
Chapter 3

Free Groups

We allow our groups to be infinite. Recall that a monoid is a set with an
associative multiplication and an identity, e.g., the set of all endomorphisms
of a graph, or any group.

3.1 Reduced Walks
We consider walks in directed graphs. A walk is a sequence of vertices, and
a walk is reduced if it does not contain any subsequence of the form vwv.
If wvw is a subwalk of the walk –, the operation of replacing it by w is an
elementary reduction. The reverse operation is elementary exapnsion. Two
walks – and — are equivalent if one can be obtained from the other by a
sequence of elementary reductions and expansions. We use [–] to denote
the equivalence class of –.

3.1.1 Theorem. If – and — are equivalent reduced walks in X, they are
equal.

Assume v œ V (X) and define a graph on the reduced walks in X that
start at v, where two walks are adjacent if one is a maximal subwalk of the
other. (This is a graph even if X is not.)

3.1.2 Theorem. The graph on the reduced walks in X based at v is a tree.

Proof. If – is reduced walk, let t(–) denote its last vertex. If –1, . . . , –k

is a sequence of reduced walks with consecutive terms adjacent, then the
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3. Free Groups

sequence of vertices
t(–1), . . . , t(–k)

determines the sequence of reduced walks, and is equal to –k. It follows that
two sequences of reduced closed walks with the same starting and finishing
points must be equal.

We call this tree the walk tree of X based at v, and denote it by T (X, v).

3.1.3 Theorem. The reduced closed walks that start at the vertex v in the
graph X form a group, the elements of which induce a semiregular group
of automorphisms of T (X, v).

Proof. If X is a graph, then each reduced closed walk at v has a multi-
plicative inverse. The multiplication operation is concatenation followed by
reduction, and the di�culty is to show that this operation is associative.

If — is a reduced walk starting at v and – is a closed walk on v, then the
product –— is a (reduced) walk starting at v. We see that reduced walks
— and “ (starting at v) are adjacent if and only –— and –“ are adjacent.
Hence left multiplication by – gives an automorphism of the tree on reduced
walks from v; not that this automorphism determines – and if – ”= 1, it
does not fix a vertex or an edge of the tree.

The group formed by the reduced closed walks at v is called the funda-
mental group of X based at v, and is denoted fi1(X, v). For each vertex
w of X, the reduced walks that start at v and finish at w are an orbit for
fi1(X, v) and the quotient of the walk tree over this orbit partition is X.

3.2 Cayley Graphs
Let M be a monoid and let C be a subset of M . The directed Cayley graph
X(M, C) has vertex set M and arc set consisting of the pairs (g, cg) for
g œ M and c œ C. If both c and c≠1 belong to C, then we have an edge
{g, cg} for each g in M .

If e œ C, then there is a loop on each vertex of X(G, C), but we will
normally assume that e /œ C. We view an edge as a pair of oppositely
directed arcs, so {a, b} is an edge if and only if ba≠1 and ab≠1 both lie in C.
If

C≠1 = {c≠1 : c œ C}
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then X is a graph if and only if C = C≠1. We do not require C to generate G;
note that C generates M if and only if X(M, C) is weakly connected. Each
element of M determines an endomorphism of X. Note that a monoid may
contain idempotent elements apart from the identity, and these will give
rise to loops if they belong to C.

If S is a subset of the group G and S fl S≠1 = ÿ, we say that G is the
free group on the set S if the Cayley graph X(G, S fi S≠1) is a tree.

The following result is known as Sabidussi’s lemma:

3.2.1 Lemma. If the group G acts regularly on the graph X, then X is a
Cayley graph for G.

3.2.2 Theorem. If the group G acts semiregularly on the connnected graph
X, then G acts regularly on some contraction of X.

Proof. Since G is semiregular, each orbit admits a bijection onto G. Since
X is connected, its quotient over the orbit partition is connected and so
X contains a subgraph H that is connected, acyclic and contains exactly
one vertex from each orbit. As the action of G is semiregular, the distinct
translates Hg for g in G partition V (X). It follows that G acts regularly
on the graph we get by contracting each translate to a vertex.

