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Preface

This is a text on design theory and geometry.
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To Do

Designs
• Need to define resolvability earlier. Perhaps in orthogonal array chap-

ter.

• Treat lattices, add Leech lattice.

Geometry
• Completely rewrite chapter on affine geometries.

• Make terminology compatible with Shult.

• Construct graphs using sets of points at infinity in Affine chapter.

• Add section on Grassmann and bilinear forms graphs to projective
spaces?

• Treat Bose-Burton explicitly.

• Add section on Möbius planes, prove that planes of even order are
egg-like.

• Flocks. Elliptic flocks in odd characteristic are linear. (Bruen and
Fisher.)

• Discuss Buekenhout-Shult theorem.

• No maximal arcs in odd characteristic.

v



Lines
• Complete material on 276 lines in R23.

• Have a chapter on lines, angles, bounds and frames over R and C,
followed by chapters on real and complex examples.

• Semifields, tensor cubes.

Overall
• Add bibliography.
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Chapter 1

Block Designs

1.1 Incidence Structures

An incidence structure (P ,B) consists of a set of points P , a set of blocks
B and an incidence relation on P × B. Thus a point and a block are
either incident or not; in the first case we may say that the point lies in
the block, or that the block lies on the point. What we are calling blocks
may sometimes have another name, for example, in geometry the blocks
are usually called lines. The point and block sets are disjoint. It is quite
common to find that the blocks are defined to be subsets of the point set,
but this is not a requirement.

Any graph determines an incidence structure where the vertices are the
points and the edges are the blocks. A point is incident with the edges that
contain it. A planar graph determines three incidence structures. The first
is the one just described. The second has the vertices as points and the
faces as its blocks. The third has the blocks as points and the edges as
blocks.

If P and B are the point and block sets of an incidence structure, then
we may view B as the point set and P as the block set of a second incidence
structure. This is called the dual of the first incidence structure. The dual
of the dual is the original structure.

If (P ,B) is an incidence structure, its incidence graph is the graph with
vertex set P ∪ B, where a pair of vertices u and v are adjacent if one is
a point and the other is a block incident with it. The incidence graph
is is bipartite, with bipartition (P ,B). In fact we will view the incidence

3



1. Block Designs

graph as bicolored: in addition to the graph itself we are provided with the
ordered pair (P ,B) which specifies a 2-coloring of the bipartite graph. For
example, the incidence graphs of an incidence structure and its dual have
the same underlying bipartite graph, but they have different 2-colourings.
The incidence graph provides a very useful tool for working with incidence
structures.

An incidence structure (P ,B) is point regular if each point is incident
with the same number of blocks; it is block regular if each block is inci-
dent with the same number of points. (The terms “regular” and “uniform”
are sometimes used.) The incidence structure formed by the vertices and
edges of a loopless graph is uniform—each edge is incident with exactly two
vertices—but it is regular if and only if the underlying graph is regular. An
incidence structure is thick if the minimum valency of its incidence graph
is at least three.

We will say that an incidence structure is connected if its incidence
graph is connected. A connected bipartite graph has a unique 2-coloring,
and so a connected incidence structure is determined up to duality by its
incidence graph.

An incidence structure is a partial linear space if each pair of points
lies in at most one block. It is a linear space if each pair of points lies on
exactly one line. A dual linear space is an incidence structure whose dual
is a linear space. (This suggests, correctly, that the dual of a linear space
need not be a linear space.)

1.1.1 Lemma. An incidence structure is a partial linear space if and only
if its incidence graph has girth at least six.

Proof. Suppose a and b are points and C and D are blocks. Then the
vertices a, C, b, D form a 4-cycle in the incidence graph if and only if a and
b are both incident with C and D.

One corollary of this is that if an incidence structure is a partial linear
space, then so is its dual. (As we noted above, the dual of a linear space
might not be a linear space.)

Since the incidence graph of a partial linear space does not contain a
copy of K2,2 it cannot contain a copy of K2,m where m ≥ 2. It follows that
we cannot have two blocks incident with exactly the same set of points, and
in this case it is natural to identify a block with the subset of P consisting
of the points incident with it.

4



1.2. Designs

Suppose (P ,B) is an incidence structure. If a, b ∈ P , we may define
the line through a and b to be the intersection of all blocks incident with
both a and b. The incidence structure formed from the points and lines
just constructed is a partial linear space; it is usually interesting only if it
is thick.

A subset S of the points of a partial linear space is a subspace if any
line that contains two points of S is a subset of S.

Besides the incidence graph, there are two further graphs associated
with a partial linear space. The vertices of the point graph are the points
of the incidence structure, and two points are adjacent if and only if they
are distinct and collinear, that is, there is a line that contains them both.
The line graph has the lines are vertices, and two lines are adjacent if and
only if the are distinct and a point in common. (Thus the line graph is the
point graph of the dual of the partial linear space.

The incidence matrix N of a finite incidence structure (P ,B) is the 01-
matrix with rows indexed by P , columns by B and with Nx,β = 1 if and only
if the point x is incident with the block β. Then NT is the incidence matrix
of the dual structure and the adjacency matrix of the incidence graph is(

0 N
NT 0

)
.

A parallel class in an incidence structure is a set of blocks that partitions
the point set. For example, if X is a graph then its vertices and edges
form an incidence structure and a parallel class is a perfect matching. An
incidence structure is resolvable if we can partition its block set into parallel
classes. So in our graph example, the incidence structure is resolvable if and
only if the graph as a 1-factorization.

1.2 Designs
We say that an incidence structure (V,B) has strength at least t if for
s = 1, . . . , t there are constants λ1, . . . , λt such that each s-subset of V is
incident with exactly λs elements of B. We take the view that λ0 = b.
A t-design is a uniform incidence structure with strength at least t. The
usual convention is the “design” by itself means “2-design”. Note that the
same design can, for example, be both a 2-design and 3-design. However
the parameters will be different. A design is simple if no two blocks are
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1. Block Designs

incident with the same set of points. Generally our designs will be simple,
and you may assume that they are simple in the absence of any warning.

A 2-design with λ = 1 is a partial linear space. A Steiner system is a
t-design with λt = 1.

We offer some simple examples of designs starting with the canonical
first example, the Fano plane.

Here we have V = Z7 and the blocks are as follows:

{0, 1, 3}
{1, 2, 4}
{2, 3, 5}
{3, 4, 6}
{4, 5, 0}
{5, 6, 1}
{6, 0, 2}

This is a block design with parameters (v, b, r, k, λ) = (7, 7, 3, 3, 1). If
we take the complement in Z7 of each block of the Fano plane we get a
design on 7 points with block size 4. This holds in general, i.e., if we take
the complement of each block in a design we obtain another design.

In a general block design, b is very large and it may be inconvenient or
impossible to present the design by listing its blocks. The Fano plane is an
example of a difference set construction. A difference set S in an abelian
group G is a subset of G with the property that each non-zero element of
G appears the same number of times as a difference of two elements of S.
Here α = {0, 1, 3} is a difference set for G = Z7. If G is an abelian group
and S ⊆ G then the set

S + g = {x+ g | x ∈ S}

is called a translate of S. In our example, the design consists of all translates
of α. The Fano plane is the projective plane of order two (which we will
explain later.)

Difference set constructions are attractive, and so we present another
example, Let V = Z11, then α = {0, 2, 3, 4, 8} is a difference set and the set
of all translates of α is a 2-design with parameters

(v, b, r, k, λ) = (11, 11, 5, 5, 2).

6



1.3. Relations between Parameters

A design with b = v is called a symmetric design. We see later on that
k = r in symmetric designs.

After projective planes, the next most important family of designs come
from affine planes. Let V be a vector space and let B be the set of lines (a
line is a coset of a 1-dimensional subspace). This is a 2-design with λ = 1.
If we take V to be the 2-dimensional vector space over Z3 we get a 2-(9,3,1)
design with b = 12 and r = 4. So

V =
{(

a
b

)
| a, b ∈ Z

}
.

This is an affine plane of order three.
Finally we consider an infinite class of uninteresting examples. A design

is trivial if k ∈ {0, 1, v − 1, v}. These are valid designs, although not so
interesting. For a non-trivial design, 2 ≤ k ≤ v − 2. The complete design
consists of all k-subsets of a set of size v.

1.3 Relations between Parameters
As noted above, the parameters v, b, r, k, λ are not independent. Define a
flag in an incidence structure to be an ordered pair (v, α) where v ∈ V and
α ∈ B. Then by counting with respect to the first or second coordinate we
obtain r|V | r |V | and k |B| respectively as the number of blocks. Thus

vr = kb or v

k
= b

r
.

Now take ordered triples (v, w, α) where v 6= w and v, w ∈ α. If we count
the number of such triples with respect to the first two coordinates or with
respect to the third coordinate we obtain v(v−1)λ and bk(k−1) respectively.
Thus

v(v − 1)λ = bk(k − 1)
or equivalently

v(v − 1)
k(k − 1) = b

λ
.

Also, since bk = vr, we have v(v − 1)λ = vr(k − 1). Therefore

v − 1
k − 1 = r

λ

7



1. Block Designs

We see that the ratios b/λ and r/λ are determined by v and k—this is worth
remembering.

Example. Suppose λ = 1 and k = 3. Then b = v(v − 1)/6 and
r = (v − 1)/2. Thus

v ≡ 1, 3 mod 6.

So the possible parameter sets with λ = 1, k = 3 and v ≤ 15 are

(3, 3, 1), (7, 3, 1), (9, 3, 1), (13, 3, 1), (15, 3, 1)

and so on. Note that for a 2-(13,3,1) design we get b = 26 and so the
number of blocks must be twice the number of points. This observation
suggests trying to construct such a design by using a difference set with
two initial blocks. Designs with λ = 1 and k = 3 are called Steiner triple
systems.

In general, if we have a design with strength t and s ≤ t, we have the
parameter relations (

v

s

)
λs = b

(
k

s

)
or, equivalently (

v
s

)
(
k
s

) = λ0

λs
.

One consequence of this is that if our design has strength t and r, s ≤ t,
then the ratio λs/λt is determined by v and k—thus it does not depend on
the structure of the design.

1.4 Matrices and Maps
The incidence matrix of an incidence structure (P ,B) has rows indexed by
P , columns indexed by B and its ij-th entry is 0 or 1 according as the i-th
point is incident with the j-th block, or not. We see that incidence matrix
depends on an ordering of the points and blocks, but this will not cause any
problems. If the incidence matrix of an incidence structure is B, then the
adjacency matrix of its incidence graph is(

0 B
BT 0

)
.

8



1.4. Matrices and Maps

If G is an incidence structure with incidence matrix B, then the incidence
matrix of the dual of I is BT .

Let G1 = (P1,B1) and G2 = (P2,P2) be two incidence structures. A
homomorphism from G1 to G2 consists of a pair of maps π andβ such that
if a ∈ P1 and B ∈ B2 and a is incident with B, then π(a) is incident
with β(B). A homomorphism is an isomorphism if π and β are bijections
and the pair (π−1, β−1) is a homomorphism from G2 to G1. The condition
that the inverse maps form a homomorphism is equivalent to requiring that
π(a) and β(B) are incident in G2 if and only if they are incident in G1.
Finally, an automorphism of an incidence structure is an isomorphism from
the incidence structure to itself. The set of automorphisms of an incidence
structure forms its automorphism group.

We can represent automorphisms by pairs of permutations. If π is a
permutation of a set S and i ∈ S, we denote the image of i under π by iπ
(and sometimes even by iπ.) If (P ,B) is an incidence structure, and π and
β are permutations of P and B respectively, then (π, β) is an automorphism
if aπ is incident with Bβ if and only a is incident with B.

Now suppose our incidence structure has v points and b blocks and let
e1, . . . , ev and f1, . . . , fb respectively denote the standard bases of Rv and
Rb. If π is a permutation of the points, then there is a unique linear map
of Rv to itself that sends ei to eiπ and the matrix that represents this linear
map is a permutation matrix. The pair of permutation matrices (P,Q)
determines an automorphism of our incidence structure if and only if

PBQT = B.

(Taking the transpose of Q here is arbitrary, but useful.) If no two blocks
are incident with the same set of points, then the block permutation of
an automorphism is determined by the point permutation. In this case, a
permutation π of V will be an automorphism if, when x ∈ V and α ∈ B,
we have x is incident with β if and only if xπ is incident with απ. (Here we
get απ by applying π to each element of α.)

9





Chapter 2

Symmetric Designs

2.1 Incidence Matrices of Designs
For a (v, b, r, k, λ) design there are λ = λ2 blocks on each pair of points.
This gives

v(v − 1)
k(k − 1) = b

λ
,

v − 1
k − 1 = r

λ
.

Our design has an incidence matrix N with the following properties:

(a) N1 = r1

(b) 1TN = k1T

(c) NNT = (r − λ)I + λJ

where J is the matrix with all entries equal to one. These equations hold if
and only if the corresponding incidence structure is a 2-design.

2.1.1 Theorem. If D is a 2-design with parameters (v, b, r, k, λ) and D has
at least 2 points and at least 2 blocks, then b ≥ v.

Proof. We aim to show that the rows of N are linearly independent over R
and, since we are working over the reals, can do this by proving that NNT

is invertible. Now
NNT = (r − λ)I + λJ

and we can write down the inverse explicitly. The key is to note that
(xI + J)(yI + J) = xyI + (x+ y)J + vJ = xyI + (x+ y + v)J,

from which it follows that xI + J is invertible if x 6= 0.

11



2. Symmetric Designs

The inequality b ≥ v is called Fisher’s inequality. Can we have b = v?
We’ve already seen two examples: the 2-(7, 3, 1) and 2-(11, 5, 2) designs. A
design with v = b is called a symmetric design. Note that b = v if and only
if r = k.

2.1.2 Theorem. If D is a symmetric design with parameters (v, k, λ), then
any two distinct blocks have exactly λ points in common.

Proof. Since b = v, the incidence matrix N is invertible. We have

NNT = (r − λ)I + λJ

The rows and columns of NTN are indexed by the blocks of the design; the
α, β entry of NTN is the size of |α ∩ β|. We want to show that |α ∩ β| is
constant for α 6= β and is equal to k when α = β.

NTN = N−1
(
NNT

)
N

= N−1 ((r − λ)I + λJ)N
= (r − λ)I + λN−1JN

Note that since N1 = k1, we have

1
k
1 = N−11.

It follows that

λN−1JN = λN−111TN = λ
1
k
k11T = λJ

and hence NTN = (r − λ)I + λJ .

2.1.3 Corollary. The dual of a symmetric design is a symmetric design.

In general the dual of a block design is not a block design, as you may
verify easily. We also see that if b = v, we have shown that NTN = NNT ,
i.e., the incidence matrix of a symmetric design is normal.

12



2.2. Constructing Symmetric Designs

2.2 Constructing Symmetric Designs
Suppose that we have a symmetric design with parameter set (v, k, λ). We
know that

v(v − 1)
k(k − 1) = b

λ
= v

λ

so that v = 1 + k2−k
λ

. For example if we let λ = 1, then the following table
lists the possible parameter sets when v ≤ 9.

k v
2 3
3 7
4 13
5 21
6 31
7 43
8 57
9 73

The fact that there is no symmetric (43, 7, 1)-design follows from the Bruck-
Ryser-Chowla theorem, which we will meet before long. We now present
a construction for a class of symmetric designs using subspaces of vector
spaces. This class will include all the designs that do exist in the above
table.

Let V be a vector space of dimension d over GF (q), where in all inter-
esting cases d ≥ 3. We build an incidence structure as follows: The points
are the 1-dimensional subspaces of V and the blocks are the subspaces with
dimension d − 1. Incidence is determined by inclusion (symmetrized). We
call the d− 1 dimensional subspaces hyperplanes. The number of elements
of V is qd, and the number of elements in a 1-dimensional subspace is q.
The 1-dimensional subspaces partition V \0 into sets of size q− 1. So there
are qd−1

q−1 points in our incidence structure.
Each hyperplane is the kernel of a 1×d matrix [a1, ..., ad] = a. If a and b

are two non-zero vectors of length d, then ker(a) = ker(b) if and only if b is
a non-zero, scalar multiple of a. It follows that the number of hyperplanes
is equal to the number of 1-dimensional subspaces, that is, qd−1

q−1 .

13



2. Symmetric Designs

The non-zero vectors [a1, ..., ad] and [b1, ..., bd] determine distinct hyper-
planes if and only if the matrix

(
a1 ... ad
b1 ... bd

)

has rank two. The kernel of this matrix is a subspace of dimension d − 2
and the 1-dimensional subspaces are the 1-dimensional subspaces that lie
on both hyperplanes.

This allows us to conclude that the subspaces of dimension one and d−1
are the points and blocks of a symmetric design with parameters

(
qd − 1
q − 1 ,

qd−1 − 1
q − 1 ,

qd−2 − 1
q − 1

)
.

If d = 3 then these designs are symmetric and λ = 1, thus they are projective
planes. However if d ≥ 4 then the designs are new to us.

2.3 Two Open Problems

Question: Is there a symmetric design with λ = 1 where k − 1 is not a
prime power?

We will see that a symmetric design where λ = 1 is also known as a
projective plane. The usual formulation of thhis question is to ask whether
the order of a projective plane must be a prime power.

We know comparatively little about the symmetric designs where λ ≥ 2.
Thus we do not know the answer to the following.

Question: Let ` be a fixed integer greater than 1. Do there exist infinitely
many symmetric designs where λ = `?

Note that the complement of a projective plane is a symmetric design
with λ > 1, so there infinitely many symmetric designs where λ > 1. But
there is no value of ` > 1 for which we know the answer to the above
question.
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2.4. Symmetric Designs and Quadratic Forms

2.4 Symmetric Designs and Quadratic
Forms

If N is the incidence matrix of a symmetric design with parameters (v, k, λ),
then

NNT = (k − λ)I + λJ.

We derive a somewhat simpler condition on an extended version of N . If
we define

N̂ :=
(
N 1
λ1T k

)

then we can calculate and find that

N̂

(
I 0
0 −λ

)
N̂T = (k − λ)

(
I 0
0 −λ

)
.

Since the determinant of the right side is not zero, we deduce that det(N̂) 6=
0 and therefore N̂ is invertible.

If B is a symmetric matrix over a field F then xTBx is a homogeneous
quadratic polynomial in the entries of x, and such a polynomial is known
as a quadratic form over F. (We will discuss these in more details shortly.)
If G is an invertible matrix over F, the quadratic forms associated to B and
GTBG are said to be equivalent. Hence one consequence of our previous
calculation is that if a symmetric (v, k, λ)-design exists and n = k−λ, then
the quadratic forms determined by the matrices(

I 0
0 −λ

)
, n

(
I 0
0 −λ

)

are equivalent. Number theorists have worked out a useful characterization
of when two quadratic forms over Q are equivalent, and these can be used to
show that certain symmetric designs do not exist. In the following sections
we present a version of this theory.

2.5 Bilinear Forms
We introduce some of the theory of bilinear and quadratic forms.
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2. Symmetric Designs

Let V be a vector space over a field F. A bilinear form β on V is a
function from V × V to F that is linear in both variables. If

β(u, v) = β(v, u)

for all u and v we say that β is symmetric. To get the canonical examples,
take a symmetric matrix B and define

β(u, v) = uTBv.

If β is a bilinear form on V and v ∈ V , then we define

v⊥ := {x : β(v, x) = 0}.

If U ≤ V , then
U⊥ := ∩u∈Uu⊥

It is possible that v ∈ v⊥ and v 6= 0, but we do have that

dim(U⊥) = dim(V )− dim(U)

and (U⊥)⊥ = U . We see that if v 6= 0 then v⊥ is a subspace of V with
codimension at most 1. We say β is non-degenerate if v⊥ = V implies
v = 0.

We could define a quadratic form in variables x1, . . . , xd to be a polyno-
mial ∑

i≤j
ai,jxixj,

where coefficients come from some field F. In other words it is a homoge-
neous quadratic polynomial. However rather than define a form in terms of
a representation, we adopt a definition in terms of its important proerties.

A quadratic form Q(v) over V is function from V to F such that

(a) Q(au) = a2Q(u) for all a in F and u ∈ V .

(b) Q(u+ v)−Q(u)−Q(v) is a symmetric bilinear form on V .

For example, if β is a symmetric bilinear form then

β(x+y, x+y) = β(x, x)+β(x, y)+β(y, x)+β(y, y) = β(x, x)+β(y, y)+2β(x, y)

16



2.6. Radicals

and so Qβ(x) := β(x, x) is a quadratic form. If 2 is invertible in F, then the
quadratic form determines the bilinear form. In these notes we will restrict
ourselves to forms over fields in which 2 is invertible. If A is a square matrix
then q(x) = xTAx is a quadratic form.

A quadratic space is a pair (V, q), where V is a vector space and q is
a quadratic form on V . If U is a subspace of V then U along with the
restriction q �U of q to U , is a quadratic space, a subspace. Next suppose
that V is the direct sum of U1 and U2 and q1 and q2 are quadratic forms on
U1 and U2 respectively. If we define

q(u1, u2) := q1(u1) + q2(u2)

then q is a quadratic form on V . We say that the quadratic space (V, q) is
the sum of the spaces (U1, q1) and (U2, q2).

2.6 Radicals
The bilinear form we are most familiar with is the usual dot product on Rn.
This has the property that if β(x, x) = 0 then x = 0, and this property is not
shared by bilinear forms in general. However this is not an insurmountable
problem. The difficulty in extending the standard ideas about orthogonality
to general forms arise because there may be vectors a such that β(a, x) = 0
for all x.

For a subset S of the vector space V , we define S⊥ by

S⊥ := {x ∈ V : β(x, a) = 0, ∀a ∈ S}

It is easy to verify that S⊥ is a subspace. If S itself is a subspace then

dim(S⊥) = dim(V )− dim(S)

and one consequence of this is that (S⊥)⊥ = S. If a is a non-zero vector
then

dim(a⊥) ≥ dim(V )− 1

and dim(a⊥) = dim(V ) if and only if β(a, x) = 0 for all x in V . We define
the radical of a symmetric bilinear form β to be the set of vectors a such
that β(a, x) = 0 for all x. The radical of a form is a subspace (exercise). If
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2. Symmetric Designs

U ≤ V then the radical of U is U ∩ U⊥. We also see a⊥ = V if and only if
a lies in the radical of V . Note that

S⊥ =
⋂
a∈S

a⊥.

A quadratic form is non-degenerate if the radical of its quadratic space is
zero.

If β(x, y) := xTAy, then a lies in the radical of β if and only if aTBy = 0
for all y, and this holds if and only if aTA = 0. Hence the radical of β is
zero if and only if A is non-singular.

If U ≤ V and U ∩ U⊥ = 0, then a dimension argument yields that
V = U + U⊥ and therefore V is direct sum of U and U⊥. Recall that
subspace V of W is a complement to a subspace U if

U + V = W, U ∩ V = 0.

Thus if the radical of the subspace U is zero, then U⊥ is a complement to
U .

2.7 Equivalence of Forms
We assume now that 2 is an invertible element of our underlying field. Hence
any quadratic form Q we discuss can be written in the form (sorry)

Q(x) = xTAx,

where A is symmetric.
Two quadratic forms Q1 and Q2 in d variables over F are equivalent if

there is an invertible matrix G such that, for all x and y in V

Q2(x) = Q1(Gx).

It is easy to check that this is, as the name suggests, an equivalence relation.
Two symmetric matrices A and B are congruent if there is an invertible
matrix G over F such that

B = GTAG.

We write A ≈ B to denote that A and B are congruent. If two quadratic
forms are equivalent then their associated bilinear forms are congruent.
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2.8. Diagonal Forms

(And the converse is true if the characteristic of the underlying field is
not 2.)

If P is a permutation matrix, then A and P TAP are equivalent, hence(
a 0
0 b

)
≈
(
b 0
0 a

)
.

Also if c 6= 0, then (
a 0
0 b

)
≈
(
c2a 0
0 b

)
.

We have already seen that if a symmetric (v, k, λ)-design exists, then the
matrices (

I 0
0 −λ

)
, n

(
I 0
0 −λ

)
give rise to equivalent forms.

2.8 Diagonal Forms
A quadratic form q(x) = xTAx is diagonal if A is a diagonal matrix. If (V, q)
is a quadratic space and the bilinear form associated with q is β, we say
that basis v1, . . . , vd for V is an orthogonal basis relative to q if β(vi, vj) = 0
when i 6= j. Thus if q is diagonal then the standard basis is an orthogonal
basis for q.

2.8.1 Theorem. If q is a nondegenerate quadratic form on V , then V
contains an orthogonal basis relative to q.

Proof. Since q is nondegenerate there is a vector v in V such that q(v) 6= 0.
Hence

〈v〉 ∩ v⊥ = 0

and we set V1 = v⊥. Note that the restriction of q to V1 is nondegener-
ate. (Why?) By induction on dimension, we deduce that V1 contains an
orthogonal basis, and this basis extended by v is an orthogonal basis for
V .

2.8.2 Corollary. Any non-degenerate quadratic form over a field of char-
acteristic different from two is equivalent to a diagonal form.
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2. Symmetric Designs

Proof. We continue with the notation of the theorem. Suppose q(x) = xTAx.
If G is the linear map that maps er to the r-th member of this basis, for
each r, then GTAG is diagonal.

2.9 Isometries
Two quadratic spaces (V1, q1) and (V2, q2) isometric if there is an invertible
linear map L : V1 → V2 such that

q2(Lv) = q1(v)

for all v. We see that two forms q1 and q2 on V are equivalent if and only
if the associated quadratic spaces (V, q1) and (V, q2) are congruent.

2.9.1 Lemma. Let (V, q) be a quadratic space and suppose u and v are
elements of V such that q(u) = q(v) 6= 0. Then there is an isometry of V
that maps u to v.

Proof. First we define a class of isometries. Let β be the symmetric bilinear
form associated with q. If a ∈ V and q(a) 6= 0, define the map τa on V by

τa(v) := v − 2β(a, v)
q(a) a.

Then τa is linear and τ 2
a is the identity. You may also check that q(τa(v)) =

q(v) for all v; whence τa is an isometry.
Your next exercise is to show that if q(u − v) 6= 0, then τu−v swaps u

and v.
Now suppose that q(u) = q(v) 6= 0. If q(u− v) 6= 0 and a = u− v, then

τ(a) swaps u and v. If q(u + v) 6= 0 and b = u + v, then τ(b) swaps u and
−v, and therefore −τb swaps u and v. If the worst happens and

q(u− v) = q(u+ v) = 0

then
0 = q(u− v) + q(u+ v) = 2q(u) + 2q(v) = 4q(u) 6= 0.

This proves the lemma.
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2.10. Cancellation

2.10 Cancellation
In terms of quadratic spaces, our goal is to prove that if U0, U1 and U2 are
quadratic spaces and

U0 ⊕ U1 ∼= U0 ⊕ U2

then U1 ∼= U2. In terms of quadratic forms we want to show that if q0, q1
and q2 are quadratic forms in three disjoint sets of variables and q0 + q1 is
equivalent to q0 + q2, then q1 and q2 are equivalent.

2.10.1 Theorem. Suppose U1 and U2 are non-zero subspaces of the quadratic
space (V, q) and the radical of U1 is zero. Then if there is an isometry
ρ : U1 → U2, there is an isometry from V to itself whose restriction to U1
is equal to ρ.

Proof. If q vanishes on U1 then the radical of U1 is U1, so we see that there
is a vector u in U1 such that q(u) 6= 0. By Lemma 2.9.1, there is an isometry
σ on V such that σ(ρ(u)) = u. If dim(U1) = 1, we are done—we can take
σ−1 to be the required isometry of V .

So σρ is an isometry from U1 to σ(U2) that fixes u. If σρ extends to
an isometry τ (say) of V , then τ followed by σ−1 is an isometry of V that
extends ρ.

We proceed by induction on dim(U1). Now U1 is the sum of the span of
u and the space u⊥ ∩ U1, which is a complement to u in U1. Since σρ is an
isometry, σρ(u⊥ ∩ U1) is a complement to u in σ(U2). By induction, there
is an isometry φ on u⊥ that coincides with σρ on u⊥ ∩ U1.

The linear map that fixes u and agrees with φ on u⊥ is an isometry of
V that agrees with σρ on U1.

The following corollary is a form of Witt cancellation.

2.10.2 Corollary. Let (V1, q1) and (V2, q2) be isometric quadratic spaces.
Let U1 and U2 be subspaces of V1 and V2 respectively. If the radical of U1
is zero and U1 is isometric to U2, then U⊥1 and U⊥2 are isometric.

Proof. If σ is an isometry from V2 to V1, then σ(U2) is a subspace of V1
isometric to U1. So we may assume that V2 = V1 and q1 = q2. Now the
theorem yields that there is an isometry σ such that σ(U1) = U2, and so
σ(U1)⊥ = U⊥2 . As σ(U1)⊥ = σ(U⊥1 ), we are done.
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2. Symmetric Designs

If the radical of (V, q) is zero, we say that q is non-singular. If 2 is
invertible and q(x) = xTAx for a symmetric matrix A, then q is non-singular
is A is.

Suppose f1 and f2 are equivalent non-singular quadratic forms in the
variables x1, . . . , xm and g1 and g2 are quadratic forms in a disjoint set of
variables y1, . . . , yn. Then if f1 + g1 and f2 + g2 are equivalent (as forms in
m+n variables), the previous corollary implies that g1 and g2 are equivalent.
This is the form in which we will use Witt cancellation.

2.11 The Bruck-Ryser-Chowla Theorem
We need one preliminary result, due to Lagrange.

2.11.1 Theorem. If n is a positive integer then I4 ≈ nI4.

Proof. Define the matrix

G :=


a −b −c −d
b a −d c
c d a −b
d −c b a


and verify that

GTG = (a2 + b2 + c2 + d2)I4.

By a famous theorem due to Lagrange, every positive integer is equal to
the sum of four squares and so the theorem follows.

To place this result in some context, we observe that(
a c
b d

)(
a b
c d

)
=
(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)

This implies that if I2 ≈ nI2, then n must be the sum of two squares. Thus
I2 is not equivalent to 3I2. (It is not too hard to show that I2 and nI2 are
equivalent if and only if n is the sum of two squares.)

The following necessary conditions for the existence of a symmetric de-
sign are due to Bruck, Rysler, and Chowla. We call r − λ the order of a
(v, k, λ)-design, and we denote it by n.
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2.11. The Bruck-Ryser-Chowla Theorem

2.11.2 Theorem. If there is a nontrivial symmetric (v, k, λ) design, one of
the following two cases hold:

(a) If v is even, k − λ is a square.

(b) If v is odd, then the equation (k−λ)x2 +(−1) v−1
2 λy2 = z2 has a nonzero

integer solution.

Proof. First suppose v is even. Recall that

N̂

(
I 0
0 −λ

)
N̂T = (k − λ)

(
I 0
0 −λ

)

Take determinants of both sides of this to get

(det N̂)2(−λ) = (k − λ)(v+1)(−λ)

From this we see that (k − λ)(v+1) is a square. This implies (k − λ) is a
square.

Now suppose that v is odd. There are two sub-cases to consider. If
v is congruent to 1 modulo 4, we use Witt cancellation and the fact that
I4 ≈ (k− λ)I4 to cancel as many leading 4× 4 blocks as possible, deducing
as a result that (

1 0
0 −λ

)
≈
(
n 0
0 −nλ

)
.

Since these forms are equivalent, they take the same integer values. Fur-
thermore, since (

1 0
)(n 0

0 −nλ

)(
1
0

)
= n

the right hand form takes the value n. Thus there are u and v such that

n =
(
u v

)(1 0
0 −λ

)(
u
v

)

=
(
u v

)( u
−λv

)
= u2 − λv2

Here u and v are rational, and so by clearing denominators we get

nx2 = y2 − λz2, x, y, z ∈ Z.
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2. Symmetric Designs

This gives us the desired equation.
The second subcase is when v is congruent to 3 modulo 4. We have

x2
1 + · · ·+ x2

v − λx2
0 ≈ ny2

1 + · · ·+ ny2
v − nλy2

0

and therefore

x2
1 + · · ·+ x2

v − λx2
0 + a2

1 + na2
2 ≈ ny2

1 + · · ·+ ny2
v − nλy2

0 + b2
1 + nb2

2.

Consequently

(x2
1 + · · ·+ x2

v + a2
1)− λx2

0 + na2
2 ≈ (ny2

1 + · · ·+ ny2
v + nb2

2)− nλy2
0 + b2

1

Since v ≡ 3 modulo 4, we can cancel the terms in parentheses, and deduce
that (

−λ 0
0 n

)
≈
(

1 0
0 −λn

)
Since

n =
(
0 1

)(−λ 0
0 n

)(
0
1

)
it follows that there are u and v such that

n =
(
u v

)(1 0
0 −λn

)(
u
v

)

=
(
u v

)( u
−λnv

)
= u2 − λnv2.

From this we see that
n+ nλv2 = u2

and multiplying both sides by n we have

n2 + λ(nv)2 = nu2.

Setting v1 = nv we get
n2 + λv2

1 = nu2

and clearing denominators gives

n2z2 = nx2 − λy2.

Finally by defining z2
1 = n2z2 we have

z2
1 = nx2 − λy2.
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2.12 Applications
We apply the Bruck-Ryser-Chowla conditions to projective planes. These
are 2-designs with λ = 1 and v = n2 + n+ 1. There are two cases.

If n ≡ 0, 3 (mod 4), then v ≡ 1 (mod 4) and nx2 + y2 = z2. Here
(x, y, z) = (0, 1, 1) is a non-zero integer solution.

If n ≡ 1, 2 (mod 4), then v ≡ 1 (mod 4) and nx2 = y2 + z2. Thus we
have

n =
(
y

x

)2
+
(
z

x

)2

which implies that n = a2 + b2 for some integers a and b.

2.12.1 Theorem. If there is a projective plane of order n and n ≡ 1, 2
(mod 4), then n is the sum of two squares.

In particular, there is no projective plane of order six. (How many proofs
of this can you find in the literature?)

Due to a difficult computation by Clement Lam from Concordia, we
know that there is no projective plane of order 10, even though the condi-
tions in the BRC Theorem are satisfied. However this is the only case we
know where the BRC conditions for the existence of a symmetric design are
satisfied, but the design does not exist.

Consider the problem of finding a non-zero solution to the equation

Ax2 +By2 + Cz2 = 0

(where A, B, and C are integers). Assume that each pair from {A,B,C} is
coprime. Then necessary conditions for the existence of a non-zero solution
are:

(a) A, B, C do not all have the same sign

(b) If the odd prime p divides A, then −BC is a square modulo p.

(c) If the odd prime p divides B, then −AC is a square modulo p.

(d) If the odd prime p divides C, then −AB is a square modulo p.
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2. Symmetric Designs

For example if p|A, then

By2 + Cz2 = 0 mod p

and therefore
B2y2 +BCz2 = 0 mod p,

from which it follows that −BC must be a square modulo p. Legendre
proved that the above four conditions are sufficient as well.

As examples, consider symmetric designs where λ = 2. Here

v = k(k − 1)
2 + 1 =

(
k

2

)
+ 1.

The parameter sets for 7 ≤ v ≤ 79 are as follows.

k v n

4 7 2
5 11 3
6 16 4
7 22 5
8 29 6
9 37 7
10 46 8
11 56 9
12 67 10
13 79 11

The designs with k = 7 and k = 10 do not exist because although v is
even, n is not a square.

Consider k = 8 (so (v, k, λ) = (29, 8, 2)). Then the BRC equation is

6x2 + 2y2 = z2

If there is a non-zero solution, then 2|z. If z = 2z1, then

6x2 + 2y2 − 4z2
1 = 0

and so
3x2 + y2 − 2z2

1 = 0.
Here −BC = 2, which is not a square modulo A = 3.
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Chapter 3

Hadamard Matrices

A Hadamard matrix is an n× n matrix H with entries ±1, such that

HHT = nI.

For example (
1 1
−1 1

)
,


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .
We will meet many examples as we continue.

The are two families of operations we can apply that take a Hadamard
matrix to a Hadamard matrix:

(a) Permute the rows and/or columns.

(b) Multiply all entries in a row or column by −1.

An arbitrary combination of these operations is a monomial operation. we
say two Hadamard matrices are monomially equivalent if we can one from
the other by monomial operations. (A Hadamard matrix need not be equiv-
alent to its transpose.) A monomial matrix is a product of a permutation
matrix and a diagonal matrix with diagonal entries equal to ±; if M1 and
M2 are monomial matrices and H is Hadamard, thenM1HM2 is Hadamard
and is monomially equivalent to H.

A Hadamard matrix is normalized if all entries in its first row and col-
umn are equal to 1. Note that the equivalence class of H will contain many
different normalized Hadamard matrices.
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3. Hadamard Matrices

3.1 A Lower Bound
If D is a symmetric (v, k, λ) design, we define the difference k − λ to be
the order of D, and we usually denote it by n. (This is consistent with the
order of a finite projective plane.)

3.1.1 Theorem. If D is a symmetric (v, k, λ) design, then

4n− 1 ≤ v ≤ n2 + n+ 1.

Proof. Our concern here is with the lower bound, so we leave the upper
bound as an exercise.

Let N be the incidence matrix of D. Then each entry of 2N−J is equal
to ±1 and (2N − J)1 = (2k − v)1. Consequently

1T (2N − J)T (2N − J)1 = v(v − 2k)2.

One the other hand

1T (2N − J)T (2N − J)1 = 1T (4NNT − 2NJ − 2JNT + J2)1
= 1T (4nI + 4λJ − 2kJ − 2kJ + vJ)1
= 1T (4nI − 4nJ + vJ)
= 4nv + v2(v − 4n).

Consequently
v(v − 4n) + 4n = (v − 2k)2 ≥ 0

and therefore
v2 − 4nv + 4n2 + 4n ≥ 4n2,

which yields that
(v − 2n)2 ≥ 4n2 − 4n.

If n > 0 then n2 − n is not square and thus we have slightly stronger
inequality

(v − 2n)2 ≥ (2n− 1)2.

This proves the lower bound.
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3.2 Equality
We decide what happens when a symmetric design has v = 4n− 1. Let N
denote the matrix 2N − J . Then

NN
T = 4nI − J

and therefore (
1 −N

) (
1 −N

)T
= 4nI.

Since N1 = 1, it follows that matrix(
1 1T
1 −N

)

is a normalized Hadamard matrix of order 4n. Conversely, it is not too
hard to show that a normalized Hadamard matrix of order 4n gives rise to
a symmetric design with v = 4n− 1. We determine the parameters of this
design in terms of n.

From the equation
v − 1 = k2 − k

λ

we find that

(4n− 2)λ = (n+ λ)(n+ λ− 1) = n2 + (2λ− 1)n+ λ2 − λ

and hence

0 = n2 − (2λ+ 1)n+ λ(λ+ 1) = (n− λ)(n− λ− 1).

If λ = n, then k = 2n. If λ = n − 1, then k = 2n − 1. Thus the
parameters of the design are one of the pair

(4n− 1, 2n− 1, n− 1), (4n− 1, 2n, n),

where the second pair is complementary to the first. A design with these
parameters is called a Hadamard design. For a Hadamard matrix H, we get
one Hadamard design for each possible way of normalizing H. In general
these designs are not all isomorphic.

Hadamard matrices can also be used to construct a class of 3-designs.
One approach is the assume that H has all entries in its first row equal to
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3. Hadamard Matrices

one. Take the columns of H to be the points of the design. Each row of H
other than the first determines a partition of the columns into two sets of
size n/2, and we take these to be blocks. Thus the design we construct will
have 2n− 2 blocks, and so it is a 2-design with parameters(

n,
n

2 ,
n

2 − 1
)
.

Now
(2n− 2)

(
n/2

3

)
(
n
3

) = (2n− 2)n(n− 2)(n− 4)
8n(n− 1)(n− 2) = n

4 − 1

and since this is an integer, our design could be a 3-design. We leave you
to prove that it is.

3.3 The Kronecker Product
If A and B are matrices over the same field, we define their Kronecker
product A⊗B to be the block matrix we get when we replace the ij-entry
of A by Ai,jB, for all i and j. To give a very simple example, if

A =
(
a
b

)
, B =

(
u v

)
,

then
A⊗B =

(
au av
bu bv

)
, B ⊗ A =

(
au av
bu bv

)
.

We see that in general the Kronecker product is not commutative, but this
is one of its few failings. It is bilinear, thus

A⊗ (xB + yC) = x(A⊗B) + y(A⊗ C),
(xB + yC)⊗ A = x(B ⊗ A) + y(C ⊗ A).

One consequence of these identities is that

(xA)⊗B = x(A⊗B) = A⊗ (xB).

It is also easy to see that (A⊗B)T = AT ⊗BT .
The following provides one of the most important properties of the Kro-

necker product.
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3.3. The Kronecker Product

3.3.1 Lemma. If the matrix products AC and BD are defined, then

(A⊗B)(C ⊗D) = AC ⊗BD.

It follows that
A⊗B = (A⊗ I)(I ⊗B).

If x and y are vectors of the right orders, then we have the following useful
special case of the above:

(A⊗B)(x⊗ y) = Ax⊗By.

If e1, . . . , em is a basis for a vector space V over F and f1, . . . , fn is a basis
for W , then the vectors

ei ⊗ fj, 1 ≤ i ≤ m, 1 ≤ j ≤ n

form a basis for a vector space of dimension mn, which we denote by V ⊗W .
We call V ⊗W the tensor product of the vector spaces V andW . (Note that
there will be elements of V ⊗W that are not of the form v ⊗ w, although
the vectors of this form do span V ⊗W .

There is a unique linear mapping

P : V ⊗ V → V ⊗ V

such that
P (x⊗ y) = y ⊗ x

for all x and y. With respect to the basis

{ei ⊗ ej : 1 ≤ i, j ≤ dim(V )},

this is clearly a permutation matrix and P 2 = I, whence P = P T . We call
P the flip operator (or matrix).

3.3.2 Lemma. If A and B are m × m matrices and P is the flip matrix,
then P (A⊗B) = (B ⊗ A)P .

Proof. We calculate:

P (A⊗B)(x⊗ y) = P (Ax⊗By) = By ⊗ Ax = (B ⊗ A)P (y ⊗ x).
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3. Hadamard Matrices

As a corollary it follows that if A is square then, although A⊗AT need
not be symmetric, the product P (A⊗ AT ) is symmetric.

If A and B are two matrices of the same order, we define their Schur
product A ◦B by

(A ◦B)i,j = Ai,jBi,j, ∀i, j.

(It has been referred to as the “bad student’s product”.) This product is
commutative and bilinear, and the matrix J is an identity for it. We find
that

(A⊗B) ◦ (C ⊗D) = (A ◦ C)⊗ (B ◦D).

3.4 Symmetric Hadamard Matrices
Suppose H is a Hadamard matrix of order n. Then H is a normal matrix
and therefore there is a unitary matrix U and a diagonal matrix D such
that

U∗HU = D.

Consequently
D = UHU∗

and since n−1/2H is unitary, it follows that n−1/2D is a product of of three
unitary matrices. Therefore it is unitary and so its diagonal entries must
have absolute value 1. We conclude that all eigenvalues of H have absolute
value

√
n. (Note that a real normal matrix is symmetric if and only its

eigenvalues are real.)
If you prefer a more elementary argument, suppose H is Hadamard of

order n and z is an eigenvector for H with eigenvalue θ. Then

nz = HTHz = θHT z

and thus
nz∗z = θz∗HT z = θz∗H∗z = θ(Hz)∗z = θθz∗z.

Hence all eigenvalues of H have absolute value
√
n.

3.4.1 Lemma. If H is a symmetric Hadamard matrix with constant diag-
onal of order n, then n is square.
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Proof. If all diagonal entries of H are equal to −1, we can multiply it by −1
and get a symmetric Hadamard matrix with 1’s on the diagonal. Hence, we
can assume the diagonal of H contains only 1’s. From our remarks above,
the eigenvalues of H are ±

√
n. Assume

√
n has multiplicity a.

As tr(H) is equal to the sum of its eigenvalues and as tr(H) = n we
have

n = a
√
n− (n− a)

√
n.

If we divide this by
√
n, we see that

√
n = 2a− n, which is an integer.

Examples

(a)
(

1 1
1 −1

)
is symmetric and its order is not a square.

(b)


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 is symmetric with constant diagonal.

(c) If H1 and H2 are symmetric Hadamard matrices with constant diagonal,
so is H1 ⊗H2.

(d) If H is Hadamard and P is the flip, then P (H ⊗ HT ) is symmetric.
(What is its diagonal?)

3.5 Regular Hadamard Matrices
A Hadamard matrix is regular if its row and column sums are all equal.
The class of regular Hadamard matrices is closed under Kronecker product.

3.5.1 Lemma. If all rows of H have the same sum, then H is regular and
its order is square.

Proof. Suppose H1 = k1 for some k. Then

kHT1 = HTH1 = n1

and so
HT1 = n

k
1.
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3. Hadamard Matrices

This proves the regularity. Since all row sums are equal and all column sum
are equal it follows that n

k
= k and k = ±

√
n.

