Covers of graphs and equiangular tight frames

Chris Godsil University of Waterloo

Charleston, 11 March, 2017

Outline

Strongly regular graphs from equiangular tight frames

- Spherical *t*-designs
- Strongly regular graphs from 3-designs

2 Tight fusion frames from covers

- Drackns
- Equi-isoclinic subspaces

Outline

Strongly regular graphs from equiangular tight frames Spherical t-designs

• Strongly regular graphs from 3-designs

2 Tight fusion frames from covers

- Drackns
- Equi-isoclinic subspaces

A graph from a set of equiangular line

A set of n lines in \mathbb{R}^d determines 2n unit vectors

$$V = \{\pm x_1, \dots, \pm x_n\}.$$

If the lines are equiangular, say $\langle x_i, x_j \rangle = \pm \alpha$, we can construct a graph with vertex set V by defining two vectors in V to be adjacent if their inner product is α . (We assume $\alpha > 0$.)

This graph is regular with valency n-1.

A switching graph

Spherical designs

Definition

Let Ω denote the unit sphere in \mathbb{R}^d . A finite subset Φ of Ω is a spherical *t*-design if, for any polynomial function of degree at most *t* on the sphere,

$$\frac{1}{\Phi}\sum_{u\in\Phi}f(u) = \int_{\Omega}f\,d\mu.$$

The degree of Φ is the number of different values taken by the inner product of two distinct points.

Equivalently if the degree of f is at most t, the average of f over Φ equals its average over the sphere.

Simple cases

• Φ is a 1-design if and only if the sum of the vectors in Φ is zero.

- Φ is a 1-design if and only if the sum of the vectors in Φ is zero.
- ${\, \bullet \, \Phi}$ is a 2-design if and only if it is a 1-design and

$$\sum_{i=1}^{n} x_i x_i^T = \frac{n}{d} I_d.$$

- Φ is a 1-design if and only if the sum of the vectors in Φ is zero.
- $\bullet~\Phi$ is a 2-design if and only if it is a 1-design and

$$\sum_{i=1}^n x_i x_i^T = \frac{n}{d} I_d.$$

• If Φ is a 2-design and $-\Phi = \Phi$, then it is a 3-design.

Spherical 2-designs from strongly regular graphs

Suppose X is a strongly regular graph on n vertices with valency, and assume $\lambda \neq k$ is an eigenvalue of X with multiplicity d. If A and \overline{A} are the adjacency matrices of X and its complement, then

$$E = \frac{d}{n} \left(I + \frac{\lambda}{k}A - \frac{\lambda+1}{n-1-k}\overline{A} \right)$$

is the Gram matrix of a spherical 2-design with degree two.

Spherical 2-designs from strongly regular graphs

Suppose X is a strongly regular graph on n vertices with valency, and assume $\lambda \neq k$ is an eigenvalue of X with multiplicity d. If A and \overline{A} are the adjacency matrices of X and its complement, then

$$E = \frac{d}{n} \left(I + \frac{\lambda}{k}A - \frac{\lambda+1}{n-1-k}\overline{A} \right)$$

is the Gram matrix of a spherical 2-design with degree two.

Conversely, each spherical 2-design with degree two gives rise to a strongly regular graph.

Outline

Strongly regular graphs from equiangular tight frames Spherical t-designs

• Strongly regular graphs from 3-designs

2 Tight fusion frames from covers

- Drackns
- Equi-isoclinic subspaces

Spherical 3-designs from equiangular tight frames

Suppose the vectors x_1, \ldots, x_n form an equiangular tight frame in \mathbb{R}^d . Since the set $V = \{\pm x_1, \ldots, \pm x_n\}$ is closed under multiplication by -1 and since

$$\sum_{i} x_i x_i^T = \frac{n}{d} I,$$

we conclude that the points in V form a spherical 3-design.

Theorem

The vectors x_j in V such that $\langle x_1, x_j \rangle = \alpha$ form a spherical 2-design with degree two.

A proof of the theorem

First

$$x_1 x_1^T + \sum_{j=2}^n x_j x_j^T = \frac{n}{d} I.$$

Second, set $P = I = x_1 x_1^T$. Then $P x_1 x_1^T P = 0$ and so

$$\sum_{j=2}^{n} P x_j x_j^T P = \frac{n}{d} P.$$

It follows that, after normalizing, the vectors x_j for j = 2, ..., n form a 2-design in x_1^{\perp} .