3.2.3 Corollary. Let X be a graph, let v be a vertex of X and let T be a
spanning tree for the connected component of X that contains v. Let C be
the set of arcs coming from the chords of T . Then fi1(X, v) is free on C.

Proof. In the previous section we say that fi1(X, v) acts semiregularly on a
tree T , and so there is a contraction of T on which fi1(X, v) acts regularly.
Since T is a tree, this contraction is also a tree, and it follows that fi1(X, v)
is freely generated by the chords of T .

3.2.4 Theorem. If F is a free group, then all subgroups of F are free.

Proof. Assume F is free relative to the generating set C and set X =
X(F , C). If H Æ F , then H acts semiregularly on X and therefore it acts
regularly on a contraction of X. Since F is free, X is a tree and, since X
is tree, each contraction of X is a tree. Hence X has a Cayley graph which
is a tree, and therefore H is free.
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3. Free Groups

Consider the case where |C| = d and |F : H| = m. Then the tree T
contains exactly m ≠ 1 edges, and so there are md ≠ m + 1 edges joining
vertices in T to vertices not in T . Therefore the quotient tree has degree
md ≠ m + 1.

3.2.5 Corollary. If H is a subgroup of index m in the free group on d
generators, then H is free on md ≠ m + 1 generators.

3.3 Free Groups and Initial Objects

An object A in a category is initial if for each object B, there is a unique
arrow A æ B. The trivial group in the category of groups provides an
example. Dually we have terminal objects, and the trivial group in the
category of groups is again an example.

Let k be a fixed positive integer. Let C be the category whose objects are
ordered pairs (G, ‡) where G is a group and ‡ is a sequence of k elements
from G. An arrow from (G, ‡) to (H, ·) is a homomorphism „ : G æ H
such that „(sgi) = ·i for i = 1, . . . , k. The free group Fk on k generators
is an initial object in this category. This means that there are elements
x1, . . . , xk in F and, for each object (G, ‡), there is a unique homomorphism
„ : Fk æ G such that „(xi) = ‡i. Additionally, if there is an arrow fl from
(G, ‡) to (H, ·), and the composition of this with the arrow from F to (G, ‡)
is equal to the arrow from (H, ·). Of course now you will need to look up
the definitions of category and initial object, but the e�ort will be repaid
on many occasions.

In more concrete terms, Fk is free on S = {x1, . . . , xk} if for each group
G and each map f : S æ G, there is a homomorphism from Fk to G that
agrees with f on S.

We o�er another example. Let X and Y be two fixed graphs. Consider
the category whose objects are triples (Z, f, g), where Z is a graph and f
and g are homomorphisms from Z to X and Y respectively and where the
arrows are graph homomorphisms compatible with the maps to X and Y .
Then a terminal object in this category is the direct product of X and Y .
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3.4 Covers
A graph homomorphism f : X æ Y is a covering map if it is a local
isomorphism, that is, the restriction of f to the neighbours of a vertex u is
an isomorphism from NX(u) to NY (f(u)).

3.4.1 Lemma. The fundamental group fi1(X, a) acts semiregularly on T (X, a).
Its orbits are the fibres of a covering map from T (X, a) to X.

Proof. Suppose – and — are reduced walks in X from a to b. Then –—≠1 is
a closed walk in X and (–—≠1)— = –. Thus two reduced walks from a are
in the same orbit of fi1(X, a) if and only if they end at the same vertex.

The tree T (X, a) is the universal cover of X, based at a.
If we view the edges of our graphs as pairs of oppositely directed arcs

and if we label the arcs of X, then this determines a labelling of the arcs of
T (X, a). For the moment, this does not matter.

3.4.2 Lemma. If X is connected and X covers a tree T , then X is isomor-
phic to T .

Consider the category whose objects are the covers of a fixed graph
F ; thus the objects are pairs (Y, f) where Y is a graph and f is a local
isomorphism from Y to X; the arrows are local isomorphisms. We construct
a product for this category.

