•] is vertex transitive.
- 2 $|V(X^{\bullet})|$ divides |V(X)|.

COROLLARY

If X is connected, vertex transitive and cubic, then X^{\bullet} is vertex transitive with valency 1, 2 or 3:

VALENCY=1 $X^{\bullet} = K_2$ and X is bipartite.

VALENCY=2 X^{\bullet} is an odd cycle (and $\chi(X) = 3$).

VALENCY=3 $X = X^{\bullet}$.

PETERSEN

If *X* is the Petersen graph, then either it is a core or $X^{\bullet} = C_5$.
Petersen

- If *X* is the Petersen graph, then either it is a core or $X^{\bullet} = C_5$.
 - We see that if $f : X \to X^{\bullet}$, then the restriction of f to an induced 5-cycle must be injective.

Petersen

- If *X* is the Petersen graph, then either it is a core or $X^{\bullet} = C_5$.
 - We see that if $f : X \to X^{\bullet}$, then the restriction of f to an induced 5-cycle must be injective.
 - Since each path in X with length two lies in a 5-cycle, f cannot identify two vertices at distance two.

Petersen

- If *X* is the Petersen graph, then either it is a core or $X^{\bullet} = C_5$.
 - We see that if $f : X \to X^{\bullet}$, then the restriction of f to an induced 5-cycle must be injective.
 - Since each path in X with length two lies in a 5-cycle, f cannot identify two vertices at distance two.
 - Since f is a folding, we conclude that the Petersen graph is a core. :-)

A GENERALIZATION

THEOREM

If each pair of vertices at distance two in *X* lies in a shortest odd cycle, then *X* is a core.

A GENERALIZATION

THEOREM

If each pair of vertices at distance two in *X* lies in a shortest odd cycle, then *X* is a core.

One consequence of this is that if X is triangle-free with diameter two and no two distinct vertices have the same neighbors, then X is a core.

OUTLINE

INTRODUCTION Homomorphisms Cores

2 VERTEX-TRANSITIVE GRAPHS

- Introduction
- Core-Complete Graphs
- Cubelike Graphs

Assume $X = L(K_n)$ and $Z = X^{\bullet}$. We claim that either $X^{\bullet} = X$ or X^{\bullet} is a complete graph. Asume by way of contradiction that $Z = X^{\bullet}$ is not complete and let z_1 and z_2 be two vertices in Z at distance two.

Assume $X = L(K_n)$ and $Z = X^{\bullet}$. We claim that either $X^{\bullet} = X$ or X^{\bullet} is a complete graph. Asume by way of contradiction that $Z = X^{\bullet}$ is not complete and let z_1 and z_2 be two vertices in Z at distance two.

If $Z \neq X$, we may assume there is a retraction $f : X \to Z$ such that $f(x_1) = f(x_2)$ for some pair of vertices x_1 and x_2 at distance two in X.

$L(K_n)$

Assume $X = L(K_n)$ and $Z = X^{\bullet}$. We claim that either $X^{\bullet} = X$ or X^{\bullet} is a complete graph. Asume by way of contradiction that $Z = X^{\bullet}$ is not complete and let z_1 and z_2 be two vertices in Z at distance two.

- If $Z \neq X$, we may assume there is a retraction $f : X \to Z$ such that $f(x_1) = f(x_2)$ for some pair of vertices x_1 and x_2 at distance two in X.
- There is an automorphism γ of X that maps z_1 to x_1 and z_2 to x_2 .

$L(K_n)$

Assume $X = L(K_n)$ and $Z = X^{\bullet}$. We claim that either $X^{\bullet} = X$ or X^{\bullet} is a complete graph. Asume by way of contradiction that $Z = X^{\bullet}$ is not complete and let z_1 and z_2 be two vertices in Z at distance two.

- If $Z \neq X$, we may assume there is a retraction $f : X \rightarrow Z$ such that $f(x_1) = f(x_2)$ for some pair of vertices x_1 and x_2 at distance two in *X*.
- There is an automorphism γ of X that maps z_1 to x_1 and z_2 to x_2 .
- The composition of γ followed by f is an endomorphism of Z that maps z₁ and z₂ to the same vertex. But since Z has no proper endomorphisms, this is impossible.

イロト イポト イヨト イヨト

If n = 2m, then K_n has a 1-factorization. The image in $L(K_n)$ of a 1-factor of K_n is a coclique of size m and we have a homomorphism

$$L(K_{2m}) \to K_{m-1}.$$

From this we conclude that $L(K_{2m})^{\bullet} = K_{m-1}$.

$$L(K_{2m+1})^{\bullet}$$

Suppose n = 2m + 1. Then $|V(L(K_{2m+1})| = m(2m + 1))$, which is not divisible by 2m. So although $L(K_{2m+1})$ contains cliques of size 2m, they cannot be cores. Since $\omega(L(K_{2m+1})) = 2m$, the core of $L(K_{2m+1})$ cannot be a clique of size 2m + 1 or more. We conclude that $L(K_{2m+1})^{\bullet} = L(K_{2m+1})$.