If H is regular then the sum of the entries of H is ±n
√
n. It can be

shown that if K is an n × n Hadamard matrix then the absolute value of
the sum of the entries of K is at most n

√
n, and equality holds if and only

if the matrix is regular.
We can construct another interesting class of designs from regular Hadamard

matrices.

3.5.2 Lemma. Let H be n × n matrix with entries ±1 and assume N =
1
2(J − H). Then H is a regular Hadamard matrix with row sum h if and
only if N is the incidence matrix of a symmetric design with parameters
(4h2, 2h2 − h, h2 − h).

Design with these parameters, or their complements, are known as
Menon designs.

3.5.3 Lemma. A non-trivial symmetric (v, k, λ)-design is a Menon design
if and only if v = 4n.

In the exercises you will be offered the chance to prove that if D is a
symmetric design on v and v is a power of 2, then D is a Menon design.
Since the class of regular Hadamard matrices is closed under Kronecker
product, we have an infinite supply of Menon designs.

3.6 Conference Matrices
An n× n matrix C is a conference matrix if ci,i = 0 for all i and ci,j = ±1
if i 6= j and CCT = (n− 1)I.

Examples: (
0
) (

0 1
1 0

)
.

A conference matrix is normalized if all non-zero entries in the first row
are equal and all non-zero entries in the first column are equal.

If n ≥ 2 and there is a conference matrix of order n, then n is even. We
can say more.

3.6.1 Theorem. If C is a conference matrix of order n and n ≡ 2 (mod 4)
then n− 1 is the sum of two squares.
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3.6. Conference Matrices

Proof. We have
CCT = (n− 1)I

and so the symmetric bilinear forms In and (n − 1)In are equivalent. By
Witt cancellation we deduce that(

1 0
0 1

)
≈
(
n− 1 0

0 n− 1

)
.

Hence there is an invertible matrix
(
a b
c d

)
with

(
n− 1 0

0 n− 1

)
=
(
a c
b d

)(
a b
c d

)
=
(
a2 + b2 .

. .

)
.

which implies a2 + b2 = n− 1.

3.6.2 Lemma. If C is a skew symmetric conference matrix then I + C is
a Hadamard matrix.

Proof.

(I + C)(I + C)T = (I + C)(I − C) = I − C2 = I + CCT = nI

3.6.3 Lemma. If C is a symmetric conference matrix, then(
C + I C − I
I − C C + I

)

is a Hadamard matrix.

Proof. Compute HHT .

3.6.4 Theorem. Let C be a conference matrix of order n × n with all
entries in its first row and column non-negative, and let C1 be the matrix
we get by deleting the first row and column of C. Then n is even and if
n ≡ 2 modulo 4, then C1 is skew symmetric; if n ≡ 0 modulo 4 then C1 is
symmetric.
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3. Hadamard Matrices

Proof. Let c1, c2 and c3 denote the first three rows of C. We suppose

x := C2,3, y := C3,2.

Then

(c1 + c2) ◦ (c1 + c3) = c1 ◦ c1 + c2 ◦ c1 + c1 ◦ c3 + c2 ◦ c3.

The inner product of the left side with 1 has the form 3 +x+ y+ 4m; since
the rows c1, c2 and c3 are orthogonal, the inner product of the right side
with 1 is n− 1. Therefore

n− 1 = 3 + x+ y mod 4.

Since x+ y is even it follows that n is even and that n ≡ x+ y modulo 4.
If C is a normalized conference matrix and C1 is the matrix we get by

deleting the first row and column from C, then

(n− 1)I =
(

0 1T
1 C1

)(
0 1T
1 CT

1

)
=
(
n− 1 1TCT

1
C11 C1C

T
1 + J

)

and consequently

C11 = 0, C1C
T
1 = (n− 1)I + J.

3.7 Paley Matrices
We now start on the construct of conference matrices of order q + 1, one
for each odd prime power q. These matrices will be skew symmetric when
q ≡ 3 mod 4 and symmetric if q ≡ 1 mod 4. In the former case we will
then get Hadamard matrices of order 2q+2. (Using these and the Kronecker
product, we can construct Hadamard matrices of all orders 4m between 8
and 96, except the case 4m = 92.)

Let q be an odd prime power and let F be a finite field of order q. (All
finite fields of the same size are isomorphic). If a ∈ F then

X (a) =


1 a is a square, but not 0
−1 a is not a square
0 a = 0
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3.7. Paley Matrices

We call X the Legendre function or quadratic character.
The Paley matrix is the q× q matrix with rows and columns indexed by

F, such that Ma,b = X (b− a) for a, b ∈ F.
Note that all the diagonal entries ofM are zero. The off-diagonal entries

are ±1. If q ≡ 1 mod 4, then M is symmetric. If q ≡ 3 mod 4, M is skew-
symmetric (MT = −M).

If C is a normalized conference matrix, then the matrix we get by delet-
ing the first row and column is its core. A Paley matrix is the core of a
conference matrix. (The proof is an exercise).
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Chapter 4

Projective Planes

4.1 Projective Planes
A projective plane is a thick incidence structure such that each pair of
points lies on exactly one block and each pair of blocks has exactly one
point incident with both of them. In this context blocks are always called
lines, and a block is usually identified with the the set of points incidence
with it.

We offer a construction. Let V be a vector space of dimension three over
a field F, for example Zp. Let P denote the incidence structure with the
1-dimensional subspaces of V as its points and the 2-dimensional subspaces
as its lines, where a point is incident with a line if the corresponding 1-
dimensional subspace is contained in the 2-dimensional subspace. We will
be chiefly concerned with the case where F is finite.

If |F| = q, then |V | = q3. Each 1-dimensional subspace contains q − 1
non-zero vectors, and these sets of non-zero vectors form a partition of the
q3 − 1 non-zero vectors in V . Hence P has

q3 − 1
q − 1 = q2 + q + 1

points. If a is a non-zero vector in V , then ker(aT ) is a 2-dimensional
subspace of V and ker(aT ) = ker(bT ) if and only if a and b are non-zero
scalar multiples of each other. It follows that there are exactly q2 + q + 1
lines in P . Each line contains exactly q + 1 points, and a simple counting
argument yields that each point is on exactly q + 1 lines. Thus P is point
and block regular.
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4. Projective Planes

4.1.1 Lemma. A finite projective plane is a symmetric 2-(n2+n+1, n+1, 1)
design for some integer.

Proof.
The order of a projective plane is one less than the number of points in

a line. Thus the plane constructed above from the field of order q has q+ 1
points on each line, and so the order of the plane is q.

4.1.2 Theorem. Let G be the incidence graph of an incidence structure P .
Then P is a projective plane if and only if G has minimum valency at least
three, diameter three and girth six.

Proof.

4.2 Near Misses
Suppose P is a projective plane and α is a collineation of P . Let F denote
the incidence structure that consists of the points and lines that are fixed
by α.

If x and y are distinct points fixed by α and a is the line that contains
x and y, then aα is a line that contains xα and yα. But xα = x and yα = y,
and consequently aα = a. Similarly we see that if α fixes two distinct lines
a and b, it must fix their point of intersection. We conclude that F is both
a linear space and a dual linear space. If F is thick, it must be a projective
plane. Note that the incidence structure consisting a line and all the points
on it is a linear space and a dual linear space. What other possibilities can
arise?

4.2.1 Theorem. If F is a linear space and a dual linear space, but not a
projective plane then F is isomorphic to one of the following:

(a) A set of points and a single line that contains all the points.

(b) A set of lines incident with a single point.

(c) A line ` with at least two points on it, a point x not on the line and,
for each point y on `, a further line incident with x and y (but not with
any other points).

Proof.
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Note that the first cases form a dual pair and that the third is self-dual.
An arc in an incidence structure is a set of points such that no three are
collinear; a k-arc is an arc of size k.

4.2.2 Theorem. Suppose P is a linear space and a dual linear space. Then
P is projective plane if and only if it contains a 4-arc.

Proof.

4.3 De Bruijn and Erdős
An antiflag in an incidence structure is a pair (x, β) where β is a line and
x is a point not on β. (If x is on β, we have a flag.)

4.3.1 Theorem. Let D be a linear space on v points. Then D has either
one line or at least v lines; if it has v lines, then it is a dual linear space.

Proof. If x is a point of D, let r(x) denote the number of lines on x and if
β is a line, let k(β) denote the number of points incident with the line.

Assume that there is more than one line. If the point x is not on the
line β, then there are k(β) lines that join x to points on β, so r(x) ≥ k(β).

Let b be the number of lines inD and suppose b ≤ v. Then vr(x) ≥ bk(β)
and so

b(v − k(β)) ≥ v(b− r(x)). (4.3.1)

Now using (4.3.1),

1 =
∑

x,β:x/∈β

1
v(b− r(x)) ≥

∑
x,β:x/∈β

1
b(v − k(β)) = 1.

This implies that all the inequalities in (4.3.1) are equalities. Hence v = b
and r(x) = k(β) for each antiflag (x, β). The latter implies that each line
on x contains a point of β, and hence that any two lines intersect.

The above proof is due to John Conway. Cameron derives the theorem
of De Bruijn and Erdős from Hall’s condition for the existence of matchings.
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4.4 Ovals and Hyperovals
An arc in an incidence structure is a set of points such that no three are
incident with the same block and a k-arc is an arc of size k. Here we are
concerned with arcs in projective planes.

4.4.1 Lemma. Let P be a projective plane of order n, and let αi denote
the number of ordered sets of i points that form an i-arc. Then:

(a) α1 = n2 + n+ 1.

(b) α2/α1 = (n2 + n).

(c) α3/α2 = n2.

(d) α4/α3 = (n− 1)2.

Proof.

It follows from this result that a projective plane always contains a 4-arc.
How large can an arc be?

4.4.2 Lemma. Let P be a plane of order n. Then any arc in P has order
at most n+ 2, if n is odd then an arc has order at most n+ 1.

Proof. Let C be an arc in a plane of order n, and let x be a point in C. For
each point y in C \x there is a line through x; these lines are distinct since
no line contains three points from C. Since there are exactly n+ 1 lines on
x,

|C \x| ≤ n+ 1

and therefore |C| ≤ n+ 2.
Now suppose that C is an arc of size n + 2. If x ∈ C, then by the first

paragraph each line on x must meet C in a second point. So each line of
the plane that meets C must contain two points from C. Suppose y is a
point not in C. Then the lines through y that meet C each meet it in two
points. Thus they partition C into distinct pairs and consequently |C| is
even. Therefore n is even.

An oval in a projective plane of order n is an (n + 1)-arc. A hyperoval
is an (n+ 2)-arc.
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4.5 Affine Planes
An incidence structure A is an affine plane if

(a) Each two distinct points lie on exactly one line.

(b) If ` is a line and x is a point not on `, there is a unique line through x
and disjoint from `.

(c) There are three points not all one one line.

In (b), we say that the line on x is parallel to `.
The vector and the cosets of the 1-dimensional subspaces of a 2-dimensional

vector space V over F form an affine plane.
We can also construct affine planes from projective planes. Suppose D

is an incidence structure with point set V . Let B be a block in D. We form
a new incidence structure with point-set V \B; its blocks are the blocks of
D distinct from B and a block is incident with a point in the new structure
if it was incident with it in D. We call the new structure the residual of D
relative to B.

4.5.1 Theorem. If P is a projective plane and ` is a line in it, the residual
of P relative to ` is an affine plane.

Proof. Let A denote the residual structure. It is a partial linear space
because P is.

We find a 3-arc. Let x be a point of P not on `. Choose two lines on x
and, on both of these choose a point distinct from x and not on `. If these
points are y and z, then x, y and z are not collinear.

Now let m be a line of P not equal to ` and let x be a point not on
m (and not on `). Let z be the intersection of ` and m. Then in A, the
unique line joining x and z is disjoint from `. So there is a line through x
parallel to ` and we have to show it is unique. But a second parallel would
be a second line in P that contains x and z. Since this is impossible, A is
an affine plane.

4.5.2 Lemma. Parallelism is an equivalence relation on the lines of an
affine plane.

Proof. Let `, m and n be lines in the affine plane A such that m is disjoint
from ` and n is disjoint from m. Assume by way of contradiction that ` and
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n meet in the point x. Then we have found two lines on x that are disjoint
from n, which contradicts our axioms.

The equivalence classes with respect to parallelism are called parallel
classes.

You may check that if P is a plane of order n, then the affine plane we
obtain as the residual relative to a line ` is a 2-(n2, n, 1) design.

4.5.3 Theorem. A 2-(n2, n, 1) design where n ≥ 2 is an affine plane.

Proof. Let D be a 2-(n2, n, 1) design. Since λ = 1, it is a partial linear space.
If x is a point not in the block β then x together with any two points from
β is a 3-arc.

We see that r = n + 1. If x is a point not on the block β, there are
exactly n lines that join x to points in β and therefore there is a unique
block on x disjoint from `.

The process of going from a projective plane to an affine plane is re-
versible:

4.5.4 Theorem. Let A be an affine plane and let E be the set of parallel
classes of A. Let P be the incidence structure defined as follows.

(a) The points of P are the points of A and the elements of E .

(b) The lines of P are the lines of A, and one new line `∞.

(c) The line `∞ is incident only with the elements of E .

(d) A line of A is incident with the element of E that contains it.

(e) The incidence between points and lines of A are unchanged.

Then P is a projective plane and A is its residual relative to `∞.

4.6 Affine Planes from Spreads
Suppose G is a group of order n and let H = {H1, . . . , Hr} be a set of
subgroups of G of size m such that the sets Hi \1 partition G\1. Then, as
you’re invited to show in the exercises, the incidence structure with points
set G and with the cosets of the subgroups in H as lines is a resolvable
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2-design. We can use this idea to construct affine planes, and the planes we
get in this way are not usually Desarguesian.

A group G will be the vector space V (2d, q) over a field of order q. The
subgroups Hi will be subspaces of dimension d, hence

|H| = q2d − 1
qd + 1 = qd + 1.

If |H| = qd + 1, we call it a spread.
Two subspaces that intersect in the 0-subspace are called skew. We can

present our subspaces as the column spaces of 2d × d matrices. Before we
do this, we normalise things somewhat—note if (H1, H2) and (H3, H4) are
two pairs of skew d-dimensional subspaces, there is an invertible linear map
on V that sends the first pair to the second. If V (∞) and V (0) respectively
are the column spaces of the matrices(

0
I

)
,

(
I
0

)
,

we may assume that they are elements of H. The next step is to note that
the the column space of the 2d× d matrices(

A
B

)
,

(
C
D

)

are skew if and only the matrix (
A C
B D

)

is invertible. Hence the column space of(
A
B

)

is skew to V (∞) if and only if A is invertible. If A is invertible, then the
column spaces of (

A
B

)
,

(
I

BA−1

)
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are equal. Finally the column space V (M) of(
I
M

)

is skew to V (∞) and it is skew to V (0) if and only if M is invertible.
Hence if a spread H exists we may assume it contains V (∞), V (0) and

matrices V (M), but we need to determine the conditions on the matrices
M . For this, note that V (M) and V (N) are skew if and only if(

I I
M N

)

is invertible; as the determinant of this matrix is N −M it follows that a
necessary condition for the subspaces

V (∞), V (0), V (M1), . . . , V (Mqd−1)

to form a spread is that the matrices Mi are invertible and Mi − Mj is
invertible if i 6= j. If we set M0 = 0, our requirement is that Mi −Mj is
invertible whenever 0 ≤ i, j ≤ qd − 1 and i 6= j. (Such a set of matrices is
called a spread set).
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Chapter 5

Groups and Matrices

5.1 Difference Sets
Let Γ be an abelian group and let C be a subset of Γ . If g ∈ Γ we define
the set C + g by

C + g := {c+ g : c ∈ C}.
We call it the translate of C under g. We obtain an incidence structure by
taking the elements of Γ as points and the translates of C as the blocks. So
there are |Γ | points and at most |Γ | blocks.

The canonical example arises when Γ = Z7 and C = {0, 1, 3}. The
corresponding incidence structure is a projective plane of order two.

5.1.1 Theorem. Let C be a subset of the abelian group Γ with |C| ≥ 3 and
suppose that for each non-zero element g of G there is a unique ordered pair
(x, y) of elements of C such that g = y − x. Then the incidence structure
with the elements of Γ as its points and the translates of C as its lines is a
projective plane.

Proof. Suppose x and y are distinct elements of C and u and v are elements
of C and for some element h of C,

u = x+ h, v = y + h.

Then
v − u = y − x

and so if the stated condition on C holds, then any distinct two translates
of C have at most one element in common. We also see that if v−u = y−x,
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then the translate C + h of C contains u and v. It follows that each pair of
distinct elements of C lies in a translate of C, and therefore our incidence
structure is a linear space.

Since the number of translates of C is at most |Γ |, it follows from De
Bruijn and Erdős that our incidence structure is a dual linear space. Since
|C| ≥ 3 it is thick, and therefore it is a projective plane.

It is not strictly necessary to appeal to De Bruijn and Erdős in the above
proof, but it is easier.

A set C satisfying the condition of the theorem is an example of a planar
difference set. There are two useful generalizations. There is the case where
the set of differences covers each non-zero element of G exactly λ times, for
some positive integer λ. And there is the case where we take several sets
C1, . . . , Ck all of the same size, such that each non-zero element of G occurs
exactly once as a difference of two elements from the same set Ci. (And
there is a common generalization of these two cases; all these generalizations
are known as difference sets.)

As an exercise, produce planar difference sets in Z13 and Z21.

5.2 Ovals and Difference Sets
If D is a subset of an abelian group G define

−D := {−g : g ∈ D}.

5.2.1 Lemma. If D is a planar difference set in an abelian group G, then
−D is an oval.

Proof. Let P be the plane generated by D. If S is a set of points in P , then
S is an arc if and only if, for each translate D + g of D,

|S ∩ (D + g)| ≤ 2.

Now if −a, −b and −c are elements of −D and

−a = u+ g, −b = v + g, −c = w + g

where u, v, w ∈ D and g ∈ G, then

−g = a+ u = b+ v
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and so
a− b = v − u.

Since D is a planar difference set, this implies that a = v and b = u. Since

−g = b+ v = c+ w,

we also find that b = w and c = v. We conclude that −D is an oval in P .
Let F be a field of order q. You may show that the vector0

0
1


together with the vectors 1

t
t2


for t ∈ F forms an oval. If a ∈ F3, then ker(aT ) is a line; this line contains
the point with coordinate vector x if aTx = 0. You should use this to show
that each line contains at most two points from the oval just given. The
oval just given is an example of a conic.

5.3 Group Matrices
Let G be a finite group. We say that a matrix M is a group matrix or a
G-matrix if its rows and columns are indexed by the elements of G, and
there is a function ψ in G such that

Mg,h := ψ(hg−1).

Normally the first row and column of a group matrix will be indexed by
the identity element and ψ will take values in a field. A group matrix over
Zn is better known as a circulant.A circulant is a matrix where each row is
the cyclic right shift of the row ‘above’ it.1 2 3

3 1 2
2 3 1
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Thus a circulant is a group matrix over Zn.
IfM is aG-matrix then so isMT (exercise). The set of all group matrices

over G with values in the ring R will be denoted by R[G]. A difference set
over G is a G-matrix that is the incidence matrix of a symmetric design.

5.3.1 Lemma. IfM and N are group matrices, then so areMN andM ◦N .

It follows that the set of all group matrices over G with values in F is
a matrix algebra—a vector space of matrices that contains I and is closed
under matrix multiplication. It is also closed under transpose and under
field automorphisms (for example, under complex conjugation when F = C.)
If we need to be precise, it is a faithful representation of the group algebra
of G over F (but fortunately we do not need to be precise).

A function µ on G is constant on conjugacy classes if

µ(g−1ag) = µ(a)

for all g in G. (Suppose for example that the elements of G were matrices
and µ is the trace function.) We say a group matrix is central if its defining
function is constant on conjugacy classes.

5.3.2 Lemma. LetM be a group matrix based on the function µ. ThenM
commutes with all G-matrices if and only if µ is constant on the conjugacy
classes of G.

There is a natural basis for the space of G-invariant matrices. Define
Px, for x ∈ G by

(Px)g,h =

1, gh−1 = x

0, otherwise

We can check that PxPy = Pxy (exercise). Note that Px is a permutation
matrix. If eg is the standard basis for FG (indexed by the elements of G),
then

Pgex = exg−1 .

If ψ and ϕ are functions on G, their convolution ψ ∗ ϕ is given by

(ψ ∗ ϕ)(g) :=
∑
x∈G

ψ(x)ϕ(x−1g)

IfM is a G matrix and N is an H-matrix, thenM⊗N is a group matrix
for G×H.
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5.4 Eigenvalues and Eigenvectors
We consider the space of group matrices over a finite abelian group G. If η
is a function on G, then we define M(η) to be the matrix with columns

Pgη, g ∈ G.

We have
M(η) =

∑
η(g)P−1

g .

The matrices Pg for g in G are normal and commute, hence they have
a common orthonormal basis of eigenvectors. If η is a common eigenvector,
there is a complex-valued function λg on G such that

Pgη = λgη.

This function is a homomorphism from G to the group of complex numbers
of norm 1; such a function is a character of G. Clearly each eigenvector
determines a character of G. Remarkably, the converse is also true:

Pg
∑
x

λxex =
∑
x

λxexg−1 =
∑
y

λygey = λg
∑
y

λyey.

If λ and µ are two characters of G, then the map

g 7→ λgµg

is again a homomorphism from G into the C∗, and so it is a character.
Hence the set of characters of G forms a group, called the dual group of G
and denoted by G∗. It is isomorphic to G. (Prove this for cyclic groups,
then show that (G×H)∗ = G∗ ×H∗.)

Fix an isomorphism from G to G∗, and let χg be the character assigned
to g in G. If M is a G-matrix, then we define Φ(M) to be the matrix
with rows and columns indexed by G, such that (Φ(M))g,h is equal to the
eigenvalue of M on the character χhg−1 . Thus Φ(M) is a G-matrix,

Φ(I) = J

and, for any two group matrices M and N ,

Φ(MN) = Φ(M) ◦ Φ(N).

We also have
Φ(J) = nI.

5.4.1 Theorem. We have Φ(M ◦N) = n−1Φ(M)Φ(N) and Φ2(M) = nMT .
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5.5 Multipliers
A multiplier of a difference set in G is an automorphism of G that is also
an automorphism of D.

5.5.1 Theorem. Suppose D is a symmetric (v, k, λ) design and p | n and
p > λ. If S ⊆ V such that |S| = k and its characteristic function xS ∈
colp(D), then S is a block.

Proof. Since p > λ, we see that p does not divide k. Let β1, . . . , βv denote
the blocks of D. Since xS ∈ colp(D), we can write

xS =
∑
i

aixβi
, ai ∈ GF (p).

Then
k = 1TxS =

∑
i

ai1Txβi
= k

∑
ai (5.5.1)

If β is some block in D we also have
λ = xTβxS =

∑
aix

T
βxβi

= k
∑

ai = k (mod p)
and, since p > λ, this implies that |S ∩ β| ≥ λ.

We now prove that if S is a k-subset of V and |S ∩ β| ≥ λ for all blocks
β, then S is a block. We have

NNT = nI + λJ

and consequently

N

(
N − λ

k
J

)T
= nI.

If |S ∩ β| ≥ λ for all blocks λ then xTSN ≥ λ1T and xTS
(
N − k

λ
J
)
≥ 0. We

have
xTβ

(
N − λ

k
J

)
= neβ

Let aT = xTS
(
N − λ

k
J
)
. Then,

aT =
∑

aβe
T
β

= 1
n

∑
aβne

T
β

= 1
n

∑
aβx

T
β

(
N − λ

k
J

)
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and therefore
sTS

(
N − λ

k
J

)
=
∑ aβ

n
xTβ

(
N − λ

k
J

)
.

Since N − k
λ
J is invertible, we find that

xS = 1
n

∑
aβxβ

where aβ ≥ c for all β. Since xS has weight k, only aβ can be non-zero. So
xS = xβ for some block β.

There is a useful way to view the second part of the above proof. If
M is a matrix, then the vectors y such that yTM ≥ 0 form a convex cone,
that is, a set of vectors in a real vector space closed under addition and
multiplication by non-negative scalars. The set of all non-negative linear
combinations of the columns of M is also a convex cone, dual to the first.
In the above proof we are arguing that the rows of N generate the dual to
the cone generated by the rows of N − la

k
J .

5.5.2 Theorem. Let D be a symmetric design given by a difference set
in the abelian group G. If p | n and p > λ, then p is a multiplier of the
difference set.

Proof. We can assume N ∈ Fp(G); N is a sum of permutation matrices
from G with coefficients in Fp.

We can write N as ∑ ciPi where ci = 0, 1, and then

Np =
∑

cpiP
p
i =

∑
ciP

p
i .

If P ∈ G then PN − NP , as col(N) is invariant under each element of G.
Also,

Np = Np−1N

whence we see that col(Np) ⊆ col(N). Each column of Np is the character-
istic vector of a subset of size k, hence it must be the characteristic vector
of a block of D.

5.5.3 Lemma. A multiplier of a symmetric design over a group G fixes at
least one block.
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Proof. We can represent the action of the multiplier on points by the
permutation matrix P . Then each column of PN is a block, and PN = NQ
for some permutation matrix Q. Since N−1 exists,

Q = N−1PN

and therefore tr(Q) = tr(P ). Therefore the number of blocks fixed by Q
equals the number of points fixed by P . Since P fixes 0, we are done.

5.5.4 Theorem. If (v, k) = 1 and D is given by a difference set in an
abelian group, there is a block which is fixed by every multiplier.

Proof. Let β be a block and let h be the product of its elements. If g ∈ G,
then the product of the elements in the block βg is gkh. Since k and n are
coprime, the map g 7→ gk is an automorphism of G and therefore there is a
unique element g of G such that gkh = 1. This shows that there is a unique
block γ such that the product of its elements if 1. Clearly this block is fixed
by all multipliers.
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Chapter 6

Orthogonal Arrays

6.1 Latin Squares
Traditionally a Latin square of order n is an n× n array with entries from
{1, . . . , n} such that each integer occurs exactly once in each row and col-
umn. If we allow ourselves to use any set of size n for the entries, we see
that the multiplication table of a group is a Latin square. Therefore there
is a Latin square of order n for each non-negative integer n.

There is an alternative definition which works better. Suppose A is
matrix that represents a latin square of order n. Then we can have n2

triples
(i, j, Ai,j).

We can now write down an n2×3 matrix with these triple as rows. (Although
for typographical reasons we might write down the transpose instead.) This
matrix has the property that each ordered pair of columns contains each
ordered pair from {1, . . . , n} exactly once. Conversely any n3 × 3 matrix
over {1, . . . , n} with this property comes from a latin square.

We can now introduce a key concept: an orthogonal array OA(n, k) over
{1, . . . , n} is a matrix with k columns and entries from {1, . . . , n}, such that
each ordered pair of columns contains each ordered pair of elements from
{1, . . . , n} exactly once. It follows that an orthogonal array has exactly
n2 rows. An orthogonal array OA(n, 2) is more or less the edge set of
the complete bipartite graph Kn,n. An OA(n, 3) is a latin square. Two
orthogonal arrays are equivalent if we can get one from the other by a
combination. of permuting rows, columns or symbols.
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We can generalize the concept of orthogonal array to that of an orthog-
onal array with index λ, where each ordered pair occurs exactly λ times in
each pair of columns. An orthogonal array has strength at least t if, for
each s with 1 ≤ s ≤ t, each ordered s-tuple occurs exactly λs times in each
set of s columns.

We can describe orthogonal arrays as incidence structures. Assume
we have an OA(n, k). The blocks of the structure are the rows of the
array. We define the points as ordered pairs (i, α) where i ∈ {1, . . . , k} and
α ∈ {1, . . . , n}; a point (i, α) is incident with the blocks with i-th coordinate
equal to α. We have 3n points and v2 blocks. It is not hard to show that
this structure is a partial linear space: any two point with different first
coordinate lie in a unique block, while no block is incident with two distinct
points that have distinct first coordinate.

The dual structure is resolvable. The n points with first coordinate i
form a parallel class and this gives k parallel classes whose union is the
point set.

6.2 Examples
Let F be a finite field of order q. If a1, . . . , aq−1 are the non-zero elements
of F, form the array with q2 rows of the form

(x, y, x+ a1y, . . . , x+ aq−1y)

This is an orthogonal array. If |F| = 3, the rows are

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 1

Suppose A and B are orthogonal arrays with k columns with elements
from M and N respectively. If (i, j, α) and (k, `, β) are rows of A and B
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respectively, define their product to be

((i, k), (j, `), (α1, β1), . . . , (αk−2, βk−2))

The set of all products forms an array overM×N , and you may verify that
this is an orthogonal array.

We present an application. Suppose we have a 2-(v, k, 1) design D with
point set V and we want to construct a 2-(vk, k, 1) design. (The parameters
work.) We begin by taking k disjoint copies of D, which means we have kb
blocks and so we are short by

vk(vk − 1)
k(k − 1) − k

v(v − 1)
k(k − 1) = v2.

So we can finish our construction if we can find a collection of v2 k-sets,
consisting of one point from each copy of V . It is not hard to verify that
this set must be an OA(v, k), and that any OA(v, k) will work.

6.3 Affine Planes
We have the following bound.

6.3.1 Lemma. If an OA(n, k) exists, then k ≤ n+ 1.

Proof. The graph of an orthogonal array OA(n, k) has the n2 rows of the
array as its vertices, two rows are adjacent if they agree on some coordinate.
The rows that take the same value in the same column form a clique in the
graph, and thus each column determines a set of n vertex-disjoint cliques
of size n. We call this a parallel class. Since two rows agree on at most one
coordinate, we can color each edge of the graph by the index of the column
where the corresponding rows agree. The subgraph formed by the edges of
a given color form a parallel class, and different parallel classes are edge
disjoint. Now the number of edges in the graph is at most(

n2

2

)

and the number of edges in a parallel class is

n

(
n

2

)
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and therefore the number of parallel classes is at most

n2(n2 − 1)
n2(n− 1) = n+ 1.

We can shorten this proof by omitting the graph, but the graph will be
needed again. You may prove that a coclique in the graph of an OA(n, k)
has size at most n; if the chromatic number of the graph is n then the
OA(n, k) can be extended to an OA(n, k + 1) by adding a column.

6.3.2 Theorem. An OA(n, n+ 1) is an affine plane of order n.

Proof. We take the n2 rows as point set and the n-cliques of the graph as
the lines. By our argument above, any two distinct points lie in exactly
one line. Thus our points and lines form a 2-(n2, n, 1) design and any such
design is an affine plane.

In fact we see that an OA(n, n+1) is, as an incidence structure, the dual
of an affine plane. Any OA(n, k) can be viewed as an incidence structure:
the rows are the lines, the points are ordered pairs consisting of a column
and a symbol and the point (i, a) is incident with the rows that have a
in the i-th position. Our graph above is the block graph of the incidence
structure.

The graph of an orthogonal array does not determine the array in
general—all affine planes of order n give rise to the complete graph Kn2 .
Of course if we keep track of the coloring, then we can reconstruct the
array.

6.4 Block Graphs
We construct a graph from an orthogonal array OA(n, k) by taking the
rows as vertices and declaring that two rows are adjacent if they agree on
some coordinate. The resulting graph on n2 vertices is regular with valency
k(n− 1). The n rows with i-th coordinate equal to α form a clique of size
n, and so the i-th coordinate gives rise to n vertex-disjoint cliques of size
n. Thus they form a subgraph isomorphic to nKn and we obtain a set of k
edge-disjoint copies of nKn. We will call a copy of nKn a parallel class.

Since the block graph of an OA(k, n) contains cliques of size n, its
chromatic number is at least n. The problem of deciding when it is exactly
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n is very interesting. As the block graph contains n pairwise vertex-disjoint
n-cliques, we see that a coclique (i.e., independent or stable set) must have
size at most n, since it cannot contain two vertices from the same clique.
Therefore our block graph is n-colourable if and only if it has n pairwise
vertex-disjoint cocliques of size n.

If an OA(k, n) consists of k columns from an OA(k + 1, n), we say it is
extendible.

6.4.1 Theorem. The block graph of an OA(k, n) is n-colourable if and
only the array is extendible.

Proof. The block graph of an OA(k+1, n) is the edge-disjoint union of k+1
copies of nKn. If we delete one of these parallel classes we are left with the
block graph of an OA(k, n), and the deleted parallel class gives rise to n
pairwise vertex-disjoint cocliques. Hence the block graph of the OA(k, n)
is n-colourable. The converse is left as an exercise.

6.4.2 Lemma. The block graph of a Latin square of order n is n-colourable
if and only if it contains a coclique of size n.

6.4.3 Lemma. If the Latin square L is the multiplication table of a cyclic
group of even order, its block graph does not contain a coclique of size n.

6.5 Existence
The fundamental result is due to Chowla, Erdős and Straus:

6.5.1 Theorem. Suppose k is a positive integer. There is an integer Nk

such that if n ≥ Nk, then there is an orthogonal array O(k, n).

For a proof of this, see Chapter 22 in Van Lint and Wilson “A Course
in Combinatorics”. There is also a treatment in Section X.5 of Volume 2 of
“Design Theory” by Beth, Jungnickel and Lenz. The basic strategy of the
proof is to consider the set Sk of positive integers n such that an OA(k, n)
exists. This set contains all sufficiently large prime powers. Further each
construction of arrays from smaller arrays leads to a closure operation on
Sk, and the essence of the proof is to show that, given the known elements
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of Sk and the closure operations that apply, it follows that Sk contains all
sufficiently large integers.

In Section 5.5 of Ian Anderson’s “Combinatorial Designs” you will find
a proof that there is no OA(4, 6), from which it follows that there is no
affine (or projective) plane of order six.
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Chapter 7

1-Factorizations

A 1-factor of a graph X is a perfect matching. A 1-factorization is a
partition of E(X) into edge-disjoint 1-factors. If X has a 1-factorization,
then X must be regular on an even number of vertices. The Petersen
graph shows that the converse fails. Each regular bipartite graph has a
1-factorization (since a regular bipartite graph with positive valency must
have a 1-factor). You might show that a 1-factorization of the complete
bipartite graph is equivalent to an n × n Latin square. In this chapter we
focus on 1-factorizations of complete graphs.

7.1 Factorizing Kn

We construct a 1-factorization for Kn when n is even. Assume n = 2m and
take the vertices to be ∞ together with the elements of Z2n−1. Colour ∞i
with i (for each i), if x and y are finite, colour xy with n(x+y). This works
because if n(x+ y) = n(x+ z), then

x+ y = 2n(x+ y) = 2n(x+ z) = x+ z

and therefore y = z.
We can present this 1-factorization as array L with rows and columns

indexed by Z2m−1, such that Li,j is the colour of the edge ij. Clearly this
array is symmetric and the diagonal is undefined, but it is natural to set
Li,i = i. You might now check that this array is a Latin square.

A Latin square L of order n is idempotent if Li,i = i for each i. The
Latin square we just constructed is idempotent.
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7.1.1 Lemma. The 1-factorizations of K2m are in bijection with idempo-
tent symmetric Latin squares of order 2m− 1.

We can get 1-factorizations of K4n by combining two 1-factorizations of
K2m with a 1-factorization of K2n,2n.

Exercise: The block graph of a Latin square of order n contains a co-
clique of size n if and only if we can permute its columns so that the resulting
square is idempotent.

Exercise: if n is even there is no symmetric idempotent n × n Latin
square.

7.2 Squares and Triples
Given a Steiner triple system with point set V of size v, we can define a
v × v Latin square as follows. If i, j ∈ V and i 6= j, define the product
i ? j to be the third point in the unique triple that contains i and j. Define
i ? i to be i. THen ? is a commutative product on V , and its multiplication
table is a symmetric idempotent Latin square.

Since symmetric idempotent v× v Latin squares exist for all odd v, and
since Steiner triple systems can exist only when v ≡ 1, 3 modulo 6, it is clear
that not every symmetric idempotent Latin square gives rise to a Steiner
triple system. But given a symmetric idempotent n × n Latin square, we
can construct a Steiner triple system on v = 3n points as follows.

Let N = {1, . . . , n} and let V be the Cartesian product V ×Z3. Assume
L is our Latin square as described. We start by taking all triples of the
form

{(r, i), (s, i), (Lr,s, i+ 1)}
where r, s range over the elements of N and r 6= s, and i ∈ Z3 (and so
the addition in the third coordinate is carried out mod 3). This gives us
3n(n− 1)/2 triples; adjoin to this set of triples all n triples

{(r, 0), (r, 1), (r, 2)}, r ∈ N.

It is easy to verify that the resulting set of triples is a Steiner triple system,
and so we have proved that if v ≡ 3 modulo 6, there is a Steiner triple
system on v points.

Latin squares can also be used to provide an efficient construction of
Steiner triple systems on v points when v ≡ 1 modulo 6. Suppose L is

62



7.2. Squares and Triples

a symmetric idempotent Latin square of order n, with entries from N as
above. Let M be the Latin square we obtain from L by adding n to each
entry. Then the array (

L M
M L

)
is a symmetric 2n× 2n Latin square with diagonal entries

1, . . . , n, 1, . . . , n.

This square can be used to construct a Steiner triple system with points
set consisting of a new symbol ∞ together with three disjoint copies of
{1, . . . , 2n}. We leave the construction as an exercise.
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Chapter 8

Distance-Regular Graphs

Many intersting combinatorial and geometric striuctures are associated with
interestin graphs where, in this context, interesting means “distance regu-
lar”. We explain what this means.

8.1 Distance-Regular Graphs
A graph X is distance regular if, given a pair of vertices (a, b) at distance k,
the number of vertices x at distance i from a and j from b is determined by
i, j and k. We denote this number by pi,j(k), this set of constants forms the
intersection parameters of the graph X. Primitive strongly regular graphs
are distance regular. Cycles are distance regular.

Incidence graphs of symmetric designs are distance-regular with diam-
eter three. Conversely a bipartite distance-regular graph with diameter
three is the incidence graph of a symmetric design. Incidence graphs of
generalized quadrangles are distance-regular if they are regular.

If P is a projective plane of order n, its incidence graph is distance-
regular with diameter three and girth six. It is regular with valency q + 1
and has 2(q2 + q+ 1) points. Choose a line ` and point p on `. If we delete
from the incidence graph the vertices corresponding to the q + 1 points on
` and the vertices corresponding to the q+ 1 lines on p. the resulting graph
is bipartite (still) with diameter four. You may show that it is distance-
regular.

We can also construct distance-regular graph from Hadamard matrices.
Suppose H is Hadamard of order n. We construct a bipartite graph on 4n

65



8. Distance-Regular Graphs

vertices by specifying its adjacency matrix. First we convert H to a matrix
Ĥ of order 2n× 2n by replacing each entry 1 and −1 respectively by(

1 0
0 1

)
,

(
0 1
1 0

)
,

Let X be the bipartite graph with adjacency matrix(
0 Ĥ

ĤT 0

)
.

Then X is distance regular with valency n.
A graph X of diameter d is antipodal if the relation “is equal to or is at

distance d from” is an equivalence relation on V (X). The cube is antipodal
of diameter three. The line graph of the Petersen graph is antipodal of
diamter three, and its antipodal classes have size three. The graphs we con-
structed from projective planes above, and the graphs we constructed from
Hadamard matrices are antipodal. (In the projective case the antipodal
classes have size n, in the Hadamard case they have size 2.)

Suppose X is a connected graph with diameter d. We define the i-th
distance graph of X to be the graph with vertex V (X), where two vertices
are adjacent in Xi if and only if they are at distance i in X. We use Ai to
denote the adjacency matrix of Xi and set A0 = I. Of course X1 = X. We
note that ∑iAi = J .

The matrices {A0, . . . , Ad} span a real vector space of dimensioon d+ 1.
We say that X is a distance-regular graph if this vector space is closed under
matrix multiplication, thus it is a matrix algebra, known as the Bose-Mesner
algebra of the graph. (We note that since the set {0, A0, . . . , Ad} is closed
under Schur multiplication, our vector space is closed under Schur multi-
plication too.) It follows that if X is distance regular, there are constants
pi,j(k) such that

AiAj =
R∑
r=0

pi,j(r)Ar.

The parameters pi,j(k) are non-negative integers, and are known as the
intersection numbers of the graph. Since the product of two symmetric
matrices A and B is symmetric if and only if AB = BA, we see that if X
is distnace-regular, then its Bose-Mesner algebra is commutative.

The intersection numbers have a straightforward combinatorial defini-
tion. If u and v are vertices of X at distance r (in X), then pi,j(r) is equal
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to the number of vertices w of X such that dist(w, u) = i and dist(w, v = j).
(We could define a distance-regular graph to be a graph where the intersec-
tion numbers are well-defined; this is in fact the usual definition.)

Suppose X is connected graph of diameter d. We say that X is distance
transitive if for each r such that 0 ≤ r ≤ d, the automorphism group of
X acts transitively on the ordered pairs of vertices at distance r. Many of
the distance-regular graphs we will meet are distance-transitive. Verifying
that a graph is distance-transitive is often the easiest way to show that it
is distance regular.

A distance-regular graph X is primitive if each of its distance graphs
is connected. We note that a graph X is bipartite if and only if X2 is not
connected, whence bipartite distnce-regular graphs are imprimitive. For
the d-cube we see that Xd is not connected; a distance-regular graph of
diameter d is said to be antipodal if Xd is not connected. The line graph of
the Petersen graph is distance-regular and antipodal but not bipartite. It is
an important result that an imprimitive distance-regular graphs is bipartite
or antipodal (or both).

If X is distance-regular with diameter d and antipodal, then Xd is a
disjoint union of complete graphs.

8.2 An Example: Projective Planes
The incidence graph X of a projective plane is distance-regular. We verfiy
this. Assume that the order of the plane is n and let N be its incidence
matrix. Then

A1 =
(

0 N
NT 0

)
and so

A2
1 =

(
NNT 0

0 NTN

)
= nI +

(
J 0
0 J

)

Thus X2 consists of two copies of the complete graph on n2 +n+ 1 vertices.
You should now verify that

A3 =
(

0 J −N
J −NT 0

)
,

from which it follows that X is distance regular with diameter three.
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You should also prove that if X is bipartite and distance regular with
diameter three, then it is the incidence graph of a symmetric design. (The
design is a projective plane if and only if the girth of the incidence graph is
six.)

The incidence graph of a classical projective plane formed by the 1- and
2-dimensional subspaces of a vector space over a finite field is necessarily dis-
tance transitive. However for non-classical projective planes, the incidence
graph is not distance transitive in general.

8.3 Partial Geometries
A partial geometry is a point and line-regular partial linear space with the
property that there is a positive integer α such that each point not on a
line is collinear with exactly α points on the line. We write PG(s, t, α) to
denote a partial geometry with lines of size s + 1 and t + 1 lines on each
point, where a point not on a line is collinear with exactly α points on the
line. So an OA(n, k) is a PG(k − 1, n − 1, k − 1). A 2-design with λ = 1
is a PG(k − 1, r − 1, k). (I am sorry about all the −1’s, but the geometers
got here first.)

You can prove the following:

(a) A PG(s, t, s + 1) is equivalent to a 2-design with parameters (st + s +
1, s+ 1, 1).

(b) A PG(s, t, s) is equivalent to an orthogonal array OA(t+ 1, s+ 1).

(c) The dual of a partial geometry PG(s, t, α) is a PG(t, s, α).

(d) The edges and 1-factors of K6 form a PG(2, 2, 1).

(e) An incidence structure is a PG(s, t, 1) if it is point and block regular
and its incidence graph has diameter four and girth eight.

There are partial geometries where

1 < α < min{s, t}

but they are not easy to find. (They are sometimes said to be proper.)
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8.3.1 Lemma. Let N be a 01-matrix. Then N is the incidence matrix of
a partial geometry if and only if there are positive integers s, t and α such
that

(a) N1 = (t+ 1)1.

(b) N>1 = (s+ 1)1.

(c) NNTN = (t+ s+ 1)N + α(J −N) = (s+ t+ 1− α)N + αJ .

We leave the proof of this as an exercise. If our partial geometry has v
points and b lines, then we have

(t+ 1)2(s+ 1)1 = (t+ s+ 1− α)(t+ 1) + αb

whence we obtain

b = (t+ 1)st+ α

α
, (s+ 1) = st+ α

α
.

(The expression for v is a consequence of the expression for b, in more than
one way.)

A partial geometry is a partial linear space and therefore the matrix
NNT − (t + 1)I is a 01-matrix. Hence it is the adjacency matrix of the
point graph of the geometry and NTN − (s + 1)I is the adjacency matrix
of its line graph. If A and B are matrices such that both products AB and
BA are defined (i.e., A and BT have the same order), then

det(I + xAB) = det(I + xBA)

From this it follows thatNNT andNTN have the same non-zero eigenvalues
with the same multiplicities. Now from Lemma 8.3.1(c) we get that

(NNT )2 = (s+ t+ 1− α)N + α(s+ 1)J

and from this it follows that the eigenvalues of NNT are

0, s+ t+ 1− α, (s+ 1)(t+ 1)

with respective multiplicities v− rk(N), rk(N)−1 and 1. Consequently the
eigenvalues of the point graph are

−t− 1, s− α, s(t+ 1)
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and those of the line graph are

−s− 1, t− α, (s+ 1)t.