If (Y, f) and (Z, g) are covers of X, we define Y ‚ Z to be the subgraph
of Y ◊ Z induced by the vertices

{(y, z) : f(y) = g(z)}.

(Equivalently it is the preimage relative to the map (f, g) : Y ◊Z æ X ◊X
of the diagonal if X ◊ X.) You may show that Y ‚ Z covers Y , Z, and X.

Nowsuppose that Y and T both cover X and T is a tree. Then any
connected component of Y ‚ T covers T , and so it must be isomorphic to
T . Therefore T covers Y and you may show that T is an initial object in
the category of covers of X. We say that T is the universal cover of X.
We note that the walk tree is a tree that covers X, so each graph has a
universal cover.
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3.5 Explicit Examples
We present three constructions of free groups; they occur more frequently
than one might expect.

The Linear Fractional Group PGL(2,C)
For the first example, we work in the linear fractional group over C: if

A =
A

a b
c d

B

,

define the map · on C fi Œ by

·A(z) = az + b

cz + d
.

Note that ·A is invertible if and only if A is. Now set

A =
A

1 2
0 1

B

, B =
A

1 0
2 1

B

and let – and — denote ·A and ·B respectively.
We claim that � = È–, —Í is free on {–, —}. To see this observe that any

nonzero power of – maps the interior of the unit circle |z| = 1 to the exterior,
and any nonzero power of — maps the exterior to the nonzero elements of
the interior. Using this it is not hard to show that no word of the form

–k1—¸1 · · · –kr≠1—¸r≠1–r

with all exponents positive can be trivial. Now use conjugacy and inverses
to cover the remaining cases. Accordingly no nontrivial reduced word in –
and — is equal to the identity, and hence � is free on {–, —}.

It also follows that the matrices A and B generate a subgroup of GL(2,C)
that is free on {A, B}.

The Orthogonal Group O(3,R)
We outline a construction of a free group on two generators as a subgroup
of the group of real orthogonal matrices of order 3 ◊ 3. The matrices are

A = 1
5

Q

ca
3 4 0

≠4 3 0
0 0 5

R

db , B = 1
5

Q

ca
1 0 0
0 3 4
0 ≠4 3

R

db .
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These matrices are orthogonal, with determinant 1. Our claim is that there
is no non-empty word in A, A≠1, B, B≠1 that is equal to I.

Consider the matrices

5A, 5A≠1, 5B, 5B≠1.

We view these matrices as matrices over GF (5), and note that over this
field all four matrices have rank one. Their column spaces are spanned
respectively by the vectors

Q

ca
3

≠4
0

R

db ,

Q

ca
3
4
0

R

db ,

Q

ca
0
3

≠4

R

db ,

Q

ca
0
3
4

R

db .

and we have

im(5A) = ker(5A≠1)‹,

im(5A≠1) = ker(5A)‹,

im(5B) = ker(5B≠1)‹,

im(5B≠1) = ker(5B)‹.

Using this you may show that the only reduced word in these these matrices
that is equal to I is the trivial word, and hence the matrices A and B
geberate a free group.

The existence of such free subgroups in the 3-dimensional orthogonal
group leads to the Banach-Tarski paradox. (See https://www.math.ucla.
edu/~tao/preprints/Expository/banach-tarski.pdf for more details.)

The technique we have used to establish freeness in this and in the
previous example is sometimes referred to as a “ping-pong” argument.

Subdirect Product
If G is a finite group and a, b œ G, we refer to (G, a1, a2) as a triple. Two
triples (G, a1, a2) and (H, b1, b2) are isomorphic if there is an isomorphism
from G to H that sends (a1, a2) to (b1, b2). Let S be a sequence of triples
(G, a1, a2) that contains exactly one triple from each possible isomorphism
class, let –1 be the sequence of group elements occuring as a1 in a triple and
let –2 be the sequence of group elements occuring as a2. Prove that È–, —Í
is free. [The simplest approach here is to prove that this group is initial in
the appropriate category.]
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