EXTENSIONS

CAMERON & KAZANIDIS:

If *X* is distance transitive with diameter two, then either *X* is a core or X^{\bullet} is complete.

EXTENSIONS

CAMERON & KAZANIDIS:

If *X* is distance transitive with diameter two, then either *X* is a core or X^{\bullet} is complete.

GODSIL & ROYLE:

If X is distance transitive, then either X is a core or X^{\bullet} is complete.

EXTENSIONS

CAMERON & KAZANIDIS:

If *X* is distance transitive with diameter two, then either *X* is a core or X^{\bullet} is complete.

GODSIL & ROYLE:

If X is distance transitive, then either X is a core or X^{\bullet} is complete.

GODSIL & ROYLE:

Block graphs of Steiner systems and orthogonal arrays are either cores, or their cores are complete.

OUTLINE

INTRODUCTION Homomorphisms Cores

2 VERTEX-TRANSITIVE GRAPHS

- Introduction
- Core-Complete Graphs
- Cubelike Graphs

Some Special Cayley Graphs

```
We consider Cayley graphs for \mathbb{Z}_2^d. Such a Cayley graph is specified by a subset \mathcal{C} of the non-zero vectors in \mathbb{Z}_2^d, as follows VERTICES: \mathbb{Z}_2^d.
```

EDGES: $u \sim v \iff v - u \in \mathcal{C}$.

The Cayley graph is connected if and only if C spans \mathbb{Z}_2^d . If C is a basis, then the graph is the d-cube.

LINEAR ALGEBRA

Since we are working over the vector space \mathbb{Z}_2^d , it is natural to represent a connection set \mathcal{C} by a $d \times |\mathcal{C}|$ matrix D over \mathbb{Z}_2 (with no zero columns). From this view point \mathbb{Z}_2^d is the column space of D, and two vectors in \mathbb{Z}_2^d are adjacent if their difference is a column of D.

EXAMPLE

If we have

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Then *D* has rank four and our Cayley graph will have 16 vertices and valency 5.

Applying elementary row operations to D will not change the graph. If we add each of the first four rows to the one below it, D becomes

	/1	0	0	0	1
	0	1	0	0	1
D' =	0	0	1	0	1
	0	0	0	1	1
	0	0	0	0	0/

From this we see that the Cayley is graph obtained from the 4-cube by joining each pair of vertices at distance four: it is the Clebsch graph.

FREE CAYLEY GRAPHS

We have the following particular case of an unpublished result, due to Nasrasr and Tardif:

THEOREM

Let *X* be a graph on *v* vertices with *d* edges and incidence matrix *D* over \mathbb{Z}_2 . Let $\mathcal{F}(X)$ denote the Cayley graph for \mathbb{Z}_2^d with connection matrix *D*.

FREE CAYLEY GRAPHS

We have the following particular case of an unpublished result, due to Nasrasr and Tardif:

THEOREM

Let *X* be a graph on *v* vertices with *d* edges and incidence matrix *D* over \mathbb{Z}_2 . Let $\mathcal{F}(X)$ denote the Cayley graph for \mathbb{Z}_2^d with connection matrix *D*.

If there is a graph homomorphism f from X into a Cayley graph Y for \mathbb{Z}_2^k , then there is a graph homomorphism from $\mathcal{F}(X)$ into Y whose underlying map is a \mathbb{Z}_2 -linear map from \mathbb{Z}_2^d to \mathbb{Z}_2^k .

HOMOMORPHISMS

The subgraph of $\mathcal{F}(X)$ induced by the vectors in the standard basis is isomorphic to *X*. Thus $X \to \mathcal{F}(X)$.

HOMOMORPHISMS

- The subgraph of $\mathcal{F}(X)$ induced by the vectors in the standard basis is isomorphic to *X*. Thus $X \to \mathcal{F}(X)$.
- If $X \to Y$ then $\mathcal{F}(X) \to \mathcal{F}(Y)$.

Homomorphisms

- The subgraph of $\mathcal{F}(X)$ induced by the vectors in the standard basis is isomorphic to *X*. Thus $X \to \mathcal{F}(X)$.
- If $X \to Y$ then $\mathcal{F}(X) \to \mathcal{F}(Y)$.
- If X is cubelike then $X \leftrightarrow \mathcal{F}(X)$.

Suppose *Y* is a cubelike graph that is not bipartite.

Suppose *Y* is a cubelike graph that is not bipartite.

• *Y* contains an odd cycle, C_{2r+1} say. Hence $C_{2r+1} \rightarrow Y$.

Suppose *Y* is a cubelike graph that is not bipartite.

- *Y* contains an odd cycle, C_{2r+1} say. Hence $C_{2r+1} \rightarrow Y$.
- By the theorem, $\mathcal{F}(C_{2r+1}) \rightarrow Y$.

★ E ► ★ E ►

Suppose *Y* is a cubelike graph that is not bipartite.