In both these case the third eigenvalue is the valency of the graph, and is
simple, while the multiplicity of the second eigenvalue is equal to rk(N)−1.

8.4 Strongly Regular Graphs
A graph X is strongly regular if it is neither complete nor empty and there
are integers k, a and c such that

(a) X is regular with valency k.

(b) Any two adjacent points have exactly λ common neighbors.

(c) Any two points that distinct and not adjacent have exactly c common
neighbours.

If X is a strongly regular graph on v vertices its parameter vector is
(v, k; a, c).

If m,n > 1 then the disjoint union mKn of m copies of Kn is strongly
regular with c = 0; its complement is strongly regular. The complement of a
strongly regular is strongly regular. A strongly regular graph is imprimitive
if it is not connected (in which case it is mKn), or if its complement is not
connected (in which case it is mKn).

8.4.1 Lemma. Let A be the adjacency matrix of the graph X. The X is
strongly regular with parameters (v, k; a, c) if and only if

A2 − (a− c)A− (k − c)I = cJ.

The block graph of a 2-(v, k, 1) design is strongly regular or complete.
The simplest way to prove this is to show to compute k, a and c. However
this fact is a corollary of the following:

8.4.2 Lemma. The points and block graphs of a partial geometry are
strongly regular.
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This lemma is an easy consequence of the eigenvalue computations
above, Lemma 8.4.1 and the following:

8.4.3 Lemma. A connected graph is strongly regular if and only if its
adjacency matrix has exactly three distinct eigenvalues.

A connected regular graph whose adjacency matrix has exactly two
eigenvalues must be a complete graph. (The number of distinct eigenvalues,
less one, is an upper bound on the diameter of a graph.)

Constructions: symmetric Hadamard matrices with constant row sums
and constant diagonal. Block graphs of orthogonal arrays and 2-(v, k, 1)
designs. Symmetric conference matrices with constant diagonal. Comple-
ments of srgs.

8.5 Generalized Quadrangles
An incidence structure is a generalized quadrangle if:

(a) Any two points lie on at most one line.

(b) If p is a point of the line `, there is a unique point on ` that is collinear
with p.

We generally assume that a GQ (generalized quadrangle) is not a line or a
dual line. (These cases are degenerate.) The dual of a GQ is a GQ, as you
should verify.

We offer a somewhat surprising example. Let P be the set of 15 un-
ordered pairs from {0, 1, 2, 3, 4, 5}, viewed as the edges of the complete
graph K6. Let F denote the 15 1-factors in K6. Then the incidence struc-
ture (P ,F) (with inclusion as incidence) is a generalized quadrangle.

For an actual family, let (P ,L) be the incidence structure with the
vertices of the complete bipartite graph Km,n as points and its edges as
lines. These are again GQs, but form a trivial class known as dual grids.
(As you might hope, the dual of dual grid is a grid.)

As noted earlier the points and lines of polar space of rank two form
a generalized quadrangle, and these provide some of the most important
classes. We will meet others.

8.5.1 Lemma. A thick finite generalized quadrangle is point regular and
line regular.
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The convention is that by GQ(s, t) we denote a generalized quadrangle
with s+1 points on each line and t+1 lines on each point. Our first example
above is a GQ(2, 2). A grid is a GQ(s, 1) (and so a dual grid is a GQ(1, t)).

8.5.2 Lemma. Suppose P is a partial linear space that contains non-
collinear points and nonconcurrent lines. Then P is a generalized quad-
rangle if and only if its incidence graph has diameter four and girth eight.

8.5.3 Theorem. The point graph of a GQ(s, t) is strongly regular with
parameters

((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1).

Proof. Suppose x and y are two points that are not collinear. Then y lies
on t + 1 lines and on each of these lines there is a unique point collinear
with x, hence x and y have exactly t + 1 common neighbours. If x and y
are distinct collinear points, there are s − 1 points on x ∨ y collinear with
both x and y and no point off x ∨ y is collinear with x and y. Therefore
two adjacent points have exactly s− 1 common neighbours.

Since any point is on t+ 1 lines, each containing a further s points, the
valency of our graph is s(t+ 1).

Finally we calculate the number of vertices. Choose a line `. Each of
the points on ` lies on a set of t lines distinct from `, and these sets of t
lines are pairwise disjoint. Since each point off ` is collinear with a unique
point on `, we find that the number of vertices is

s+ 1 + (s+ 1)ts = (s+ 1)(st+ 1).

The eigenvalues of the point graph are the valency s(t+ 1) and the two
zeros of

x2 − (s− t− 2)x− (s− 1)(t+ 1) = (x+ t+ 1)(x− s+ 1),

i.e., they are s− 1 and −t− 1.

8.5.4 Lemma. Let N be the incidence matrix of a GQ(s, t) and let A be
the adjacency matrix of its point graph. Then

NNTN = (s+ t)N + J.
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Proof. We have
NNT = (t+ 1)I + A

where A is the adjacency matrix of the point graph. Then

NNTN = (t+ 1)N + AN.

If x is a point and ` is a line, then (AN)x,` is the number of points w
collinear with x on `. There are two cases. If x ∈ ` then this number is s.
If x /∈ `, it is 1. Hence

AN = sN + (J −N)

and the lemma follows.

Since AN = (s− 1)N + J , if 1T z = 0 then

ANz = (s− 1)Nz

and so the differences of distinct columns of N are eigenvectors for A with
eigenvalue s−1. Since A+(t+1)I = NNT , we see that the non-zero vectors
in ker(NT ) are eigenvectors for A with eigenvalue −t − 1. It follows that
the multiplicity of s−1 as an eigenvalue if rk(N)−1 and the multiplicity of
−t− 1 is v− rk(N). The multiplicities of s− 1 and −t− 1 are respectively

st(s+ 1)(t+ 1)
s+ t

,
s2(st+ 1)
s+ t

This implies that s+tmust divide st(st+1), which is a non-trivial constraint
on the possible values of s and t.

[***This all follows from the computations with partial geometries, should
be deleted***]

Grids and dual grids aside, all known (finite) GQs have parameters of
the form

(q, q), (q, q2), (q2, q), (q2, q3), (q3, q2), (q − 1, q + 1), (q + 1, q − 1)

where q is a prime power.
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8.6 Higman’s Inequality
The following inequality is due to D. Higman, the proof we present is due
to Cameron.

8.6.1 Theorem. If a GQ(s, t) exists then t ≤ s2.

Proof. Let x and y be two noncollinear points in our GQ, let C denote
x⊥ ∩ y⊥, and let N be the set of points that are not collinear with x or y.
We count ordered pairs (w, u) in N × C where u ∼ w. Then∑

w∈N
|w⊥ ∩ C| = (t+ 1)(t− 1)s.

Next count ordered triples in N × C × C to get∑
w∈N
|w⊥ ∩ C|(|w⊥ ∩ C| − 1) = (t+ 1)t(t− 1).

We have
m = s2t− st− s+ t

and if we set µ equal to the average value of |w⊥ ∩ C|, then by Jensen’s
inequality

1
m

(t+ 1)t(t− 1) ≥ µ(µ− 1).

After some manipulation this yields that

t(s− 1)(s2 − t) ≥ 0.

If t = s2 then |w⊥ ∩ C| = s+ 1 (as you might show).
Suppose X is a strongly regular graph with parameters (n, k; a, c). Let

` denote the valency n− 1− k of the complement of X and let θ and τ be
the eigenvalues of X distinct from k. The Krein condition assures us that

1 + λ3

k2 −
(λ+ 1)3

`2 ≥ 0.

If we apply this to the point graph of a GQ(s, t) with λ = −t − 1, we get
that

0 ≤ 1− (t+ 1)3

s2(t+ 1)2 + t3

s4t2
= s4 − s2 − (s2 − 1)t2

s4

which yields Higman’s inequality.
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8.7 Eigenvalues of Neighborhoods in SRGs
Let X be the point graph of a GQ(s, t). This is a strongly regular graph.
The neighbourhood of a vertex consists of t + 1 complete graphs of size s,
so its eigenvalues are s− 1 and −1 with respective multiplicities t+ 1 and
(t+ 1)(s− 1).

Somewhat surprisingly it is possible to determine the eigenvalues of the
second neighborhood of a vertex of a strongly regular graph—the subgraph
induced by the vertices at distance two from the vertex—in terms of the
eigenvalues of the neighborhood.
Proof. We assume the parameters of X are (n, k; a, c). We can write the
adjacency matrix A of X in partitioned form:

A =

0 1T 0
1 A1 BT

0 B A2


Our aim is to determine the eigenvalues of A2.

The 3-dimensional space spanned by vectors constant on the distance
partition relative to the vertex 1 is A-invariant; the eigenvalues of A on this
subspace are k, θ and τ . The orthogonal complement of this subspace is
also A-invariant, and consists of vectors that are zero on vertex 1 and sum
to zero on the first and second neighborhoods. Let us denote this space by
V0. Our goal is to find eigenvectors for A in V0.

We note that the minimal polynomial of A on V0 is (t − θ)(t − τ), in
particular it is a quadratic polyomial and therefore if w ∈ V0 then the space
spanned by w and Aw is A-invariant. Thus either it is 1-dimensional and w
is an eigenvector for A (with eigenvalue θ or τ), or it is 2-dimensional and
is spanned by eigenvectors for A, one with eigenvalue θ and with eigenvalue
τ .

We start by choosing an eigenvector z for A1 that is orthogonal to 1.
Assume that A1z = λz and set

ẑ =

0
z
0

 , ŵ =

 0
0
Bz

 .
Then ẑ ∈ V) and

Aẑ =

 0
A1z
Bz

 = λẑ + ŵ
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and

Aŵ =

 0
BTBz
A2Bz

 .
Since Aw must be a linear combination of ẑ and ŵ, there must be scalars

β and µ such that

BTBz = βz, A2Bz = µBz

and therefore
Aw = βẑ + µŵ.

So, relative to the basis {ẑ, ŵ} the effect of A is represented by(
λ β
1 µ

)
.

The eigenvalues of this matrix are θ and τ , whence

λ+ µ = θ + τ = a− c, λµ− β = θτ = c− k.

The first conclusion we reach is that if z is an eigenvector for A1 with
eigenvalue λ and Bz 6= 0, then Bz is an eigenvector for A2 with eigenvalue
a− c− λ.

IfX is a regular graph and θ is an eigenvalue with eigenvector orthogonal
to 1, then −θ−1 is an eigenvalue of X. Also if X is connected and k-regular,
then k is a simple eigenvalue with 1 as an eigenvector.

Hence if there is an eigenvector w for A2 with eigenvalue µ, then w is
an eigenvector for AT and if (J − BT )w 6= 0, by the argument above it is
an eigenvector for A1 with eigenvalue

−θ − τ − 2− (−µ− 1) = −θ − τ + µ− 1

and therefore it is an eigenvector for A1 with eigenvalue θ + τ − µ. (Note
that all row sums of B are equal, as are all column sums, so (J −BT )w = 0
if and only if BTw = 0.)

Since BBT is positive semidefinite, β ≥ 0. As λ and µ are roots of

(t− λ)(t− µ) = t2 − (λ+ µ) + λµ = t2 − (θ + τ)t+ θτ + β
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8.8. Eigenvalues of Neighborhoods in GQs

we see that
τ ≤ λ, µ ≤ θ.

If A1z = θz then λ = θ and µ = τ and

β = λµ− θτ = 0.

Therefore Bz = 0. Similarly Bz = 0 if λ = τ .

8.8 Eigenvalues of Neighborhoods in GQs
We apply the results of the previous to section to the point graph of a
GQ(s, t). The neighborhood of a vertex in such a graph consists of t + 1
vertex disjoint cliques of size s. Hence the eigenvalues of the neighborhood
are s− 1 (with multiplicity t+ 1) and −1 (with multiplicity (t+ 1)(s− 1)).
Since s−1 is an eigenvalue of the GQ, each eigenvector for the neighborhood
with eigenvalue s − 1 that sums to zero gives rise to an eigenvector of the
GQ that is supported on the neighborhood.

Now consider the second neighborhood. It is connected with valency

k − c = s(t+ 1)− (t+ 1) = (s− 1)(t+ 1).

The other possible eigenvalues are s− 1 and −t− 1 (eigenvalues of the GQ,
with respective multiplicities f and g say) and

a− c− (−1) = s− t− 2 + 1 = s− t− 1

with multiplicity (s− 1)(t+ 1). Then

s2t = 1 + (s− 1)(t+ 1) + f + g

and, since tr(A2) = 0,

0 = (s− 1)(t+ 1) + (s− 1)(t+ 1)(s− t− 1) + f(s− 1)− g(t+ 1).

These equations yield

f + g = s2t− st− s+ t

f(s− 1)− g(t+ 1) = (s− t)(s− 1)(t+ 1)
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8. Distance-Regular Graphs

and after some effort we deduce that

f = s2(t2 − 1)
s+ t

, g = t(s2 − t)(s− 1)
s+ t

.

We summarize our conclusions:

multiplicity: 1 s2(t2−1)
s+t (s− 1)(t+ 1) t(s2−t)(s−1)

s+t

eigenvalue: (s− 1)(t+ 1) s+ 1 s− t− 1 −t− 1

This provides another proof of the inequality t ≤ s2; we also see that if
equality holds then the second neighborhood has exactly three eigenvalues
and therefore it must be strongly regular.
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Chapter 9

Block Intersections

9.1 Quasi-Symmetric Designs

A design is quasi-symmetric if there are distinct integers x and y such that
any two distinct blocks have either x or y points in common. Any 2-(v, k, 1)
proivides an example where x = 0 and y = 1. We usually assume that
x < y. We define the block graph to be the graph with the blocks as
its vertices, where two blocks are adjacent if and only if they intersect in
exactly y points.

The first class of examples is the least interesting: if m > 1, take m
copies of each of the blocks of a symmetric design. We call this a multiple
of a symmetric design, it is quasi-symmetric with x = λ and y = k. It easy
to see that any quasi-symmetric design with y = k must be a multiple of a
symmetric design.

The second class consists of the 2-(v, k, 1) designs, here we have x = 0
and y = 1. Conversely, any quasi-symmetric design with x = 0 and y = 1
is a 2-(v, k, 1) design.

Thirdly we have the so-called strongly resolvable designs. A design is
strongly resolvable if there is a partition of its blocks into classes and con-
stants ρ and µ such that any two distinct blocks in the same class intersect
in ρ points, while two blocks in disjoint classes meet in µ points. These
are quasi-symmetric with x = ρ and y = µ, and can be characterized as
the quasi-symmetric designs with x = k + λ − r. (The claims in this last
sentence are not obvious, but will proved in ?? and ??.) The simplest ex-
amples of strongly resolvable designs are the affine planes. The block graph
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9. Block Intersections

of a strongly resolvable design is complete multipartite graph.
The fourth class may be finite. Let D be a symmetric design and let β

be a fixed block in it. The residual design has the points of D not in β as its
point set, and the intersection of this set with the blocks of D (other than
β) as its blocks. Any residual design has r = k + λ; designs for which this
condition holds are sometimes known as quasi-residual. The residual design
of a symmetric design where λ = 2 can be shown to be quasi-symmetric with
degree set {1, 2}. A symmetric design such that λ = 2 is ‘dignified’ by the
name biplane. It is an open question as to whether there are infinitely many
biplanes. (Or, more generally, whether there are infinitely many symmetric
2-(v, k, λ) designs for any value of λ greater than one.) Any 2-design with
the parameters of a residual biplane, that is with λ = 2 and r = k+2, must
be the residual design of a biplane (see ???).

The fifth class is finite, with cardinality four. It consists of the Witt
designs on 22 and 23 points, and their complements.

Suppose B is the incidence matrix of a quasi-symmetric 2-(v, k, λ) with
degree set {x, y}. Then

BBT = (r − λ)I + λJ,

BTB = (k − x)I + (y − x)A+ xJ.

As BBT and BTB have the same non-zero eigenvalues with the same mul-
tiplicities, we can use these identities to determine the spectrum of A. Be-
cause B has constant row and column sum, BTB must commute with J ,
hence A must commute with J .

We have

kr1 = BTB1 = (k − x)1 + (y − x)A1 + xv1,

whence
A1 = (y − x)−1(kr − k + x− xv)1.

This gives one eigenvalue and eigenvector for A.

9.2 Triangle-free Strongly Regular Graphs
A graph is strongly regular with parameters (n, k; a, c) if it has n vertices,
valency k, any two adjacent vertices have exactly a common neighbours and
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any two distinct non-adjacent vertices have exactly c common neighbours.
The complement of a strongly regular graph is strongly regular; in fact we
could define strongly regular graphs to be the graphs arising as colour classes
in association schemes with two classes. The disjoint unionmKn ofm copies
of Kn is strongly regular provided m > 1 and n > 1—the complete and
empty graphs are not usually considered to be strongly regular. A strongly
regular graph G is primitive if both G and its complement are connected;
the only imprimitive strongly regular graphs are the graphs mKn and their
complements, the complete multipartite graphs.

The smallest non-trivial strongly regular graph is the pentagon C5. The
line graphs of the complete graphs Kn and the complete bipartite graphs
Kn,n are as well. Hence the Petersen graph is strongly regular. A strongly
regular graph is triangle-free if it has no triangles, which is the same as
requiring that a = 0. Only seven primitive triangle-free strongly regular
graphs are known (and you have just met two of them). One can be con-
structed from the Witt design on 22 points as follows.

This design has parameters 3-(22, 6, 1); hence it has 77 blocks. We
construct a graph HS with vertex set consisting of all points and blocks of
this design, and one extra point which we denote by∞. The adjacencies are
as follows. The vertex∞ is adjacent to each of the 22 vertices corresponding
to the points of the design. Each of these 22 vertices is in turn adjacent to
the vertices representing the 21 blocks which lie on it. Each ‘block vertex’ is
adjacent to the vertices representing the blocks disjoint from it. Although it
is not obvious, this construction produces a vertex-transitive graph which is
strongly regular with parameters (100, 22; 0, 6). It is known as the Higman-
Sims graph. (It contains, as induced subgraphs, strongly regular graphs on
16, 50 and 56 vertices—the Clebsch, Hoffman-Singleton and Gewirtz graphs
respectively.)

This construction can be reversed in part. Suppose X is an (n, k; 0, c)
strongly regular graph, and let V denote the set of vertices adjacent to some
fixed vertex u in X. We define an incidence structure with point set V and
blocks consisting of the subsets of V with size c which have a common
neighbour at distance two from u. It is not hard to show that this forms a
2-(k, c, c−1) design with k(k−1)/c blocks, possibly repeated, and r = k−1.
Two adjacent vertices at distance two from u have no common neighbour
adjacent to u; hence they determine disjoint blocks.

9.2.1 Lemma. Let X be an (n, k; 0, c) strongly regular graph, and let D
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denote the design on the neighbours of some fixed vertex, formed as just
described above. Then the following conditions are equivalent:

(a) D is a 3-design,

(b) D is quasi-symmetric with x = 0,

(c) k = 1
2 [(3c+ 1) + (c− 1)

√
4c+ 1],

(d) The graph induced by the vertices at distance two from a fixed vertex
is strongly regular.

Proof. The design on the neighbours of the vertex u of X has parameters
2-(k, c, c − 1). As it has k(k − 1)/c blocks, it follows from ?? that (a) and
(b) are equivalent.

If v is at distance two from u then it has exactly k − c neighbours at
distance two from u; therefore there are at least k − c blocks disjoint from
the block corresponding to v. By ??, we then have

k(k − 1)
c

≥ 1 + c(k − 2)2

c2 − 3c+ k
+ k − c

After some calculation (in Maple, preferably) we find that the difference
between the two sides of this inequality is

(k − c)k
2 − 3kc− k + c+ 4c2 − c3

c(c2 − 3c+ k) ;

from this we deduce that

k ≥ 1
2[3c+ 1 + (c− 1)

√
4c+ 1],

with equality if and only if D is quasi-symmetric (with x = 0). Hence (b)
and (c) are equivalent.

The argument we just used shows that if equality holds in the previous
equation, then there are exactly k − c blocks disjoint from a given block in
D. It follows that two vertices at distance two from v are adjacent if and
only if the corresponding blocks are disjoint, and therefore the graph X2(v)
is the complement of the block graph of D. As D is quasi-symmetric, it
must be strongly regular. Thus (c) implies (d).

The size of the intersection of two distinct blocks of D is determined by
the number of common neighbours of the corresponding vertices in X2(v).
Therefore D is quasi-symmetric if and only if X2(v) is strongly regular.
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9.3 Resolvable Designs
A parallel class in a design is a collection of blocks that partitions the point
set. A design is resolvable if its block set can be partitioned into parallel
classes. The canonical example is the partition of the lines of an affine plane
into parallel classes. A resolvable design where any two blocks in distinct
classes meet in the same number of points is known as an affine resolvable
design. Examples are provided by the points and lines of an affine geometry,
and by the Hadamard 3-designs.

We have the following strengthening of Fisher’s inequality.

9.3.1 Lemma. Let D be a 2-design with b blocks. If there is a partition π
of the blocks of D into 1-designs, then b ≥ v + |π| − 1.

Proof. Let B be the incidence matrix of D and let R1, . . . , Rc be the classes
of a partition of the blocks of D into 1-designs. As Ri is a 1-design, the sum
of the columns of B corresponding to the blocks in Ri is a positive multiple
of 1. Let B′ be the v × (b − c + 1) matrix we get from B by deleting one
column from each class, and then adding a column with each entry equal to
one. By what we have just proved, B and B′ have the same column space
and therefore they have the same rank. Because rkB = v, it follows that
b− c+ 1 ≥ v as required.

It is natural now to ask what happens if equality holds here; we will
prove that this can happen if and only if the cells of the partition are dual
2-designs. For this we will need the following result from linear algebra.

9.3.2 Lemma. Let B be a matrix with linearly independent rows. Then
the matrix representing orthogonal projection onto the column space of BT

is BT (BBT )−1B.

We will need some consequences of this fact, the proofs of which are left
as exercises. If B is the incidence matrix of a 2-design then the projection
P onto the column space of BT is given by

P = 1
r − λ

(
BTB − λk

r
J

)
.

Next, suppose that R1, . . . , Rc is a partition of the blocks of D and let Q
be the b × c matrix whose i-th column is |Ri|−1/2 times the characteristic
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vector of the class Ri. The column space of Q is the space of functions
on the blocks of D that are constant on the classes of the resolution and
orthogonal projection onto this space is represented by the matrix QQT .
The projection onto the orthogonal complement of 1 in this space is given
by

M := QQT − 1
b
J.

9.3.3 Lemma. If the P are are just defined, then PM = MP = 0.

Proof. As MP = (PM)2, we need only show that PM = 0. For this we
show that JM = 0 and BM = 0. The former is left entirely up to you. For
the latter, observe that QQT is block diagonal and the i-th block is equal
to 1

m
J (where m is the size of the i-th cell of |π|). The sum of the columns

of B in the i-th cell of π is equal to
mk

v
1

and therefore
BQQT = k

v
J = r

b
J.

SInce BJ = rJ , we conclude that BM = 0.

9.3.4 Theorem. Suppose D be a 2-design whose block set can be parti-
tioned into c 1-designs. If b = v + c − 1, two distinct blocks in the same
class meet in exactly r − λ− k points while blocks in distinct classes meet
in k2/v points.

Proof. Let B be the incidence matrix ofD. Suppose R1, . . . , Rc is a partition
of the blocks of D into 1-designs and c = b + 1 − v. Let P be the matrix
representing orthogonal projection onto the column space of BT , and letM
be as above. By the lemma, PM = 0 whence it follows that P +M is also
a projection matrix. Because its rank is v + c − 1, we find that P + M is
the identity matrix when b = v + c− 1. Accordingly P +M = I.

If α and β lie in different classes of our partition then

(M)α,β = −1/b.

On the other hand, if |α ∩ β| = y then

(P )α,β = 1
r − λ

(
y − λk

r

)
.

84



9.4. Designs with Maximal Width

Since P +M = I we see that (P )α,β + (M)α,β = 0, whence

y = λk

r
+ r − λ

b
= λvr + r(r − λ)

br
= λv + r − λ

b

Because λ(v − 1) = r(k − 1), this proves that y = k2/v.
Assume next that α and β are distinct blocks in the same class of the

partition, and that |α∩ β| = x. Suppose that there are exactly m blocks in
the class containing α and β. Then

(M)α,β = 1
m
− 1
b
, (P )α,β = 1

r − λ

(
x− λk

r

)
,

from which it follows that

m

(
k2

v
− x

)
= r − λ.

Now count the pairs (i, γ) where γ ∈ D and i ∈ γ ∩ α; this yields

k + (m− 1)x+ (b−m)k
2

m
= kr

and from this we find that

m

(
k2

v
− x

)
= k − x.

This implies that x = k + λ− r, and also that each cell of π has size m.
This theorem shows that a 2-design which admits a partition into b−v+1

1-designs must be quasisymmetric. Further each 1-design is a dual 2-design
(which might have repeated blocks).

In the next section we will see that any two distinct blocks in a 2-design
meet in at least k + λ− r points.

9.4 Designs with Maximal Width
The distance between blocks α and β is |α\β|. The width of a design is the
maximum distance between two blocks in it. Majumdar has shown that two
distinct blocks in 2-design must have at least k + λ − r points in common
which provides an upper bound of r − λ on the width.

We prove Majumdar’s result.
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9.4.1 Theorem. Any two blocks in a 2-design have at least k+λ−r points
in common. If equality holds than the relation “meet in k or k+λ−r points”
is an equivalence relation on the blocks of the design.

Proof. Let D be a 2-design with incidence matrix B, and let P be the
orthogonal projection onto the column space of BT . We saw that in the
last section that

P = 1
r − λ

(
BTB − λk

r
J

)
.

Let α and β be distinct blocks of D and suppose |α∩ β| = x. Consider the
2×2 submatrixM of (r−λ)(I−P ) formed by the intersections of the rows
and columns corresponding to α and β; it is equal to(

r − λ− k + λk
r

−x+ λk
r

−x+ λk
r

r − λ− k + λk
r

)
.

Because I − P is a projection it is positive semi-definite, and thus M is
positive semi-definite as well. Hence detM ≥ 0, which implies that

r − λ− k + λk

r
≥ −x+ λk

r
.

Thus we have proved that any two distinct blocks of D meet in at least
k + λ− r points.

We now focus on the situation when equality holds in this bound. As
I − P is positive semi-definite, it is the Gram matrix of a set of vectors in
Rm (where m = rk(I−P )). If x = k+λ− r then all entries of M are equal,
from which it follows that the α- and β-rows of I − P must be equal. This
shows that γ is a block in D other than α and β then

|γ ∩ α| = |γ ∩ β|.

Thus we have proved that “meeting in k or k+λ−r points" is an equivalence
relation on the blocks of D.

Let D be a 2-design with degree set {x, y, z}, where x < y < z and
x = k+ λ− r. By an exercise???, the number of blocks which meet a given
block α of D in exactly i points is independent of α. Hence the number of
blocks that meet α in exactly x points does not depend on our choice of α.
Thus there is a partition of the blocks of D with c cells, all of size b/c, such
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that the size of the intersection of two distinct blocks is determined by the
cells in which they lie. In particular, two distinct blocks lie in the same cell
if and only if they intersect in x points.

The class graph of D is defined to be the graph with the equivalence
classes of D as its vertices, and with two vertices adjacent if and only a
block in one class meets a block in the other class in y points. The class
graph of D must be regular, but more is true. The degree of a design is
the number of different values taken by |α∩ β, where α and β run over the
pairs of distinct blocks.

9.4.2 Lemma. Suppose D is a 2-design with degree three. If k+ λ− r lies
in its degree set of D, then the class graph of D is strongly regular.

Proof. Let {x, y, z} be the degree set of D. Assume x < y < z and
x = k+λ− r; let c denote the number of classes of D. If B is the incidence
matrix of D then, from our discussion above, we may write

BTB = (k − x)I +M ⊗ Jb/c

where

M = xI + yA+ z(J − I − A) = (x− z)I + (y − z)A+ zJ.

We will show that M has exactly three distinct eigenvalues. It follows that
the same is true for A; since the class graph is regular this implies it must
be strongly regular. (See, e.g., [] for this.)

The key observation is that the non-zero eigenvalues of BTB are the
non-zero eigenvalues of BBT . As

BBT = (r − λ)I + λJ,

the eigenvalues of BBT are kr (with multiplicity one) and r − λ (with
multiplicity v − 1). The eigenvalue of M ⊗ Jb/c are the products of the
eigenvalue of M with the eigenvalues (b/c and 0) of Jb/c. Accordingly the
eigenvalues of M are

0, −(k − x)c
b
, λv

c

b
,

(with multiplicities v − 1− b+ c, b− v and 1 respectively).
The above proof shows that v − 1 + c− b ≥ 0. It follows that if classes

of D form a partition into 1-designs, the 1-designs are dual 2-designs.
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Chapter 10

t-Designs

A t-design is a block-regular incidence structure such that each subset of t
points is incident with the same number of blocks. We denote the number
of blocks that contain a given set of i points by λi (if it is defined). With
this convention we have λ0 = b and λ1 = r. A t-design where λt = 1 is
called a Steiner system.

Although t-designs where t ≥ 3 are not easy to find, they include some
very interesting structures.

Hadamard matrices provide the most accessible class of examples. Sup-
pose H is a v × v Hadamard matrix, with the first row equal to 1. Then
each row other than the first has an equal number of 1’s and −1’s, and
hence determines two complementary subsets of {1, . . . , v} of size v/2. The
combined set of 2v − 2 blocks forms a 3-(v, v/2, λ3) design. Counting pairs
consisting of an ordered triple of distinct points and a block which contains
them, we find that

(2v − 2)v(v − 2)(v − 4)/8 = v(v − 1)(v − 2)λ3

whence λ3 = 1
4(v − 4). The Möbius planes, which we met earlier, are 3-

(q2 + 1, q + 1, 1) designs.

10.1 Basics
If D is an incidence structure with point set V and t ≥ 1, we can form
the incidence structure D{t} whose points are the t-subsets of V and whose
blocks are the blocks of D, where are t-subset is incident with the blocks
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10. t-Designs

that contain it. (If we are greedy and choose t too large, our incidence
structure will not be very interesting.) We call this a derived structure.

A remark on λ: if we refer to a t-(v, k, λ) design, then λ denotes λt. We
also recall that λ0 = b and λ1 = r.

10.1.1 Lemma. Suppose D is a t-design and t ≥ 2. If x is a point in
D, the points not equal to x and the blocks on x form a (t − 1)-design.
Also the points not equal to x and the blocks not incident with x form a
(t− 1)-design.

The blocks on x gives form the derived design of D relative to x. The
blocks off x form the complement to the derived design (relative to x) of
the complement of D. We note one consequence of the lemma.

10.1.2 Corollary. If D is a 3-(v, k, λ) design, then b ≥ 2v − 2.

Proof. Suppose x is a point. The blocks on x form a 2-design on v − 1
points and so there must be at least v− 1 blocks on x. Since the blocks off
x form a 2-design on v− 1 points, there must be at least v− 1 blocks off x.
Hence D has at least 2v − 2 blocks.

This bound is tight for the Hadamard 3-designs.
If D′ is the derived design of D, we say that D is an extension of D′.

We can always begin the construction of an extension of D by adjoining a
new point (traditionally ∞) and adding it to each block of D. This gives
us λ0(D) blocks for D′, the remaining blocks are k + 1 subsets of the point
set of D. If i > 0, we have

λi(D′) = λi−1(D).

10.1.3 Lemma. The number of blocks in an extension of a t-(v, k, λ) design
is b(v + 1)/(k + 1).

Proof. The extension will have parameters (t + 1)-(v + 1, k + 1, λ), where
λ = λt(D). We compute λ0(D′). We have

(v + 1)λ1(D′) = λ0(D′)(k + 1)

and thus, if b = λ0(D), we have

λ0(D′) = (v + 1)b
k + 1 .
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Exercise: If a projective plane of order n admits an extension, then n+2
divides 12 and so n ∈ {2, 4, 10}.

An extension of the projective plane of order four has 21 × 22/6 = 77
blocks and has parameters 3-(22, 6, 1). The number of blocks in an extension
of this would be

77× 23/7 = 253

and these blocks would form a 4-(23, 7, 1) design. The number of blocks in
an extension of this would be

253× 24/8 = 759

and we would get a 5-(24, 8, 1). In fact these designs exist, and are known
as the Witt designs.

Similarly, starting with the affine plane of order three, there are designs
with parameters

2− (9, 3, 1), 3− (10, 4, 1), 4− (11, 5, 1), 5− (12, 6, 1)

There are also known as Witt designs. The second design here is a Möbius
plane.

10.2 Möbius Planes
We introduce our first class of t-designs where t > 2. We start with an
infinite construction. Let V be the unit sphere in R3. Define a circle to
be a subset of C of V such |C| > 1 and C is the intersection of V with a
plane in R3 (not necessarily containing the origin). Then any three distinct
points on the sphere lie in a unique circle, and we have a 3-design.

The problem is we want finite examples. Let F be a field, and let E be
a quadratic extension of F. In other words E is a vector space of dimension
two over F. Let σ be an automorphism of E with order two that fixes each
element of F. One examples comes from R and C, with complex conjugation
as σ. A second arises if we take F to be a finite field of order q and define

xσ := xq.

Then
(xσ)σ = xq

2 = x
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and so σ has order two. If q is a power of the prime p, then
(x+ y)p = xp + yp

from which it follows that σ is an automorphism. Since the multiplicative
group of F has order q, it follows that σ fixes each element of F.

Now we work over E. If

A =
(
a b
c d

)
is an invertible matrix over E, define the map τA by

τA(x) = ax+ b

cx+ d
.

We view this as a map from E∪∞ to itself, where∞ satisfies all the obvious
rules that you were not permitted to use in Calculus. In particular

τA(∞) = a

c
.

(Since A is invertible, a and c are not both zero and therefore a
c
is a well-

defined element of E ∪∞.) We note that if B is a non-zero scalar multiple
of A, then τA = τB.

The set of maps τA, where A runs over the invertible 2×2 matrices with
elements from E is a group: you may check that

τA ◦ τB = τAB

and the multiplication is associative because it is composition of functions.
It is denoted by PGL(2,E). It has a subgroup consisting of the maps τA
where the entries of A are in F. This is denoted by PGL(2,F) and it fixes
F as a set. Since PGFL(2,F) is isomorphic to the group of 2× 2 matrices
modulo its center, its order is

(q2 − 1)(q2 − q)
q − 1 = q3 − q.

The index of PGL(2,F) in PGL(2,E) is
q6 − q2

q3 − q
= q(q2 + 1).

10.2.1 Theorem. Let F be a a field of order q and let E be a quadratic
extension of F. Then the images of F ∪ ∞ under the action of PGL(2,E)
form a 3-(q2 + 1, q + 1, 1) design.

Proof. Exercise.
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10.3 Doubling 3-(v, 4, 1) Designs
There is a Steiner triple system on v points if and only if v ≡ 1, 3 modulo
six. The number of blocks in an extension to a 3-(v + 1, 4, 1) design is

v + 1
4

v(v − 1)
6 = 1

24(v + 1)v(v − 1)

and since this expression is an integer when v ≡ 1, 3 modulo six, the exis-
tence of an extension it not ruled out by any simple divisibility condition. It
is a major result that a 3-(v, 4, 1) exists whenever v ≡ 2, 4 modulo six. Here
we present a doubling construction which will provide us with infinitely
many 3-designs.

10.3.1 Lemma. Let D be a 3-(v, 4, 1) design with point set V and V1 be
a susbset of V of size v1. If some subset of the blocks of D form a 3-design
with point set V1, then v ≥ 2v1. If equality holds, then any block of D
meets V1 in an even number of points, and the blocks disjoint from V1 also
form a 3-design.

Proof. Let D1 denote the 3-design with point set V1 V2 denote V \V1.
We derive the inequality. Choose points y in V1 and x ∈ V2. Then for

each point z in V1 \ y, there is a unique block α that contains x, y and z.
Snice each triple of points in V1 lies in a unique block, the fourth element
of which also lies in V1, we see that α contains exactly two points from V1.
This supplies us with a injection from V1 \ y to the points in V2 \ x, and
consequently v ≥ 2v1.

Assume now that v = 2v1. We prove that any block meets V1 in an
even number of points. If α is block that contains three points of V1, then
the fourth point of α lies in V1. So the problem is to show that no block
of D contains exactly one point from V1. Suppose y ∈ V1. Then exactly
(v − 1)(v − 2)/6 blocks of D lie on y and also exactly

(v1 − 1)(v1 − 2)
6 = (v − 2)(v − 4)

24

blocks from D1 lie in y. So the number of blocks on y not in D1 is

(v − 1)(v − 2)
6 − (v − 2)(v − 4)

24 = 4v2 − 12v + 8− v2 + 6v − 8
24 = v2 − 2v

8 .
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10. t-Designs

As before, for each point z in V1\y and each point x in V2, there is a unique
block containing x, y and z and meeting V1 in eactly two points. Therefore
the number of blocks that contain y and exactly one other point from V1 is

1
2

(
v

2 − 1
)
v

2 = v2 − 2v
8 .

Therefore no block of D contains exactly one point from V1.
Finally we show that the blocks of D contained in V2 form a 3-design.

Choose three distinct points in V2. These lie in a unique block β. Since β
can therefore contain at most one point from V1, and since it cannot contain
exactly one point from V1, we see that β ⊆ V2.

This lemma provides us with an obvious strategy to constructing 3-
designs with block size four. Take two such designs on disjoint sets V1 and
V2 of the same size, and then blocks that contain exactly two points from
each set. Here we can use 1-factors and 1-factorizations.

Suppose we have a 3-design as in the lemma with v = 2v1. If y, z are
points in V1, then the blocks in D that are not subsets of V1 form a partition
of V2 into disjoint pairs. Thus they are a 1-factor in the complete graph on
V2. If z′ is a point inV1 distinct from y and z, we get a second 1-factor which
is disjoint from the first. So we find that for each point y in V1, there is a
1-factorization of the complete graph on V2. Similarly each pair of points
from V2 is associated with a 1-factor of the complete graph on V1, and the
1-factors associated with the pairs that contain a given point of V2 form
a 1-factorization. The points, pairs, 1-factors and 1-factorizations form an
incidence structure (with symmetrized inclusion as the incidence relation),
and the incidence atructure on V2 is dual to that on V1.

With the above ideas as a basis, we arrive at a doubling construction.
Let D be a 3-(v, 4, 1) design with point set V . We construct a 3-(2v, 4, 1)
design on two copies of V . Let F1, . . . , Fv−1 and G1, . . . , Gv−1 be two 1-
factorizations of Kv. On each copy of V we install a copy of D. View the
1-factors Fi as sets of pairs from the first copy of V and the 1-factors Gi as
sets of pairs from the second copy. The number of blocks we need to add
to complete our construction is

2v(2v − 1)(2v − 2)
24 − 2v(v − 1)(v − 2)

24 = 2v(v − 1)4v − 2− v + 2
24

= v2(v − 1)
4 .
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To get these, for each pair of 1-factors (Fi, Gi), take all v2/4 of the 4-tuples
formed from an edge of Fi and edge of Gi. We need to check that any triple
of points lies in exactly one block, but we leave this as an exercise.

We could take the two 1-factorizations to be the same.

10.4 Incidence Matrices
Let D be a design on point set V of size v. We useNt to denote the incidence
matrix of t-subsets of V versus blocks of D, so (Nt)α,β = 1 if and only if
the t-subset α is contained in the k-subset β.

We use Wt,k(v) to denote the 01-matrix with rows indexed by t-subsets
of V , columns by k-subsets and with (α, β)-entry equal to 1 if and only if
the t-subset α is contained in the k-subset β. When v is clear from the
context or irrelevant, we write Wt,k for Wt,k(v). Note that Wt,k is Nt for the
complete design with block size k.

10.4.1 Lemma. If k` then

Wt,kWk,` =
(
`− t
k − t

)
Wt,`

Proof. If |α| = t and |β| = `, then the (α, β)-entry of the product is the
number of k-subsets γ such that α ⊆ γβ.

If A and B are matrices and the product AB is defined then the row
space of AB is containedin the row space of B. An immediate consequence
of this and the above lemma is that each row of Wt,` lies in the row space
of Wk,`.

10.4.2 Lemma. If D is a t-design and s ≤ t, then D is an s-design.

Proof. First we note that D is an s-design if and only if the row sums of
Ns are all equal, that is, if Ns1 = c1 for some c. If D is a t-design, then
Nt1 = λt1 and it will be enough to show that each row of Ns lies in row(Nt).

If σ and β are respectively s-subsets and k-subsets of V , then (Ws,tNt)σ,β
is equal to the number of t-subsets of β that contain σ—hence it is

(
k−s
t−s

)
if

σ ⊆ β and zero otherwise. Consequently

Ws,tNt =
(
k − s
t− s

)
Ns.
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10. t-Designs

10.5 Complements and Incidence Matrices
LetW i,j denote the 01-matrix with rows indexed by the i-subsets of {1, . . . , v},
columns by the j-subsets and with (α, β)-entry equal to 1 if α∩β = ∅. Both
parts of the next result are straightforward to prove, and are left as exer-
cises.

10.5.1 Lemma. We have

(a) W i,kW
T
t,k =

(
v−t−i
k−t

)
W i,t,

(b) Wi,kW
T
t,k =

(
v−t−i
k−i

)
W i,t.

10.5.2 Lemma. We have

(a) W t,k = ∑
i(−1)iW T

i,tWi,k,

(b) Wt,k = ∑
i(−1)iW T

i,tW i,k.

Proof. We prove (a) and leave (b) as an exercise. Suppose that α is a
t-subset of V and β a k-subset. The αβ-entry of W t,k is 1 or 0 according as
β is contained in the complement of α, or not. The αβ-entry of W T

i,tWi,k is(
|α ∩ β|

i

)
,

while the corresponding entry of the sum in (a) is

∑
i

(−1)i
(
|α ∩ β|

i

)
=

1, if α ∩ β = ∅;
0, otherwise.

This completes the proof.

10.5.3 Lemma. If t ≤ k ≤ v− t, the matricesWt,k andW t,k have the same
row space over the rationals.

Proof. We have Wi,k =
(
k−i
t−i

)−1
Wi,tWt,k and thus Lemma 10.5.2(a) implies

that

W t,k =
∑

i

(−1)i
(
k − i
t− i

)−1

W T
i,tWi,t

Wt,k.
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Therefore each row of W t,k is a linear combination of rows of Wt,k. It is
easy to verify that

Wi,tW t,k =
(
v − k − i
t− i

)
W i,k,

whence Lemma 10.5.2(b) implies that

Wt,k =
∑

i

(−1)i
(
v − k − i
t− i

)−1

W T
i,tWi,t

W t,k.

Consequently each row of Wt,k is a linear combination of rows of W t,k.
The following consequence of the above lemma underlies many of the

applications of linear algebra to combinatorics.

10.5.4 Theorem. The rank of Wt,k is the minimum of its number of rows
and its number of columns,

Proof. Assume t ≤ k ≤ v − t. We first consider the case where v =
t + k. Then Wt,v−t and W t,k are square of the same order. As W t,v−t is a
permutation matrix, it is invertible. Since W t,v−t and Wt,v−t have the same
row space, they have the same rank and thus Wt,v−t is invertible.

Now if t ≤ h ≤ v − t then

Wt,hWh,v−t =
(
v − 2t
h− t

)
Wt,v−t.

Since the matrix on the right of this equation is invertible, it follows that
the rows of Wt,h are linearly independent.

10.5.5 Lemma. A design and its complement have the same strength.

Proof. From the proof of the Lemma 10.5.3 we know that there are matrices,
G and H say, such that

W t,k = GWt,k, Wt,k = HW t,k.

Further the rows sums of G are constant, as are the row sums of H. Hence
if Wt,kx = λ1 then W t,kx = λG1 = c1 for some constant c. Since Wt,v−k
is got from W t,k by permuting its columns, it follows that the complement
of a design with strength t has strength at least t. The lemma follows
immediately.
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10. t-Designs

10.6 Extending Fisher’s Inequality
Let ϕ(t, v) denote the minimum number of blocks in a t-design on v points.
From Lemma 10.1.1 we have the inequality

ϕ(t+ 1, v) ≥ 2ϕ(t, v − 1).

As ϕ(2, v) = v, we see that a 3-design on v must have at least 2v−2 blocks.
This shows that our inequality is tight for one value of t, at least (and that
Hadamard matrices again give rise to an exceptional class of designs).

The bound we have just found is not tight for t > 3. However we have
an important extension of Fisher’s inequality, due to Ray-Chaudhuri and
Wilson.

10.6.1 Theorem. If D is a t-design with b blocks and v points, then

b ≥
(
v

b t2c

)
.

Proof. If Ni is the incidence matrices for i-subsets versus blocks and 2i ≤ t,
then the (α, β)-entry of NiN

T
i is equal to λ|α∪β|. As

λi
λj

=

(
v−i
k−i

)
(
v−j
k−j

)
it follows that

1
λi
NiN

T
i = 1(

v−i
k−i

)Wi,kW
T
i,k.

