Linear Fractional Maps

Chris Godsil

Tuesday $28^{\text {th }}$ July, 2020

We investigate "linear" graphs formed by 1 -sums. There are some digressions.

1 1-Sums

Our basic building block is a triple (X, a, b) consisting of a graph X and two distinct vertices a and b. We refer to these as 2 -rooted graphs. We may vary the graph, but the root vertices will always be a and b. Let X and Y be 2-rooted graphs and let Z be the graph we get by identifying b in X with a in Y. Then

$$
\begin{aligned}
\phi(Z, t) & =\phi(X \backslash b, t) \phi(Y, t)+\phi(X, t) \phi(Y \backslash a, t)-t \phi(X \backslash b, t) \phi(Y \backslash a, t) \\
& =\phi(X \backslash b, t) \phi(Y, t)+(\phi(X, t)-t \phi(X \backslash b, t)) \phi(Y \backslash a, t)
\end{aligned}
$$

We view Z as rooted at a (in X) and b (in Y).
To make our formulas look less horrible, we will use $X, X_{a}, X_{a b}$ to respectively denote $\phi(X, t), \phi(X \backslash a, t), \phi(X \backslash\{a, b\}, t)$. Then we have

$$
Z=X_{b} Y+\left(X-t X_{b}\right) Y_{a}
$$

and in addition

$$
Z_{a}=X_{a b} Y+\left(X_{a}-t X_{a b} Y_{a}\right)
$$

We combine these two identities:

$$
\binom{Z}{Z_{a}}=\left(\begin{array}{cc}
X_{b} & X-t X_{b} \tag{1.1}\\
X_{a b} & X_{a}-t X_{a b}
\end{array}\right)\binom{Y}{Y_{a}} .
$$

We define

$$
\Psi_{a, b}(X):=\left(\begin{array}{cc}
X_{b} & X-t X_{b} \\
X_{a b} & X_{a}-t X_{a b}
\end{array}\right)
$$

and note that

$$
\Psi_{a, b}(X):=\left(\begin{array}{cc}
X_{b} & X \\
X_{a b} & X_{a}
\end{array}\right)\left(\begin{array}{cc}
1 & -t \\
0 & 1
\end{array}\right)
$$

whence

$$
\operatorname{det}\left(\Psi_{a, b}(X)\right)=X_{a} X_{b}-X X_{a b}
$$

Also

$$
\Psi_{a, b}(X)\binom{t}{1}=\binom{X}{X_{a}}
$$

and hence

$$
\binom{Z}{Z_{a}}=\Psi_{a, b}(X) \Psi_{a, b}(Y)\binom{t}{1}
$$

If we form Z by chaining together k copies of (X, a, b), then

$$
\binom{Z}{Z_{a}}=\Psi_{a, b}(X)^{k}\binom{t}{1}
$$

Taking X to be K_{2} we deduce that

$$
\binom{\phi\left(P_{n}, t\right)}{\phi\left(P_{n-1}, t\right)}=\left(\begin{array}{cc}
t & -1 \\
1 & 0
\end{array}\right)^{n}\binom{t}{1} .
$$

As an example, if $X=K_{3}$,

$$
\Psi=\left(\begin{array}{cc}
t^{2}-1 & t \\
t & -1
\end{array}\right)
$$

Note that

$$
\left(\begin{array}{cc}
Z_{b} & Z \\
Z_{a b} & Z_{a}
\end{array}\right)=\Psi_{a, b}(X)\left(\begin{array}{cc}
Y_{b} & Y \\
Y_{a b} & Y_{a}
\end{array}\right)
$$

EXERCISE: prove that if a and b are cospectral in X and Z is obtained by chaining copies of X, then a and b are cospectral in Z.

2 Linear Fractional Maps

Let \mathbb{F} be a field (possibly infinite). We adjoin an element ∞ to \mathbb{F}, satisfying the rules you were not allowed to use in Calculus, for example

$$
\frac{1}{\infty}=0, \quad \frac{a \infty}{b \infty}=\frac{a}{b}, \quad \infty+a=\infty
$$

If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

we define the $\operatorname{map} L_{A}$ on $\mathbb{F} \cup \infty$ by

$$
L_{A}(z)=\frac{a z+b}{c z+d}
$$

This map is invertible if A is, and the maps L_{A} for invertible A form a group, the linear fractional group. If $\lambda \neq 0$, then $L_{\lambda A}=L_{A}$ and thus we have an action of the projective general linear group $\operatorname{PGL}(2, \mathbb{F})$ on $\mathbb{F} \cup \infty$ (which we can view as the projective line).

Observe that

$$
A\binom{z}{1}=\binom{a z+b}{c z+d}
$$

We can identify the projective line with the 1-dimensional subspaces of \mathbb{F}^{2}. The span of the vector
is the point ∞ and, if $b \neq 0$, the span of
is a / b.
We see that

$$
L_{A}(\infty)=\frac{a \infty+b}{c \infty+d}=\frac{a}{c}
$$

and so L_{A} fixes ∞ if and only if $c=0$; similarly it fixes 0 if and only if $b=0$. The map $z \mapsto z^{-1}$ swaps 0 and ∞.

The group of linear fractional maps is generated by the maps

$$
z \mapsto z+b, \quad z \mapsto a z(a \neq 0), \quad z \mapsto z^{-1},
$$

as you might well show.
If $(u, v, w, x) \in(\mathbb{F} \cup \infty)^{4}$, its cross-ratio is

$$
\frac{(u-w)(v-x)}{(u-x)(v-w)} .
$$

Linear fractional maps preserve cross-ratio; in fact there is a linear fractional map sending a 4 -tuple α to a 4 -tuple β if and only α and β have the same cross-ratio.

3 Linear Fractional Maps on Graphs

We combine the previous two sections by working with linear fractional maps over the field of rational functions $\mathbb{C}(t)$, or perhaps over its completion, the Laurent series in t.

The point is that $\Psi_{a, b}(X)$ can be viewed as a linear fractional map that sends the rational function

$$
\frac{\phi(Y, t)}{\phi(Y \backslash a, t)}
$$

to

$$
\frac{\phi(Z, t)}{\phi(Z \backslash a, t)}
$$

If Z is formed by chaining k copies of X,

$$
W_{a, b}(Z, t)=W_{a, b}(X, t)^{k}
$$

EXERCISE. Prove that the linear fractional maps form a 3-transitive group of permutations of points of the projective line. [Hint: use the generators]