Outline

Strongly regular graphs from equiangular tight frames

- Spherical *t*-designs
- Strongly regular graphs from 3-designs

2 Tight fusion frames from covers

- Drackns
- Equi-isoclinic subspaces

Covers

We construct a cover of a graph with index r by replacing each vertex by a set of r vertices, and each edge by a set of r vertex-disjoint edges. The sets of r vertices are the fibres of the cover.

Examples of covers

- The graph we constructed at the start from a set of n equiangular lines is a cover of K_n with index two.
- The cube is a 2-fold cover of K_4 .
- The line graph of the Petersen graph is a 3-fold cover of K_5 .

Characterizing drackns

We are only concerned with covers of K_n , but we insist on a number of special properties:

- The cover should be connected with diameter three.
- Two vertices are at distance three if and only if they lie in the same fibre.
- There is a constant c₂ such that two vertices in the cover at distance two have exactly c₂ common neighbours.

If these conditions hold, we have a drackn—a distance-regular antipodal cover of K_n .

Eigenvalues for drackns

• A drackn has exactly four eigenvalues

$$n-1 > \theta > -1 > \tau$$

where $\theta \tau = -n + 1$.

- The matrix E_{τ} representing orthogonal projection onto the τ -eigenspace is the Gram matrix of a spherical 2-design.
- The image under E_{τ} of a fibre is a regular simplex, spanning a subspace of ker $(A \tau I)$ with dimension r 1.

Outline

Strongly regular graphs from equiangular tight frames

- Spherical *t*-designs
- Strongly regular graphs from 3-designs

2 Tight fusion frames from covers

- Drackns
- Equi-isoclinic subspaces

Isoclinic subspaces

Definition

Two subspaces U and V of \mathbb{R}^d with dimension s are isoclinic with parameter λ if the projection onto V of the unit sphere in U is the sphere in V centered at the origin with radius λ . A collection of subspaces of the same dimension is equi-isoclinic if each of subspaces is isoclinic with the same parameter.

Isoclinic subspaces

Definition

Two subspaces U and V of \mathbb{R}^d with dimension s are isoclinic with parameter λ if the projection onto V of the unit sphere in U is the sphere in V centered at the origin with radius λ . A collection of subspaces of the same dimension is equi-isoclinic if each of subspaces is isoclinic with the same parameter.

Lemma

Matrices P and Q represent projections onto isoclinic subspaces with parameter λ if and only if $QPQ = \lambda P$.

 $(\mathsf{So} \langle P, Q \rangle = \lambda s.)$

Equi-isoclinic subspaces from drackns

Theorem

Let X be an antipodal distance-regular cover of K_n with index r and with least eigenvalue τ of multiplicity d. Then the images of a fibre in ker $(A - \tau I)$ are an equi-isoclinic family of subspaces with dimension r - 1 in \mathbb{R}^d .

Fusion frames from drackns

Theorem

If P_1, \ldots, P_n are the projections onto a set of equi-isoclinic subspaces with dimension s and parameter λ in \mathbb{R}^d , and $\lambda < s/d$, then

$$n \le \frac{d - d\lambda}{s - d\lambda};$$

If equality holds,

$$\sum_{j=1}^{n} P_j = \frac{ns}{d} I_d.$$

Equality holds for the projections from a drackn.

A second class of fusion frames from drackns

Theorem

Let P_1, \ldots, P_n be the projections onto a set of equi-isoclinic subspaces with dimension s and parameter λ in \mathbb{R}^d , and set $Q = I - P_1$. Then for $j = 2, \ldots, n$, the n - 1 matrices $(1 - \lambda)^{-1}QP_jQ$ are a tight fusion frame in \mathbb{R}^{d-s} .

The Proof

Proof.

Since $QP_1Q = 0$ and $\sum_{j=1}^n P_j = \frac{ns}{d}I$, it follows that

$$\sum_{j=2}^{n} QP_j Q = \frac{ns}{d}Q.$$

As $P_j P_1 P_j = \lambda P_j$, we have

$$(QP_jQ)^2 = QP_j(I - P_1)P_jQ = Q(P_j - P_jP_1P_j)Q = (1 - \lambda)QP_jQ.$$

The result follows.

The End(s)