Since the rows of Wi,k are linearly independent, the rows of Ni must be
linearly independent too, and this yields the bound.

If equality holds in this bound then we say that D is tight. Symmetric
designs are thus tight 2-designs.

For a tight 4-design with λ4 = 1, we have(
v

2

)
k(k − 1)(k − 2)(k − 3) = v(v − 1)(v − 2)(v − 3)

and so (
k

2

)(
k − 2

2

)
=
(
v − 2

2

)
.
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10.7 Intersection Triangles
We work with t-designs on the set {1, . . . , v}. If i and j are non-negative
integers and α = {a1, . . . , ai+j} is a sequence of distinct points, then λi,j(D)
denotes the number of blocks β of D such that

β ∩ {a1, . . . , ai+j} = {a1, . . . , ai}.

We note that λi,0 = λi(D) and, if D denotes the complement of D, then
λ0,i(D) = λi(D). We also have

λi,j = λi+1,j + λi,j+1. (10.7.1)

This leads to a version of Pascal’s triangle. If t = 2, then each entry in
the triangle

b
r b− r

λ r − λ b− 2r + λ

is the sum of the two entries immediately below it, and the j-th entry in
row i is equal to λi−j,j.

Given the recurrence in (10.7.1) an easy induction argument yields the
following:

10.7.1 Lemma. If D is a t-design and i+ j ≤ t, then λi,j is determined by
the parameters of D.

One corollary of this lemma is that the complement of a t-design is a
t-design. You may show that

λs(D) = λ0,s =
s∑
i=0

(−1)i
(
s

i

)
λi,0.

In some interesting cases we can compute λi,j even when i + j > t.
Suppose a1, . . . , ak is a Steiner system with block size k and let a1, . . . , ak be
the points in the block α. Then we can compute k+1 rows of the intersection
triangle, because the number of blocks that intersect α in a1, . . . , aj is i when
j ≥ t. By way of example we offer the intersection triangle for a 4-(23, 7, 1)
design
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10. t-Designs

253

77 176

21 56 120

5 16 40 80

1 4 12 28 52

1 0 4 8 20 32

1 0 0 4 4 16 16

1 0 0 0 4 0 16 0

From the last row of this table we deduce that for a design with these
parameters, any two distinct blocks meet in 1 or 3 points. Hence it is a
quasisymmetric design.

10.8 Polynomials
If M is a matrix and p(x) is a polynomial, we define p◦M to be the matrix
with the same order as M , with

(p ◦M)i,j := p(Mi,j).

10.8.1 Lemma. Let D be a t-design with incidence matrix N and suppose
p(x) is a polynomial of degree d, where d ≤ k. If Mr := NT

r Nr, then p ◦M1
is a linear combination of the matrices M0, . . . ,Md.

Proof. There are scalars cr,s such that

xr =
∑
s

cr,s

(
x

s

)

and ((
x

s

)
◦M1

)
α,β

=
(
|α ∩ β|
s

)
= (Ms)α,β.
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10.8.2 Corollary. If deg(p) = s and s ≤ k, then rk(p ◦M1) ≤
(
v
s

)
.

Proof. Assume i ≤ j. Since

Wi,jWj,` =
(
`− i
j − i

)
Wi,`,

we have
Wi,jNj = Ni

and consequently row(Nj) is contained in row(Ni). Since row(Ni) = row(NT
i Ni),

it follows that row(Mi) ≤ row(Mj). Therefore row(p ◦M1) is contained in
row(Ms), which has dimension

(
v
s

)
.

The following result is also due to Ray-Chaudhuri and Wilson.

10.8.3 Theorem. If D is a simple design on v points with degree s, then
|B| ≤

(
v
s

)
.

Proof. Let ∆ be the degree set of D and let p be the monic polynomial of
degree s with the elements of ∆ as its zeros. Then

p ◦M1 = p(k)I

and accordingly

b = rk(p(k))I = rk(p ◦M1) ≤
(
v

s

)
.

10.9 Gegenbauer Polynomials
Let Gs be the matrix representing orthogonal projection onto the columns
ofW T

s,k. Thus Gs = W T
s,k(Ws,kW

T
s,k)−1Ws,k; we derive a more explicit expres-

sion for it.

10.9.1 Lemma. We have

Gs =
s∑
i=0

(−1)i
(
k−i
s−i

)
(
v−s−i
k−s

)W T
i,kW i,k.
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Proof. Take Gs to be the matrix just defined. We have to prove that it
is the required projection. We know that Wi,k and W i,k have the same
row space, and so it follows that the column space of Gs is contained in
the column space of Ws,k. Therefore Gsx lies in the column space of W T

s,k,
for any vector x, and so it will suffice to prove that GsW

T
s,k = W T

s,k. By
Lemma 10.5.2(a) we find that

GsW
T
s,k =

∑
i

(−1)i
(
k − i
s− i

)
W T
i,kW i,s. (10.9.1)

Since (
k − i
s− i

)
W T
i,k = W T

s,kW
T
i,s

the right side of the previous equation is equal to

W T
s,k

∑
i

(−1)iW T
i,sWi,s.

By Lemma 10.5.2(b), the sum here is equal toW t,t = I, and thus the lemma
follows.

10.9.2 Corollary. If α and β are k-subsets of a v-set then

(Gs)α,β =
∑
i≥0

(−1)i
(
k−i
s−i

)(
k−|α∩β|

i

)
(
v−s−i
k−s

) .

This corollary implies that the (α, β)-entry of Gs is a polynomial in
|α ∩ β| with degree at most s. We define the Gegenbauer polynomial gs by

gs(x) =
(
v

k

)∑
i≥0

(−1)i
(
k−i
s−i

)(
k−x
i

)
(
v−s−i
k−s

) .

Note that gs(k) =
(
v
s

)
.

10.10 A Positive Semidefinite Matrix
We have seen already that a t-design on v points has at least(

v

b t2c

)
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blocks. We now prove a result which provides even more information (at
somewhat greater cost). Let Ω denote the set of all k-subsets of the v-set
V . If Φ ⊆ Ω, let Gs(Φ) denote the principal submatrix of Gs with rows
and columns indexed by the elements of Φ. What we need is essentially an
upper bound on the largest eigenvalue of Gs(Φ), which we derive indirectly.

10.10.1 Lemma. If Φ is a t-design and 2r ≤ t then |Φ|−1
(
v
k

)
Gr(Φ) is idem-

potent.

Proof. First recall that

Gs = W T
s,k(Ws,kW

T
s,k)−1Ws,k

and therefore
Gs(Φ) = NT

s (Ws,kW
T
s,k)−1Ns.

If Φ is a t-design and 2s ≤ t, then

|Φ|−1NsN
T
s =

(
v

k

)−1

Ws,kW
T
s,k.

whence
Gs(Φ) = |Φ|(

v
k

)NT
s (NsN

T
s )−1Ns.

Since NT
s (NsN

T
s )−1Ns is the matrix that represents orthogonal projection

onto col(NT ), we conclude that |Φ|−1
(
v
k

)
Gs(Φ) is idempotent.

As the eigenvalues of an idempotent matrix are all equal to 0 or 1, the
following follows immediately.

10.10.2 Corollary. If Φ is a subset of Ω with strength at least 2r, then
the matrix |Φ|I −

(
v
k

)
Gr(Φ) is positive semidefinite.

If a matrix is positive semi-definite then any principal submatrix of it is
also positive semi-definite. Hence its diagonal entries are all non-negative.
What are the diagonal entries of |Φ|I −

(
v
k

)
Gr(Φ)? The diagonal entries of

Gr are all equal to
(
v
r

)
/
(
v
k

)
(why?), whence we see that if Φ has strength 2r

then
|Φ| ≥

(
v

r

)
.

We have proved this already, as Table ??. Fortunately we can say more.
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10.10.3 Theorem. Let Φ be a subset of Ω with strength at least 2r. If α
and β are distinct elements of Φ with |α ∩ β| = i then

|Φ| ≥
(
v

r

)
+ |gr(i)|.

Proof. Assume b = |Φ| and suppose that α and β are elements of Φ such
that |α ∩ β| = i. Then |Φ|I −

(
v
k

)
Gr(Φ) has a 2× 2 submatrix equal to

b− (vr) −gr(i)
−gr(i) b−

(
v
r

) .
As this submatrix must be positive semi-definite, its determinant is non-
negative. Hence we find that(

b−
(
v

r

)
− gr(i)

)(
b−

(
v

r

)
+ gr(i)

)
≥ 0,

which proves the theorem.

10.10.4 Theorem. Let Φ be a subset of Ω with strength at least 2r. Then
|Φ| ≥

(
v
r

)
and, if equality holds, the degree set of Φ is the set of zeros of gr.

Proof. Table ?? shows that |Φ| ≥
(
v
r

)
and that, if equality holds, gr(i) = 0

for any i in the degree set of Φ. This shows that the degree of Φ is at most
r. If it is less than r then |Φ| <

(
v
r

)
, by Table ??, and therefore its degree

is r.
One consequence of the last theorem is that the degree set of a tight

design is determined by v, k and r. Further, most polynomials gr do not
have r integer zeros. Thus we obtain strong restrictions on the parameters
of a tight design.

10.11 Polynomial Spaces: Functions
We aim to generalize the calculations related to the inequalities of Ray-
Chaudhuri and Wilson. The idea is to view a design as a subset of a larger
set.
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We start with a ‘universal’ set Ω. Relevant examples are the set of all
k-subsets of a set of size v, the elements of the symmetric group Sym(n), the
unit vectors in Rd. The set Ω comes with an injective embedding into a real
(or complex) inner product vector space. Thus for k-sets we use the map
that takes a k-set to its characteristic function, in Rv. For the unit vectors,
we use the vectors themselves. We will usually be sloppy and identify Ω
with its image in the vector space. We view an orthogonal array OA(k, n)
as a subset of the set of all functions from {1, . . . , k} to {1, . . . , }, and we
denote this set of functions by H(k, n).

If α ∈ Ω then the coordinate maps
α 7→ 〈ei, α〉

are functions on Ω, we will view them as linear functions on Ω. We define
a sequence of space of functions Pol(Ω, r) by setting Pol(Ω, 0) equal to the
space of constant functions, setting Pol(Ω, 1) equal to the space spanned
by the constant and linear functions and then inductively defining Pol(Ω, r)
by setting

Pol(Ω, r + 1) = Pol(Ω, 1) · Pol(Ω, r + 1)
when r ≥ 1. The union all the spaces Pol(Ω, r) will be denoted by Pol(Ω).
We use 1 to denote the constant function taking the value 1 on Ω.

When Ω is the set of all k-subsets of a v-set, we denote it by J(v, k). We
see that the rows of the Wilson matrix W1,k(v) are the coordinate functions
on J(v, k), and rows of Wt,k(v) lie in Pol(Ω, t).

We use H(n, d) to denote the set of all vectors of length n with entries
from some setD of size d. We can view both the rows of an orthogonal array
and permutations from Sym(n) as elements of H(n, d) (with |D| = n in the
case of the symmetric group). In practice we prefer a second approach.
We represent the elements of an orthogonal array OA(k, n) by vectors of
length kn—the idea is to represent i in {1, . . . , N} by the i-th standard basis
vector ei, which expands each row of an OA(k, n) to a 01-vector in Rkn. The
coordinate functions arise by taking inner products with the standard basis
vectors in Rkn.

Because we have an embedding of Ω in an inner product space, if α ∈ Ω,
we can define a function zα on Ω by

zα(β) = 〈α, β〉
Clearly zα is linear and, in all cases of interest to us, the span of the functions
zα for α in Ω will be Pol(Ω, 1).
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10.11.1 Lemma. If Ω = J(v, k), then Pol(Ω, i) is equal to the row space
of Ni.

Proof. Each row of Wi,k is a Schur product of i distinct rows of W1,k, and
each product of i rows of W1,k lies in the row space of Wi,k.

10.12 Polynomial Spaces: Averaging,
Designs

So far we have defined a space of functions/polynomials. The next step is
to add an inner product on Pol(Ω). However we insist that that this inner
product have the property that, for any two functions f and g in Pol(Ω),

〈f, g〉 = 〈1, fg〉.

We insist further that, if f is non-negative then 〈1, f〉 ≥ 0, and that if f ≥ 0
and 〈1, f〉 = 0 then f = 0.

There is a way to construct such inner products. Let ν be a linear
functional on Pol(Ω). Then the map

(f, g) 7→ ν(fg)

is symmetric and bilinear. It is non-degenerate if and only if kerµ does
not contain an ideal of Pol(Ω), and our non-negativity constraint will hold
provided that:

(a) µ(f) ≥ 0 when f ≥ 0, and

(b) ker ν does not contain a non-negative function.

But this is making something relatively simple look complicated; in practice
our function µ will be some sort of average on functions in Pol(Ω).

When Ω is finite, we define

〈1, f〉 = µ(f) = 1
|Ω|

∑
α∈Ω

f(α)

For the unit sphere, µ(f) is the usual average of f over the sphere. (Note
here that there are non-negative functions on the unit sphere with average
value 0, but no non-negative polynomials average to zero.
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If Φ is a finite subset of Ω, we define a bilinear form on Pol(Ω) by

〈f, g〉Φ = 1
|Φ|

∑
α∈Φ

f(α)g(α).

(This is not necessarily an inner product, because it may be that f is not
zero, but its restriction to Φ will be zero.) It is at least positive semidefinite.

We define a finite subset Φ to be a t-design if, for all f in Pol(Ω, t), we
have

〈1, f〉Φ = 〈1, f〉.

The strength of Φ is the largest value of t for which Φ is a t-design.

10.12.1 Lemma. A subset Φ of J(v, k) is a t-design in the polynomial
space if and only if it is a t-design in the usual sense.

Proof. The subset Φ is a t-design in the usual sense if and only if, for each
row f of Wt,k, the sum ∑

α∈Φ
f(α) = λt

for some constant λt and it follows immediately that a t-design in the poly-
nomial space sense is a t-design in the usual sense.

For the converse, if the previous equation holds then summing it over
all rows yields (

v

t

)
λt =

∑
f

∑
α∈Φ

f(α) =
(
k

t

)
|Φ|

and therefore

〈1, f〉Φ = 1
|Φ|

λt =

(
k
t

)
(
v
t

) =

(
v−t
k−t

)
(
v
k

) = 〈1, f〉.

10.13 Polynomial Spaces: Codes
We required that the vector space in which Ω embeds should be an inner
product space, and now we make use of this. We denote the inner product
by ρ. If Φ ⊆ Ω, the degree set of Φ is the set of values taken by ρ(α, β) as
(α, β) ranges over the distinct pairs of elements of Φ, and the degree of Φ
is the size of its degree set.
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10. t-Designs

We assume that ρ(α, α) is independent of α. One consequence of this is
that if α 6= β, then ρ(α, β) < ρ(α, al).

If N1 is incidence matrix of a design, then the degree of the design is
the number of different sizes of the intersections of two distinct blocks; the
2-designs with degree one are precisely the symmetric designs.

If α ∈ Ω, we define the function ρα by

ρα = ρ(α, β).

If p(t) is a real polynomial, we define the function pα by

pα(β) = p(ρα(β));

thus pα is the composition p◦ρα. The functions in the space spanned by the
functions pα where deg(p) ≤ i and α ∈ Ω is defined to be the space of zonal
polynomials of degree at most i. In all cases of interest to us, the space of
zonal polynomials of degree r is equal Pol(Ω, r), but this is not trivial. It
is easier to show that zonal polynomials of degree r lie in Pol(Ω, r).

10.14 Bounds on Codes and Designs
10.14.1 Theorem. Suppose Ω is a polynomial space. If the finite subset
Φ of Ω is a t-design, then

|Φ| ≥ dim(Pol(Ω, bt/2c)).

Proof. Let f1, . . . , fm be an orthonormal basis for Pol(Ω, bt/2c). Then for
all i and j, the product fifj lies in Pol(Ω, t). Hence

δi,j = 〈fi, fj〉Φ = 〈1, fifj〉Φ = 〈1, fifj〉 = 〈fi, fj〉

and therefore the restrictions to Φ of the functions fi are linearly indepen-
dent functions on Φ. Consequently

dim(Pol(Ω, t/2)) = m ≤ |Φ|.

10.14.2 Theorem. Suppose Ω is a polynomial space. If the proper subset
Φ of Ω has degree s, then

|Φ| ≤ dim(Pol(Ω, s)).
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Proof. There is a unique monic polynomial ψ of degree s that vanishes on
the degree set of Φ and is equal to 1 on ρ(α, α). The zonal polynomials ψα,
for α in Φ, are linearly independent, since the intersection of the support of
ψα with Φ is {α}. Therefore |Φ| ≤ dim(Pol(Ω, s)).

The polynomial p in the proof the previous theorem is called the anni-
hilator of the degree set of Φ.

10.14.3 Theorem. Let Ω be a polynomial space. If the finite subset Φ has
degree s and strength t, then t ≤ 2s.

Proof. Let ψ be defined as in the proof of the previous theorem. Let
δ = ρ(α, α) and define ϕ(t) = (δ − t)ψ(t)2. If α ∈ Φ, then ϕα is zero on Φ
and non-negative on Ω. If t ≥ 2s+ 1 we thus have

0 = 〈1, ϕα〉Φ = 〈1, ϕα〉

and this implies that ϕα must vanish identically on Ω. Consequently the
degree of Ω is at most s and so Ω is finite by the previous theorem. Since
deg(ψ) = s,

ψa(δ)
|Φ|

= 〈1, ψa〉Φ = 〈1, ψa〉 = ψa(δ)
Ω|

,

whence |Φ| = |Ω| and therefore Ω = Φ.
Our next result is a form of linear programming bound.

10.14.4 Theorem. Suppose Φ is a t-design in a polynomial space Ω. If
p ∈ Pol(Ω, t) and the restriction of p to Φ is non-negative, then for any α
in Φ,

|Φ| ≥ p(α)
〈1, p〉 .

Proof. We have
p(α)
|Φ|
≤ 〈1, p〉Φ = 〈1, p〉.
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Chapter 11

Witt Designs

Our main goal in this section is to construct the Witt designs on 23 and 24
points; these are 4- and 5-designs respectively.

11.1 Codes
A code is a subspace of a vector space, along with an implied threat that
Hamming distance will be mentioned very soon. The Hamming distance
between two vectors is the number of coordinate positions in which they
differ, and the weight of a vector is the number of non-zero entries in it—this
is its the Hamming distance from the zero vector. The length of a code is the
dimension of the vector space that contains it. The vector space V is often
GF (q)n but it could, for example, be the quotient ring GF (q)[x]/(xn − 1).
In the latter case, subspaces which are invariant under multiplication by x
are cyclic codes.

If V is a vector space and v ∈ V then we define

v⊥ = {u ∈ V : vTu = 0};

this is a subspace of V and, if v 6= 0, its codimension in V is 1. If S ⊆ V ,
then

S⊥ :=
⋂
v∈S

v⊥.

If U is a code in V , then U⊥ is the dual code of U . If U ≤ U⊥ we say that
U is self-orthogonal, and if U = U⊥ that U is self-dual.
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11. Witt Designs

Even if v 6= 0, we may find that v ∈ v⊥—for example if v = 1 and
F = Z2 and dim(V ) is even. More generally, the intersection U ∩ U⊥ need
not be empty. The following useful properties still hold though.

11.1.1 Lemma. If U is a subspace of the vector space V , then

(a) (U⊥)⊥ = U .

(b) dim(U⊥) = dim(V )− dim(U).

If M and N are matrices of over GF (p) and MNT = 0, then row(N) is
a subspace of row(M)⊥. Hence if the number of columns of M is n,

rk(N) = dim(row(N)) ≤ dim(row(M)⊥) = n− rk(M)

and therefore rk(M) + rk(N) ≤ n. Thus if MMT = 0 then 2 rk(M) ≤ n.
A binary code is even if all words have even weight, and it is doubly

even if all words have weight divisible by four. We leave the proof of the
following as an exercise.

11.1.2 Lemma. Let G be a matrix over GF (2). If each row of G has even
weight, then row(G) is an even code. If GGT = 0 and each row of G is
doubly even, then row(G) is doubly even.

Suppose C is the code formed by the row space of a k×n matrix G over
Z2. Let G1 be the matrix we get from G by adding an extra coordinate to
each code word, where the value of the coordinate is the weight of the code
word. The only interesting case is when C contains words of odd weight,
because then the extended code is even.

11.2 Codes from Designs
The codes of interest to us will arise usually as the row or column spaces
of incidence matrices. We use rkp(N) to denote the rank of N , viewed as a
matrix over Zp. We eliminate some uninteresting cases.

11.2.1 Lemma. Let D be a 2-design with incidence matrix N and let
n = r − λ be the order of D. If p is a prime that does not divide n, then
rkp(N) ≥ v − 1. If p divides n, then rkp(N) ≤ 1

2(v + 1).
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Proof. We have
NNT = nI + λJ.

If p is a prime that does not divide n, then nI is invertible and rkp(J) = 1.
Therefore rkp(nI + λJ) ≥ v − 1.

If p | n then
NNT = λJ mod p

and therefore rkp(NNT ) ≤ 1. It follows that (prove it!)

rkp(N) ≤ v + 1
2 .

If p does not divide N and rkp(N) = v−1, you may prove that col(N) =
1⊥. Note that if NNT = λJ modulo p, then the space spanned by the
differences of the rows of N is self-orthogonal.

11.3 Matrix Ranks
We need information about the ranks of matrices over Zp. The techniques
introduced here provide lower bounds.

If a, b ∈ Z and the gcd of a and b is d, there are integers x and y such
that xa+ yb = d, then (

x y
−b/d a/d

)(
a
b

)
=
(
d
0

)

The 2× 2 matix here has determinant one, and so it follows that if α is an
integer vector such that the gcd of the elements of α is d and e1 is the first
standard basis vector, there is an integer matrix M with determinant ±1
such that Mα = de1.

An integer matrix with determinant ±1 is said to be unimodular.

11.3.1 Lemma. If N is a matrix over Z, there are unimodular matrices L
and R such that LBR is diagonal.

11.3.2 Lemma. Let M be an n × n integer matrix and let p be a prime.
If pk divides det(M), but pk+1 does not, then rkp(M) ≥ n− k.
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11. Witt Designs

Proof. Choose unimodular matrices L and R such that D = LMR is diag-
onal. Note that, up to sign, det(D) = det(M); further rkp(D) = rkp(M).
Then at most k diagonal elements of D can be divisible by p, and therefore
rkp(D) ≥ n− k.

11.4 Codes from Projective Planes
11.4.1 Theorem. Let P be a projective plane of order n with incidence
matrix N . If n ≡ 2 modulo four, the extension of the code formed by the
rows of N is self-dual and doubly even.

Proof. Since n is even, k is odd and so

N̂ =
(
N 1

)
is a generator for the extended code. We have

N̂N̂T = NNT + J = nI + 2J = 0

and thus the extended code is self-orthogonal. Since each row of N̂ has
weight divisible by four, it follows from an exercise that the extended code
is doubly even.

To prove that the extended code is self dual, we show that its dimension
is (n2+n+2)/2. Since 1 ∈ col(N) we see that rk(N̂) = rk(N). As N̂N̂T = 0
we have that rk(N̂) ≤ (n2 + n+ 2)/2.

For the other direction we have

det(NNT ) = (r − λ)v−1rk

for any 2-design and so for a projective plane,

det(N) = n(v−1)2(n+ 1).

Since n ≡ 2 modulo four, it follows that 2(v−1)/2 is the largest power of two
that divides det(N), and using Lemma 11.3.2 we deduce that rk2(N) ≥
(v + 1)/2.
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11.5 MacWilliams Theorem
If C is a code we use Ar to denote the number of words of weight r in C.
The weight enumerator of C is the polynomial

WC(x, y) =
∑
i

Aix
iyn−i.

Thus WC(1, 1) = 2dim(C) for a binary code. it is a surprising fact, due to
MacWilliams, that the weight enumerator of a code determines the weight
enumerator of its dual. We state the result for binary codes.

11.5.1 Theorem. If C is a linear code over GF (q),

WC⊥ = 1
|C|

WC(−x+ y, (q − 1)x+ y).

We give a proof for the case p = 2 (this is all that we need, and it is not
hard to modify our proof to give the general result). For the proof we need
a definition and two lemmas.

Let V be a vector space over Z2. If f is a function on V , its Hadamard
transform fH is defined by

fH(u) =
∑
v∈V

(−1)uT vf(v).

11.5.2 Lemma. If C is a binary linear code, then
∑
u∈C⊥

f(u) = 1
|C|

∑
v∈C

fH(v).

Proof. We have ∑
u∈C

fH(u) =
∑
u∈C

∑
v∈Fn

(−1)uT vf(v)

=
∑
v∈Fn

∑
u∈C

(−1)uT v.

If v ∈ C⊥ then vTu = 0 for all u in C and the inner sum is |C|. Otherwise
there is a vector c in C such that vT c = 1. Now we can partition C into
pairs of the form (u, u+ c) where u ∈ C, and vTu 6= vT (u+ c) for any c in
U . It follows that our inner sum is zero, and so the lemma is proved.
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11. Witt Designs

11.5.3 Lemma. If f is the function on the vector space over Z2 such that

f(u) = xwt(u)yn−wt(u)

then
fH(v) = (−x+ y)wt(v)(x+ y)wt(v).

Proof. We have

FH(u) =
∑
v∈Fn

(
(−1)u1v1+···+unvn

n∏
i=1

(xviy1−vi)
)

=
∑
v

(
n∏
i=1

(−1)uivixviy1−vi

)

=
n∏
i=1

((−1)uix+ y)

= (−x+ y)wt(u)(x+ y)n−wt(u)

and the lemma follows at once.
It is now very easy to prove MacWilliams’ theorem. If f is defined as

in the previous lemma, then∑
u∈C⊥

f(u) = WC⊥(x, y)

and by Lemma 11.5.3,

∑
u∈C⊥

f(u) = 1
|C|

∑
v∈C

fH(v)

= 1
|C|

∑
v∈C

(−x+ y)wt(v)(x+ y)wt(v)

= 1
|C|

WC(−x+ y, x+ y).

11.6 Nonexistence of Some Projective
Planes

We use the coding theory we have developed to show the following.
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11.6.1 Theorem. If n ≡ 6 modulo 8, there is no projective plane of order
n.

Proof. Assume that n ≡ 2 mod four. Then the extended code of the plane
is, as we saw, self-dual and doubly even. Since it is doubly even

WC(ix, y) = WC(x, y)

and since it is self-dual

WC(x, y) = WC⊥(x, y) = 1
|C|

WC(−x+ y, x+ y) = WC

(
−x+ y√

2
,
x+ y√

2

)
.

So we have two substitutions in the variables x and y that leave the poly-
nomial WC(x, y) invariant, and therefore the composition of these two sub-
stitutions (

x
y

)
= 1√

2

(
−i 1
i 1

)(
x
y

)
will also leave WC(x, y) invariant. Now(

1√
2

(
−i 1
i 1

))3

= 1 + i√
2
I

and so if τ := (1 + i)/
√

2, then

WC(x, y) = WC(τx, τy) = τnWC(x, y).

But τ is an eighth root of 1, and we are forced to the conclusion that the
length of the extended code is divisible by eight.

This coding theory condition does not eliminate any plane that is not
already excluded by the Bruck-Ryser-Chowla conditions. (It is possible to
extend the coding theory arguments and hence rederive the conclusions of
Bruck-Ryser-Chowla theorem.)

11.7 A 5-Design on 12 Points
We construct a 5-(12, 6, 1) design. Let H be a Hadamard matrix of order
12. Since HTH = 12I we see that det(H) = 126 = 21236, and so by
Lemma 11.3.2 we have that rk3(H) ≥ 6. On the other hand HHT = 0
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modulo three, and therefore the dimension of the row space of H over
GF (3) is at most six. Therefore rk3(H) = 6.

Let C the denote row space ofH overGF (3). This is a code of dimension
six and length 12. Since HHT = 0, it is self orthogonal and therefore it is
a self-dual code.

We proceed in a number of steps.
If z ∈ C then 〈z, z〉 must be zero; since the non-zero entries of z are ±1

it follows that the weight of C is divisible by three.
Next we show that the minimum weight of a non-zero code word is six.

Suppose w ∈ C and wt(w) = 3. Since wHT = 0, there is a signed sum of
three columns of HT equal to zero. Since we can multiply rows of H by
−1 without changing its row space, we may assume that the first of these
columns is 1 and denote the others by x and y. As the weight distribution
of row(H) does not change if we multiply columns of H by −1, we may
suppose that 1 + x+ y = 0. But all entries of x+ y are even, we conclude
that the minimum weight of C is at least six.

We claim that C contains at least 264 words of weight six. The point is
that 264 is four times the number of pairs of rows. It is easy to see that for
distinct rows x and y, all four vectors ±x± y have weight six. If

±x± y = ±z ± w

for four rows with x 6= y and z 6= w, then the code formed by the column
space of H contains a word of weight at most four. Therefore the pairs of
distinct rows give rise to 264 words of weight six.

Finally we prove that the 132 supports of the words of weight six form a
5-(12, 6, 1) design. As such a design must have exactly 132 blocks, we need
only show that no set of five is contained in two distinct supports. Assume
by way of contradiction that x and y are words of weight six and S is a
subset of size five such that

S ⊆ supp(x) ∩ supp(y).

There are two cases. If supp(x) = supp(y) then one of x+ y and x− y has
weight less then six. Othwerwise S = supp(x) ∩ supp(y). Then one of the
code words x+y and x−y has weight at most five, again a contradiction.

The code C is the ternary Golay code of length 12. It weight enumerator
is

y12 + 264x6y6 + 440x9y3 + 24x12.
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11.8 Perfect Codes
The ball of radius e about a code word w is the set of words that are at
distance at most e from w; we denote it by Be(w). The packing radius of
a code C is the greatest integer e such that that the balls of radius e are
pairwise disjoint. If C has packing radius e, then the minimum distance
betwen two distinct code words is at least 2e+ 1. The covering radius of C
is the least integer r such that each word lies in Br(w), for some code word
w. A code is perfect if its packing radius is equal to its covering radius.

If C is a code of length n over an alphabet of size q with packing radius
e, then

|C| ≤ qn∑e
i=0

(
n
i

)
(q − 1)i

;

this is the sphere packing bound, and follows trivially once we observe that
the denominator is the size of a ball of radius e. A code is perfect if and
only if equality holds in the sphere packing bound. We have the following
interesting result, which we do not prove.

11.8.1 Lemma. Suppose C is a perfect binary code of length n and packing
radius e that contains the zero word. Then the supports of the code words
of weight 2e+ 1 form a design with parameters (e+ 1)-(n, 2e+ 1, 1).

Note that in this lemma we do not require C to be a linear code. We
offer one example. Let H be the matrix over GF (2) with the distinct non-
zero binary vectors of length k as its columns. Thus H is k × (2k − 1).
Let C be the kernel of H. You may show that the rows of H are linearly
independent, whence

|C| = 22k−1−k.

Since the columns of H are distinct and non-zero, there are no words in C
with weight one or two and therefore the packing radius of C is at least 1.
The ball of radius 1 about a word in a binary code of length n has size n+1,
which is 2k in our case. Hence the sphere-packing bound is tight and C is
perfect. (In fact C is the binary Hamming code.) A perfect binary code
with packing radius 1 gives rise to a Steiner triple system on 2k − 1 points.
Examples are known that are not Hamming codes.
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11.9 The Binary Golay Code
We construct a [24, 12, 8]-code overGF (2). LetN be the incidence matrix of
the symmetric 2-(11, 6, 3) design (the complement of the Hadamard design).
Define

N̂ :=
(

0 1T
1 N

)
.

and
G =

(
I N̂

)
.

11.9.1 Lemma. The row space of G is a self dual binary code with with
minimum distance eight.

Proof. Since any two distinct blocks of the 2-(11, 6, 3) design have exactly
three points in common, it is easy to verify that any two rows of G are
orthogonal. Since each row of G is doubly even, row(G) is a doubly even
code. You may show that it does not contain any words of weight four.

Since row(G) contains the vector 1 and since wt(1 + u) = n − wt(u),
the wieght enumerator WC(x, y) of our code has the form

y24 + Ax8y16 +Bx12y12 + Ax16y8 + x24

where A = A8 and B = A12. As WC(1, 1) = |C| we have

B = 212 − 2− 2A.

We can now use MacWilliams’ theorem to compute the number of words of
weight two in the dual of C. Since this number is zero, we have an equation
that determines A; in fact we find that A = 759.

11.9.2 Lemma. The words of weight eight in a binary [24, 12, 8]-code form
a 5-(24, 8, 1) design.

Proof. Let α be a subset of V = {1, . . . , 24} with size five. If x and y are
two code words of weight eight with α in their support, then x + y has
weight at most six. Hence each 5-subset of V is contained in the support
of at most one code word of weight eight, and so the number of such words
is at most (

24
5

)
(

8
5

) = 759

and, if equality holds, we have our 5-design.
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Chapter 12

Projective Spaces

A projective geometry is an incidence structure such that:

(a) Any two distinct points lie on exactly one line.

(b) If x, y and z are non-collinear points and the line ` meets x ∨ y and
x ∨ z in distinct points then it meets y ∨ z,

(c) Every line contains at least three points.

The second condition is known as the Veblen-Young axiom. Clearly any
projective plane is a projective geometry according to these axioms, but not
much else is clear. You could also verify that the incidence structure with
the 1-dimensional subspaces of a vector space V as points and 2-dimensional
subspaces as lines does satisfy these axioms. We denote this structure by
P(V ).

12.1 Rank and Subspaces
A subset S of the points of a partial linear space is a subspace if any line
that contains two points of S has all its points in S. Any line is a subspace.
The intersection of any family of subspaces is a subspace and so, if P is
a set of points, there is a unique minimal subspace that contains P . We
call it the subspace generated by P . It follows that we can define the join
S1 ∨ S2 of two subspaces to be the subspace generated by S1 ∪ S2.

If our incidence structure is P(V ) for some vector space V , then a sub-
space in the sense just defined is a subspace of V in the sense used in linear
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12. Projective Spaces

algebra. here the join is usually known as the sum, and denoted S1 + S2.
You can show that S1 ∨ S2 is the union of all lines in P(V ) that contain
points in S1 and S2. (It is immediate that the join contains all points on
these lines, what requires proof is that there are no other points in the join.)

A rank function rk on a set P is a function from the subsets of P to the
non-negative integers such that:

(a) if A ⊆ P then 0 ≤ rk(A) ≤ |A| and

(b) if B ⊆ A then rk(B) ≤ rk(A).

If, in addition

(c) rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B)

then we say the rank function is submodular.
A set equipped with a submodular rank function is called a matroid. A

flat in a matroid is a subset F such that, if p 6∈ F then rk(p ∪ F ) > rk(F ).
A combinatorial geometry is a set P , together with a submodular rank
function rk such that if A ⊆ P and |A| ≤ 2 then rk(A) = |A|. Any
combinatorial geometry can be regarded as a linear space with the flats
of rank one as its points and the flats of rank two as its lines. The flats
of rank three are its planes. The maximal proper flats of a combinatorial
geometry are its hyperplanes; it is left as an exercise to show that these
must all have the same rank. The rank of a combinatorial geometry is the
maximum value of its rank function. We will always restrict ourselves to
combinatorial geometries where the rank is finite, even if the point set is
not.

The flats relative to a rank function form a lattice, such lattices are
called geometric lattices. Note that in this case the join F1∨F2 of two flats
is not (in general) equal to F1 ∪ F1, although F1 ∧ F1 = F1 ∩ F2. If for any
two flats A and B we have

rk(A ∨B) + rk(A ∧B) = rk(A) + rk(B)

we say that our rank function is modular. The lattices of subspaces of a
vector space provides the most important example.

[*** rank for AG(V ) ***]
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12.2 Projective Geometries and Planes
12.2.1 Lemma. Let G be a projective geometry. If H is a subspace of G
and p is a point not on H then p ∨ H is the union of the lines through p
which contain a point of H.

Proof. Let S be the set of all points which lie on a line joining p to a point
of H. We will show that S is a subspace of G. Suppose that ` is a line
containing the points x and y from S. We have to show that each point of
` lies on a line joining p to a point of H.

By the definition of S, the point y is on line joining p to a point in H
and if x = p then this line must be `.

If both x and y lie in H then ` ∈ H, since H is a subspace.
Finally assume that x and y are both distinct from p and do not lie

in H. It follows that both x and y lie on lines through p which meet H.
Suppose that they meet H in x′ and y′ respectively. The line ` meets the
line p∨ x′ and p∨ y′ in distinct points; therefore it must intersect x′ ∨ y′ in
some point q. If u is a point on ` then the line p ∨ u meets y ∨ y′ in p and
y ∨ q in u. Hence it must meet the line q ∨ y′, which lies in H. As u was
chosen arbitrarily on `, it follows that each point of ` lies on a line joining
p to a point of H.

Thus we have shown that all points on ` lie in S, and so S is a subspace.
Any subspace which contains both p and H must contain all points on the
lines joining p to points of H. Thus S is the intersection of all subspaces
containing p and H, i.e., S = p ∨H.

12.2.2 Corollary. Let p be a point not in the subspace H. Then each line
through p in p ∨H intersects H.

Proof. Let ` be a line through p in p ∨ H. If x is point other than p in `
then x lies on a line through p which meets H. Since x and p lie on exactly
one line, it must be `. Thus ` meets H.

We can now prove one of classical results in projective geometry, due to
Veblen and Young.

12.2.3 Theorem. A linear space is a projective geometry if and only if
every subspace of rank three is a projective plane.
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Proof. We prove that any two lines in a projective geometry of rank three
must intersect. This implies that projective geometries of rank three are
projective planes. Suppose that `1 and `2 are two lines in a rank three
geometry. Let p be a point in `1 but not in `2. From the previous corollary,
each line through p in p ∨ `2 must meet `2. Since p ∨ `2 has rank at least
three, it must be the entire geometry. Hence `1 ∈ p ∨ `2 and so it meets `2
as required. To prove the converse, note that Pasch’s axiom is a condition
on subspaces of rank three, that is, it holds in a linear space if and only
if it holds in all subspaces of rank three. But as we noted earlier, if every
two lines in a linear space of rank three meet then it is trivial to verify that
Pasch’s axiom holds in it.

12.3 Projective Geometries from Vector
Spaces

We describe the most important construction of projective geometries. Let
V a vector space with dimension at least two over a field F. Let P(V )
denote incidence structure formed by the 1-dimensional and 2-dimensional
subspaces of V , where a 1-dimensional subspace is incident with the 2-
dimensional subspaces that contain it.

We define a rank function on subsets of V by defining the rank of a
subset to be the dimension of the subspace it spans. Here the flats are
precisely the subspaces of V , and the join of two subspaces H and K is the
subspace sum H +K. Since for two subspaces H and K we have

dim(H +K) = dim(H) + dim(K)− dim(H ∩K)

it is easy to verify that the rank function is submodular.
A projective space of rank two is a projective line while a space of rank

three is a projective plane.
We can represent each point of P(V ) by a non-zero element x of V ,

provided we understand that any non-zero scalar multiple of x represents
the same point. We can represent a subspace of V with dimension k by an
n × k matrix M over F with linearly independent columns. The column
space of M is the subspace it represents. Clearly two matrices M and N
represent the same subspace if and only if there is an invertible k×k matrix
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A such that M = NA. (The subspace will be determined uniquely by the
reduced column-echelon form of M .)

Any invertible linear mapping of V to itself permutes the 1-dimensional
and 2-dimensional subspaces of V and preserves incidence. Hence it gives
rise to an automorphism of the projective space. Note though that the
scalar matrices cI give rise to the identity automorphism on the projective
space. We can also verify that any field automorphism gives rise to an auto-
morphism of our projective space. The automorphism group of a projective
space acts transitively on the set of subspaces of given rank.

If M represents a hyperplane, then dim(kerMT ) = 1 and so we can
specify the hyperplane by a non-zero element a of Fd such that aTM = 0.
Then x is a vector representing a point on this hyperplane if and only if
aTx = 0.

The following lemma records a fundamental property of Desarguesian
projective spaces.

12.3.1 Lemma. Suppose V is a vector space of dimension at least three of
the field F. If ` is a line and H is a hyperplane in P(V ), then ` ∩H 6= ∅.

Proof. Suppose the line is the subspace spanned by x and y and the hyper-
plane H is given by a vector a. If aTx = 0 then x is on H, otherwise the
vector

(aTx)y − (aTy)x

is on H (and on our line).

You might also prove this using the formula for dim(H +K).

12.4 The Rank Function of a Projective
Geometry

One of the most important properties of projective geometries is that their
rank functions are modular. Proving this is the main goal of this section.
Note that if p is a point and H a subspace in any linear space and p /∈ H,
then rk(p ∨H) ≥ rk(H) + 1. We will use this fact repeatedly.

12.4.1 Lemma. Let H and K be two subspaces of a projective geometry
such that H ⊂ K and let p be a point not in K. Then p ∨H ⊂ p ∨K.
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Proof. Clearly p∨H ⊆ p∨K and if p∨H = p∨K then K ⊆ p∨H. If the
latter holds and k ∈ K \H then the line p ∨ k must contain a point, h say,
of H. This implies that p ∈ h ∨ k and, since h ∨ k ⊆ K, that p ∈ K.

12.4.2 Corollary. Let H be a subspace of a projective geometry and let p
be a point not in H. Then H is a maximal subspace of p ∨H.

Proof. Let K be a subspace of p ∨ H strictly containing H. If p ∈ K
then K = p ∨H. If p /∈ K then, by the previous lemma, p ∨H is strictly
contained in p∨K. Since this contradicts our assumption that K ⊆ p∨H,
our result is proved.

12.4.3 Theorem. All maximal subspaces of a projective geometry have the
same rank.

Proof. We will actually prove a more powerful result. Let H and K be two
distinct maximal subspaces. Let h be point in H\K and let k be a point in
K\H. The line h∨k cannot contain a second point, h′ say, of H since then
we would have k ∈ h ∨ h′ ⊆ H. Similarly h ∨ k cannot contain a point of
K other than k. By the third axiom for a projective geometry, h ∨ k must
contain a point p distinct from h and k and, by what we have just shown,
p /∈ H ∪K. Since H and K are maximal p ∨H = p ∨K. By 12.2.2, each
line through p must contain a point of H and a point of K. Using p we
construct a mapping φp from H into K. If h ∈ H then

φp(h) := (p ∨ h) ∩K.

If φp(h1) = φp(h2) then the lines p∨h1 and p∨h2 have two points in common,
and therefore coincide. This implies that they meet H in the same point
and hence φp is injective.

If k ∈ K then k∨pmust contain a point h′ say, ofH. We have φp(h′) = k,
whence φp is surjective. Thus we have shown that φp is a bijection.

We prove next that φp maps subspaces onto subspaces.
Let L be a subspace of H. Then φp(L) lies in (p∨L)∩K. Conversely, if

x ∈ (p∨L)∩K then x is on a line joining p to a point of L and so x ∈ φp(L).
Hence φp(L) = (p∨L)∩K. Since p∨L is a subspace, so is (p∨L)∩K. As
φp is bijective on points, it must map distinct subspaces of H onto distinct
subspaces of K. A similar argument to the above shows that φ−1

p maps
subspaces of K onto subspaces of H. Consequently we have shown that
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φp induces an isomorphism from the lattice of subspaces of H onto the
subspaces of K. This implies immediately that H and K have the same
rank. (It is also worth noting that it implies that φp is a collineation—it
must map subspaces of rank two to subspaces of rank two.)

A more general form of the next result is stated in the Exercises.

12.4.4 Lemma. Let H and K be subspaces of a projective geometry and
let p be a point in H. Then (p ∨K) ∩H = p ∨ (H ∩K).

Proof. As H ∩K is contained in both p∨K and H and as p ∈ H, it follows
that p ∨ (H ∩ K) ⊆ (p ∨ K) ∩ H. Let x be a point in (p ∨ K) ∩ H. By
12.2.2, there is a point k in K such that x ∈ p ∨ k. Now p ∨ k = p ∨ x and
so k ∈ p∨ x. Since x ∈ H then this implies that p∨ x ⊆ H and thus that k
lies in H as well as K. Summing up, we have shown that if x ∈ (p∨K)∩H
then x ∈ p ∨ k, where k ∈ H ∩K, i.e., that x ∈ p ∨ (H ∩K).

12.4.5 Theorem. If H and K are subspaces of a projective geometry then

rk(H ∨K) + rk(H ∩K) = rk(H) + rk(K).

Proof. We use induction on rk(H) − rk(H ∩ K). Suppose first that this
difference is equal to one. This implies H ∩K is maximal in H and accord-
ingly

rk(H)− rk(H ∩K) = 1. (12.4.1)

If p ∈ H \K then, using the maximality of H ∩ K in H, we find that
p ∨ (H ∩ K) = H and H ∨ K = p ∨ K. By 12.4.2 it follows that K is
maximal in H ∨K and so

rk(H ∨K)− rk(K) = 1. (12.4.2)

Subtracting (12.4.1) from (12.4.2) and rearranging yields the conclusion of
the Theorem.