- *Y* contains an odd cycle, C_{2r+1} say. Hence $C_{2r+1} \rightarrow Y$.
- By the theorem, $\mathcal{F}(C_{2r+1}) \rightarrow Y$.
- $\chi(\mathcal{F}(C_{2r+1})) = 4$. (Payan.)

伺 とう ほうとう ほうとう

Suppose *Y* is a cubelike graph that is not bipartite.

- *Y* contains an odd cycle, C_{2r+1} say. Hence $C_{2r+1} \rightarrow Y$.
- By the theorem, $\mathcal{F}(C_{2r+1}) \rightarrow Y$.
- $\chi(\mathcal{F}(C_{2r+1})) = 4$. (Payan.)
- Hence $\chi(Y) \ge 4$. Thus a cubelike graph cannot have chromatic number three!

- 4 画 ト - 4 画 ト -

ODD CYCLES

- Since $C_{2r+1} \to K_3$, it follows that $\mathcal{F}(C_{2r+1}) \to \mathcal{F}(K_3)$.
- As $\mathcal{F}(K_3) = 2K_4$, we have $\chi(\mathcal{F}(C_{2r+1}) \leq 4$.
- $\mathcal{F}(C_{2r+1})$ is distance transitive and its odd girth is 2r + 1. So if $r \ge 2$, its core cannot be complete, and therefore it is a core.

· * 코 > * 코 >

■ Since $\mathcal{F}(K_3) = 2K_4$, it follows that if *X* is cubelike and contains a triangle, then it contains *K*₄. (So the clique number of *X* cannot be three.)

- Since *F*(*K*₃) = 2*K*₄, it follows that if *X* is cubelike and contains a triangle, then it contains *K*₄. (So the clique number of *X* cannot be three.)
- Since $K_4 \rightarrow K_4$ and K_4 is cubelike, $\mathcal{F}(K_4) \rightarrow K_4$ and so $\chi(\mathcal{F}(K_4) = 4$.

- Since $\mathcal{F}(K_3) = 2K_4$, it follows that if *X* is cubelike and contains a triangle, then it contains K_4 . (So the clique number of *X* cannot be three.)
- Since $K_4 \to K_4$ and K_4 is cubelike, $\mathcal{F}(K_4) \to K_4$ and so $\chi(\mathcal{F}(K_4) = 4$.
- However $\mathcal{F}(K_5)$ is the complement of the Clebsch graph and $\chi(\mathcal{F}(K_5)) = 8$. Thus if *X* is cubelike and contains K_5 , then $\chi(X) \ge 8$.

- Since $\mathcal{F}(K_3) = 2K_4$, it follows that if *X* is cubelike and contains a triangle, then it contains K_4 . (So the clique number of *X* cannot be three.)
- Since $K_4 \to K_4$ and K_4 is cubelike, $\mathcal{F}(K_4) \to K_4$ and so $\chi(\mathcal{F}(K_4) = 4$.
- However $\mathcal{F}(K_5)$ is the complement of the Clebsch graph and $\chi(\mathcal{F}(K_5)) = 8$. Thus if *X* is cubelike and contains K_5 , then $\chi(X) \ge 8$.
- $\mathcal{F}(K_n)$ is the "distance-1 or -2" graph of the (n-1)-cube.

- Since $\mathcal{F}(K_3) = 2K_4$, it follows that if *X* is cubelike and contains a triangle, then it contains K_4 . (So the clique number of *X* cannot be three.)
- Since $K_4 \to K_4$ and K_4 is cubelike, $\mathcal{F}(K_4) \to K_4$ and so $\chi(\mathcal{F}(K_4) = 4$.
- However $\mathcal{F}(K_5)$ is the complement of the Clebsch graph and $\chi(\mathcal{F}(K_5)) = 8$. Thus if *X* is cubelike and contains K_5 , then $\chi(X) \ge 8$.
- $\mathcal{F}(K_n)$ is the "distance-1 or -2" graph of the (n-1)-cube.
- If *n* is a power of two, then $\mathcal{F}(K_n)^{\bullet} = K_n$ (easy); otherwise $\mathcal{F}(K_n)$ is a core (hard).

<ロト < 得 > < き > < き > … き
I Is the core of a cubelike graph cubelike?

- I Is the core of a cubelike graph cubelike?
- 2 Are there any more "excluded values" for the chromatic number of a cubelike graph? (Probably not.)

- Is the core of a cubelike graph cubelike?
- 2 Are there any more "excluded values" for the chromatic number of a cubelike graph? (Probably not.)
- Is there a primitive vertex-transitive graph X which is not a core and whose core is not complete?

- Is the core of a cubelike graph cubelike?
- Are there any more "excluded values" for the chromatic number of a cubelike graph? (Probably not.)
- Is there a primitive vertex-transitive graph X which is not a core and whose core is not complete?
- ☑ We can define free Cayley graphs over Z₃ (using signed incidence matrices). About all we know is that the free Cayley graph for K₄ over Z₃ has chromatic number seven.