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A graph from a set of equiangular line

A set of n lines in Rd determines 2n unit vectors

V = {±x1, . . . ,±xn}.

If the lines are equiangular, say 〈xi, xj〉 = ±α, we can construct a
graph with vertex set V by defining two vectors in V to be
adjacent if their inner product is α. (We assume α > 0.)

This graph is regular with valency n− 1.
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A switching graph
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Spherical designs

Definition
Let Ω denote the unit sphere in Rd. A finite subset Φ of Ω is a
spherical t-design if, for any polynomial function of degree at most
t on the sphere,

1
Φ
∑
u∈Φ

f(u) =
∫

Ω
f dµ.

The degree of Φ is the number of different values taken by the
inner product of two distinct points.

Equivalently if the degree of f is at most t, the average of f over
Φ equals its average over the sphere.

Chris Godsil University of Waterloo Covers of graphs and equiangular tight frames



Strongly regular graphs from equiangular tight frames Tight fusion frames from coversSpherical t-designs Strongly regular graphs from 3-designs

Simple cases

Φ is a 1-design if and only if the sum of the vectors in Φ is
zero.

Φ is a 2-design if and only if it is a 1-design and
n∑
i=1

xix
T
i = n

d
Id.

If Φ is a 2-design and −Φ = Φ, then it is a 3-design.
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Spherical 2-designs from strongly regular graphs

Suppose X is a strongly regular graph on n vertices with valency,
and assume λ 6= k is an eigenvalue of X with multiplicity d. If A
and A are the adjacency matrices of X and its complement, then

E = d

n

(
I + λ

k
A− λ+ 1

n− 1− kA
)

is the Gram matrix of a spherical 2-design with degree two.

Conversely, each spherical 2-design with degree two gives rise to a
strongly regular graph.
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Spherical 3-designs from equiangular tight frames

Suppose the vectors x1, . . . , xn form an equiangular tight frame in
Rd. Since the set V = {±x1, . . . ,±xn} is closed under
multiplication by −1 and since∑

i

xix
T
i = n

d
I,

we conclude that the points in V form a spherical 3-design.

Theorem
The vectors xj in V such that 〈x1, xj〉 = α form a spherical
2-design with degree two.
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A proof of the theorem

First
x1x

T
1 +

n∑
j=2

xjx
T
j = n

d
I.

Second, set P = I = x1x
T
1 . Then Px1x

T
1 P = 0 and so

n∑
j=2

Pxjx
T
j P = n

d
P.

It follows that, after normalizing, the vectors xj for j = 2, . . . , n

form a 2-design in x⊥1 .
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Covers
We construct a cover of a graph with index r by replacing each
vertex by a set of r vertices, and each edge by a set of r
vertex-disjoint edges. The sets of r vertices are the fibres of the
cover.

ux v v
, very a

, y

V V
,

Vv Vs Vy V5

edge 1 X t-5
W W ) Wz Wz Wy Ws

(Index is 5.)
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Examples of covers

The graph we constructed at the start from a set of n
equiangular lines is a cover of Kn with index two.
The cube is a 2-fold cover of K4.
The line graph of the Petersen graph is a 3-fold cover of K5.
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Characterizing drackns

We are only concerned with covers of Kn, but we insist on a
number of special properties:

1 The cover should be connected with diameter three.
2 Two vertices are at distance three if and only if they lie in the

same fibre.
3 There is a constant c2 such that two vertices in the cover at

distance two have exactly c2 common neighbours.
If these conditions hold, we have a drackn—a distance-regular
antipodal cover of Kn.
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Eigenvalues for drackns

A drackn has exactly four eigenvalues

n− 1 > θ > −1 > τ

where θτ = −n+ 1.
The matrix Eτ representing orthogonal projection onto the
τ -eigenspace is the Gram matrix of a spherical 2-design.
The image under Eτ of a fibre is a regular simplex, spanning a
subspace of ker(A− τI) with dimension r − 1.
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Isoclinic subspaces

Definition
Two subspaces U and V of Rd with dimension s are isoclinic with
parameter λ if the projection onto V of the unit sphere in U is the
sphere in V centered at the origin with radius λ. A collection of
subspaces of the same dimension is equi-isoclinic if each of
subspaces is isoclinic with the same parameter.

Lemma
Matrices P and Q represent projections onto isoclinic subspaces
with parameter λ if and only if QPQ = λP .

(So 〈P,Q〉 = λs.)
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Equi-isoclinic subspaces from drackns

Theorem
Let X be an antipodal distance-regular cover of Kn with index r
and with least eigenvalue τ of multiplicity d. Then the images of a
fibre in ker(A− τI) are an equi-isoclinic family of subspaces with
dimension r − 1 in Rd.
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Fusion frames from drackns

Theorem
If P1, . . . , Pn are the projections onto a set of equi-isoclinic
subspaces with dimension s and parameter λ in Rd, and λ < s/d,
then

n ≤ d− dλ
s− dλ

;

If equality holds,
n∑
j=1

Pj = ns

d
Id.

Equality holds for the projections from a drackn.
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A second class of fusion frames from drackns

Theorem
Let P1, . . . , Pn be the projections onto a set of equi-isoclinic
subspaces with dimension s and parameter λ in Rd, and set
Q = I − P1. Then for j = 2, . . . , n, the n− 1 matrices
(1− λ)−1QPjQ are a tight fusion frame in Rd−s.
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The Proof

Proof.
Since QP1Q = 0 and

∑n
j=1 Pj = ns

d I, it follows that

n∑
j=2

QPjQ = ns

d
Q.

As PjP1Pj = λPj , we have

(QPjQ)2 = QPj(I−P1)PjQ = Q(Pj−PjP1Pj)Q = (1−λ)QPjQ.

The result follows.
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The End(s)
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