Assume now that H ∩K is not maximal in H. Then we can find a point
p ∈ H ∩K such that p ∨ (H ∩K) 6= H. Suppose L = p ∨ (H ∩K). Then
H ∩K is maximal in L (by 12.4.2) and so, by what we have already proved,

rk(L ∨K) + rk(L ∩K) = rk(L) + rk(K). (12.4.3)
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Next we note that rk(H) − rk(L ∨ K) < rk(H) − rk(H ∩ K) and so by
induction we have

rk(H ∨ (L ∨K)) + rk(H ∩ (L ∨K)) = rk(L ∨K) + rk(H). (12.4.4)

Now L ∨K = p ∨ (H ∩K) ∨K = p ∨K. By the previous lemma then,

H ∩ (L ∨K) = H ∩ (p ∨K) = p ∨ (H ∩K) = L.

Furthermore H ∨ (L ∨K) = H ∨K, and so (12.4.4) can be rewritten as

rk(H ∨K) + rk(L) = rk(L ∨K) + rk(H). (12.4.5)

Since L ∩K = H ∩K, we can now derive the theorem by adding (12.4.3)
to (12.4.5) and rearranging.

An important consequence of this theorem is that that the rank of a
subspace of a projective geometry spanned by a set S is at at most |S|. In
particular, three pairwise non-collinear points must span a plane, rather
some subspace of larger rank.

12.5 Duality
Let H and K be two maximal subspaces of a projective geometry with rank
n. Then rk(H ∨K) = n and from 12.4.5 we have

rk(H ∩K) = rk(H) + rk(K)− rk(H ∨K) = (n− 1) + (n− 1)− n = n− 2.

Thus any pair of maximal subspaces intersect in a subspace of rank n− 2,
and therefore we can view the subspaces of rank n− 1 and the subspaces of
rank n − 2 as the points and lines of a linear space. We call this the dual
of our projective geometry. (In general the dual of a linear space need not
be linear.)

12.5.1 Theorem. The dual of a projective geometry is a projective geom-
etry.

Proof. We first show that each line in the dual lies on at least three points.
Let K be space of rank n − 2 and let H1 be a hyperplane which contains
it. Since H1 is not the whole space, there must be point p not in it. Then
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K is maximal in p ∨K and so p ∨K is a subspace of rank n − 1 on k. It
is not equal to H, because p is in it. Now choose a point q in H \K. The
line p ∨ q must contain a third point, x say. If x ∈ H then p ∈ x ∨ q ⊆ H,
a contradiction. Similarly x cannot lie in K and so it follows that x ∨K is
a third subspace of rank n− 1 on K.

Now we should verify the second axiom. However we will show that any
two subspaces of rank n − 2 intersecting in a subspace of rank n − 3 lie
in a subspace of rank n − 1. This implies that any two lines in the dual
which line a subspace of rank three must intersect, and so all rank three
subspaces are projective planes. An appeal to 12.2.3 now completes the
proof. So, suppose that K1 and K2 are subspaces with rank n − 2 which
meet in a subspace of rank n− 3. Then

rk(K1∨K2) = rk(K1)+rk(K2)−rk(K1∩K2) = (n−2)+(n−2)−(n−3) = n−1

and K1 ∨K2 has rank n− 1 as required.
Our next task is to determine the relation between the subspaces of a

projective geometry and those of its dual. It is actually quite simple—it is
equality.

12.5.2 Lemma. Let G be a projective geometry and let L be a subspace
of it. Then the hyperplanes which contain L are a subspace in the dual of
G.

Proof. Suppose that G has rank n. The lines of the dual are the sets of
hyperplanes which contain a given subspace of rank n− 2. Suppose that if
K is a subspace of rank n − 2 and H1 and H2 are two maximal subspaces
which contain K. If both H1 and H2 contain L then L ⊆ H1 ∩ H2 = K.
This proves the lemma.

It is clear from the axioms that any subspace H of a projective geom-
etry is itself a projective geometry. The previous lemma yields that the
hyperplanes which contain H are also the points of a projective geometry.
Furthermore, if K is a subspace of rank m contained in H then the max-
imal subspaces of H which contain K are again the points of a projective
geometry. Applying duality to this last remark, we see that the subspaces
of rank m+ 1 in H which contain K are the points of projective geometry.
We will denote this geometry by H/K, and refer to it as an interval of the
original geometry. Duality is a useful, but somewhat slippery concept. It
will reappear in later sections, sometimes saving half our work.
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12.6 Some Counting
We introduce the Gaussian binomial coefficients. Let q be fixed and not
equal to 1. We define

[n] := qn − 1
q − 1 .

If the value of q needs to be indicated we might write [n]q. We next define
[n]! by declaring that [0] := 1 and

[n+ 1]! = [n+ 1][n]!.

Note that [n] is a polynomial in q of degree n− 1 and [n]! is a polynomial
in q of degree

(
n
2

)
. Finally we define the Gaussian binomial coefficient by

[
n

k

]
:= [n]!

[k]![n− k]! .

12.6.1 Theorem. Let V be a vector space of dimension n over a field of
finite order q. Then the number of subspaces of V with dimension k is

[
n
k

]
.

Proof. First we count the number Nr of n × r matrices over GF (q) with
rank r. There are qn − 1 non-zero vectors in V , so N1 = qn − 1.

Suppose A is an n×r matrix with rank r. Then there are qr−1 non-zero
vectors in col(A), and therefore there are qn − qr non-zero vectors not in
col(A). If x is one of these, then (A, x) is an n× (r + 1) matrix with rank
r, and therefore

Nr+1 = (qn − qr)Nr.

Hence
Nr = (qn − qr−1) · · · (qn − 1) = q(

r
2)(q − 1)r [n]!

[n− r]! .

Note that Nn is the number of invertible n×n matrices over GF (q). Count
pairs consisting of a subspace U of dimension r and an n× r matrix A such
that U = col(A). If νr denotes the number of r-subspaces then

Nr = νrq
(r

2)(q − 1)r[r]!.

This yields the theorem.
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Suppose U1 and U2 are subspaces of V . We say that U1 and U2 are skew
if U1 ∩ U2 = {0}; geometrically this means they are skew if they have no
points in common. We say that U1 and U2 are complements if they are
skew and V = U1 + U2; in this case

dim V = dimU1 + dimU2.

Now suppose that U and W are complements in V and dim(U) = k. If H
is a subspace of V that contains U , define ρ(H) by

ρ(H) = H ∩W.

We claim that ρ is a bijection from the set of subspaces of V that contain
U and have dimension k + ` to the subspaces of W with dimension `.

We have H +W = V and therefore

n = dim(H +W ) = dim(H) + dim(W )− dim(H ∩W )
= k + `+ n− k − dim(H ∩W )
= n+ `− dim(H ∩W ).

This implies that dim(H ∩W ) = `. It remains for us to show that ρ is a
bijection.

If W1 is a subspace of W with dimension `, then U + W1 is a subspace
of V with dimension k + ` that contains U . Then

ρ(U +W1) = W1,

which shows that ρ is surjective. Suppose ρ(H1) = ρ(H2). Then

H1 ∩W = H2 ∩W

and so both H1 and H2 contain U + (H1 ∩W ). Since these three spaces all
have dimension k+`, it follows that they are equal. Therefore ρ is injective.

We also notes that H and K are subspaces of V that contain U and H ≤
K, then ρ(H) ≤ ρ(K). Therefore ρ is an inclusion-preserving bijection from
the subspaces of V that contain U to the subspaces of W . The subspaces
of W form a projective space of rank n− dim(U) and so it follows that we
view the subspaces of V that contain U as a projective space.

12.6.2 Lemma. Let V be a vector space of dimension n over a field of
order q, and let U be a subspace of dimension k. The number of subspaces
of V with dimension ` that are skew to U is qk`

[
n−k
`

]
.
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Proof. The number of subspaces of V with dimension k + ` that contain U
is
[
n−k
`

]
. If W1 has dimension ` and is skew to U , then U +W1 is a subspace

of dimension k+ ` that contains U . Hence the subspaces of dimension k+ `
that contain U partition the set of subspaces of dimension ` that are skew
to U . The number of subspaces of dimension k + ` in V that contain U
is
[
n−k
`

]
. We determine the number of complements to U in a space W of

dimension m that contains U .
We identify W with Fm×1. Since dimW = m and dimU = k, we may

assume that U is the column space of the m× k matrix(
Ik
0

)

Suppose W1 is a subspace of W with dimension m − k. We may assume
that W is the column space of the m× (m− k) matrix(

A
B

)

where B is (m− k)× (m− k). Then W1 is a complement to U if and only
if the matrix (

Ik A
0 B

)

is invertible, and this hold if and only if B is invertible. If B is invertible,
then W1 is the column space of (

AB−1

Im−k

)
.

So there is a bijection from the set of complements to U in W to the set of
m× (m− k) matrices over F of the form(

M
I

)
,

and therefore the number of complements of U is equal to qk(m−k), the
number of k × (m− k) matrices over F.
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Exercises
1. Determine the projective spaces that are not thick.

2. If H, K and L are subspaces of a projective geometry and L ≤ H, show
that

H ∩ (L ∨K) = L ∨ (H ∩K)

(This is equivalent to requiring that H ∩ (L ∨K) = (H ∩ L) ∨ (H ∩K),
and is known in lattice theory as the modular law.)

3. Let A be an affine space of rank d and order two. Show that each parallel
class of lines determines a permutation of the points of A with all orbits
of length two. Show that this set of permutations, together with the
identity, forms an abelian group of order 2d where each non-identity
element has order two. (Such a group is said to be elementary abelian
of exponent two.)

4. Prove that each elementary abelian group of exponent two determines
an affine geometry.

5. Prove that in a projective space of rank r, any subspace of rank at most
r − 2 is the intersection of the subspaces that cover it.

6. Prove that the number of invertible d× d matrices over GF (q) is equal
to q(

d
2)(q − 1)d[d]!.

7. Let V be a vector space of dimension n over GF (q) and let U be a
subspace of dimension k. Determines the number of subspaces of W
with dimension ` such that U ∩W = 0.

8. Let P be the projective space of rank d− 1 over GF (q). Let S be a set
of points that meets every subspace of rank e. Show that |S| contains
at least as many points as a subspace of rank d− e+ 1; if equality holds
prove that S is a subspace.

9. Prove that the number of invertible d× d matrices over GF (q) is equal
to q(

d
2)(q − 1)d[d]!.
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Chapter 13

Affine Spaces

13.1 Affine Geometries
Let G be a projective geometry and let H be a hyperplane in it. If S is a
set of points in G \H, define rkH(S) to be rk(S). This can be shown to be
a submodular rank function on the points not on H, and the combinatorial
geometry which results is an affine geometry. (It will sometimes be denoted
by GH .) The flats of A are the subsets of the form K \H, where K is a
flat/subspace of G. They will be referred to as affine subspaces; these are
all linear subspaces. However, in some cases there will be linear subspaces
which are not flats. (This point will be considered in more detail at the
start of the following section.)

If K1 and K2 are two subspaces of G such that K1 ∩K2 ⊆ H and

rk(K1 ∩K2) = rk(K1) + rk(K2)− rk(K1 ∨K2),

we say that they are parallel. The most important cases are parallel hyper-
planes and parallel lines. The hyperplane H is often called the “hyperplane
at infinity”, since it is where parallel lines meet. From the definition we see
that two disjoint subspaces of an affine geometry are parallel if and only if
the dimension of their join is ‘as small as possible’. In particular, two lines
are parallel if and only they are disjoint and coplanar. It is not too hard
to verify that parallelism is an equivalence relation on the subspaces of an
affine geometry. (This is left as an exercise.) The lines of G which pass
through a given point of H partition the point set of the affine geometry.
We call such a set of lines a parallel class. Any set of parallel lines can be
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extended uniquely to a parallel class. For given two parallel lines, we can
identify the point p on H where the meet; the remaining lines in the parallel
class are those that also meet H at p.

Any collineation α of an affine geometry must map parallel lines to
parallel lines, since it must map disjoint coplanar lines to disjoint coplanar
lines. Thus α determines a bijection of the point set of H. It actually
determines a collineation. To prove this we must find a way of recognising
when the ‘points at infinity’ of three parallel classes are collinear. Suppose
that we have three parallel classes. Choose a line ` in the first. Since the
parallel classes partition the points of the affine geometry, any point p on `
is also on a line from the second and the third parallel class. The points at
infinity on these three lines are collinear, in H, if and only if the lines are
coplanar. It follows that any collineation of an affine geometry determines
a collineation of the hyperplane at infinity, and hence of the projective
geometry. Because of the previous result, we can equally well view an affine
geometry as a projective geometry G with a distinguished hyperplane. The
points not on the hyperplane are the affine points and the lines of G not
contained in H are the affine lines. It is important to realize that there are
two different viewpoints available, and in the literature it is common to find
an author shift from one to the other, without explicit warning.

We consider an example to illustrate some issues. Let V be a vector
space of dimension d over GF (2). We can form an incidence structure with
the vectors in V as points and the cosets of the 1-dimensional subspaces
as lines. Then each pair of points is a line and so each subset of points is
a subspace. We could view this as a combinatorial geometry where each
subset is a flat and the rank of a subset S is |S|; this means we that we
are ignoring a lot of structure. However there is a second rank function
available: define the rank of a set of vectors to be the dimension of the
affine space that they span, plus one. Now the flats are the affine subspaces.
It is this rank function that we will use.

13.2 Axioms for Affine Spaces
There is a difficulty in providing a set of axioms for affine spaces, highlighted
by the following. Consider the projective plane PG(2, 2). Removing a line
from it gives the affine plane PG(2, 2) which has four points and six lines;
each line has exactly two points on it. (Thus we could identify its points and
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lines with the vertices and edges of the complete graph K4 on four vertices.)
This is a linear space but, unfortunately for us, it has rank four: any set
of three points is a subspace of rank three. More generally, any subset of
the points of AG(n, 2) is a subspace of AG(n, 2), viewed as a linear space.
However not all subspaces are flats.

One set of axioms for affine spaces has been provided by H. Lenz. An
affine space is an incidence structure equipped with an equivalence relation
on its lines, called parallelism and denoted by ‖, such that the following
hold.

(a) Any two points lie on a unique line.

(b) Given any line ` and point p not on `, there is a unique line `′ through
p and parallel to `.

(c) If `0, `1 and `2 are lines such that `0 ‖ `1 and `1 ‖ `2 then `0 ‖ `2. (Or
more clearly: parallelism is an equivalence relation on lines.)

(d) If a ∨ b and c ∨ d are parallel lines, and p is a point on a ∨ c distinct
from a then p ∨ b intersects c ∨ d.

(e) If a, b and c are three points, not all on one line, then there is a point
d such that a ∨ b ‖ c ∨ d and a ∨ c ‖ b ∨ d.

(f) Any line has at least two points.

It is not hard to show that all lines in an affine space must have the
same number of points. This number is called the order of the space. If the
order is at least three then the axiom (e) is implied by the other axioms. On
the other hand, if all lines have two points then (d) is vacuously satisfied.
Hence we are essentially treating separately the cases where the order is
two, and where the order is at least three. Any line trivially satisfies the
above set of axioms. If any two disjoint lines are parallel then we have
an affine plane. These may be defined more simply as linear spaces which
are not lines and have the property that, given any point p and line ` not
on p, there is a unique line through p disjoint from `. We can provide a
simpler set of axioms for thick affine spaces. Call two lines in a linear space
strongly parallel if they are disjoint and coplanar. Then the linear space L
is an affine space if:
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(a) strong parallelism is an equivalence relation on the lines of L,

(b) if p is a point, and ` is a line of A, then there is a unique line through
p strongly parallel to `.

As with our first set of axioms, no mention is made of affine subspaces.
However, in this case they are just the linear spaces. In the sequel, we will
distinguish this set of axioms by referring to them as the “axioms for thick
affine spaces". The first, official, set will be referred to as “Lenz’s axioms".

13.3 Affine Spaces in Projective Space
We outline a proof that any thick affine space arises by deleting a hyperplane
from a suitable projective plane.

13.3.1 Lemma. Let A be a thick affine space with rank at least four. Let
π be a plane in A and let D be a line intersecting, but not contained in π.
Then the union of the point sets of those planes which contain D, and meet
π in a line, is a subspace.

Proof. Let W denote the union described. Since the subspace D ∨ π is the
join of D and any line in π which does not meet D, no line in π which does
not meet D can be coplanar with it. Hence no line in π is parallel to D.

If x is point in W which is not on D then x∨D is a plane. Since x ∈ W ,
there is a plane containing x and D which meets π in a line. Thus x ∨ D
must meet π in line, l say. As x is not on l, there is unique line, l′ say,
parallel to it through x. Since D is not parallel to l, it is not parallel to l′.
Therefore D meets l′. We will denote the point of intersection of D with l′
by d(x). Now suppose that x and y are distinct points of W . We seek to
show that any point on x ∨ y lies in W . There are unique lines through x
and y parallel to D; since they lie in x∨D and y∨D respectively they meet
π in points x′ and y′. If u is a point on x ∨ y then the unique line through
u parallel to D must intersect x′ ∨ y′. Hence u lies in the plane spanned by
this point of intersection and D, and so u ∈ W .

This lemma provides a very useful tool for working with affine spaces.
We note some consequences.
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13.3. Affine Spaces in Projective Space

13.3.2 Corollary. Let π be a plane in the affine space A and let x and y
be two points not on π such that x ∨ π = y ∨ π. If x ∨ y is disjoint from π
then it is parallel to some line contained in π.

Proof. Let p be a point in π. From the previous lemma we see that since
y ∈ x ∨ π, the plane spanned y and the line x ∨ p meets π in a line l. As l
lies on π it is disjoint from x ∨ y and hence it is parallel to it.

13.3.3 Corollary. Let A be an affine space. If two planes in A have a
point in common and are contained in subspace of rank four, they must
have a line in common.

Proof. Suppose that p is contained in the two planes σ and π. Let l be a
line in σ which does not pass through p. As l is disjoint from π it is, by the
previous corollary, parallel to a line l′ in π. Let m be the line through p in
σ parallel to l and let m′ be the line in π parallel to p. Then

m′ ‖ l′, l′ ‖ l, l ‖ m

and thus m = m′. Therefore m ⊆ σ ∩ π.
Let A be an affine geometry. We show how to embed it in a projective

geometry. Assume that the rank of A is at least three. (If the rank is
less than three, there is almost nothing to prove.) Let P be a set with
cardinality equal to the number of parallel classes. We begin by adjoining
P to the point set of A. If a line of A lies in the i-th parallel class, we
extend it by adding the i-th point of P . It is straightforward to show that
each plane in A has now been extended to a projective plane. Each plane
in A determines a set of parallel classes, and thus a subset of P . These
subsets are defined to be lines of the extended geometry; the original lines
will be referred to as affine lines if necessary. Two points a and b of A are
collinear with a point p of P if and only the line a∨ b is in the parallel class
associated with p. With the additional points and lines as given, we now
have a new incidence structure P . We must verify that it is a linear space.

Let a and b be two points. If these both lie in A then there is a unique
line through them. If a ∈ A and b ∈ P then there is a unique line in the
parallel class determined by b which passes through a. Finally, suppose that
a and b are both in P . Let l be a line in the parallel class determined by a.
If x is an affine point in l then there is unique line in the parallel class of b
passing through it. With l, this line determines a plane which contains all
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13. Affine Spaces

the lines in b which meet l. This shows that each line l in a determines a
unique plane.

We claim that it is a projective space. This can be proved by showing
that each plane in P is projective. The only difficult case is to verify that
the planes contained in P are projective. Each plane of P corresponds to a
subspace of A with rank four, so studying the planes of P is really studying
these subspaces of A. The planes contained in P are projective planes if
every pair of lines in them intersect. Thus we must prove that if σ and π are
two planes of A contained in a subspace of rank four, then there is line in σ
parallel to π. There are two cases to consider. Suppose first that σ ∩ π = ∅.
Then, by 13.3.2, any line in σ is parallel to a line in π, and therefore there
is a point in P lying on both the lines determined by σ and π. Suppose
next that σ and π have a point in common. Then, by 13.3.3, these planes
must have a line in common and so the parallel class containing it lies on
the lines in P determined by them. This completes the proof that all thick
affine spaces are projective spaces with a hyperplane removed.

It is not at all difficult to show that an affine geometry over GF (2)
is isomorphic to the affine space associated the vector space of the same
dimension over GF (2). Consequently any affine geometries of order two
has a unique embedding into a projective space.

In the next chapter we will use our axiomatic characterization of affine
spaces to show that all projective spaces of rank at least four have the form
P(n,F), that is, are projective spaces over some skew field.

13.4 Characterizing Affine Spaces by
Planes

We have seen that a linear space with rank at least three is a projective geom-
etry if and only if every plane in it is a projective plane. The corresponding
result for affine geometries is more delicate and is due to Buekenhout.

13.4.1 Theorem. Let A be a linear space with rank at least three. If each
line has at least four points, and if all planes of A are affine planes, then A
is an affine geometry.

Proof. We verify that the axioms for thick affine spaces hold. Since the
second of these axioms is a condition on planes, it is automatically satisfied.
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13.4. Characterizing Affine Spaces by Planes

Thus we need only prove that parallelism is an equivalence relation on the
lines of A. If π is a plane and D a line meeting π in the point a, we define
W = W (π,D) to be the union of the point sets of the planes which contain
D and meet π in a line.

Suppose w ∈ W \D. The only plane containing w and D is w∨D, hence
the points of this plane must belong to W . In particular, it must meet π in
a line l. Since w is not on l, there is a unique line m in w ∨D through w
and parallel to l. The line D meets l in a, and is therefore not parallel to
it. Hence it is not parallel to m. Denote the point of intersection of m and
D by d(w). Note that if b is point on D, other than a or d(w) then bw is a
line in w ∨D not parallel to l. Thus it must intersect l in a point.

Our next step is to show that W is a subspace. This means we must
prove that if x and y are points in W \ π then all points on xy lie in W .
Suppose first that xy∩π = ∅. Since the lines of A have at least four points
on them, there is a point b on D distinct from a, d(x) and d(y). The line
bx and by must meet π, in points x′ and y′ say. As xy and π are disjoint,
xy ∩ x′y′ = ∅. Accordingly xy and x′y′ are parallel (they both lie in the
plane b ∨ xy). If u is point on xy then bu canot be parallel to x′y′ and so
u is on a line joining b to a point of π. This implies that the plane u ∨D
meets π in two distinct points. Hence it is contained in W , and so u ∈ W ,
as required.

Assume next that xy meets π in a point, z say. Let σ be the plane
y ∨ x ∨ d(x). If σ ∩ π is a line then, since it is disjoint from x ∨ d(x), it is
parallel to it. So, if u is a point distinct from x and y on xy then u ∨ d(x)
cannot be parallel to σ ∩ π. Accordingly u ∨ d(x) contains a point of π,
implying as before that u ∨D is in W . Hence u ∈ W . The only possibility
remaining is that σ ∩ π is a point, in which case it is z. Assume u is a
point distinct from x and y on xy. Since the line z ∨ d(x) has at least four
points, and since there is only one line in σ parallel to x ∨ d(x) through u,
there is a line through u meeting x ∨ d(x) and z ∨ d(x) in points x′ and y′
respectively. Now x ∨ d(x) is disjoint from π and therefore all points on it
are in W . Also all points on z ∨ d(x) are in W . Hence x′ and z′ lie in W .
Since z does not lie on x′z′, this line is disjoint from π. This shows that all
points on it lie in W . We have finally shown that W is a subspace, and can
now complete the proof of the theorem.

Suppose that l1, l2 and l3 are lines in A, with l1 ‖ l2 and l2 ‖ l3. Let π be
the plane l1∨ l2, let D be a line joining a point b on l3 to a point a in l2 and
let W = W (π,D). Since b ∈ W and W is a subspace, the plane b∨ l1 lies in
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W . In this plane there is a unique line through b parallel to l1. Denote it by
l′3. As l3 ∨ l2 meets π in l2, we see that l3 is disjoint from π. Similarly l′3 ∨ l1
meets π in l1, and so l′3 is disjoint from π. The plane a ∨ l′3 is contained in
W , and contains D. By the definition of W , any point of a ∨ l′3 lies in a
plane which contains D and meets π in a line. This plane must be a ∨ l′3.
Denote its line of intersection with π by l′2. Since l′3 is disjoint from π, the
lines l′2 and l′3 are parallel. If l2 = l′2 then l3 and l′3 are two lines in b ∨ l2
intersecting in b and parallel to l2. Hence they must be equal. If l2 6= l′2
then l′2 must intersect l1, in a point c say. But then l1 and l′2 are lines in
c ∨ l3 parallel to l3. Therefore l1 = l′2, which is impossible since a ∈ l′2 and
a /∈ l1. Thus we are forced to conclude that l1 ‖ l3.

The above proof is based in part on some notes of U. S. R. Murty.
There are examples of linear spaces which are not affine geometries, but
where every plane is affine. These were found by M. Hall; all lines in them
have exactly three points.

13.5 Affine Spaces
We define affine n-space over F to be Fn, equipped with the relation of affine
dependence. A sequence of points v1, . . . , vk from Fn is affinely dependent
if there are scalars a1, . . . , ak not all zero such that∑

i

ai = 0,
∑
i

aivi = 0.

We also say that v is an affine linear combination of v1, . . . , vk if

v =
∑
i

aivi

where ∑
i

ai = 1.

Thus if v is an affine linear combination of v1, . . . , vk, then the vectors
−v, v1, . . . , vk are affinely dependent.

Note that if v 6= 0 and a 6= 1 then the vectors v, av are not affinely
dependent. In particular if v 6= 0, then 0, v is not affinely dependent. In
affine spaces the zero vector does not play a special role.

144



13.6. Coordinates

If u and v are distinct vectors, then the set

{au+ (1− a)v : a ∈ F}

consist of all affine linear combinations of u and v. If F = R then it is the
set of points on the straight line through u and v; in any case we call it the
affine line through u and v. A subset S of V is an affine subspace if it is
closed under taking affine linear combination of its elements. Equivalently,
S is a subspace if, whenever it contains distinct points u and v, it contains
the affine line through u and v. (Prove it.) A single vector is an affine
subspace. The affine subspaces of Fn are the cosets of its linear subspaces.

Suppose A denotes the elements of Fn+1 with last coordinate equal to
1. Then a subset of S of A is linearly dependent in Fn+1 if and only if it
affinely dependent. This allows us to identify affine n-space over F with a
subset of projective n-space over F. (In fact projective n-space is the union
of n+ 1 copies of affine n-space.)

13.6 Coordinates
We start with the easy case. If A is the affine space Fn, then each point
of A is a vector and the coordinates of a point are the coordinates of the
associated vector.

Now suppose P is the projective space associated to Fn. Two non-zero
vectors x and y represent the same point if and only if there is a non-zero
scalar a such that y = ax. Thus a point is an equivalence class of non-zero
vectors. As usual it is often convenient to represent an equivalence class by
one of its elements. Here there is no canonical choice, but we could take
the representative to be the vector with first non-zero coordinate equal to
1. Normally we will not do this.

The map that takes a vector in Fn to its i-th coordinate is called a
coordinate function. It is an element of the dual space of Fn. The sum of
a set of coordinate functions is a function on Fn. If f1, . . . , fk is a set of
coordinate functions then the product f1 · · · fk is a function on Fn. The set
of all linear combinations of products of coordinate functions is the algebra
of polynomials on Fn. Many interesting structures can be defined as the set
of common zeros of a collection of polynomials.

Defining functions on projective space is trickier, because each point is
represented by a set of vectors. However if p is a homogeneous polynomial
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in n variables with degree k and x ∈ Fn, then

p(ax) = akp(x).

Thus it makes sense to consider structures defined as the set of common
zeros of a set of homogeneous polynomials.

If we are working over the reals, another approach is possible. If x
is a unit vector in Rn, then the n × n matrix xxT represents orthogonal
projection onto the 1-dimensional subspace spanned by x. Thus we obtain a
bijection between the points of the projective space and the set of symmetric
n × n matrices X with rk(X) = 1 and tr(X) = 1. However it is a little
tricky to decide if three such matrices represent collinear points. (A similar
trick works for complex projective space; we use matrices xx∗, which are
Hermitian matrices with rank one.)
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Chapter 14

Collineations and
Perspectivities

The main result of this chapter is a proof that all projective spaces of rank
at least four, and all ‘Desarguesian’ planes, have the form P(n,F) for some
field F.

14.1 Collineations of Projective Spaces
A collineation of a linear space is a bijection φ of its point set such that φ(A)
is a line if and only if A is. It is fairly easy to describe the collineations of the
projective spaces over fields. Consider P(n,F), the points of which are the 1-
dimensional subspaces of V = V (n+1,F). Any invertible linear mapping of
V maps 2-dimensional subspaces onto 2-dimensional subspaces, and hence
induces a collineation of P(n,F). The set of all such collineations forms a
group, called the projective linear group, and denoted by PGL(n,F). There
is however another class of collineations. Suppose τ is an automorphism of
F, e.g., if F = C and τ maps a complex number to its complex conjugate.
If α ∈ F, x ∈ V and ατ 6= α then

αxτ = ατxτ 6= αxτ .

Thus τ does not induce a linear mapping of V onto itself, but it does map
subspaces to subspaces, and therefore does induce a collineation. If we ap-
ply any sequence of linear mappings and field automorphisms to P(n,F)
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then we can always obtain the same effect by applying a single linear map-
ping followed by a field automorphism (or a field automorphism then a
linear mapping). The composition of a linear mapping and a field auto-
morphism is called a semi-linear mapping. The set of all collineations ob-
tained by composing linear mappings and field automorphisms is called the
group of projective semi-linear transformations of P(n,F), and is denoted by
PΓL(n+ 1,F). It contains PGL(n,F) as a normal subgroup of index equal
to |Aut(F)|. (If F is finite of order pm, where p is prime, then Aut(F) is a
cyclic group of order m generated by the mapping which sends an element
x of F to xp.) We can now state the “fundamental theorem of projective
geometry”.

14.1.1 Theorem. Every collineation of P(n,F) lies in PΓL(n+ 1,F).

Proof. See the end of ??.

This theorem can be readily extended to cover collineations between
distinct projective spaces over fields. These are all semi-linear too. It is
even possible to describe all ‘homomorphisms’, that is, mappings from one
projective space which take points to points and lines to lines, but which
are not necessarily injective. (This requires the use of valuations of fields.)
The most important property of PΓL(n+ 1,F) is that it is large. One way
of making this more precise is as follows.

14.1.2 Theorem. . The group PGL(n,F) acts transitively on the set of
all maximal flags of P(n− 1,F).

Proof. Exercise.

Every invertible linear transformation of V = V (n,F) determines a
collineation of P(n − 1,F). The group of all invertible linear transforma-
tions of V is denoted by GL(n,F). This groups acts on P(n− 1,F), but not
faithfully—any linear transformation of the form cI, where c 6= 0, induces
the identity collineation. (You will show as one of the exercises that all
the linear transformations which induce the identity collineation are of this
form.)

To compute the order of PGL(n,F) when F is finite with order q, we
first compute the order of GL(n,F). This is just the number of non-singular
n × n matrices over F. We can construct such matrices one row at a time.
The number of possible first rows is qn − 1 and, in general, the number of
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possible (k+ 1)-th rows is the number of vectors not in the span of the first
k rows, that is, it is qn − qk. Hence

|GL(n, q)| =
n−1∏
i=0

(qn − qi) = q(
n
2)(q − 1)n[n]!.

The number of maximal flags in P(n− 1,F) is [n]!. Thus we deduce, using
Theorem 1.2, that the subgroup G of GL(n,F) fixing a flag must have
order q(

n
2)(q − 1)n. This subgroup is isomorphic to the subgroup of all

upper triangular matrices.
A k-arc in a projective geometry of rank n is a set of k points, no n

of which lie in a hyperplane. To construct an (n + 1)-arc in P(n − 1,F),
take a basis x1, . . . , xn of V (n,F), together with a vector y of the form∑
i aixi, where none of the ai are zero. The linear transformation which

sends each vector xi to aixi maps ∑xi to
∑
aixi. Hence the subgroup of

PGL(n,F) fixing each of x1, . . . , xn acts transitively on the set of points of
the form ∑

aixi, where the ai are non-zero. It is also possible to show that
a collineation of P(n− 1,F) which fixes each point in an (n+ 1)-arc is the
identity. (The proof of this is left as an exercise.) Together these statements
imply that the subgroup of GL(n,F) fixing each of x1, . . . , xn acts regularly
on the set of points of the form∑

aixi, where the ai are non-zero, and hence
that it has order (q− 1)n. The subgroup of PΓL(n+ 1,F) fixing each point
in an (n+1)-arc can be shown to be isomorphic to the automorphism group
of the field F. (See Hughes and Piper [].)

14.2 Perspectivities and Projections
A perspectivity of a projective geometry is a collineation which fixes each
point in some fixed hyperplane (its axis), and each hyperplane through
some point (its centre). The latter condition is equivalent to requiring that
each line through some point be fixed, since every line is the intersection
of the hyperplanes which contain it. While it it is clear that this is a
reasonable definition, it is probably not clear why we would wish to consider
collineations suffering these restrictions. However perspectivities arise very
naturally. Let G be a projective geometry of rank four, and let H and K
be two hyperplanes in it. Choose points p and q not contained in H ∪K.
If h ∈ H, define φp(h) by

φp(h) := (p ∨ h) ∩K.
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This works because H is a hyperplane, and so every line in G meets H.
Similarly if k ∈ K then we define ψq(k) by

ψq(k) = (q ∨ k) ∩H.

It is a routine exercise to show that φp is a collineation from H to K and ψq
is a collineation fromK toH. Hence their composition φpψq is a collineation
of H. (We made use of φp earlier in proving Theorem 4.3, that is, that all
maximal subspaces of a projective geometry have the same rank.)

If G has rank n then the hyperplanes H and K meet in a subspace of
rank n−2 and each point in this subspace is fixed by φpψq. All lines through
the point (p∨ q)∩H are also left fixed by φpψq. As H ∩K is a hyperplane
in H, it follows that φpψq is a perspectivity. We will make considerable use
of these perspectivities in proving that all projective geometries of rank at
least four arise as the 1- and 2-dimensional subspaces of a vector space.

We provide a class of linear mappings of a vector space which induce
perspectivities of the associated projective space P(n,F). Let V = V (n,F)
and let H be a hyperplane in V . A linear mapping τ of V is a transvection
with axis H if xτ = x for all x in H, and xτ − x ∈ H for all x not in
H. They are easy to construct. First, choose a bilinear form 〈·, ·〉 on V .
Next choose non-zero vectors h and a such that 〈h, a〉 = 0 and define τh,a
by setting

xτh,a = x− 〈x, h〉a.

Then x is fixed by τh,a if and only if 〈h, x〉 = 0. Thus τh,a fixes all points
of the hyperplane with equation 〈h, x〉 = 0. If x is not fixed by τh,a then
xτh,a − x is a multiple of a and, since 〈h, a〉 = 0, it follows that a lies in
the hyperplane of points fixed by τh,a. As τh,a fixes a, it follows that it also
fixes all the 2-dimensional subspaces a ∨ x.

14.3 Groups of Perspectivities
14.3.1 Lemma. Let H be hyperplane in the projective geometry G. If the
collineation τ fixes all the points in H then it fixes all lines through some
point of G, and is therefore a perspectivity.

Proof. Assume first that τ fixes some point c not in H and let l be a line
through c. Then l must meet H in some point, x say. As x ∈ H, it is fixed
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by τ and thus τ fixes two distinct points of l. This implies that l is fixed
by τ .

Assume now that there are no points off H fixed by τ . Let p be a point
not in H and let l = p ∨ pτ . Once again l must intersect H in some point,
x say. As τ fixes x and maps p in l to pτ in l, it follows that it fixes l.

Let q be a point not on H or l. The plane π = q ∨ l meets H in a line l′
(why?). Since τ fixes the distinct lines l and l′ from π, it also fixes π. This
implies that qτ ∈ π. Now qτ 6= q, since q /∈ H, and so the q ∨ qτ is a line
in π. Hence it intersects l′ and, since l′ ⊆ H, the point of intersection is
fixed by τ . Therefore q ∨ qτ is fixed by τ . The line q ∨ qτ must intersect l
in some point, c say. As q ∨ qτ and l are both fixed by τ , so is c. Therefore
c ∈ H and so c = H ∩ l = x. Thus we have shown that the lines q ∨ qτ ,
where q /∈ H, all pass through the point c in H. From this it follows that
all lines through c are fixed by τ .

14.3.2 Corollary. The set of perspectivities with axis H form a group.

Proof. If τ is the product of two perspectivities with axis H, then it must
fix all points in H. By the lemma, it is a perspectivity.

Lemma 2.1 shows that perspectivities are the collineations which fix
as many points as possible, and thus makes them more natural objects to
study. By duality it implies that any collineation which fixes all hyperplanes
on some point must fix all the points in some hyperplane. Note however
that we cannot derive the lemma itself by appealing to duality, that is, by
asserting that if τ fixes all points on some hyperplane then, by duality, it
fixes all hyperplanes on some point. A perspectivity with its centre on its
axis is called an elation. If its centre is not on its axis it is a homology.
(Classical geometry is full of strange terms.) From our remarks above, any
transvection induces an elation. It can be shown that the perspectivities of
P(n − 1,F) all belong to PGL(n,F), and not just to PΓL(n,F). (In fact
PGL(n,F) is generated by perspectivities in it.)

14.3.3 Corollary. Let τ be a collineation fixing all points in the hyperplane
H. If τ fixes no points off H it is an elation, if it fixes one point off H it is
a homology and if it fixes two points off H it is the identity.

Proof. Only the last claim needs proof. Suppose a and b are distinct points
off H fixed by τ . If p is a third point, not in H, then τ fixes the point
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H ∩ pa as well as a. hence τ fixes pa and similarly it fixes pb. Therefore
p = pa ∩ pb is fixed by τ . This shows that τ fixes all points not in H.

14.3.4 Lemma. Let τ1 and τ2 be perspectivities of the projective geometry
G with common axis H. Then τ1τ2 is a perspectivity with axis H and centre
on the line joining the centres of τ1 and τ2.

Proof. The challenge is to show that the centre of τ1τ2 is on the line joining
the centers of τ1 and τ2.

Denote the respective centres of τ1 and τ2 by c1 and c2. If c1 = c2, then
c1 is the center of τ1τ2 and we are done. So we may assume throughout that
c1 6= c2 and that neither τ1 nor τ2 is the identity.

We note that any line that is fixed by a perspectivity and which is not
contained in its axis must contain the center of the perspectivity.

Suppose first the τ1 is a homology, i.e., c1 /∈ H. Then c1τ2 6=1 and the
line m = c1 ∨ c1τ2 is fixed by τ2 (because its intersection with H is fixed by
τ2). It follows that m contains the centre of τ2. Since m contains the center
of τ1, it is also fixed by τ1. We conclude that τ1τ2 fixes m and therefore the
center of τ1τ2 is on m. As m = c1 ∨ c2, we are done.

So we may assume that τ1 and τ2 are elations. If p is a point off H fixed
by τ1τ2, then

pτ1 = pτ−1
2

and therefore the line p ∨ pτ1 = p ∨ pτ−1
2 is fixed by τ1 and τ2. Hence this

line must contain the centers of both elations and therefore c1 = c2. We
conclude that τ1τ2 does not fix any point of H and therefore it is an elation.

If our projective space has rank three, then H = c1 ∨ c2 and so the
center of τ1τ2 is on c1 ∨ c2 as required. Suppose the rank is greater then
three and let q be a point off H. Since τ1 fixes q ∨ c1, it fixes the plane
π = q ∨ (c1 ∨ c2). Since τ2 fixes q ∨ c2 it also fixes π. Hence τ1τ2 fixes π; as
it induces a perspectivity of π and the center p of this must be on π ∩H.,
it must fix all lines in π through some point on c1 ∨ c2. We conclude that
p is the center of τ1τ2.

One consequence of the previous lemma is that the product of two ela-
tions with axis H is always a perspectivity with axis H and centre on H,
that is, it is an elation. It is possible for the product of two homologies
with axis H to be an elation—with its centre the point of intersection of H
with the line through the centres of the homologies.
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14.4 Transitivity Conditions
We now come to an important definition. Let p be a point and H a hyper-
plane in the projective geometry G and let Γ be a group of collineations
of G. Let Γ (p,H) denote the subgroup of Γ formed by the perspectivities
with centre p and axis H. We say that Γ is (p,H)-transitive if, for any
line ` through p which is not contained in H, the subgroup Γ (p,H) acts
transitively on the set of points of ` which are not on H and not equal to p.
If Aut(G) is itself (p,H)-transitive then we say that G is (p,H)-transitive.

This is a reasonable point to explain some group theoretic terms as well.
If Γ is a permutation group acting on a set S and x ∈ S then Γx is the
subgroup of Γ formed by the permutations which fix x. Recall that the
length of the orbit of x under the action of Γ is equal to the index of Γx in
Γ . The group Γ is transitive if it has just one orbit on S. It acts fixed-point
freely on S if the only element which fixes a point of S is the identity, that
is, if Γx is the trivial subgroup for each element x in S. In this case each
orbit of Γ on S will have length equal to |Γ | (and so |Γ | divides |S| when
everything is finite).

Suppose that Γ is the group of all perspectivities of G with centre p and
axis H. Let q be a point not in H and distinct from p. If an element γ of Γ
fixes q then it is the identity. For since q /∈ H and since γ fixes each point
in H it fixes all lines joining q to a point in H. But as H is a hyperplane,
this means that it fixes all lines through q. Hence q must be the centre of γ,
and so q = p. This contradiction shows that Γ must act fixed-point freely
on the points of G not in H ∪ p. In particular, for any line l, we see that Γ
acts fixed-point freely on the points of l \p not in H. (Since p ∈ l, the line
l must be fixed as a set by Γ .) Therefore if G is finite and p /∈ H then |Γ |
must divide |l| − 2, and if p ∈ H then |Γ | divides |l| − 1.

14.5 Desarguesian Projective Planes
Let P be a projective plane, with p a point and ` a line in it. The condition
that P be (p, `)-transitive can be expressed in a geometric form. A trian-
gle in a projective plane is a set of three non-collinear points {a1, a2, a3},
together with the lines a∨ b, b∨ c and c∨ a. These lines are also known as
the sides of the triangle. For convenience we will now begin to abbreviate
expressions such as a ∨ b to ab. Two triangles {a1, a2, a3} and {b1, b2, b3}
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are said to be in perspective from a point p if the three lines a1b1, a2b2 and
a3b3 all pass through p. They are in perspective from a line ` if the points
a1a2 ∩ b1b2, a2a3 ∩ b2b3 and a3a1 ∩ b3b1 all lie on `. We have the following
classical result, known as Desargues’ theorem.

14.5.1 Theorem. Let P be the projective plane P(2,F). If two triangles in
P are in perspective from a point then they are in perspective from a line.

Proof. Wait.

A projective plane is (p, `)-Desarguesian if:

• whenever two triangles {a1, a2, a3} and {b1, b2, b3} are in perspective
from p, and

• both a1a2 ∩ b1b2 and a2a3 ∩ b2b3 lie on `,

then a3a1 ∩ b3b1 lies on `. We call a plane Desarguesian if it is (p, `)-
Desarguesian for all points p and lines `. Since the projective planes over
fields are all Desarguesian, by the previous theorem, this concept is quite
natural. However we will see that a plane is Desarguesian if and only if it
is of the form P(2,F) for some skew-field F.

14.5.2 Theorem. A projective plane is (p, `)-transitive if and only if it is
(p, `)-Desarguesian.

Proof. Suppose P is a (p, `)-transitive plane. Let {a1, a2, a3} and {b1, b2, b3}
be two triangles in perspective from p with both a1a2 ∩ b1b2 and a2a3 ∩ b2b3
lying on `. By hypothesis, there is a perspectivity τ with centre p and axis
` which maps a1 to b1. Let x be the point a1a2 ∩ `. Since xτ = x, the
perspectivity τ maps xa1 onto xb1. Now xa1 = a1a2 and xb1 = b1b2; thus
τ maps a1a2 onto b1b2. Since the line pa2 is fixed by τ , we deduce that
a2 = pa2 ∩ a1a2 is mapped onto pa2 ∩ b1b2 = b2. A similar argument reveals
that a3τ = b3. Thus (a2a3)τ = b2b3 and therefore (a2a3∩`)τ = b2b3∩`. As τ
fixes each point of `, this implies that a2a3∩` = b2b3∩` and hence that a2a3
and b2b3 meet at a point on `. Thus our two triangles are (p, `)-perspective.

We turn now to the slightly more difficult task of showing that if P is
(p, `)-Desarguesian then it is (p, `)-transitive. Let x be a point distinct from
p and not on ` and let y be a point of px distinct from p and not on `. We
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need to construct a perspectivity with centre p and axis ` which sends x to
y. If a is a point not on px or `, define

aτ := ((ax ∩ `) ∨ y) ∩ pa

and if a ∈ `, set aτ equal to a. As thus defined, τ is a permutation of the
point set of the affine plane obtained by deleting px from P .

We will prove that it is a collineation of this affine plane, and hence
determines a collineation of P fixing px. Since aτ ∈ pa, the mapping τ fixes
the lines through p. Hence, if τ is a collineation then it is a perspectivity
with centre and axis in the right place. Suppose that a and b are two distinct
points of P not on px. If b ∈ xa then ax = ab and ((ax∩`)∨y) = ((ab∩`)∨y),
implying that bτ is collinear with y = xτ and aτ . Conversely, if bτ is
collinear with y and aτ then b must be collinear with x and a.

Thus we may assume that x, a and b are not collinear. Then {x, a, b} and
{y, aτ, bτ} are two triangles in perspective from the point p. By construction
xa meets y∨aτ and xb meets y∨ bτ on `. Therefore a∨ b must meet aτ ∨ bτ
on `. Let u be a point on ab. Then, applying Desargues’ theorem a second
time, we deduce that au and aτ ∨ uτ meet on `. Since au = ab, they must
actually meet at ab ∩ `. Therefore

aτ ∨ uτ = aτ ∨ (` ∩ ab) = aτ ∨ (` ∩ (aτ ∨ bτ)) = aτ ∨ bτ

and so uτ is on aτ ∨ bτ , as required.

14.5.3 Lemma. Let G be a projective geometry of rank at least four. Then
all subspaces of rank three are Desarguesian projective planes.

Proof. Let π be a plane in G and let p a point and ` a line in π. Let a and
b be distinct points on a line in π through p, neither equal to p or on `. Let
σ be a second plane meeting π in ` and let v be a point not in π∨σ but not
in π or σ. If x ∈ π then v∨x must meet σ in a point. The mapping sending
x to (v ∨ x) ∩ σ is collineation φv from π to σ. The line ba′ is contained in
the plane p ∨ a ∨ v, as is pv. Hence ba′ meets pv in a point, w say. Note
that w cannot lie in π or σ. Hence it determines a collineation φw from σ
to π which maps a′ to b. Both φv and φw fix each point in `, and so their
composition is a collineation of π which fixes each point of ` and maps a to
b. This shows that π is a (p, `)-transitive plane. As our choice of p and `
was arbitrary, it follows from the previous two results that all planes in G
are Desarguesian.
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14.5.4 Theorem. A projective geometry with rank at least four is (p,H)-
transitive for all points p and hyperplanes H.

Proof. Let x and y be distinct points on a line through p, neither in H. If
a is a point in G not on px define

aτ = (((ax ∩H) ∨ y) ∩ pa.

(This is the same mapping we used in proving that a (p, `)-transitive plane
is (p, `)-Desarguesian.) Let π be a plane through pa meeting H in a line.
If a ∈ π then aτ ∈ π and, from the proof of Theorem 4.2, it follows that τ
induces a perspectivity on π with centre p and axis π ∩H. Thus if a and b
are points not both on H and ab is coplanar with px, the image of ab under
τ is a line. (The proof of Theorem 4.2 can also be used to show that τ can
be extended to the points on px; we leave the details of this to the reader.)
Suppose then that a and b are points not both on H and ab is not coplanar
with px. The plane x ∨ ab meets H in a line `, hence if c ∈ ab then cτ lies
in the intersection of the planes p ∨ ab and y ∨ `. As y ∈ px, we have

y ∨ ` ⊆ px ∨ ` = px ∨ ab.

Therefore y ∨ ` is a hyperplane in px ∨ ab and so it meets p ∨ ab in a line.
By construction, this line contains the image of ab under τ , and so we have
shown that τ is a collineation.

There are projective planes which are not Desarguesian, and so the
restriction on the rank in the previous theorem cannot be removed. We
will call an affine plane P l Desarguesian if P is.

14.6 Translation Groups
Let H be a hyperplane in the projective geometry G. (We assume that G
has rank at least three.) The ordered pair (G, H) is an affine geometry and
an elation of G with axis H and centre on H is called a translation. From
Lemma 3.1, it follows that the set of all translations form a group. We are
going to investigate the relation between the structure of A and this group.
Some group theory must be introduced. A group Γ is elementary abelian
if it is abelian and its non-identity elements all have the same order. If Γ
is elementary abelian then so is any subgroup. As any element generates
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a cyclic group, and as the only elementary abelian cyclic groups are the
groups of prime order, all non-zero elements of a finite elementary abelian
group must have order p, for some prime p. The group itself thus has order
pn for some n. We will usually use multiplication to represent the group
operation, and consequently refer to the ‘identity element’ rather than the
‘zero element’. (There will be one important exception, when we consider
endomorphisms.) If H and K are subsets of the group Γ then we define

HK = {hk : h ∈ H, k ∈ K}.

If H and K are subgroups and at least one of the two is normal then HK
is a subgroup of Γ . If S ⊆ Γ then 〈S〉 is the subgroup generated by S and
〈1〉 is the trivial, or identity subgroup. Let G be a projective geometry and
let H be a hyperplane in it. Let A be the affine geometry with H as the
hyperplane at infinity. If F is a subspace of H then T (F ) is the group of
all elations with axis H and centre in F . If we need to identify H explicitly
we will write TH(F ).

14.6.1 Lemma. Let H be a hyperplane in the projective geometry G. If p
and q are distinct points on H such that T (p) and T (q) are both non-trivial
then T (H) is elementary abelian.

Proof. Since a non-identity elation has a unique centre, T (p) ∩ T (q) =
〈1〉. Suppose that α and β are non-identity elements of T (p) and T (q)
respectively. If l is a line through p then so is lβ−1. Hence the latter is fixed
by α and

lβ−1αβ = lβ−1β = l.

This shows that β−1αβ ∈ T (p). In other words, T (p) is normalized by
the elements of T (q). If β−1αβ ∈ T (p) then the commutator α−1β−1αβ
must also lie in T (p). A similar argument shows that α−1β−1α ∈ T (q).
Accordingly α−1β−1αβ also lies in T (q). As T (p) ∩ T (q) = 〈1〉, it follows
that α−1β−1α = 1. Consequently αβ = βα. (In other words, two non-
identity elations with the same axis and distinct centres commute.)

We now show that T (p) is abelian. Let α′ be a second non-identity
element of T (p). Then α′β is an elation. If its centre is p then β must
belong to T (p). Thus its centre is not p. Arguing as before, but with α′β in
place of β, we deduce that α and α′β commute. This implies in turn that
α and α′ commute. Finally, assume that α is an element of T (p) with order
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m. If βm 6= 1 then

(αβ)m = αmβm = βm ∈ T (q). (14.6.1)

Since αβ is an elation with axis H, so is (αβ)m, and (14.6.1) shows that
its centre is q. Therefore the centre of αβ is q and so αβ ∈ T (q). Since
β ∈ T (q), we infer that α also lies in T (q). This is impossible, and forces
us to conclude that βp = 1. Thus we have proved that two non-identity
elations with distinct centres must have the same order. It is now trivial to
show that T (H) is elementary abelian.

The group T (p) may contain no elements of finite order, but in this case
it is still elementary abelian.

14.6.2 Lemma. Let H be a hyperplane in the projective geometry G. If
G is (p,H)-transitive and (q,H)-transitive for p and q on H, then it is
(r,H)-transitive for all points r on p ∨ q.

Proof. If p = q there is nothing to prove, so assume they are not equal. Let
r be a point on pq and let a and b be distinct points not on H and collinear
with r. We construct an elation mapping a to b. The lines ab and pq are
coplanar; let x be the point pa ∩ ab. Since G is (p,H)-transitive, there is
an element α of T (p) which maps a to x. Similarly there is an element β
of T (q) mapping x to b. Hence the product αβ maps a to b. It fixes r, and
therefore it fixes the line ra = ab. Thus it is an elation with centre r.

Any element of T (p)T (q) is an elation with centre on p ∨ q. Thus the
proof of the lemma implies the following.

14.6.3 Corollary. If G is (p,H)- and (q,H)-transitive then T (p ∨ q) =
T (p)T (q).

14.7 Geometric Partitions
Assume now that G is a projective geometry which is (p,H)-transitive for
all points p on the hyperplane H, e.g., any projective geometry with rank at
least four, or any Desarguesian plane. Then T (H) is an elementary abelian
group and the subgroups T (p), where p ∈ H, partition its non-identity
elements. In fact T (H), together with the subgroups T (p), completely de-
termines G. The connection is quite simple: the elements of T = T (H)
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correspond to the points of G \H and the cosets of the subgroups T (p) are
the lines. The correspondence between points and elements of T arise as
follows. Let o be a point not in H. We associate with the identity of T . If
a is a second point not on H then there is a unique elation τa with axis H
and centre H ∩ oa which maps o to a. Then the map a 7→ τa is a bijection
from T to the points of GH . If l is a line of GH then then the affine points
of l are an orbit of T (l ∩H), and conversely, each such orbit is a line.

This leads us naturally to conjecture that an elementary abelian group
T , together with a collection of subgroups Ti (i = 1, . . . ,m) such that the
sets Ti \1 partition T \1, determines an affine geometry. This conjecture is
wrong, but easily fixed. Let T be an elementary abelian group. A collection
of subgroups Ti (i = 1, . . . ,m) is a geometric partition of T if

(a) The sets Ti \1 partition T \1,

(b) Ti ∩ TjTk 6= ∅ implies that Ti 6 TjTk.

A set of subgroups for which (a) holds is called a partition of T , although
it is not quite. The partitions we have been studying are all geometric. For
T (p)T (q) = T (p∨ q) and so if τ ∈ T (r)∩ T (p)T (q) then r must lie on p∨ q
and so T (r) 6 T (p)T (q). A geometric partition of an elementary abelian
group determines an affine geometry GH . We take the affine points to be
the elements of T and the lines to be the cosets of the subgroups Ti. This
gives us a linear space. Showing that this is an affine geometry is left as an
exercise.

14.7.1 Lemma. Let Ti (i = 1, . . . ,m) be a geometric partition of the ele-
mentary abelian group T and let A = GH be the affine geometry it deter-
mines. If o is the point of A corresponding to the identity of T then any
(o,H)-homology of G determines an automorphism of T which fixes each
subgroup Ti, and conversely.

Proof. Let α be an (o,H)-homology of G. If τ ∈ T , then we regard it as an
elation of G and thus we can define τα = α−1τα. Then τα fixes each point
of H and the line joining o to the centre of τ . Hence, if τ ∈ Ti, so is τα.
As α is an element and T a subgroup of the collineation group of A, the
mapping τ 7→ τα is an automorphism of T . The proof of the converse is a
routine exercise.
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For the remainder of this section, we will represent the group opera-
tion in abelian groups by addition, rather than multiplication. This also
means that the identity now becomes the zero element. If α and β are
automorphisms of the abelian group T then we can define their sum α+ β
by setting τα+β equal to τα + τβ, for all elements τ of T . This will not be
an automorphism in general, but it is always an endomorphism of T . The
endomorphisms of an abelian group form a ring with identity. We require
one preliminary result.

14.7.2 Lemma. Let Ti (i = 1, . . . ,m) be a geometric partition of the ele-
mentary abelian group T . If Tk ≤ Ti + Tj and k 6= i then Ti + Tj = Ti + Tk.

Proof. This can be proved geometrically, but we offer an alternative ap-
proach. We claim that

Ti + ((Ti + Tk) ∩ Tj) = (Ti + Tk) ∩ (Ti + Tj). (14.7.1)

To prove this, note first that both terms on the left hand side are contained
in the right hand side. Conversely, if u belongs to the right hand side then
we can write it both as x+ y where x ∈ Ti and y ∈ Tj, and as x′ + z where
x′ ∈ Ti and z ∈ Tk. Since x+y = x′+ z we have y = −x+x′+ z ∈ (Ti+Tk)
and so y ∈ (Ti+Tk)∩Tj. If Tk ≤ Ti+Tj then the right hand side of (14.7.1)
is equal to Ti +Tk while, since the partition is geometric, the left hand side
equals Ti or Ti + Tj. As Tk 6= Ti, this proves the lemma.

14.7.3 Lemma. Let Ti (i = 1, . . . ,m) be a geometric partition of the ele-
mentary abelian group T . Then the set of all endomorphisms of T which
map each subgroup Ti into itself forms a skew field.

Proof. Let K be the set of endomorphisms referred to. We show first that
the elements of K are injective. Suppose that α ∈ K and xα = 0 for some
element x of T . Assume that x is a non-zero element of T1 and let y be a
non-zero element of Ti for some i. Then

(x+ y)α = xα + yα = yα

and therefore (x + y)α must lie in Ti, since yα does. On the other hand,
x+ y cannot lie in Ti, and therefore (x+ y)α = 0. This shows that yα = 0.
As our choice of y in Ti was arbitrary, it follows that each element of Ti is
mapped to zero and, as our choice of i was arbitrary, that (T \ Ti)α = 0.
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Since yα = 0, we may also reverse the role of x and y in the first step of
our argument and hence deduce that T1α = 0. Thus we have proved that
if α is not injective then it is the zero endomorphism.

We now show that the non-zero elements of K are surjective. Suppose
that v ∈ Ti + Tj and α ∈ K. We prove that v is in the range of α. We
may assume that v ∈ Ti. Choose a non-zero element u of Tj. Then uα 6= 0
and we may also assume that uα − v 6= 0. Then uα − v must lie in some
subgroup Tk and Tk must be contained in Ti + Tj. Since Tk + Tj = Ti + Tj,
we see that Tk is a complete set of coset representatives for Tj in Ti + Tj
and so Tk + u must contain a non-zero element w of Ti. Now w − u ∈ Tk
and therefore (w − u)α ∈ Tk. As uα − v ∈ Tk we see that wα − v ∈ Tk.
On the other hand, v and w belong to Ti and so wα − v ∈ Ti. Hence
wα − v ∈ Ti ∩ Tk = 0. Consequently v lies in the range of α. We have
now proved that any non-zero element of K is bijective. It follows that all
non-zero elements of K are invertible, and hence that it is a skew field.

A famous result due to Wedderburn asserts that all finite skew fields are
fields. It is useful to keep this in mind. It is a fairly trivial exercise to show
that any endomorphism of a geometric partition induces a homology of the
corresponding projective geometry.

14.8 The Climax
The following result will enable us to characterize all projective geometries
of rank at least four, and all Desarguesian projective planes.

14.8.1 Theorem. Let G be a projective geometry of rank at least two, and
let H be a hyperplane such that G is (p,H)-transitive for all points p in H.
Then if G is (o,H)-transitive for some point o not in H, it is isomorphic to
P(n,F) for some skew field F.

Proof. Let T = T (H) and let K be the skew field of endomorphisms of
the geometric partition determined by the subgroups T (p), where p ∈ H.
The non-zero elements of K form a group isomorphic to the group of all
homologies of G with axis H and centre some point o off H. Since K is a
skew field, we can view T as a vector space (over K) and the subgroups
T (p) as subspaces. As T acts transitively on the points of G not in H, it
follows that G is (o,H)-transitive. This implies that K \0 acts transitively
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on the non-identity elements of T (p), and hence that T (p) is 1-dimensional
subspace of T . Consequently the affine geometry GH has as its points the
elements of the vector space T , and as lines the cosets of the 1-dimensional
subspaces of T . Hence it is AG(n,K), for some n. This completes the
proof.

We showed earlier that every projective geometry G with rank at least
four was (p,H)-transitive for any hyperplane H and any point p. Hence we
obtain:

14.8.2 Corollary. A projective geometry of rank at least four is isomorphic
to the geometry formed by the 1- and 2-dimensional subspaces of a vector
space over a skew field.

Similarly we have the following.

14.8.3 Corollary. Any Desarguesian projective plane is isomorphic to the
plane formed by 1- and 2-dimensional subspaces of a 3-dimensional vector
space over a skew field.

If P is a projective plane which is (p, l)-transitive for all points on some
line l then the affine plane P l is called a translation plane. Translation
planes which are not Desarguesian do exist, and some will be found in the
next chapter.

14.9 PGL(2,F) on a Line
The projective line over F consists of the 1-dimensional subspaces of V (2,F),
the vector space of dimension two over F. if we extend F by an element ∞
then the line spanned by the vector(

x
y

)

has a slope x/y; this slope determines the line. This we means we can view
the points of the line as elements of F ∪∞. As(

a b
c d

)(
x
y

)
=
(
ax+ by
cx+ dy

)
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we see that if ad − bc 6= 0 then the matrix
(
a b
c d

)
maps the line with

slope (ax+ by)/(cx+ dy). Thus it determines a permutation of F∪∞, this
permutation may be called a linear fractional mapping. Two invertible 2×2
matrices determine the same linear fractional mapping if and only if one
is a non-zero scalar multiple of the other. The linear fractional mappings
form the group PGL(2,F).

The matrices that fix ∞ are those of the form(
a b
0 d

)
,

these corresponds to the permutations of F that send x to ax + b, where
a 6= 0. These mappings for the 1-dimensional affine group AGL(1,F). You
may show that, given two ordered pairs of elements of F, there is a unique
linear fractional map with c = 0 and d = 1 that maps the first pair to
the second. Thus AGL(1,F) acts 2-transitively on the points of F, more
precisely it is sharply 2-transitive on F.

Since the linear fractional map x 7→ x−1 is a permutation of F∩∞ that
swaps 0 and ∞, we see that PGL(2,F) acts transitively on F ∪∞, and it
follows that it acts sharply 3-transitively. One consequence of this is that

|PGL(2,F)| = (q + 1)q(q − 1).

We have seen that PGL(2,F) acts transitively on the ordered triples
of distinct points from F ∪ ∞. We will consider its action on 4-tuples of
distinct points.

If a, b, c, d are four elements of F ∪ ∞, their cross ratio (a, b; c, d) is
given by

(a, b; c, d) := (a− c)(b− d)
(a− d)(b− c)

14.9.1 Theorem. Two 4-tuples of distinct elements of F ∪ ∞ are in the
same orbit under PGL(2,F) if and only if they have the same cross-ratio.

We leave the proof as an exercise. Note that to show that PGL(2,F)
preserves cross-ratio it is enough to show that cross-ratio is preserved by
the affine maps and the inversion x 7→ x−1. (Although you need to supply
an argument proving that these maps generate PGL(2,F).)
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If we choose to represent the points on the projective line by vectors in
F2, then the cross-ratio of the four vectors a, b, c, d is equal to

[a, c][b, d]
[a, d][b, c] .

Here [a, c] denotes the determinant of the 2× 2 matrix with columns a and
c. More generally if a, b, c, d are four points on a line ` and p /∈ ` then the
cross-ratio of these four points is equal to

[p, a, c][p, b, d]
[p, a, d][p, b, c]

You should verify this claim. Also show that if m is a second line then the
cross-ratio of the points

pa ∩m, pb ∩m, pc ∩m, pd ∩m.

is equal to (a, b; c, d). This provides with a way to define the cross-ratio of
four concurrent lines.

14.10 Baer Subplanes
A set S of points and lines from an incidence structure is dense if each point
and block of the structure is incident with an element of S. For example, if
S consists of all points on some line and all lines on some point, then S is
dense.

The fixed points of a collineation form a possibly degenerate projective
geometry. So if the collineation is not a perspectivity, it fixes a projective
geometry. A dense subgeometry is known as a Baer subgeometry and usu-
ally it will be a Baer subplane of a projective plane. If a projective plane
contains a Baer subplane, the order of the plane must be a square. (This
is easy to see for planes over a field, but it is true in general.)

14.10.1 Lemma. The fixed points of an involutory collineation of a pro-
jective space form a dense subgeometry.
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Exercises
1. Let F be a finite field of characteristic p. Show that any p-element in
PGL(n + 1,F) fixes some point in P(n,F). Hence show that any Sylow
p-subgroup of PGL(n+1,F) fixes a maximal flag. Finally show that any
maximal flag is fixed by a unique Sylow p-subgroup.

2. Let V the vector space of dimension d over GF (q). If a, h are non-zero
vectors in V , define the map τh,a from V to itself by

τh,a(x) = x− (hTx)a.

If hTa 6= 1, show that τh,a is a perspectivity of the projective space P(V )
and determine its center and axis. Prove that P(V ) is (p,H)-transitive
for all p and H.

3. If a projective plane is (p, `)-transitive and (q, `)-transitive for distinct
point p and q off `, show that it is (r, `)-transitive for all points r on
p ∨ q.

4. Let G be a projective geometry with rank at least four. Show that any
two triangles in perspective from a point of G are in perspective from a
line. (Note: if the triangles are coplanar, this will follow from a result
in the notes, but they need not be coplanar and so there is still work to
do.)

5. Show that a geometric partition Ti (i = 1, . . . ,m) of an elementary
abelian group T determines an affine geometry. Hint: first show that
two disjoint lines are coplanar if and only if they are cosets of the same
subgroup Ti. Then verify that the axioms for an affine geometry hold.

6. Let T be a group and let Ti, (i = 1, . . . ,m) be a collection of at least
two subgroups such that the sets Ti \ 1 partition T and, if i 6= j then
TiTj = T . Show that the incidence structure with the elements of T as
its points and the right cosets of the subgroups Ti as its lines is an affine
plane. (Note that we are not assuming that T is abelian, nor that the
subgroups Ti are normal.)

7. Show that all finite translation planes have prime-power order, and that
a translation plane of prime order is Desarguesian.
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8. If α and β are two 4-tuples of points on the projective line over F, show
that there is an element of PGL(2,F) that maps α to β if and only if
their cross-ratios are equal.

9. If E is a quadratic extension of F, the images under PGL(2,E) of the
points in F ∪∞ form a 3-(q2 + 1, q + 1, 1) design. [A so-called Möbius
plane.]

10. If a, b, c, d are four points on a line ` in the projective plane over F and
p is a point off `, prove that the cross-ratio of the four points is

[p, a, c][p, b, d]
[p, a, d][p, b, c] .

(Here [p, a, c] is the determinant of the matrix with columns p, a, c, etc.)

11. Suppose a, b, c, d are four points on a line ` in the projective plane
over F and p is a point not on `. If m is a line not on p, show that the
cross-ratio of the four points

m ∩ pa, m ∩ pb, m ∩ pc, m ∩ pd

is equal to (a, b; c, d). [This effectively assigns a cross-ratio to 4-tuples of
concurrent lines.]

12. If a projective plane of order n contains a Baer subplane, show that n is
a square.
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Chapter 15

Spreads and Planes

We are going to construct some non-Desarguesian translation planes. This
will make extensive use of the theory developed in the previous chapter.

15.1 Spreads
Every projective geometry which is (p,H)-transitive for all points p on
some hyperplane H gives rise, as we have seen, to a geometric partition
of an abelian group T . The ring of endomorphisms of this partition is a
skew field K and T is a vector space over K and the subgroups T (p) are
subspaces.

15.1.1 Lemma. All components of a geometric partition have the same
dimension as subspaces (over the kernel).

Proof. Since T (p)T (q) contains elements not in T (p)∪T (q) there is a point r,
not equal to p or q, such that T (r) ⊆ T (p)T (q). Since T (p)T (r) = T (q)T (r)
and T (p), T (q) and T (r) are disjoint, it follows that T (p) and T (q) must
have the same dimension.

It is not hard to see that the geometry determined by the partition is
a plane if and only if T = T (p)T (q) for any pair of distinct points p and q.
Since projective geometries with rank at least four are all of the form P(n,F),
we no longer have much reason to bother working with geometric partitions
in general. However spreads remain objects of considerable interest.

A spread is a collection of pairwise-skew m-dimensional subspaces of
a 2m-dimensional vector space V over a field F that partition the non-
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15. Spreads and Planes

zero vectors in V . A partial spread is a set of pairwise-skew subspaces of
dimension m in V .

15.2 Coordinatizing Spreads
Two m-dimensional subspaces of V are skew if and only if the union of a
basis from each subspace is a basis for V . We will present our subspaces
as column spaces of 2m×m matrices with rank m. In particular we define
subspaces V (∞) and V (0) as the respective column spaces of the matrices(

0
I

)
,

(
I
0

)
.

Now suppose Y and Z respectively are the column spaces of the 2m ×m
matrices (

A
B

)
,

(
C
D

)
,

each of rank m. Then Y and Z are skew if and only if the columns of(
A C
B D

)

are linearly independent, or equivalently if its determinant is not zero. We
see that Y is skew to V (∞) if and only if A is invertible, and is skew to
V (∞) if and only if B is invertible. In this case the matrices(

A
B

)
,

(
I

BA−1

)

have the same column space. We have proved the following.

15.2.1 Lemma. If Y is an m-dimensional subspace of V skew to V (∞)
and V (0), then Y is the column space of a matrix(

I
A

)

where A is invertible.

168



15.2. Coordinatizing Spreads

If will be convenient to use V (A) to denote the column space of the
matrix in the above lemma. We note that V (A) and V (B) are skew if and
only if B − A is invertible.

15.2.2 Lemma. If A is invertible there is a linear mapping of V that fixes
V (∞) and V (0) and maps V (A) to V (I).

Proof. Exercise.
So to each collection of pairwise skew subspaces of dimension n in V

that contains V (∞) and V (0), there is a set S of invertible matrices such
that the difference of any two matrices in S is invertible. The set S ∪ 0 has
the property that the difference of any two matrices in it is invertible. If
the difference of two matrices M1 and M2 is invertible then the first row
of M1 −M2 cannot be zero. Hence a set of m × m matrices over GF (q)
such that the difference of any two distinct matrices is invertible has size
at most qm, and set of m×m matrices such that the difference of any two
distinct matrices is invertible has size at most qm. IfM is a spread set and
M ∈M, then the set

{N −M : N ∈M}
is a set of m × m matrices, one of which is 0, such that the difference of
any two distinct matrices is invertible. We call such a set a spread set. The
subspaces associated to a spread set, along with V (∞), provides us with
qm + 1 pairwise-skew subspaces of dimension m, each of which contains
qm − 1 non-zero vectors. Since

|V | − 1 = q2m − 1 = (qm + 1)(qm − 1),

each spread set determines a spread in V .

15.2.3 Lemma. If Σ is a spread set of invertible m ×m matrices over F
and u is a non-zero vector in U = Fm, then for each non-zero vector v in U
there is a unique element M of Σ such that Mu = v.

Suppose Σ is a spread set of invertible d×d matrices over F, let U be Fd
and let V be the direct sum U ⊕ U . Let A be the affine plane determined
by the spread. We can identify the points of A with the vectors in V , which
write in the form (x, y) where x and y each have length d. We define V (∞)
to be the subspace formed by the vectors (0, y), and if σ ∈ Σ ∪ 0 then

V (σ) := {(x, xσ) : x ∈ U}.
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15. Spreads and Planes

The lines of A are the cosets of the subspace V (σ), for σ ∈ Σ ∪{0,∞}. (So
we may view the elements of Σ are finite non-zero slopes. It may also help
to think of V (∞) as the y-axis and V (0) as the x-axis.)

15.3 The Complex Affine Plane
Define the setM of 2× 2 real matrices by

M =
{(

a −b
b a

)
: a, b ∈ R

}
.

This a vector space over R. Since

det
((

a −b
b a

))
= a2 + b2,

we see that all non-zero elements ofM are invertible. HenceM determines
a spread in R4.

The affine plane we obtain is isomorphic to the usual affine plane over C.
As an exercise you might show that the kernel of this spread is isomorphic
to C.

We can generalize this example. Let E be an extension of the field F and
assume E has dimension d over F. Then multiplication by an element of E
is a linear mapping of E , and so it can be represented by a d×d matrix over
F. Thus the space of d×d matrices over F contains a subspace consisting of
matrices representing elements of E . Any non-zero element of this subspace
is invertible, and thus these form a spread set of invertible matrices. The
resulting plane is the usual plane over E .

15.4 Collineations of Translation Planes
We prove what might be called the fundamental theorem for translation
planes. Note that any collineation of a translation plane can be expressed
as a product of a translation and an automorphism of the plane that fixes
o, so this result is providing more information that might be evident at first
glance.
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15.4.1 Theorem. Let A be the affine plane determined by the spread S
of V (2n,F) and let K be its kernel. Then the collineations of A which fix
0 are induced by the semilinear mappings of V which map the components
of S onto themselves.

Proof. Let α be a collineation of A fixing 0. If v ∈ V , the mapping τ(u) on
the points of A by

xτ (u) = x+ u

is a translation and the mapping u 7→ τ(u) is an isomorphism from V to
the group of translations of A.

If τ is a translation then it is easy to see that α−1τα is perspectivity
with axis the line at infinity. Since α−1τα fixes any line on the centre of τ ,
it follows that it is a translation. Hence the mapping

τ 7→ α−1τα

is an automorphism of the group of translations ofA and therefore it induces
an additive mapping of V .

Any homology of A with centre 0 and axis the line at infinity maps v
in V to κv, for some κ in K. Then α−1κα is a homology with centre 0 and
axis `∞, hence corresponds to an element κa (say) of K. Now

(vκ)α = (vα)α−1κα = (vα)κa

and, if λ ∈ K, this implies that

vα(κ+λ)a = (vκ+λ)α =
(
vκ + vλ

)α
= vκα + vλα

= vακ
a + vαλ

a

= vα(κa+λa).

So (κ+ λ)a = κa + λa. Further,

vα(κλ)a =
(
vκλ

)a
= vκaλ

a = vακ
aλa

and thus (κλ)a = κaλa. This shows that the map

κ 7→ α−1κα

is an automorphism of K. We conclude that α is semilinear.
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Let V = U⊕U and assume Σ is a spread set of invertible matrices. The
elements of Σ belong to GL(U). The spread set determines a spread in V
that contains V (0) and V (∞); let A be the corresponding affine plane. We
write the elements of V in the form (u, v), where u, v ∈ U . If σ ∈ Σ, then

V (σ) = {(u, uσ) : u ∈ U}

and
V (∞) = {(0, u) : u ∈ U}

The subspaces V (σ) are the lines through the point (0, 0) in A.
Since U is a vector space over the kernel K of S, it follows that any non-

identity automorphism of K must act non-trivially on it. (That is, it cannot
fix each element of U .) From this it follows in turn that any perspectivity
of A fixing 0 must be induced by a linear mapping of V , and not just a
semilinear one.

If V = U ⊕ U then any linear M mapping of V can be written in
partitioned form

M =
(
A B
C D

)
where the blocks are d× d matrices. If M fixes V (0) then(

I
0

)
,

(
A
C

)

have the same column space; therefore C = 0 and A is invertible. If M
fixes V (∞) we see similarly that B = 0 and D is invertible. If 1 ∈ Σ and
M fixes V (1), then the column spaces of the matrices(

I
I

)
,

(
A
D

)

are equal and consequently A = D. IfM fixes each component of the spread
given by Σ, then (

I
σ

)
,

(
A
Aσ

)
have the same column space and so AσA−1 = σ, for each σ in Σ. In other
terms, A commutes with each element of Σ. As an exercise, show that
any non-zero matrix that commutes with each element of a spread set is
invertible.
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15.5. The Fundamental Theorem

15.5 The Fundamental Theorem
15.4.1 holds for any Desarguesian affine space, we just work with geomet-
ric partitions rather than spreads. It leads to a proof of the fundamental
theorem of projective geometry, which we outline here.

15.5.1 Theorem. Any collineation of a Desarguesian projective space is
the composition of an invertible linear map and a field automorphism.

Proof. Suppose α is a collineation of a Desarguesian projective space. If
α fixes a point it fixes a hyperplane and, if the fixed point is not on the
hyperplane, then α is semilinear. So suppose α does not fix a point. If p
is a point, we can find a homology γ such that pαγ = p. Then αγ fixes
a hyperplane H and if p /∈ H then αγ is semilinear. Since γ is semilin-
ear it follows that α is too. Now suppose our space has rank d and the
points x1, . . . , xd are a basis. Then there is a collineation γ, a semilinear
mapping, such that xi is fixed by αγ−1 for each i. Then αγ−1 fixes the
hyperplane spanned by x1, . . . , xd−1 and fixes the point xd, which is not on
this hyperplane. Therefore it is semilinear.

15.6 Collineations and Spread Sets
We relate collineations with properties of spread sets. We consider the line
at infinity `∞ in A as a distinguished line, rather than as a missing line.
Let (0) and (∞) be the points at which V (0) and V (∞) respectively meet
`∞.

15.6.1 Theorem. The set {σ ∈ GL(U) : σΣ = Σ} is a group, and is
isomorphic to the group of homologies of A with centre (0) and axis V (∞).
The set {σ ∈ GL(U) : Σσ = Σ} is also a group, and is isomorphic to the
group of homologies of A with centre (∞) and axis V (0).

Proof. Suppose that δ′ is a homology of A with centre (0) and axis V (∞).
Since δ′ fixes each point on the line V (∞), it is induced by a linear mapping.
Since δ′ fixes the lines V (0) and V (∞), it must map (u, v) to (uδ, vγ) for
some elements δ and γ of GL(U). (This follows from one of the remarks
at the end of the previous section.) Since δ′ fixes each point on V (∞), we
must have γ = 1. Suppose that δ′ maps V (σ) to V (τ). Then

(u, uσ)δ′ = (uδ, uσ)
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and therefore δ−1σ = τ . From this we infer that δ−1Σ = Σ, and so the
first part of the lemma is proved. The second part follows similarly. The
converse is routine.

15.6.2 Corollary. If Σ contains the identity of GL(U) and the plane it
determines is Desarguesian, then Σ is a group.

Proof. If A = P l is Desarguesian then it is (p,H)-transitive for all points p
and lines H. By the previous lemma, it follows that

{σ ∈ GL(U) : σΣ = Σ}

has the same cardinality as Σ. Since I ∈ Σ, we see that if σΣ = Σ
then σ must belong to Σ. Consequently Σ is closed under multiplication.
As it consists of invertible matrices and contains the identity matrix, it is
therefore a group.

The group of homologies with centre (0) and axis V (∞) in the previous
lemma has the same cardinality as Σ. This implies our claim immediately.

The converse to this corollary is false. (See the next section.) There is
an analog of 15.6.1 for elations:

15.6.3 Lemma. Let Σ0 denote Σ ∪ 0. The set

{σ ∈ Σ0 : σ +Σ0 = Σ0}

is an abelian group, and is isomorphic to the group of elations with centre
(∞) and axis V (∞).

Proof. If α is represented by the matrix(
W X
Y Z

)

and (u, v) ∈ V then

(u, v)α = (uW + vY, uX + vZ).

If (0, v) ∈ V (∞) then (0, v)α = (Y v, Zv). Hence if each point on V (∞) is
fixed by α then Y = 0 and Z = I. If α also fixes all lines through (∞) then
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it must fix the cosets of V (∞). The elements of a typical coset of V (∞)
have the form (a, b+ v), where v ranges over the elements of U . Now

(a, b+ v)α = (aW, aX + b+ v)

and so if α fixes the lines parallel to V (∞) then W = I. Consequently, if α
is an elation with centre (∞) and axis V (∞) and σ ∈ Σ then

(u, uσ)α = (u, uX + uσ)

As α is a collineation fixing o, it maps V (σ) to V (τ) for some τ in Σ, or
to V (0). Therefore X + Σ = Σ. Thus we have shown that the elations
with centre (∞) and axis V (∞) correspond to elements σ ∈ Σ such that
σ +Σ = Σ. The proof of the converse is routine.

15.6.4 Corollary. If the plane P determined by Σ is Desarguesian then
Σ0 is a skew field.

Proof. Since P is (p, l)-transitive for all points p and lines l, we deduce
from 15.6.1 that Σ is a group under multiplication and from Lemma ??
that Σ0 is a group under addition. If σ ∈ Σ then σ−1Σ = Σ, implying that
I = σ−1σ ∈ Σ. As both addition and multiplication are the standard matrix
operations, the usual associative and distributive laws hold. Therefore Σ0
is a skew field.

15.6.5 Lemma. If, for all elements σ and τ of Σ we have στ = τσ then Σ
is a field and the plane determined by Σ is Desarguesian.

Proof. Suppose that α is an element of GL(U) which commutes with each
element of Σ. Then the map sending (u, uσ) to

(uα, uσα) = (uα, uασ)

fixes each component of the spread S and hence it must lie in its kernel.
Denote this by K. The hypothesis of the lemma thus implies that Σ is
a commutative subset of K. The elements of Σ \ 0 determine distinct ho-
mologies of the plane determined by the spread, with centre o and axis l∞.
Hence the plane must be Desarguesian (by ??) and Σ must coincide with
K.
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15.7 A Nearfield Plane
In this section and the next we propose to construct non-Desarguesian
planes of order 9 and 16. Let U be a vector space over F and let Σ be
a subset of GL(U) determining a spread S of V = U ⊕ U . As customary,
we assume that V (0) and V (∞) are components of S. The plane deter-
mined by S is a nearfield plane if Σ is a group. (Thus Desarguesian planes
are nearfield planes.)

We construct a plane of order nine. Consider the group SL(2, 3) of 2×2
matrices over GF (3) with determinant 1. Let U be the 2-dimensional vector
space over GF (3). We take Σ to be a Sylow 2-subgroup of SL(2, 3). Since
SL(2, 3) has order 24, this means Σ has the right size to be a spread set.
There is also no question that its elements are invertible.

To show that Σ is a spread set, we first show that 2-elements of SL(2, 3)
act fixed-point freely on U . Suppose that α2 = 1. If α =

(
ab
cd

)
then the

off-diagonal entries of σ2 are b(a+ d) and c(a+ d). Hence either b = c = 0
or a + d = 0. In the first case, since detα = 1, we deduce that α = ±I.
Otherwise it follows that α has the form(

a b
−(1 + a2)/b −a

)

whence a simple calculation shows that α2 = −1. Thus −1 is the only
involution in SL(2, 3). As it acts fixed-point freely on U , all 2-elements of
SL(2, 3) must act fixed-point freely. If σ and τ belong to Σ then σ−1τ is
a 2-element, and so acts fixed point freely on U . Hence σ − τ is invertible
and therefore Σ determines a spread of U⊕U . Since Σ is not commutative,
the plane we obtain is not Desarguesian.

15.8 The Lorimer-Rahilly Plane
Our second plane needs more work. Consider the projective plane over
GF (2). If we number its points 1 through 7, its lines may be taken to be

123, 145, 167, 246, 257, 347, 356.

Each line gives us two 3-cycles belonging to the alternating group A7. (For
example the line 257 produces (257) and (275).) Let Σ be the set formed
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by these fourteen 3-cycles, together with the identity. Let X be the 4-
dimensional vector space over GF (2). We claim that A7 can be viewed as
a subgroup of GL(4, 2) acting transitively on the 15 non-zero elements of
X. (The proof of this is given in the next section.)

We prove that if σ and τ are elements of Σ then σ−1τ acts fixed-point
freely on the non-zero vectors of X. A routine check shows that σ−1τ is
either a 3-cycle or a 5-cycle. If x is a non-zero vector inX then the subgroup
of A8 leaving it fixed has order 8!/30 = 21 ·26. Thus this subgroup contains
no elements of order 5, and so all elements of order 5 in A8 must act fixed-
point freely. Suppose then that θ = σ−1τ is 3-cycle in A8. Then there is a
5-cycle φ which commutes with θ. If x is non-zero vector fixed by θ then

xφθ = xθφ = xφ

and so xφ is also fixed by θ. This shows that the number of non-zero vectors
fixed by θ is divisible by 5. As θ has order three, the number of non-zero
vectors not fixed by it is divisible by three. This implies that θ cannot fix 5
or 10 vectors, and hence that it must have 15 fixed points, that is, it is the
identity element.

Thus we have shown that Σ determines a spread ofX⊕X. The resulting
plane is not a nearfield plane, for then Σ would be a group of order 15.
The only group of order 15 is cyclic, and hence abelian. But the Sylow
2-subgroups of SL(2, 3) are isomorphic to the quaternion group, which is
not abelian. The plane we have constructed is called the Lorimer-Rahilly
plane. Note that the collineation group of the plane over GF (2) induces a
group of collineations of the new plane fixing V (0), V (1) and V (∞), and
acting transitively on the remaining components.

15.9 Alt(8) and GL(4, 2) are Isomorphic
We outline a proof that A8 is isomorphic to GL(4, 2). Let S be the set
{0, 1, . . . , 7}. There are 35 partitions of S into two sets of size four and
since S8 acts on S, it also acts on this set of partitions. Any partition can
be described by giving the elements of the component containing 0. Let Ω
be the set of all 35 triples from S \ 0. It is not hard to check that A7 acts
transitively on Ω. A set of seven triples from Ω will be called a heptad if
it has the property that every pair of triples from it intersect in precisely
one point, and there is no point in all seven. (So a heptad is a projective
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plane of order two, but ‘heptad’ is shorter) We say that a set of triples are
concurrent if there is some point common to them all, and the intersection
of any two of them is this common point. A star is a set of three concurrent
triples. The remainder of the argument is broken up into a number of
separate claims.

15.9.1 Claim. No two distinct heptads have three non-concurrent triples
in common.

It is only necessary to check that for one set of three non-concurrent
triples, there is a unique heptad containing them.

15.9.2 Claim. Each star is contained in exactly two heptads.

Without loss of generality we may take our star to be 123, 145 and 167.
By a routine calculation one finds that there are two heptads containing
this star:

123
145
167
246
257
347
356

123
145
167
247
256
346
357

Note that the second of these heptads can be obtained from the first by
applying the permutation (67) to each of its triples.

15.9.3 Claim. There are exactly 30 heptads.

There are 15 stars on each point, thus we obtain 210 pairs consisting of
a star and a heptad containing it. As each heptad contains exactly 7 stars,
it follows that there must be 30 heptads.

15.9.4 Claim. Any two heptads have 0, 1 or 3 triples in common.

If two heptads have four (or more) triples in common then they have
three non-concurrent triples in common. Hence two heptads can have at
most three triples in common. If two triples meet in precisely one point,
there is a unique third triple concurrent with them. Any heptad containing
the first two triples must contain the third. (Why?)
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15.9.5 Claim. The automorphism group of a heptad has order 168, and
consists of even permutations.

First we note that Sym(7) acts transitively on the set of heptads. As
there are 30 heptads, we deduce that the subgroup of Sym(7) fixing a heptad
must have order 168. Now consider the first of our heptads above. It is
mapped onto itself by the permutations (24)(35), (2435)(67), (246)(357) and
(1243675). The first two of these generate a group of order 8. Hence the
group generated by these four permutations has order divisible by 8, 3 and
7. Since its order must divide 168, we deduce that the given permutations
in fact generate the full automorphism group of the heptad.

15.9.6 Claim. The heptads form two orbits of length 15 under the action of
A7. Any two heptads in the same orbit have exactly one triple in common.

Since the subgroup of A7 fixing a heptad has order 168, the number
of heptads in an orbit is 15. Let Π denote the first of the heptads above.
The permutations (123), (132) and (145) lie in A7 and map Π onto three
distinct heptads, having exactly one triple in common with Π. (Check it!)
From each triple in Π we obtain two 3-cycles in A7, hence we infer that
there are 14 heptads in the same orbit as Π under A7 and with exactly one
triple in common with Π. Since there are only 15 heptads in an A7 orbit,
and since all heptads in an A7 orbit are equivalent, it follows that any two
heptads in such an orbit have exactly one triple in common.

15.9.7 Claim. Each triple from Ω lies in exactly six heptads, three from
each A7 orbit.

Simple counting.

15.9.8 Claim. A heptad in one A7 orbit meets seven heptads from the
other in a star, and is disjoint from the remaining eight.

More counting.
Now we construct a linear space. Choose one orbit of heptads under the

action of A7, and call its elements points. Let the triples be the lines, and
say that a point is on a line if the correponding heptad contains the triple.
The elements of the second orbit of heptads under A7 determine subspaces
of rank three, each isomorphic to a projective plane. It is now an exercise
to show that there are no other non-trivial subspaces, and thus we have a
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linear space of rank four, with all subspaces of rank three being projective
planes. Hence our linear space is a projective geometry, of rank four. Since
its lines all have cardinality three, it must be the projective space of rank
four overGF (2). AsGF (2) has no automorphisms, the collineation group of
our linear space consists entirely of linear mappings; hence it is isomorphic
to GL(4, 2). (Note that we have just used the characterization of projective
geometries as linear spaces with all subspaces of rank three being projective
planes, the fact that projective geometries of rank at least four are all of
the form P(n,F) and the fundamental theorem of projective geometry, i.e.,
that the collineations of P(n,F) are semilinear mappings.) Our argument
has thus revealed that A7 is isomorphic to a subgroup of GL(4, 2). A direct
computation reveals that it has index eight.

With a little bit of group theory it now possible to show that GL(4, 2)
is isomorphic to A8. We outline an alternative approach. Let Φ be the set
of all partitions of S into two sets of size four. These sets can be described
by giving the three elements of S\0 which lie in the same component of the
partition as 0. Since S8 acts on S, we thus obtain an action of S8 on the 35
triples in Ω. This action does not preserve the cardinality of the intersection
of triples. However if two triples meet in exactly one point then so do their
images. (Because two triples meet in one point if and only if the meet of
the corresponding partitions is a partition of S into four pairs.) Hence the
action of S8 on Ω does preserve heptads. More work shows that, in this
action, A8 and A7 have the same orbits on heptads. Thus A8 is isomorphic
to a subgroup of GL(4, 2), and hence to GL(4, 2).

15.10 Moufang Planes
A line l in a projective plane P is a translation line if P is (p, l)-transitive for
all points p on l, that is, if P l is a translation plane. We call p a translation
point if P is (p, l)-transitive for all lines l on it. From Lemma 2.3.1, we know
that if P is (p, l)-transitive and (q, l)-transitive for distinct points p and q
on l then l is translation line. Dually, if P is (p, l)- and (p,m)-transitive for
two lines l and m through p then p is a translation point. The existence of
more than one translation line (or point) in a projective plane is a strong
restriction on its structure. The first consequence is the following.

15.10.1 Lemma. If l and m are translation lines in the projective plane P
then all lines through l ∩m are translation lines.
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Proof. Suppose p = l ∩ m. Then p is a translation point in P . Let l′ be
a line through p distinct from l and m. Since P is (p,m)-transitive, there
is an elation with centre p and axis m mapping l to l′. (Why?) As l is a
translation line, it follows that l′ must be one too.

It follows from this lemma that if there are three non-concurrent trans-
lation lines then all lines are translation lines. A plane with this property
is called a Moufang plane. We have the following deep results, with no
geometric proofs known.

15.10.2 Theorem. If a projective plane has two translation lines, it is
Moufang.

15.10.3 Theorem. A finite Moufang plane is Desarguesian.

These are both proved in Chapter VI of Hughes and Piper[]. A Mo-
ufang plane which is not Desarguesian can be constructed using the Cayley
numbers. These form a vector space O of dimension eight over R with a
multiplication such that

(a) if x and y lie in O and xy = 0 then either x = 0 or y = 0

(b) if x, y and z belong to O then x(y+z) = xy+xz and (y+z)x = yx+zx.

It is worth noting that this multiplication is neither commutative, nor asso-
ciative. To each element a of O we can associate an element ρa of GL(O),
defined by

ρa(x) = xa

for all x in O. (This mapping is not a homomorphism.) Then ρa is injective
and, since O is finite dimensional, it must be invertible. Moreover, if a and
b both belong to O then (ρa − ρb)x = xa− xb = x(a− b) and so ρa − ρb is
also invertible. Thus the set

Σ = {ρx : x ∈ O\0}

gives rise to a spread of O⊕O. As Σ is not closed under multiplication, the
plane P determined by Σ cannot be Desarguesian. Since ρ(x+y) = ρx + ρy
we see that Σ is a vector space over R. By Lemma ??, this implies that P
has two translation lines and therefore it is Moufang.
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Exercises
1. Let Σ be subset of GL(U) determining a spread π of V = U ⊕ U . If
σ ∈ Σ and σΣ−1σ = Σ, show that the mapping which sends (u, v) to
(vσ−1, uσ) is a perspectivity of the plane P(π) with axis V (σ) which
interchanges V (0) and V (∞). From this deduce that the collineation
group of a nearfield plane has at most three orbits on its points, and no
fixed points.

2. Let P` be a nearfield plane. Suppose that m is a translation line in P
distinct from `. The group of all perspectivities with axis m and centre
` ∩ m acts transitively on the points of ` \m. Deduce from this that
group of collineations of P fixing ` acts transitively on the points of `,
and hence that there is a point y of ` \m and a line h on ` ∩ m not
containing y such that P is (y, h)-transitive. Finally deduce that P is
Desarguesian.

3. Use the results of the previous two exercises to show that a non-Desarguesian
nearfield plane is not self-dual.

4. Let U be a vector space and let Σ be a subset of GL(U) determining a
spread of V = U ⊕ U . If Σ is a group, show that the mappings t(σ, u)
with σ ∈ Σ and u ∈ U given by

t(σ, u) : x 7→ xσ + u

form a sharply 2-transitive group of permutations of U . (This shows
that every nearfield plane determines a sharply 2-transitive permutation
group. It is not too difficult to show that every sharply 2-transitive group
determines an affine plane and with more effort it can be shown that the
resulting planes are translation planes.)

5. Show that if the dual of A is a translation plane, then there is a spread
set Σ for A such that Σ ∪ 0 is an additive group.

6. Show that any non-zero matrix that commutes with each element of a
spread set is invertible.

7. Let π be a spread with affine plane A. Let Σ be the corresponding
spread set, and assume 1 ∈ Σ. If σ ∈ Σ, show that the map

(x, y) 7→ (yσ−1
, xσ)
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a perspectivity with axis V (σ) that swaps (0) and (∞) if and only if
σΣ−1σ = Σ. [Check]
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Chapter 16

Varieties

This chapter will provide an introduction to some elementary results in
Algebraic Geometry.

16.1 Definitions
Let V = V (n,F) be the n-dimensional vector space over the field F. An
affine hypersurface in V is the solution set of the equation p(x) = 0, where p
is a polynomial in n variables, together with the polynomial p. If n = 2 then
a hypersurface is usually called a curve, and in three dimensions is known
as a surface. An affine variety is the solution set of a set of polynomials
in n variables together with the ideal, in the ring of all polynomials over F,
generated by the polynomials associated to the hypersurfaces. (This ideal
is the ideal of polynomials which vanish at all points on the variety.) It is
an important result that every affine variety can be realised as the solution
set of a finite collection of polynomials. Affine varieties may also be defined
as the intersection of a set of hypersurfaces.

A projective hypersurface is defined by a homogeneous polynomial in
n + 1 variables, usually x0, . . . , xn. If p is such a polynomial and p(x) = 0
then p(αx) = 0 for all scalars α in F. The 1-dimensional subspaces spanned
by the vectors x such that p(x) = 0 are a subset of P(n,F), this subset
is the projective hypersurface determined by p. A projective variety is
defined in analogy to an affine variety. The ‘ideal’ of all homogeneous
polynomials which vanish on the intersection is used in place of the ideal of
all polynomials.
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A quadric is a hypersurface defined by a polynomial of degree two. It
may be affine or projective. A projective curve is a hypersurface in P(2,F)
and a projective surface is a hypersurface in P(3,F). The hypersurface
determined by the equation g(x) = 0 will be denoted by Vg. Only the
context will determine if g is homogeneous or not. A conic is a quadric
given by a polynomial of degree two.

Every affine variety gives rise to a projective variety in a natural way, as
follows. Let p be a polynomial in n variables x1, . . . , xn with degree k. Let x0
be a new variable and let q be the polynomial xk0p(x1/x0, . . . , xn/x0). This a
homogeneous polynomial of degree k in n+1 variables. By way of example,
if p is the polynomial x2−y−1 then q can be taken to be x2−yz−z2. If we set
z = 1 in q then we recover the polynomial p. Geometrically, this corresponds
to deleting the line z = 0 from P(2,F) to produce an affine space. The only
point on the curve q(x) = 0 in P(2,F) and on the line z = 0 is spanned by
(0, 1, 0)T . The remaining points are spanned by the vectors (x, x2 − 1, 1)T ,
and these correspond to the points on the affine curve p(x) = 0. We can
also obtain affine planes by deleting lines other than z = 0. Thus if we
delete the line y = 0 then remaining points on our curve are spanned by
the vectors (x, 1, z)T such that x2− z− z2 = 0. Although the original affine
curve x2− y− 1 was a parabola, this curve is a hyperbola. This shows that
each projective variety determines a collection of affine varieties. These
affine varieties are said to be obtained by dehomogenisation. (But we will
say this as little as possible.) Two affine varieties obtained in this way are
called projectively equivalent. The number of different affine varieties that
can be obtained from a given projective variety is essentially the number of
ways in which it is met by a projective hyperplane.

The affine variety determined by a homogeneous polynomial g is said to
be a cone. More generally, Vg is a cone at a point a if g(y) is a homogeneous
polynomial in y = x− a. The projective variety associated with Vg is also
said to be a cone at a.

16.2 Is There a Point?
We present a result that we can use to show that the zero set of a homoge-
neous polynomial is not empty.

16.2.1 Theorem. Let f be a polynomial of degree k in n variables over
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the field F with q = pr elements. If k < n then the number of solutions of
f(x) = 0 is zero modulo p.

Proof. We begin with some observations concerning F. If a ∈ F then aq−1

is zero if a = 0 and is otherwise equal to 1. For a non-zero element λ of F,
consider the sum

S(λ) =
∑
a∈F

(λa)d.

Then S(λ) = λdS(1). On the other hand, when a ranges over the elements
of F, so does λa. Hence S(λ) = S(1), which implies that either S(1) = 0
or λd = 1. We may choose λ to be a primitive element of F, in which case
λd = 1 if and only if q−1 divides d. This shows that if q−1 does not divide
d then S(1) = 0. If q − 1 divides d then S(1) ≡ q − 1 modulo p.

We now prove the theorem. The number of (affine) points x such that
f(x) 6= 0 is congruent modulo p to∑

a∈Fn

f(a)q−1. (16.2.1)

The expansion of f(x)q−1 is a linear combination of monomials of the form

x
k(1)
1 · · ·xk(n)

n

where ∑
i

k(i) ≤ (q − 1)k < (q − 1)n.

This shows that for some i we must have k(i) < q − 1. Therefore∑
ai∈F

a
k(i)
i

is congruent to zero modulo p. This implies in turn that (16.2.1) is congru-
ent to zero modulo p.

The following result is due to Chevalley.

16.2.2 Corollary. If f is a homogeneous polynomial of degree k in n + 1
variables over the field F and k ≤ n then Vf contains at least one point of
P(n,F).

These results generalize to sets of polynomials in n variables, subject to
the condition that the sum of the degrees of the polynomials in the set is
less than n. (See the exercises.)

187



16. Varieties

16.3 The Tangent Space
Let f be a polynomial over F in the variables x0, . . . , xn. By fi we denote
the partial derivative of f with respect to xi. Even when F is finite, differ-
entiation works more or less as usual. In particular both the product and
chain rules still hold. The chief surprise is the constant functions are no
longer the only functions with derivative zero. Thus, over GF (2) we find
that ∂

∂xi
x2
i = 0. If f is homogeneous and a ∈ Vf then the tangent space of

Vf at a is the subspace given by the equation
n∑
i=0

fi(a)xi = 0.

It will be denoted by Ta(Vf ), or Ta(f). The tangent space at a always
contains a. This follows from Euler’s Theorem, which asserts that if f is a
homogeneous polynomial of degree k then

n∑
i=0

xifi = kf.

(The proof of this is left as a simple exercise. Note that it is enough to verify
it for monomials.) The tangent space at the point a in the variety V defined
by a set S of polynomials is defined to be the intersection of the tangent
spaces of the hypersurfaces determined by the elements of S. If fi(a) = 0 for
all i then a is a singular point of the hypersurface Vf . When a is a singular
point, Ta is the entire projective space and has dimension n. If a is not a
singular point then Ta has dimension n − 1 as a vector space. A singular
point of a general variety can be defined as a point where the dimension
of the tangent space is ‘too large’, but we will not go into details. A point
which is not singular is called smooth, and a variety on which all points
are non-singular is itself called smooth or non-singular. Questions about
the behaviour of a variety at a particular point can usually be answered by
working in affine space, since we can choose some hyperplane not on the
point as the hyperplane at infinity.

16.4 Tangent Lines
If f is a homogeneous polynomial then the degree of the hypersurface Vf is
the degree of f . The degree is important because it is an upper bound on
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the number of points in which V is met by a line. To see this, we proceed
as follows. Assume that f is homogeneous of degree k, that a is a point
and that b is a point not on Vf . We consider the number of points in which
a ∨ b meets V . Suppose that a and b are vectors representing a and b. All
points on a ∨ b are represented by vectors of the form λa + µb. Thus the
points of intersection of a∨ b with V are determined by the values of λ and
µ such that f(λa+ µb) = 0. Since f(b) 6= 0 and f is homogeneous, all the
points of intersection may be written in the form a+ tb. Thus the number
of points of intersection is the number of distinct solutions of

f(a + tb) = 0.

Now f(a + tb) is a polynomial of degree k in t, and hence has at most
k distinct zeros. If the field we are working over is infinite then it can be
shown that the degree of a hypersurface is actually equal to the maximum
number of points in which it is met by a line. With finite fields this is
not guaranteed—in fact the hypersurface itself is not guaranteed to have k
distinct points on it. There is more to be said about the way in which a
line can meet a hypersurface. Continuing with the notation used above, we
can write

f(a + tb) = F (0)(b) + tF (1)(b) + · · ·+ tkF (k)(b), (16.4.1)

where F (i) is a polynomial in the entries of b, with coefficients depending
on a.. If the first nonzero term in (16.4.1) has degree m in t, we say that the
intersection multiplicity at a of a∨b and Vf is m. If a ∈ V then F (0)(b) = 0;
thus the intersection multiplicity is greater than zero if and only if a is on
V . We have

F (1)(b) =
n∑
i=0

fi(a) bi.

and so the intersection multiplicity is greater than 1 if and only if b lies in
the tangent space Ta(f). Since a ∈ Ta(f), the point b is in Ta(f) if and only
if the line a∨ b lies in Ta(f). A line having intersection multiplicity greater
than one with Vf is a tangent line. We have just shown that Ta(f) is the
union of all the tangent lines to Vf at a. A subspace is tangent to Vf at a if
it is contained in Ta(f). It is possible for the hypersurface V to completely
contain a given line a ∨ b. In this case the left side of (16.4.1) must be
zero for all t, whence it follows that a ∨ b is a tangent. More generally,
a subspace contained in Vf is tangent to Vf at each point in it. There is
another important consequence of (16.4.1) which must be remarked on.
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16.4.1 Lemma. Any line meets a projective hypersurface of degree k in at
most k points, or is contained in it.

Proof. Let l be a line a let a be a point on l which is not on the hypersurface
Vf . The points of l on V are given by the solutions of (16.4.1). If this
is identically zero then l is contained in the hypersurface, otherwise it is
polynomial of degree k and has at most k zeros.

We have only considered tangent spaces to hypersurfaces. Everything
extends nicely to the case of varieties; we simply define the tangent space
of the variety V at a to be the intersection of the tangent spaces at a of
the hypersurfaces which intersect to form V . Since we will not be working
with tangent spaces to anything other than hypersurfaces, we say no more
on this topic.

16.5 Tangents to Quadrics
The tangent space to a quadric is easily described, using the following result,
which is a special case of Taylor’s theorem.

16.5.1 Lemma. Let f be a homogeneous polynomial of degree two in n+1
variables over the field F and let H = H(f) be the (n+ 1)× (n+ 1) matrix
with ij-entry equal to ∂2

∂xi∂xj
f . Then

f(λx + µy) = λ2f(x) + λµxTHy + µ2f(y).

The matrix H(f) is the Hessian of f . It is a symmetric matrix and, if
the characteristic of F is even, its diagonal entries are zero. The tangent
plane at the point a has equation aTHx = 0, and therefore a is singular if
and only aTH = 0. Consequently the quadric determined by f is smooth
if and only if no point of the quadric lies in the kernel of H. Obviously
a sufficient condition for this is that H(f) is non-singular. (However it is
possible for the quadric to be smooth when H is singular. For example,
consider any smooth conic in a projective plane over a field of even order.)

If the characteristic of F is not even then f(x) = 1
2x

TH(f)x. Since we
do not wish to restrict the characteristic of our fields, we will not be making
use of this observation. One important consequence of ??Lemma 3.2 is that
if a tangent to a quadric at a meets it at a second point b then it is contained
in the quadric. (For these conditions imply that f(a) = aTHb = f(b) = 0.)
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Since all lines through a singular point are tangents, it follows that a line
which passes through a singular point and one other point must be contained
in the quadric. Of course any line meeting a quadric in three or more points
must be contained in it, by ??Lemma 3.1. A line which meets a quadric in
two points is a secant.

16.5.2 Lemma. Any line which meets a quadric in exactly one point is a
tangent.

Proof. Suppose l is a line passing through the point a on a given quadric
f(x) = 0 and that b ∈ l. Then the points of l on the quadric are given by
the solutions of the quadratic in λ and µ:

λ2f(a) + λµaTAb + µ2f(b) = 0.

Since f(a) = 0 this quadratic has only one solution if and only aTAb = 0,
i.e., b ∈ Ta(f). Thus any line which meets the quadric in only the single
point a must lie in the tangent space Ta.

16.5.3 Lemma. If a is a singular point on a quadricQ then all lines through
a are tangents. The singular points on Q form a subspace.

Proof. If a ∈ Q then

f(λa+ µx) = λµaTHx+ µ2x

and therefore if a is singular, then either f(x) 6= 0 and a ∨ x meets Q in a,
or f(x) = 0 and a ∨ x is contained in Q.

For the second claim, if a and b are singular points then (λa+µb)TH = 0
for all λ and µ, and so all points points on a ∨ b are singular.

If a and b are distinct singular points on Q, then the first claim implies

16.6 Intersections of Hyperplanes and
Hypersurfaces

Suppose that f is a homogeneous polynomial defined over a field F. Then
f is irreducible if it does not factor over F, and it is absolutely irreducible
if it does not factor over the algebraic closure of F of F. If g is a factor of
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F over F then Vg is a component of Vf . Thus Vf is a union of components,
although not necessarily a disjoint union. Over finite fields the situation
is a little delicate, in that Vg may be empty. However this possibility will
not be the source of problems—such components tend to remain completely
invisible.

A hyperplane can be viewed as a projective space in its own right. By
changing coordinates if needed, we may assume that the hyperplane has
equation x0 = 0. Suppose that f is homogeneous in n + 1 variables with
degree k and that g is the polynomial obtained by setting x0 equal to zero.
Now g might be identically zero, in which case we must have f = x0f

′ with
f ′ a homogeneous polynomial of degree k − 1. Thus the hyperplane is a
component of Vf . If g is not zero then it is a homogeneous polynomial of
degree k in n variables, and defines a nontrivial hypersurface. One inter-
esting case is when the intersecting hyperplane is the tangent space to Vf
at the point a. Every line through a in Ta(f) is a tangent line to Vf and
hence to Ta(f)∩Vf . Thus a is a singular point in the intersection. We will
not have much cause to consider the intersection of two general hypersur-
faces. There is one case concerning intersecting ‘hypersurfaces’ in projective
planes where we will need some information. This result is called Bézout’s
theorem.

16.6.1 Theorem. Let f and g be homogeneous polynomials over F in three
variables with degree k and l respectively. Then either the curves Vf and Vg
meet in at most kl points in P(2,F), or they have a common component.

In general two hypersurfaces of degrees k and lmeet in a variety of degree
kl. The theory describing the intersection of varieties is very complicated,
even by the standards of Algebraic Geometry. The proof of the above result
is quite simple though. (It can be found in “Algebraic Curves” by Robert
J. Walker, Springer (New York) 1978. The proof of Bézout’s theorem given
there is over the complex numbers, but is valid for algebraically closed fields
of any characteristic.) In making use of Bézout’s lemma, we will need the
following result, which is an extension of the fact that if a polynomial in
one variable t over F vanishes at λ then it must have t− λ as a factor.

16.6.2 Lemma. Let f and g be polynomials in n+ 1 variables over an al-
gebraically closed field, with f absolutely irreducible. If g(x) = 0 whenever
f(x) = 0 then f divides g.
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As an immediate application of the previous ideas, we prove the follow-
ing.

16.6.3 Lemma. There is a unique conic through any set of five points
which contains a 4-arc.

Proof. Suppose that abcd is a 4-arc. Let f be the homogeneous quadratic
polynomial describing the conic formed by the union of the two lines a ∨ b
and c∨ d, and let g be the quadratic describing the union of the lines a∨ d
and b ∨ c. Consider the set of all quadratic polynomials of the form

λf + µg. (16.6.1)

Each of these is a quadratic, and thus describes a conic. If x is a point not
on the 4-arc then the member of (16.6.1) with λ = g(x) and µ = −f(x)
vanishes at x and at each point of the 4-arc. This establishes the existence
of a conic through any set five points containing a 4-arc. Suppose now
that C and C ′ are two conics meeting on the 4-arc abcd and the fifth point
p. By Bézout’s lemma, these two conics must have a common component.
If the conics are distinct, this component must be described by a linear
polynomial, i.e., it must be a line `. Hence C and C ′ must each be the union
of two lines, possibly the same line twice. But now each conic contains `
and at least two points from the 4-arc not on `. We conclude that the conics
must coincide.

The hypersurfaces determined by the set of polynomials

λf + µg, λ, µ ∈ F

are said to form a pencil. We shall see that pencils can be very useful.

Exercises
1. Let fα (α ∈ A) be a set of polynomials in n variables over F. Prove

that if fα has degree kα and ∑α kα < n, the number of common zeros of
the polynomials is congruent to zero modulo p. (Hint: use the function∏
α(1− f q−1

α )).

2. If g and h are polynomials in n + 1 variables and gh is homogeneous,
show that g and h are homogeneous. (You can look this up somewhere,
if you like.)
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3. Show that the pencil of conics through a 4-arc in P(2,F) contains exactly
three singular conics.

4. If V is a hypersurface of degree at least 2 over an algebraically closed
field, show that any line which meets it in exactly one point is a tangent.
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Chapter 17

Conics

We now begin our study of quadrics in P(2,F), i.e., conics. We will prove
the well known theorems of Pappus and Pascal, along with Segre’s theorem,
which asserts that a (q + 1)-arc in a projective plane over a field of odd
order is a conic.

17.1 The Kinds of Conics
By ??Corollary 4.1.2, every conic over the field F contains at least one point.
We will see that conics with only one point on them exist, but there is little
to be said about them. There are two obvious classes of singular conics. The
first consists of the ones with equations (aTx)2 = 0, with all points singular.
We will call this a double line. The second have equations (aTx)(bTx) = 0,
with a and b independent. The variety defined by such an equation is the
union of two distinct lines; the point of intersection of these two lines is
the unique singular point. A single point is also a conic. To see this, take
an irreducible quadratic f(x0, x1), then view it as a polynomial in three
variables x0, x1 and x2. Its solution set in the projective plane is the point
(0, 0, 1)T . Smooth conics do exist—the points of the form (1, t, t2)T where t
ranges over the elements of F, together with the point (0, 0, 1)T provide one
example. (This is the variety defined by the equation x0x2 − x2

1 = 0. You
should verify that it is smooth.) The four examples just listed exhaust the
possibilities.

17.1.1 Theorem. A conic in P(2,F) is either
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(a) a single point,

(b) a double line,

(c) the union of two distinct lines, or

(d) smooth, and a (q + 1)-arc if F is finite with order q.

Proof. To begin we establish an important preliminary result, namely that
if is a is a non-singular point in a conic C = Vf then

|C| = q + |Ta(C) ∩ C|

(This implies that the cardinality of C is either q + 1 or 2q + 1.) Suppose f
is homogeneous of degree two and that f(a) = 0. Then

f(λa + µx) = λµaTAx + µ2f(x).

If aTAx 6= 0, this implies that f(x)a−(aTAx)x is a second point on the line
through a and x which is on the conic. This shows that there is a bijection
between the lines through a not in Ta(f) and the points of Vf \Ta(f). If a
is a non-singular point then Ta is a line. By the previous lemma it contains
either 1 or q+1 points of the conic. There are q+1 lines through any point
in P(2,F). Thus if a is non-singular then the conic contains either q + 1 or
2q + 1 points according as the tangent at a is contained in C = Vf or not.

We now prove the theorem. Suppose that C is a conic. Assume first
that it contains two singular points a and b. By Lemma 16.5.3 all points
on a ∨ b must belong to C. If c is a point of the conic not on a ∨ b then all
points on c ∨ a and c ∨ b must also lie in C. If x is a point in P(2,F) then
there is a line through x meeting c ∨ a, c ∨ b and a ∨ b in distinct points.
Hence this line lies in C and so x ∈ C. This proves that C is the entire plane,
which is impossible. Thus we have shown that if C contains two singular
points then it must consist of all points on the line joining them, i.e., it is
a repeated line.

Assume then that C contains exactly one singular point, a say, and a
further point b. Then a ∨ b is contained in C. As there is only one singular
point, there must a point of C which is not on a ∨ b. The line joining this
point to a is also in C. This accounts for 2q+ 1 points of C, hence our conic
must be the union of two distinct lines. Finally suppose that C contains at
least two points, and no singular points. If |C| = 2q + 1 then each point of
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C must lie in a line contained in C. Hence C must contain two distinct lines,
and their point of intersection is singular. Consequently C can contain no
lines, but must rather be a (q + 1)-arc.

This theorem is still valid over infinite fields, but the proof in this case
is left to the reader. One consequence of it is that a conic is smooth if and
only if it contains a 5-arc. In combination with ??Lemma 5.1, this implies
that there is a unique smooth conic containing a given 5-arc.

17.2 Conics and Cross-Ratio
We start by reconsidering conics through five points. Suppose the vectors
a, b, c, d in F3 form a 4-arc. If x, y, z are three vectors in F3, we use [x, y, z]
to denote the determinant of the matrix with columns x, y and z.

The x represents a point on a ∨ b if and only [x, a, b] = 0, and so the
equation of the conic formed by the lines a ∨ b and c ∨ d is

[x, a, b][x, c, d] = 0.

Similarly the equation of the conic formed from a ∨ d and b ∨ c is

[x, a, d][x, b, c]

and hence any conic in the pencil spanned by these two conic has the form

λ[x, a, b][x, c, d] + µ[x, a, d][x, b, c].

If we choose a fifth point e, then e is on this conic if
λ

µ
= − [e, a, d][e, b, c]

[e, a, b][e, c, d]
and so the equation for the conic on a, b, c, d, e is

[e, a, d][e, b, c][x, a, b][x, c, d]− [e, a, b][e, c, d][x, a, d][x, b, c] = 0.

We can rewrite this equation as
[x, a, b][x, c, d]
[x, a, d][x, b, c] = [e, a, b][e, c, d]

[e, a, d][e, b, c] .

Now we observe that each side is a cross-ratio—the left side of the cross-
ratio of the four lines that join x to a, b, c, d, the right side is the cross-ratio
for the four lines through e.
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17.3 Pascal and Pappus
The theorems of Pascal and Pappus are two of the most important results
concerning projective planes over fields. We will prove both of these results
using Bézout’s lemma, and then give some of their applications. There are
a few matters to settle before we can begin. A hexagon in a projective
plane consists of cyclically ordered set of six points A0, A1 . . . , A5, together
with the six lines AiAi+1. Here the addition in the subscripts is computed
modulo six. The six lines, which we require to be distinct, are the sides
of the hexagon. Two sides are opposite if they are of the form AiAi+1 and
Ai+3Ai+4. Let ai,i+1, i = 0, . . . , 5 be the homogeneous coordinate vectors of
the sides of the hexagon. Then the polynomial

f(x) = (xTa01)(xTa23)(xTa45) (17.3.1)

is homogeneous with degree three. Similarly, the three sides opposite to
those used in (17.3.1) determine a second cubic, g say. By Bézout’s lemma,
two cubics with no common component meet in at most nine points. A
common component of our two cubics would have to contain a line, and our
hypothesis that the sides are distinct prevents this. Therefore Vf and Vg
meet in the six points of our hexagon, together with the points of intersec-
tion of the three pairs of opposite sides.

17.3.1 Theorem. (Pascal). The six points of a hexagon lie on a conic if
and only if the points of intersection of the three pairs of opposite sides lie
on a line.

Proof. Let A0, A1 . . . , A5 be a hexagon. Suppose that the three points

A0A1 ∩ A3A4, A1A2 ∩ A4A5, A2A3 ∩ A0A5

lie on a line l, with equation aTx = 0. Let f and g be the two cubics
defined above. For any scalars λ and µ, the polynomial F = λf + µg is
cubic and contains the nine points in which Vf and Vg intersect. We wish
to choose the scalars so that the line l is contained in VF . If l has only three
points, there is no work to be done. Thus we may choose a fourth point p
on l, and choose λ and µ so that F (p) = 0. Thus the cubic curve VF meets
the line l in four points, and if we extend F to its algebraic closure, then
the line extending l still meets the extension of VF in at least four points.
Bézout’s theorem now implies that l must be contained in the curve and
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so we deduce, by ??Lemma 4.4.2, that F = (aTx)G for some polynomial
F1. But G must be homogeneous of degree two and therefore VG is a conic.
Thus VF is the union of the line l and the conic VG. If the hexagon is
contained in the union of two lines then it is on a conic, and we are finished.
Otherwise a simple check shows that no points on the hexagon lie on L (do
it), hence they line on the conic. This proves the first part of the theorem.

Assume now that the points of the hexagon lie on a conic. There is no
loss on assuming that this conic is not a double line or a single point. Thus
it is either the union of two distinct lines, or is smooth. It is convenient to
treat these two cases separately. Supose then that our conic is the union
of the two lines l and m, with respective equations aTx = 0 and bTx = 0.
As the sides of our hexagon are distinct, no four points of it are collinear.
(Why?) Hence three points of the hexagon lie on l and three on m. In
particular, p = l ∩m is not a point of the hexagon. Now choose λ and µ so
that F = λf + µg passes through p. Then the lines l and m each meet the
cubic F in four points, and so they must lie in VF . Hence F is divisible by
(aTx)(bTx) and the quotient with respect to this product must be linear.
Thus F is the union of three lines. Consequently the points of intersection
of the opposite sides of the hexagon must be collinear.

There remains the case that the points of the hexagon lie on a smooth
conic C, with equation h(x) = 0. This conic meets any curve of the form

F (x) := λf(x) + µg(x) = 0 (17.3.2)

in at least the six points of the hexagon. As |C| ≥ 6, our field must have
order at least five. If it is exactly five then C is contained in the solution set
of (17.3.2) for any choice of scalars; otherwise we may choose a point p of C
not in the hexagon and then choose λ and µ so that VF meets C in at least
seven points. By Bézout’s theorem, this implies that these two curves have
a common component. The only component of C is C itself, thus F = hG
for some linear polynomial G. Hence VF is the union of a line and the conic
C, and the points of intersection of the opposite sides of our hexagon must
be on the line.

Pappus’ theorem is the assertion that the intersections of the opposite
sides of a hexagon are collinear if the points of the hexagon lie on two lines.
It is particularly important because it can be proved that a projective plane
has the form P(2,F), where F is a field, if and only if Pappus’ theorem holds.
Thus, if we could prove geometrically that Pappus’ theorem held in all finite
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Desarguesian planes then we would have a geometric proof that a finite skew
field is a field. No such proof is known. Planes for which Pappus’ theorem
is valid are called Pappian. All Pappian planes are, of course, Desarguesian.

17.4 Automorphisms of Conics
If C is a conic described by the equation f(x) = 0 and τ ∈ PGL(3,F) then
we let f τ denote the polynomial defining the conic Cτ . The automorphism
group of a conic in the Pappian plane P(2,F) is the subgroup of PGL(3,F)
which fixes it as a set. The concept is well defined in all cases, but we will
mainly be interested in automorphisms of smooth conics. Our next theorem
implies that smooth conics have many automorphisms.

17.4.1 Theorem. Let abcd be a 4-arc in a Pappian projective plane and
let C be a conic containing it. Then there is an involution τ in the automor-
phism group of C such that aτ = d and bτ = c.

Proof. As PGL(3,F) is transitive on ordered 4-arcs, it contains an element
τ mapping abcd to badc. Hence τ fixes both the conics ac ∪ bd and ab ∪ cd.
Suppose that these conics are defined by the polynomials f and g repectively.
For any λ and µ in F, we find that

(λf + µg)τ = λf τ + µgτ = λf + µg.

Hence τ fixes each quadric in the pencil determined by f and g. Since
every conic containing the given 4-arc belongs to this pencil, this proves
the theorem.

One immediate consequence of this theorem is the following result.

17.4.2 Corollary. Let C be a smooth conic in a Pappian plane. Then its
automorphism group acts sharply 3-transitively on the points in it.

Proof. If |F| = 2 or 3, this result can be verified easily. Assume then that
|F| > 3. From the theorem, Aut(C) is 2-transitive on the points of C.

To prove that Aut(C) is 3-transitive it will suffice to prove that if A, B,
C and D are four points on C then there is an automorphism of it fixing A
and B and mapping C to D. Let X be a fifth point on the conic. By the
theorem, there is an involution in Aut(C) swapping A and B, and sending
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C to X. Similarly, there is an involution swapping B and A and sending X
to D. The product of these two involutions is the required automorphism.

Next, suppose that A, B and C are three points on the conic. Any
automorphism which fixes these three points must fix the tangents at A
and B. Hence it fixes their point of intersection, which we denote by P .
Thus the automorphism fixes each point in a 4-arc, and the only element
of PGL(3,F) which fixes a 4-arc is the identity.

It follows at once from the corollary that if |F| = q then |Aut(C)| = q3−q.
We have already seen that the conics in P(2,F) correspond to the points in
P(5,F), and are thus easily counted, there are

[6] = q5 + q4 + q3 + q2 + q + 1

of them. As for the smooth conics, we have:

17.4.3 Lemma. Let F be the field with q elements, where q > 3. Then the
number of smooth conics in P(2,F) is equal to q5 − q2.

Proof. Let nk denote the number of ordered k-arcs and let N be the number
of smooth conics. Then, as we noted at the end of Section 6, there is a
unique smooth conic containing a given 5-arc. Hence

N(q + 1)q(q − 1)(q − 2)(q − 3) = n5. (17.4.1)

We find that
n3 = (q2 + q + 1)(q2 + q)q2.

Let ABC be a 3-arc. There q−1 lines through A which do not pass through
B or C, and on each of these lines there are q − 1 points which do not lie
on any line joining B and C. Thus we can extend a ABC to a 4-arc using
any one of (q − 1)2 points, and so n4 = (q − 1)2n3. There are q − 2 lines
through a point in a 4-arc ABCD which do not meet a second point on the
arc, and each of these lines contains q − 3 points not on the lines BC, BD
or CD. Thus n5 = (q − 2)(q − 3)n4. Accordingly

n5 = (q − 3)(q − 2)(q − 1)2q3(q + 1)(q2 + q + 1)

and, on comparing this with (17.4.1), we obtain thatN = (q2+q+1)q2(q−1)
as claimed.
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The group PGL(3,F) permutes the smooth conics in P(2,F) amongst
themselves. The number of conics in the orbit containing C is equal to

|PGL(3,F)|/|Aut(C)|.

The order of PGL(3,F) is

(q − 1)−1(q3 − 1)(q3 − q)(q3 − q2) = (q2 + q + 1)(q + 1)q3(q − 1)2.

Since the automorphism group of a smooth conic has order q3− q, the orbit
of C has cardinality equal to

(q2 + q + 1)(q + 1)2q3(q − 1)2/(q3 − q) = (q5 − q2).

As there are altogether q5 − q2 smooth conics, this implies the following.

17.4.4 Theorem. All smooth conics in the Pappian plane P(2,F) are equiv-
alent under the action of PGL(3,F).

17.5 Linear Mappings of Quadratic
Polynomials

Linear fractional mappings act of the space of homogeneous polynomials
over F with degree at most two: we have

p(x, y) 7→ p(ax+ by, cx+ dy).

These polynomials can be divided into three classes, according as they have
two distinct roots, one root with multiplicity two, or no roots over F. It
is a routine exercise to show that PGL(2,F) acts transitively on the q + 1
polynomials with one root of multiplicity two. This follows from the fact
that PGL(2,F) acts transitively on F ∪ ∞. But, of course, we know that
it acts 3-transitively on this set. Hence it is 2-transitive, and we deduce
that PGL(2,F) acts transitively on the

(
q+1

2

)
polynomials with two distinct

roots. It remains to determine how many orbits of irreducible polynomials
there are. Any such polynomial can be written in the form

(s+ ωt)(s+ ω̄t), (17.5.1)
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where ω is an element of a fixed quadratic extension F(θ) of F, not contained
in F, and ω̄ is the image of ω under ‘complex conjugation’. (If F is finite
of order q then ω̄ = ωq.) We prove that if ρ ∈ F(θ) \ F then there is an
element of PGL(2,F) mapping the polynomial with roots ω and ω̄ to the
polynomial with roots ρ and ρ̄. Our mapping α sends s+ ωt to

as+ bt+ ω(cs+ dt) = (a+ ωc)s+ (b+ ωd)t.

If c = 0 and a = 1 then s+ ωt is mapped to s+ (b+ ωd)t. The equations

b+ ωd = ρ, b+ ω̄d = ρ̄

can be solved uniquely, yielding

b = ω̄ρ− ωρ̄
ω̄ − ω

, d = ρ− ρ̄
ω − ω̄

As both solutions b and d lie in F, it follows that PGL(2,F) acts transitively
on the irreducible polynomials of degree two.

17.6 Affine Conics
We have shown that PGL(2,F) has three orbits on homogeneous polyno-
mials of degree two in two variables. It remains to see what the geometric
implications of this fact are.

Each homogeneous polynomial can be represented by the vector of its
coefficients, in fact we have a bijection between polynomials of degree two
and lines in P(2,F). Thus as2 + bst + ct2 corresponds to the line with
coordinate vector (a, b, c). The points on the conic C with equation x2

1 −
x0x2 all have the form (λ2,−λ, 1)T , without loss of generality. The line
determined by a polynomial with a double root contains exactly one point
on this conic, and is thus a tangent to it. The lines corresponding to the
polynomial with two distinct roots determine secants to the conic, while
the lines corresponding to the irreducible polynomial are external lines.

Hence we have shown that the group of collineations of P(2,F) induced
by PGL(2,F) fixes C and has three orbits on the lines of P(2,F). An
immediate consequence of this is that the automorphism group of a smooth
conic must be isomorphic to PGL(2,F), since we have shown previously
that |Aut(C)| = q3 − q = |PGL(2,F)|. Second, Aut(C) acts transitively on
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the secants, tangents and external lines to C. We can obtain a conic in
the affine plane by choosing a line at infinity. We now know that there are
only three different ways of doing this. The resulting conic is a hyperbola,
parabola or ellipse, according as the line at infinity meets the projective
conic in two, one or zero points.

17.7 Ovals
An oval in a projective plane of order q, i.e., with q + 1 points on each
line, is simply a (q + 1)-arc. Every smooth conic in a Pappian plane is a
(q + 1)-arc; we show now that ovals have many properties in common with
conics. As usual, some definitions are needed. Let K be a k-arc. A secant
to K is a line which meets it in two points, a tangent meets it in one point.
A line which does not meet the arc is an external line. Since no line meets
K in three points, it has exactly

(
k
2

)
secants. Each point in K lies on k − 1

of these secants, whence there are q + 2 − k tangents through each point
and k(q + 2 − k) tangents altogether. An immediate consequence of these
deliberations is that a k-arc has at most q+ 2 points on it. (If q is odd this
bound can be reduced to q + 1. Proving this is left as an exercise.) Our
next result is an analog of the fact that a circle in the real plane divides the
points into three classes:

(a) the points outside the circle, which each lie on two tangents,

(b) the points on the circle, which lie on exactly one tangent,

(c) the points inside the circle, which lie on no tangents.

17.7.1 Lemma. Let F be the field of order q, where q is odd, and let Q be
a (q + 1)-arc in P(2,F). Then there are

(
q+1

2

)
points, each lying on exactly

two tangents to Q, and
(
q
2

)
points which lie on none.

Proof. Suppose P is a point on a tangent to Q, but not on Q. Then the
lines through P meet Q in at most two points, and thus they partition the
points of Q into pairs and singletons. Each singleton determines a tangent
to Q through P . Since q + 1 is even, P lies on an even number of tangents.
As P is on one tangent, it therefore lies on at least two. On the other hand,
each pair of tangents to Q meet at a point off Q, and this point is on two
tangents. Thus there are at most

(
q+1

2

)
triples formed from a pair of distinct
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tangents and their point of intersection. This implies that any point off Q
which is on a tangent is on exactly two.

When q is even, the tangents to a (q + 1)-arc behave in an unexpected
fashion.

17.7.2 Lemma. Let F be the field of order q, where q is even, and let Q
be a (q + 1)-arc in P(2,F). Then the tangents to Q are concurrent. Thus
there is one point which lies on all tangents to Q, and the remaining points
off Q all lie on exactly one tangent.

Proof. Let P and Q be two distinct points on Q. Since the number of
points in the oval is odd, each point on the line PQ which is not on Q must
lie on a tangent to it. As P and Q both lie on tangents, it follows that each
point on PQ is on a tangent. The number of tangents to Q is q + 1 and
the number of points on PQ is also q + 1. Thus each point on a secant to
Q is on a unique tangent. Now let K be the point of intersection of two
tangants which do not meet on Q. Then K cannot lie on any secant, and
so all lines through K are tangents to Q.

The point K is called the nucleus of the oval. The oval, together with
its nucleus forms a (q+2)-arc. A (q+2)-arc is sometimes called a hyperoval.
Since we can delete any point from a hyperoval to obtain an oval, a given
oval can thus be used to form a number of distinct ovals. In particular, if
we start with a conic in a Pappian plane of even order, we can construct
(q + 1)-arcs which are not conics.

17.8 Segre’s Characterisation of Conics
B. Segre proved that, if q is odd, any (q+1)-arc in the projective plane over
GF (q) is a conic. We now present a proof of this important result.

Let C be an oval in the projective plane over GF (q). If a ∈ C, let Ta be
the linear function whose zero-set is the tangent to C at a. (Since there is
a unique tangent at each point in the oval, Ta is well-defined.) Our proof
depends on two lemmas.

17.8.1 Lemma. If C is an oval in PG(2, q) and q is odd, and a, b, c are
distinct points on the oval

Ta(b)Tb(c)Tc(a) = Tb(a)Tb(c)Tc(a)
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Proof. We write the equation of the line in the plane through point u and
v in the determinental form

[xuv] = 0.

We first consider the secants of C on c. Let w be a point on the oval
distinct from a, b and c There are elements λ and µ of F such that

[xcw] = λ[xac] + µ[xbc]

and substituting a and b for x yields

[acw] = µ[abc], [bcw] = λ[bac].

Consequently
[xcw] = [bcw]

[bac] [xac] + [acw]
[abc] [xbc],

from which we see that the line c ∨ w is determined by the ratio

[acw]
[bcw] .

Using the same techniques we have

Tc = λ[xac] + µ[xbc]

where
Tc(a) = µ[abc], Tc(b) = λ[bac].

Hence
Tc = Ta(b)

[bac] [xac] + Tc(a)
[abc] [xbc]

and therefore the tangent at c is parameterized by the ratio −Tc(a)/Tc(b).
If C ′ := C \{a, b, c}, the q − 1 terms in the product

−Tc(a)
Tc(b)

∏
w∈C′

[acw]
[bcw]

are exactly the non-zero elements of F. Since q is odd it follows that this
product is equal to −1 and consequently

Tc(a)
∏
w∈C′

[acw] = Tc(b)
∏
w∈C′

[bcw].
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Similarly

Ta(b)
∏
w∈C′

[baw] = Tc(b)
∏
w∈C′

[caw]

Tb(c)
∏
w∈C′

[cbw] = Tc(b)
∏
w∈C′

[abw].

Multiplying our last three equations together, we get the result of the
lemma.

17.8.2 Lemma. Let C be an oval in PG(2, q), where q is odd. If a, b, c, d
are four distinct points on C, then

Tb(a)Tc(b)Ta(d)[bcd] + Tc(b)Ta(b)Tb(d)[cad] + Ta(b)Tb(c)Tc(d)[abd] = 0.

Proof. We have
Td = λ[xad] + µ[xbd]

where
Td(a) = µ[abd], Td(b) = λ[bad]

and therefore
Td = Td(b)

[xad]
[bad] + Td(a) [xbd]

[abd] .

Straightforward rearrangements now yield

Td(a)[bcd] + Td(b)[cad] + Td(c)[abd] = 0. (17.8.1)

We now apply Lemma ??. From that we find that

Ta(b)Tb(d)Td(a) = Tb(a)Td(b)Ta(d)

and therefore
Ta(b)Tb(d)
Tb(a)Td(b)

Td(a) = Ta(d).

If we multiply (17.8.1) by Ta(b)Tb(d)
Tb(a)Td(b) , we obtain

0 = Ta(d)[bcd] + Ta(b)
Tb(a)Tb(d)[cad] + Ta(b)Tb(d)Td(c)

Tb(a)Td(b)
[abd];

since Tc(b)Tb(d)Td(c) = Tb(c)Td(b)Tc(d), this yields

0 = Ta(d)[bcd] + Ta(b)
Tb(a)Tb(d)[cad] + Ta(b)Tb(c)

Tb(a)Tc(b)
Tc(d)[abd].

The lemma follows at once.
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To prove Segre’s theorem, view d as a variable in this lemma. Then
Ta(d)[bcd] is the equation for the singular conic consisting of the the tangent
line to C at d and the line b∨ c. Similarly Tb(d)[cad] is the equation for the
conic consisting of the tangent at b and the secant a ∨ c, and Tc(d)[abd] is
the equation for the conic consisting of the tangent at c and the secant a∨b.
It follows immediately that the equation is the statement of the lemma is a
homogeneous quadratic and are done, almost. We must show it is not the
zero polynomial.

For this, let e be the point of intersection of Ta and Tb. Since any point
of an oval in odd characteristic is on 0 or 2 tangents, we have Tc(e) 6= 0.
The tangent Ta meets a ∨ b in a, if e was on a ∨ b then Ta would have two
points in common with a∨ b. Since this is impossible, we conclude that our
quadratic does not vanish at e, and so cannot be the zero polynomial.

Segre’s theorem can be extended. Every q-arc in a projective plane over
a field of odd order q ≥ 5 must be contained in a conic. (We present one
proof of this in the next section. A more elementary proof will be found
in Lüneburg.) In addition to its beauty, Segre’s theorem has a number of
important applications, some of which we meet later. There do exist (q+1)-
arcs in projective planes over fields of even order which are not related to
conics, we provide an example in the exercises.

17.9 q-Arcs
Let K be a k-arc in the projective plane over the field of order q. Then each
point in the arc lies on

(q + 1)− (k − 1) = q + 2− k

tangents to the arc. These tangents thus form a set of k(q + 2− k) points
in the dual space. We have the following result. A proof will be found in
Hirschfeld [PGOFF].

17.9.1 Theorem. (Segre). Let K be a k-arc in the projective plane over
the field of order q. Then the points in the dual plane corresponding to
the tangents to the arc lie on a curve. This curve does not contain a point
corresponding to a secant, and has degree q + 2− k if q is even and degree
2(q + 2− k) if q is odd.
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17.9.2 Corollary. (Segre). Let K be a q-arc in the projective plane over
the field with order q, and let q be odd. Then K is contained in a conic.

Proof. We have already proved that every 3-arc in contained in a 4-arc, so
we may assume that q > 3. By the theorem, there is a curve of degree
four C in the dual plane which contains the 2q points corresponding to the
tangents to K, and none of the points corresponding to the secants. Let a
be a point off K. Since q is odd, the number of tangents to K through a is
odd. Suppose that a lies on at least five tangents to K. The lines through
a correspond to the points on a line ` in the dual plane, and ` meets C in
at least five points. Since C has degree four, Bézout’s theorem yields that `
must be a component of C. Thus all the points of ` are on C, and so none
of the lines through a can be secants to K. Therefore all the lines through
a which meet K are tangents, and so K ∪ a is a (q + 1)-arc. Since q is odd,
all (q + 1)-arcs are conics by ??Theorem 5.2.

We can complete the proof by showing that for any q-arc, there is a
point a on at least five tangents. If y /∈ K, let ty be the number of tangents
to K through y. By counting the pairs (`, y), where y is a point off K and
` is a tangent through y, we find that

∑
y/∈K

ty = 2q2

and by counting the triples (`, `′, y) where ` and `′ are distinct tangents and
y = ` ∩ `′, we obtain

∑
y/∈K

ty(ty − 1) = 2q(2q − 2).

Together these equations imply that
∑
y/∈K

(ty − 1)(ty − 3) = (q − 1)(q − 3).

Since q is odd, ty is odd for all points y not on K. As q > 3, the last
equation thus implies that ty ≥ 5 for some point y not on K.

The above proof is an improvement on the original argument of Segre,
due to Thas.
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Exercises
1. Let Q be an oval in a projective plane of order q. Show that if q is odd

then a k-arc can have at most q + 1 points on it.

2. A k-arc in a projective plane complete if it is not a subset of a (k + 1)-
arc. Show that if there is a complete k-arc in a plane of order q then
q ≤

(
k−1

2

)
.

3. Let F have even characteristic. Prove algebraically that the tangents to
a smooth conic in P(2,F) are concurrent. (What can be said about the
tangents to quadrics in P(n,F)?)

4. Let p be a point in P(2,F) and let τ be a collineation in PGL(3,F). Show
that the points l∩ lτ , as l ranges over the lines on p, lie on a conic. (This
will probably not be easy.)

5. Show that an involution which fixes a smooth conic is a perspectivity.
When is it an elation?

6. Let a, b and c form a 3-arc in P(2,F) and let l and m be tangents to this
arc at a and b respectively. Show that there is a unique conic through
these three points with l and m as tangents at a and b.

7. Let D(k) be the subset of the projective plane of the field F of order 2n
consisting of the points (1, x, x2k)T , where x ranges over the elements of
F, together with the point (0, 0, 1). Show that this is an oval if (k, n) = 1.
(If k is not equal to 1 or n− 1, this oval, together with its nucleus, does
not coincide with any conic and its nucleus. For a proof of this, see
Hirschfeld [PGOFF].)
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Chapter 18

Polarities

In this chapter we study polarities of projective geometries.

18.1 Absolute Points
A polarity of a symmetric design is a bijective mapping φ sending its points
to its blocks and its blocks to its points, such that if x ∈ yφ then y ∈ xφ. A
point x such that x ∈ xφ is called absolute, and if every point is absolute we
say that φ is a null polarity. A polarity of a design determines automatically
a polarity of the complementary design. (This will be null if and only if
φ has no absolute points.) The points and hyperplanes of a projective
geometry form a symmetric design. The mapping which takes the point
with homogeneous coordinate vector a to the hyperplane with vector aT is
our first example of a polarity. Let D be a symmetric design with points
v1, . . . , vn and a polarity φ. Then the incidence matrix, with ij-entry equal
to 1 if xi ∈ xφj and zero otherwise, is symmetric. (In fact, a symmetric
design has a polarity if and only if it has a symmetric incidence matrix.)

18.1.1 Theorem. Let D be a symmetric (v, k, λ)-design with a polarity φ.
Then

(a) if k − λ is not a perfect square, φ has exactly k absolute points,

(b) if φ is null then
√
k − λ is an integer and divides v − k,

(c) if φ has no absolute points then
√
k − λ is an integer and divides k.
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18. Polarities

Proof. Let N be the incidence matrix of D. As just noted, we may assume
that N is symmetric, whence we have

N2 = (k − λ)I + λJ. (18.1.1)
(Here J is the matrix with every entry equal to 1.) The number of absolute
points of the polarity is equal to trN , which is in turn equal to the sum
of the eigenvalues of N . From (18.1.1) we see that the eigenvalues of N2

coincide with the eigenvalues of (k − λ)I + λJ . This means that N2 must
have as its eigenvalues

k − λ+ (v − 1)λ
with multiplicity one and k − λ, with multiplicity v − 1. A simple design
theory calculation shows that k−λ+ (v− 1)λ = k2. The eigenvalues of N2

are the squares of the eigenvalues of N . As each row of N sums to k, we see
that k is an eigenvalue of N . Since k2 is a simple eigenvalue of N2, it follows
that −k cannot be an eigenvalue of N . Hence N has v−1 eigenvalues equal
to either

√
k − λ or −

√
k − λ. Suppose that there are exactly a eigenvalues

of the first kind and b of the second. Then
trN = k + (a− b)

√
k − λ (18.1.2)

and, as trN , k, a and b are all integers, this implies that either a = b or
(k−λ) is a perfect square. This proves (a) in the statement of the theorem.
If the polarity is null then trN = v, whence (18.1.2) implies that

√
k − λ = v − k

b− a
.

Since the right hand side is rational this implies again that k−λ is a perfect
square, and in addition that

√
k − λ must divide v− k. Finally, (c) follows

from (b) applied to the complement of the design D.

18.1.2 Corollary. Every polarity of a finite projective space has an abso-
lute point.

Proof. Continuing with the notation of the theorem, we see that if k − λ
is a perfect square then

√
k − λ divides k if and only if it divides λ. For a

projective geometry of rank n and order q we have
v = [n], k = [n− 1], λ = [n− 2],

whence k− λ = qn−1 and v− k = qn. Therefore k and λ are coprime for all
possible values of q and n.
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18.2 Polarities of Projective Planes
The results in this section are valid for all projective planes, Desarguesian
or not. If x is a point or line in a projective plane and φ is a polarity of the
plane then we denote the image of x under φ by xφ.

18.2.1 Lemma. Let φ be a polarity of a projective plane. Then each
absolute line contains exactly one absolute point, and each absolute point
is on exactly one absolute line.

Proof. The second statement is the dual of the first, which we prove as
follows. Suppose a is an absolute point and that b is a second absolute
point on ` = aφ. Then a ∈ bφ since b ∈ aφ. So

a ∈ ` ∩ bφ.

Now bφ 6= `, because aφ = bφ implies a = b. Hence

a = ` ∩ bφ

Since b = ` ∩ bφ, this proves that a = b.

18.2.2 Theorem. Let φ be a polarity of a projective plane of order n. Then
φ has at least n+ 1 absolute points. These points are collinear if n is even
and form a (q + 1)-arc otherwise.

Proof. Let m be a non-absolute line. We show first that the number of
absolute points on m is congruent to n, modulo 2. Suppose a ∈ m. If a
is not an absolute point then b = aφ ∩m is a point on m distinct from a.
Further, bφ contains both a and mφ; hence it is a line through a distinct
from m. Thus bφ ∩m = a, and we have shown that the pairs

{a, aφ ∩m}

partition the non-absolute points on m into pairs. This proves the claim.
Assume now that n is even and let p be a non-absolute point. The

n + 1 lines through p partition the remaining points of the plane. As each
line must contain an absolute point (n + 1 is odd) there are at least n + 1
absolute points. Suppose that there are exactly n+ 1 absolute points, and
let x and y be two of them. If there is a non-absolute point q on x∨ y then
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18. Polarities

the argument we have just shows that the n lines through q distinct from
x ∨ y contain at least n distinct absolute points. Taken with x and y we
thus obtain at least n+ 2 absolute points. This completes the proof of the
theorem when n is even.

Assume finally that n is odd and let p be an absolute point. Then pφ
is the unique absolute line through p and so there are n non-absolute lines
through p. Each of these contains an even number of absolute points, and
hence at least one absolute point in addition to p. This shows that there
are at least n+ 1 absolute points. If there are exactly n+ 1, this argument
shows that each line through p contains either one or two absolute points.
As our choice of p was arbitrary, it follows that the absolute points form an
arc.

18.2.3 Theorem. Let φ be a polarity of a projective plane of order n. Then
φ has at most n3/2 + 1 absolute points. If this bound is achieved then the
absolute points and non-absolute lines form a 2-(n3/2 +1, n1/2 +1, 1) design.

Proof. Denote the number of absolute points by s and ki be the number of
absolute points on the i-th non-absolute line. (The ordering is up to you.)
Let N = n2+n+1−s; thus N is the number of non-absolute lines. Consider
the ordered pairs (p, `) where p is a absolute point and ` is a non-absolute
line on p. Each absolute point is on n non-absolute lines, so counting these
pairs in two ways yields

ns =
N∑
i=1

ki. (18.2.1)

Next we consider the ordered triples (p, q, `) where p and q are absolute
points on the non-absolute line `. Counting these in two ways we obtain

s(s− 1) =
N∑
i=1

ki(ki − 1). (18.2.2)

The function x2 − x is convex and so
N∑
i=1

ki(ki − 1)
N

≥
∑N
i=1 ki
N

(∑N
i=1 ki
N

− 1
)
,

with equality if and only if the ki are all equal. Using (??) and (18.2.2), this
implies that n2s ≤ (s+n−1)N . Recalling now that N = n2 +n+1−s and
indulging in some diligent rearranging, we deduce that (s− 1)2 ≤ n3, with
equality holding if and only if the ki are equal. This yields the theorem.
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18.2. Polarities of Projective Planes

A 2-(m3 + 1,m + 1, 1)-design is called a unital. We will see how to
construct examples in the following sections. We record the following special
properties of the set of absolute points of a polarity realizing the bound of
the theorem.

18.2.4 Lemma. Let φ be a polarity of a projective plane of order n having
n3/2 + 1 fixed points. Then every line meets the set U of absolute points
of φ in 1 or n1/2 + 1 points. For each point u in U there is a unique line `
such that ` ∩ U = u, and for each point v off U there exactly n1/2 + 1 lines
through it which meet U in one one point.

We present a different proof of 18.2.3. Let N be the incidence matrix of
a projective plane. We assume that our plane has a polarity and hence may
assume that N is symmetric. From our calculations in 18.1 the eigenvalues
of N are q + 1 and ±√q.

We can write N in partitioned form, with the absolute points and lines
first:

N =
(
I M
MT A

)
and note that this has quotient

B =
(

1 q
x q + 1− x

)

where, if there are m absolute points, (q2 + q + 1 − m)x = mq. The
eigenvalues of the quotient are q + 1 and 1− x = tr(B)− q − 1, and these
must interlace the eigenvalues of N . Hence

−√q ≤ 1− x = 1− mq

q2 + q + 1−m

Hence
m(q +√q + 1) ≤ (q2 + q + 1)(√q + 1)

and accordingly

m ≤ (q −√q + 1)(√q + 1) = q3/2 + 1.

If equality holds, the interlacing is tight and the partition is equitable, and
1 − x = −√q. Therefore each line contains either 1 or √q + 1 absolute
points. Each non-absolute point lies on exactly √q + 1 absolute lines.
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18.3 Polarities of Projective Spaces
We are now going to study polarities of projective spaces over fields, and will
give a complete description of them. The key observation is that a polarity is
a collineation from P(n,F) to its dual and is therefore, by the Fundamental
Theorem of Projective Geometry, induced by a semi-linear mapping. Let φ
be a polarity of P(n−1,F). Then there is an invertible n×n matrix A over
F and a field automorphism τ such that, if a is represented by the vector a
then Aφ is represented by (aτ )TA. Thus aφ is the hyperplane with equation
(aτ )TAx = 0. Since φ is a polarity,

(xτ )TAy = 0 ⇐⇒ (yτ )TAx = 0.

But (yτ )TAx = 0 if and only if xTATyτ = 0, and this is equivalent to
requiring that (xTAT )τy = 0. Hence (xτ )TA and (xTAT )τ−1 are coordinate
vectors for the same hyperplane. This implies that ATxτ = κ1(Ax)τ−1 for
some non-zero scalar κ1, and so

A−1(Aτ )Txτ2 = κx (18.3.1)

with κ = κτ1.
Since A−1(Aτ )T is a linear and not a semilinear mapping, it follows from

(18.3.1) that xτ2 must lie in V (n,F), and hence that τ 2 = 1. Therefore
(18.3.1) implies that A−1(Aτ )T = κI and so we have shown that every
polarity is determined by a field automorphism τ of order dividing two and
a linear mapping A such that (Aτ )T = κA. Now

A = Aτ
2 = ((Aτ )T )τ )T = ((κA)τ )T = κτ (Aτ )T = κτκA

and therefore κτ = κ−1. If we set B = (1 + κ)A then

(Bτ )T = (((1 + κ)A)τ )T = ((1 + κ)τ )(Aτ )T = (1 + κ−1)κA = (κ+ 1)A = B.

The hyperplanes with coordinate vectors (xτ )TAT and (xτ )BT are the same,
for any vector x. Hence, if κ 6= −1, we may take our polarity to be deter-
mined by a field automorphism τ with order dividing two and an invertible
matrix B such that (Bτ )T = B. If κ = −1 then we observe that we may
replace A by C = λA for any non-zero element of of F. Then

(Cτ )T = −λ
τ

λ
C.
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18.4. Polar Spaces

Thus if λτ/λ 6= 1 we may replace A by C and then reapply our trick above
to get a matrix B such that (Bτ )T = B. Problems remain only if λτ = λ
for all elements λ of F. But then τ must be the identity automorphism and
AT = −A. Our results can be summarised as follows.

18.3.1 Theorem. Let φ be a polarity of P(n − 1,F). Then there is an
invertible n×nmatrix A and a field automorphism τ such that xφ = (xτ )TA.
Further, either

(a) (Aτ )T = A and τ has order two,

(b) AT = A and τ = 1, or

(c) AT = −A, the diagonal entries of A are zero and τ = 1.

The three types of polarity are known respectively as Hermitian, orthog-
onal and symplectic. The last two cases are not disjoint in characteristic
two; a polarity that is both orthogonal and symplectic is usually treated as
symplectic. Our argument has actually established that polarities of these
types exist—we need only choose an invertible matrix A and an optional
field automorphism of order two.

If φ is a polarity on the vector space V , then the map

(x, y) 7→ xφ(y)

is a bilinear form. A subspace U of V is non-singular if U ∩U⊥ = 0. In this
case U⊥ is a complement to U in V and U + U⊥ = V .

18.4 Polar Spaces
A polar space is an incidence structure such that:

(a) If p is a point and ` is a line not on p, either there is a unique point on
` collinear with p or all points on ` are collinear with p.

(b) Each line is incident with at least three points.

If we only require that each line contains at least two points we have a
generalized polar space. The polar space is nondegenerate if there is no
point that is collinear with all the other points. A polar space is not defined

217



18. Polarities

to be a partial linear space, but if it is nondegenerate then it does follow
from the axioms that it is a partial linear space.

We view a point as collinear with itself. If x is a point then x⊥ is the
set of all points collinear with x; if S is a set of points then

S⊥ =
⋂
x∈S

x⊥.

A set of points S is a subspace of a polar space if each pair of points in it
are collinear and each line that contains two points of S is itself contained
in S. Note that, for subspaces of partial linear spaces, we did not require
that each pair of points be collinear. The rank of a subspace is its height
in the poset of subspaces. The rank of a polar space is the maximum rank
of a subspace.

18.5 Symplectic Spaces
We start with two very useful results, valid for all forms.

18.5.1 Lemma. Let 〈·, ·〉 be a non-degenerate form on V . If U is subspace
of V and U ∩ U⊥ = 0, the restriction of the form to U is non-degenerate.

Proof. Exercise.
A subspace U is isotropic relative to a form if the restriction of the form

to U is the zero form

18.5.2 Lemma. If U is an isotropic subspace of dimension k in a space of
dimension d, then 2k ≤ d.

Proof. If dim(U) = k then dim(U⊥) = d− k and if U ≤ U⊥ we must have
k ≤ d− k.

If the assumption of the lemma holds then the restriction of the form
to U⊥ is also non-degenerate, and we have useful direct sum decomposition
V = U ⊕ U⊥. In fact we can view the form as a sum of two forms, one on
U and the other on U⊥.

Let V be a vector space of dimension n over GF (q) and let H be a
matrix over GF (q) such that HT = −H and, if the characteristic of our
field is two, than all diagonal entries are zero. Then

(x, y) 7→ xTHy
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is a symplectic form on V ; it is non degenerate if and only if H is invertible.
A standard example is

H =
(

0 I
I 0

)
.

Define x⊥ to be the kernel of xTH. Since

xTHx = −xTHTx = −xTHx

we see that xTHx = 0 for all x, and all 1-dimensional subspaces are
isotropic.

If H is non-singular then x⊥ has codimension one, and so there is a
vector y in V such that yTHx 6= 0. The subspace spanned by x and y is
non-singular, and hence V can be written as a direct sum U ⊕ U⊥, where
U is the subspace spanned by x and y. Since U is non-singular, it follows
that U⊥ is non-singular and we deduce by induction on the dimension that
there are vectors

x1, y1, . . . , xm, ym

such that xTi Hyi = 1 for all i and, if i 6= j then

xTi Hxj = xTi Hyj = yTi Hyi = 0.

This implies that n = 2m. And also that two non-degenerate symplectic
spaces of the same dimension over GF (q) are isomorphic.

18.6 Symplectic Spreads
A non-degenerate symplectic space with dimension n = 2m contains spreads.
A symplectic spread is a spread whose components are isotropic spaces.
Suppose our symplectic form is given by

H :=
(

0 I
−I 0

)
.

Then the column spaces of the matrices(
I
0

)
,

(
0
I

)
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18. Polarities

are both isotropic. Now

(
I AT

)
H

(
I
A

)
= A− AT

and so the column space of (
I
A

)
is isotropic relative to H if and only if A is symmetric.

18.7 Unitals
Let V be a vector space over F and let σ be an automorphism of F with
order two. A form 〈x, y〉 on V is unitary relative to σ if it is linear in the
second variable and

〈y, x〉 = 〈x, y〉σ.

Note that the form is semilinear in the first variable:

〈cx, y〉 = cσ〈x, y〉.

If x ∈ V then x⊥ is defined by

x⊥ := {y : 〈x, y〉 = 0}.

Similarly we define U⊥ for a subspace U of V If a⊥ = V if and only if
a = 0, we say that the form is non-degenerate. The happens if and only
if A is invertible. If the form is non-degenerate, then (U⊥)⊥ = U and
dim(U⊥) = dim(V )− dim(U).

We give a construction. An n× n matrix A over F is σ-Hermitian if

(Aσ)T = A.

Thus the identity matrix is σ-Hermitian. We define a form on the vector
space Fn by

〈x, y〉 := (xσ)TAy.

Then
〈x, y〉σ = xTAσyσ = (yσ)T (Aσ)Tx
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and therefore if A is σ-Hermitian, then

〈x, y〉σ = 〈y, x〉.

This form is non-degenerate if and only if A is invertible. It is semilinear in
the first variable and linear in the second. If A is σ-Hermitian and invertible,
we call 〈x, y〉 a σ-Hermitian form on V . (And before long we will drop the
reference to σ.)

The set of vectors x such that 〈x, x〉 = 0 is called a Hermitian variety.
We are only concerned with finite fields, and in this case any field auto-

morphism of order two arises as the q-th power map on a field of order q2.
We may take A = I, and then

〈x, y〉 =
∑
i

xqiyi.

If F is our field and F0 is its subfield of order q, then the map x 7→ xq+1

is the norm relative to F0; it is a surjective homomorphism from F∗ onto
F∗0. We denote the norm of x by N(x) or, if more precision is needed, by
NF/F0(x).

18.8 Generalized Quadrangles
Let V be a vector space of dimension four over the F of order q, where we
view the elements of V as pairs (u, v) of 2-dimensional vectors. If we set

〈(a, b), (c, d)〉 := aTd− bT c

we have a non-degenerate alternating form on V , which corresponds to the
matrix

H =
(

0 I
−I 0

)
.

The points an 2-dimensional isotropic subspaces of P(V ) form a GQ which
we will denote by W (q). We determine its parameters. Since a maximal
isotropic subspace has dimension two over F, it contains q+1 1-dimensional
subspaces, whence s = q. If u ∈ V the dim(u⊥) = 3 and each 2-dimensional
subspace of u⊥ that contains x is an isotropic subspace that contains x. It
follows that there are exactly q + 1 2-dimensional isotropic subspaces that
contain u, and therefore t = q.
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For a second example, take the isotropic points relative to a non-degenerate
unitary form on PG(3, q2). Denote this set of points byH. Since the form is
non-degenerate, there is no plane contained in H. If u ∈ H then the restric-
tion of the form to u⊥ is degenerate and hence u⊥ contains an isotropic line
which must contain u. It follows that the isotropic points and lines form a
GQ(q2, q) and therefore there are (q2 + 1)(q3 + 1) points and (q+ 1)(q3 + 1)
lines.

18.9 Uniqueness
We show that unitary forms are unique, up to a change of basis.

18.9.1 Theorem. If γ is a non-degenerate unitary form on a vector space
V over a finite field, then V has an orthonormal basis.

Proof. We first show that there is a non-isotropic vector x1. Assume by
way of contradiction that γ(x, x) = 0 for all x in V . Then for all x and y

0 = γ(x+ y, x+ y) = γ(x, x) +γ(y, y) +γ(x, y) +γ(y, x) = γ(x, y) +γ(y, x).

If a ∈ F, then

0 = γ(x, ay) + γ(ay, x) = aγ(x, y) + aσγ(y, x)

and hence
(aσ − a)γ(x, y) = 0

for all a in F. Therefore γ(x, y) = 0 and γ is the zero form.
Thus there is non-isotropic vector x1 in V . Let U denote the span of x1.

Then the restriction of γ to U is non-degenerate, as is its restriction to U⊥.
By induction on its dimension, U⊥ has an orthogonal basis, and the union
of this basis with x1 is orthogonal.

We convert our orthogonal basis to an orthonormal basis. We have

γ(ax, ax) = aaσγ(x, x) = aq+1γ(x, x).

Since γ(x, x) ∈ F0 and since the norm map is onto, if x 6= 0 we can choose
a so γ(x, x) = 1. Therefore V has an orthonormal basis.

It follows that if F is finite, then we are free to assume that our unitary
form is given by

〈x, y〉 =
∑
i

x1+q
i yi.
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18.10 Hermitian Geometry in the Plane
We are interested in the geometry of the isotropic points of a unitary polarity
on a vector space over a finite field.

Although projective lines are simple, we need to determine what happens
with them. Suppose dim(V ) = 2 and γ is a unitary polarity on V . Assume
{x, y} is an orthonormal basis for V . Then

γ(x+ ty, x+ ty) = 1 + tq+1

and hence there are q+1 elements t (in our field of order q2) such that x+ty
is isotropic. Suppose there is no orthonormal basis. Then γ is degenerate
and there is a point y such that γ(y, x) = 0 for all x. If γ is not the zero form,
then there is a non-isotropic point x such that γ(x, y) = 0 and consequently

γ(tx+ y, tx+ y) = tq+1γ(x, x) + tqγ(x, y) + tγ(y, x) = tq+1γ(x, x) 6= 0.

Hence y is the only isotropic point on ` (and ` ⊆ y⊥). Thus we have:

18.10.1 Lemma. If ` is a line in a projective space over a field of order q2

with a unitary polarity, then the number of isotropic points on ` is 1, q + 1
or q2 + 1.

18.10.2 Lemma. If ` is a line that contains exactly one isotropic point
(relative to a unitary form on a projective space), then the isotropic point
is `⊥.

Proof. Suppose x ∈ ` and 〈x, x〉 = 0. If `⊥ ∈ ` and `⊥ 6= x then ` and x
span ` and ` is isotropic.

We turn next to projective planes.

18.10.3 Theorem. If γ is a non-degenerate unitary polarity on the pro-
jective plane over a field of order q2, then it has exactly q3 + 1 isotropic
points.

Proof. The first step is to show that there are at least two isotropic points.
By Lemma ?? there is an isotropic point x. Suppose ` is a line on x not
equal to x⊥. Then ` is not absolute and so contains exactly q + 1 absolute
points. Therefore the total number of absolute points is 1 + q3.

The isotropic points relative to a non-zero degenerate unitary polarity
form either a single line, or q + 1 collinear lines.
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18.11 Quadratic Spaces and Polarities
Let V be a vector space over F. A quadratic form Q over F is a function
from V to F such that

(a) Q(λu) = λ2Q(u) for all λ in F and u in V , and

(b) Q(u+ v)−Q(u)−Q(v) is bilinear.

Let β be the bilinear form defined by

β(u, v) = Q(u+ v)−Q(u)−Q(v).

We say that β is obtained from Q by polarisation. The above conditions
imply that

4Q(u) = Q(2u) = Q(u+ u) = 2Q(u) + β(u, u)

whence we have β(u, u) = 2Q(u). Thus, if the characteristic of F is not
even, the quadratic form is determined by β. If the characteristic of F is
even then β(u, u) = 0 for all u in V . In this case we say that the form is
symplectic. Each homogeneous quadratic polynomial in n variables over F
determines a quadratic form on Fn.

A quadratic form is non-singular if, when Q(a) = 0 and β(a, v) = 0 for
all v, then v = 0. In odd characteristic a quadratic form is non-singular if
and only if β is non-degenerate. (Exercise.) A subspace U of V is singular
if Q(u) = 0 for all u in U .

We are going to classify quadratic forms over finite fields. For any sub-
space W of V , we define

W⊥ = {v ∈ V : β(v, w) = 0 ∀w ∈ W}

If S is a subset of V we write 〈S〉 to denote the subspace spanned by V . If
w is a vector in V then we will normally write w⊥ rather than 〈w〉⊥.

We define a quadratic space to be a pair (V,Q) where V is a vector
space and Q is a quadratic form on V . We say that (V,Q) is non-singular if
Q is. If (V,Q) is a quadratic space and U is a subspace of V , then (U,Q) is
a quadratic space. This may be singular even if (V,Q) is not—for example,
let U be the span of a singular vector. The form on (U,Q) is actually the
restriction of Q to U , and should be denoted by Q�U .

We note the following result, the proof of which is left as an exercise.
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18.11.1 Lemma. If W is a subspace of the quadratic space (V,Q), then
the quotient space W⊥/W ∩W⊥ is a quadratic space with quadratic form
Q satisfying Q(v +W ) = Q(v).

Suppose (U,QU) and (V,QV ) are quadratic spaces over F. IfW := U⊕V ,
then the function QW defined by

QW ((u, v)) = QU(u) +QV (v)

is a quadratic form onW . (It may be best to view this as follows: if w ∈ W
then we can express w uniquely as w = u+ v where u ∈ U and v ∈ V , then
QW (w) is defined to be QU(u) + QV (v).) The form QW is non-singular if
and only if QU and QV are.

18.11.2 Lemma. If W is a subspace of the quadratic space (V,Q) and
W ∩ W⊥ = {0}, then (V,Q) is the direct sum of the spaces (W,Q) and
(W⊥, Q). If (V,Q) is non-singular, so are (W,Q) and (W⊥, Q).

A quadratic space is anisotropic if Q(v) 6= 0 for all non-zero vectors v in
V . You may show that if a subspace (W,Q) of (V,Q) is anisotropic, then
W ∩W⊥ = {0}.

18.11.3 Lemma. If V is an anisotropic quadratic space over GF (q) then
dim V ≤ 2. If dim V = 2 then V has a basis {d, d′} such that Q(d′) =
(d, d′) = 1.

Proof. Assume that dim V ≥ 2. Choose a non-zero vector e in V and a
vector d not in e⊥. Let W = 〈d, e〉. Assume Q(e) = ε and that d has been
chosen so that (d, e) = ε. Assume further that σ = Q(d)/ε. Then

Q(αe+ βd) = α2ε+ β2σε+ αβε = ε(α2 + αβ + β2σ).

If W is anisotropic then α2 + αβ + β2σ 6= 0 for all α in F. Hence the
polynomial x2 + x+ σ is irreducible over F = GF (q). Let θ be a root of it
in GF (q2) and let a 7→ ā be the involutory automorphism of F(θ). Then

Q(αe+ βd) = ε(α + βθ)(α + βθ̄)

from which it follows that {Q(w) : w ∈ W} = F. This means that we can
assume that e was chosen so that ε = 1. Finally, if n ≥ 3 and v is a non-zero
vector in 〈d, e〉⊥ then Q(v) = −Q(w) for some w in V . Then Q(v +w) = 0
and V is not anisotropic.
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18. Polarities

It follows readily from the above lemma that, up to isomorphism, there
is only one anisotropic quadratic space of dimension two over a finite field
F. We note, if F is finite and Q(x) = 0 for some x then (x, x) = 0. For if
q is even then (x, x) = 0 for all x, and if q is odd then 0 = 2Q(x) = (x, x)
again implies that (x, x) = 0.

18.11.4 Theorem. Let (V,Q) be a quadratic space of dimension n over
GF (q). Then V has a basis of one the following forms:

(a) n = 2m : e1, . . . , em; f1, . . . , fm where
Q(ei) = Q(fi) = 0, (ei, fj) = δij, (ei, ej) = (fi, fj) = 0

(b) n = 2m + 2 : d, d′, e1, . . . , em; f1, . . . , fm with the ei and fj as in (a),
〈d, d′〉 an anisotropic quadratic space with Q(d′) = (d, d′) = 1, Q(d) = σ
where x2 + x+ σ is irreducible over GF (q) and

(d, ei) = d(fi) = (d′, ei) = (d′, fi) = 0

(c) n = 2m+ 1 : d, e1, . . . , em; f1, . . . , fm and everything as in (b).

Proof. Assume that dim V ≥ 3, and let e1 be a non-zero vector in V with
Q(e1) = 0. Then there is a vector f in V such that (e1, f) = 1 and

Q(αe1 + f) = Q(f) + α.

If we set f1 equal to −Q(f)e1 + f then Q(f1) = 0 and (e1, f1) = 1. (Here
we are using the fact that (e1, e1) = 0.) Now V is the orthogonal direct sum
of 〈e1, f1〉 and 〈e1, f1〉⊥, and the result follows by induction.

We can write down the quadratic forms corresponding to the three cases
of the theorem as follows:

(a) Q(∑αiei +∑
βifi) = ∑

αiβi

(b) Q(γd+ γ′d′ +∑
αiei +∑

βifi) = γ2σ + γγ′ + γ′2 +∑
αiβi

(c) Q(γd+∑
αiei +∑

βifi) = γ2σ +∑
αiβi

In both (b) and (c), the field element σ is chosen so that x2 + x + σ is
irreducible over GF (q).

An isometry of the quadratic space (V,Q) is an element τ of GL(V )
such that Q(vτ) = Q(v) for all v in V . The set of all isometries of V is the
isometry group of V . It is denoted by O(V ) in general, and by O+(2m, q),
O−(2m+ 2, q) and O(2m+ 1, q) respectively in cases (a), (b) and (c) above.
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18.12 Perspectivities of Polar Spaces
Suppose we have a sesquilinear form 〈·, ·〉 on the vector space V , that is, a
form semilinear in its first coordinate and linear in its second. If

a⊥ := {x : 〈a, x〉 = 0}

then the mapping a 7→ a⊥ is a polarity on the projective space P(V ) (and
all polarities arise in this way). Given the form, we define a map τa from V
to itself by

τa : x 7→ x+ λ〈a, x〉a.

This is linear (in x) because it is the sum of two linear mappings and it
fixes each vector in a⊥. It is invertible if λ〈a, a〉 6= −1; in this case we see
that it is a perspectivity.

We are interested in seeing when this perspectivity is compatible with
the polarity. So if y ∈ x⊥, we want to know if τa(x) ∈ τa(y)⊥. This will
certainly hold if

〈τa(x), τa(y)〉 = 〈x, y〉

for all x and y.
There are two cases. Suppose first that 〈a, a〉 = 0. Then

〈τa(x), τa(y)〉 − 〈x, y〉 = λ〈a, x〉〈a, y〉+ λ〈x, a〉〈a, y〉

and this is zero if our form is symplectic, or if it is unitary and λ = −λ.
You should prove that τa fixes any hyperplane that contains a. (Hence τa
is an elation.)

Otherwise, assume that our form is associated to a quadratic form Q. If
Q(a) 6= 0 and we set λ = Q(a)−1, then

Q(τa(x)) = Q(x) + λ2〈a, x〉2Q(a) + λ〈a, x〉〈x, a〉.

Since the form is symmetric it follows that Q(τa(x)) = Q(x); since τa pre-
serves the quadratic form, it must also preserve the associated bilinear form.
You should prove that τ 2

a = 1 and τa(a) = −a.
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Polar Spaces
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Chapter 20

Reguli, Lines and Spreads

It might appear that there is very little to said about lines. They do seem
straightforward objects. Our starting point here will be the sets of q + 1
lines which meet a given a set of three pairwise skew lines in PG(3, q).

20.1 Reguli
We saw that every set of three pairwise skew lines in P(3,F) lies in a unique
hyperbolic quadric. This quadric contains altogether 2(q + 1) lines—there
are q + 1 lines which meet each of the first three lines, and if we take three
of these q + 1 then they are each met in three points by another set of
q + 1 lines, including the three we started with. A regulus in P(3,F) is
a set of q + 1 pairwise skew lines lying on a hyperbolic quadric. We can
equivalently identify the regulus with the corresponding set of q+1 pairwise
skew 2-dimensional subspaces of V (4,F). (The definition of a regulus can
be extended to spaces of higher dimension; however the one just given will
suffice for now.) Each hyperbolic quadric determines two reguli. We say
that these reguli are opposite. Opposite reguli cover the same set of (q+1)2

points, but have no lines in common.
From our work on hyperbolic quadrics in P(3,F), we know that every

set of three pairwise skew lines lies in a unique regulus. If a spread contains
a regulus R then we may replace it by its opposite regulus R′. The result
is a new spread. This idea can be used to construct new translation planes,
as we shall see. A spread is regular if, whenever it contains three lines l1, l2
and l3 from a regulus, it contains all the lines in it. Over GF (2), every set
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20. Reguli, Lines and Spreads

of three pairwise skew lines is a regulus, and hence all spreads are regular.
In this case, regularity will be of no use to us.

20.1.1 Lemma. Let U be a vector space of dimension two over F and
suppose V = U ⊕ U . Let σi for i = 1, 2, 3, 4 be distinct elements of GL(U).
Then the subspaces V (σi) lie on a regulus if and only if

(σ4 − σ2)−1(σ4 − σ1)(σ3 − σ1)−1(σ3 − σ2) = κI

for some non-zero element κ of F.

Proof. Let α be the element (
σ2 −σ1
−1 1

)

of GL(V ). Then α maps V (σ1) onto V (0) and V (σ2) onto V (∞). The
subspaces V (σ3) and V (σ4) are mapped respectively to V (σ2 − σ3)−1(σ3 −
σ1)) and V (σ2 − σ4)−1(σ4 − σ1)). Thus we need a condition for these two
subspaces to lie on a regulus with V (0) and V (∞). We claim that V (ρ)
is on a regulus with V (0), V (∞) and V (τ) if and only if ρ = κτ for some
non-zero element κ of F. We work in the projective space determined by
V . Suppose that a ∈ V (ρ). Then there is a unique line through a meeting
both V (0) and V (∞); since our four spaces are part of a regulus this line
must meet V (τ) in some point b. We may assume b is represented by the
vector (u, uτ), where u ∈ U , and we observe that

(u, uτ) = (u, 0) + (0, uτ).

Thus a∨ b must meet V (0) in the point represented by (u, 0) and V (∞) in
the point belonging to (0, uρ). If a is represented by (v, vρ) for some v in
U , it follows that

(v, vρ) = λu(u, 0) + µu(0, uτ). (20.1.1)
Here λu and µu are elements of F, and they cannot be zero since a is not in
V (0) or V (∞). Hence (20.1.1) implies that v = λvu and uρ = (µu/λu)uτ .
Assume κ(u) = µu/λu. Then, for all u in U ,

uρτ−1 = κ(u)u.

This implies that every vector in U is an eigenvector of τρ−1 and hence that
the matrix must have the form κI for some non-zero scalar κ. Thus τ = κρ
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20.1. Reguli

if V (ρ) and V (τ) lie on a regulus with V (0) and V (∞). It is routine to verify
conversely that if τ = κρ then V (ρ) and V (τ) lie on a regulus with V (0)
and V (∞). Therefore V (σ2 − σ3)−1(σ3 − σ1)) and V (σ2 − σ4)−1(σ4 − σ1))
both lie on a regulus with V (0) and V (∞) if and only if, for some non-zero
element κ of F,

(σ2 − σ4)−1(σ4 − σ1) = κ(σ2 − σ3)−1(σ3 − σ1).

On rearranging this, we obtain the desired result.
It follows from the above proof that the regulus containing V (0), V (∞)

and V (σ) consists of all the lines V (λσ), where λ ∈ F.

20.1.2 Theorem. If |F| > 2 then a spread in P(3,F) is regular if and only
if the plane it determines is Pappian.

Proof. Suppose that Σ determines a regular spread in P(3,F). We may
assume without loss that I ∈ Σ. If σ ∈ Σ then all lines in the regulus
containing V (0), V (∞) and V (σ) must belong to the spread. From the
proof of the previous lemma we see that κσ ∈ Σ for all non-zero elements κ
of F. All lines in the regulus containing V (∞), V (ρ) and V (σ) must belong
to the spread. Suppose that V (τ) is one of these lines. The linear mapping

α =
(
ρ −I
−I 0

)

sends V (∞), V (ρ), V (σ) and V (τ) to V (0), V (∞), V ((σ−ρ)−1) and V ((τ−
ρ)−1) respectively. Since α must map reguli to reguli, we deduce that

(σ − ρ)−1 = κ(τ − ρ)−1

for some non-zero element κ of F. Taking the inverse of each side and
rearranging yields

τ = κσ − (κ− 1)ρ.
We know already that Σ is closed under multiplication by non-zero elements
of F; with this last equation we now deduce that Σ ∪ 0 is closed under
addition. Hence it is a vector space over F. In fact it is a 2-dimensional
vector space over F.

If F is finite then a simple cardinality argument shows that Σ ∪ 0 must
have dimension two over F. More generally, we proceed as follows. The 2×2
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20. Reguli, Lines and Spreads

matrices over F form a vector space of dimension four. The matrices with
determinant zero form a hyperbolic quadric in the corresponding projective
space. (The proof of this is left as an exercise.) A hyperbolic quadric in
P(3,F) contains lines and, since every line in P(3,F) meets every hyperplane,
it follows that a subspace formed by non-singular matrices must have rank
at most two. Hence there is σ ∈ Σ such that σ and I form a basis for Σ
over F. Thus every element of Σ is a linear combination of σ and I, and so
multiplication of elements of Σ is commutative. By Lemma 3.2.5 we now
deduce that F is Pappian. If |F| = 2 then it is easy to show that all spreads
in V (4, 2) give Desarguesian planes. (One possibility is to note that there is
only one projective plane of order four.) The proof that a spread in P(3,F)
is regular if the plane it determines is Pappian is left as an exercise.

In the proof of this theorem we made use of the techniques developed in
proving ??Lemma 1.1. If we are prepared to accept assertions of the form

(τ −∞)−1(σ −∞) = 1

then we could have appealed to the result of ??Lemma 1.1 instead. This
would have been less work, since we would not have needed to use the linear
mapping α.

??Theorem 1.2 has an important consequence, which we develop in two
steps.

20.1.3 Corollary. Let S and S ′ be two distinct spreads in V (4, q). If S
and S ′ have four components in common, not all lying on a single regulus,
then the spreads are not both regular.

Proof. We may assume that both spreads contain V (0), V (1), V (∞) and
V (σ). But every component of a regular spread containing these compo-
nents is of the form V (τ), where τ is a linear combination of σ and I. Thus
the two spreads cannot be both regular and distinct.

Now take a regular spread S in V (4,F). This spread contains a regulus;
delete the lines in it and replace them with the lines of the opposite regulus.
The result is a spread S ′ having q2 − q components in common with S. As
q2 − q > q + 1 the previous corollary implies that the new spread is not
regular. Thus we have shown that there is a non-Desarguesian translation
plane of order q2 for all prime powers q. It should be clear that we could
simultaneously replace several disjoint reguli by their opposites. If ‘several’
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20.2. Plücker Coordinates of Lines

is t, the new spreads would not be Desarguesian provided q2 + 1 − t(q +
1) > q + 1. The problem that remains is to decide when these spreads are
isomorphic.

20.2 Plücker Coordinates of Lines
Any line in P(3,F) can always be represented by a pair of vectors, corre-
sponding to two distinct points on it. One difficulty with this is that the
same line can be represented in many different ways. An unambiguous
representation is available. Suppose that ` = a ∨ b. Consider the matrix(

a0 a1 a2 a3
b0 b1 b2 b3

)
with rows representing a and b. For distinct i and j, define

`ij = aibj − ajbi.

The numbers `ij are the Plücker coordinates of `. If c and d are a second
set of distinct points on ` then we find that(

c0 c1 c2 c3
d0 d1 d2 d3

)
= M

(
a0 a1 a2 a3
b0 b1 b2 b3

)
for some 2× 2 matrix M . The Plücker coordinates for ` computed using c
and d will thus be equal to det(M) times the corresponding coordinates `ij.
Note also that

abT − baT =


0 `01 `02 `03
−`01 0 `12 `13
−`02 −`12 0 `23
−`03 −`13 −`23 0

 .
This is a skew symmetric matrix whose column space is the span of a and b;
its kernel consists of all vectors x such that aTx = bT = 0, in other words it
is `⊥. We denote this matrix by S(`). Since a skew symmetric matrix has
even rank we see that rk(S(`)) = 2 for any line.

If we define

S(`) :=


0 −`23 `13 −`12
`23 0 −`03 `02
−`13 `03 0 −`01
`12 −`02 `01 0
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then
S(`)S(`) = (`01`23 − `02`13 + `03`12)I

and thus we deduce that the Plücker coordinates of a line satisfy
`01`23 − `02`13 + `03`12 = 0. (20.2.1)

Conversely, if this condition holds then rk(S(`)) = 2. Thus we have a bijec-
tion between the lines of PG(3,F) and the 4× 4 skew symmetric matrices
over F with rank two.

Equivalently. we have shown that the numbers `ij are the Plücker coor-
dinates of a line if and only if (20.2.1) holds, and that they determine the
line. (Which is why they are called coordinates.)

You might show that
det(S(`)) = det(S(`)) = (`01`23 − `02`13 + `03`12)2.

20.3 The Klein Quadric
There is another important observation to be made. The set of points in
P(5,F) satisfying

x0x5 − x1x4 + x2x3 = 0
is a smooth quadric containing the subspace x0 = x1 = x2 = 0. Thus it has
index three, and is therefore hyperbolic. It is called the Klein quadric. We
have shown that the lines in P(3,F) correspond bijectively to the points on
the Klein quadric in P(3,F). We wish to investigate the relation between
the geometry of this quadric and the lines in P(3,F). If ` is a line in P(3,F),
let ˆ̀denote the corresponding point on the Klein quadric. Denote the Klein
quadric by K.

Our first problem is to decide which sets of lines in P(3,F) correspond
to the lines contained in the Klein quadric. The lines a ∨ b and c ∨ d are
skew if and only if

det


a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

 6= 0 (20.3.1)

Denote the Plücker coordinates of a ∨ b and c ∨ d respectively by `ij and
mij. Expanding the determinant in (20.3.1), we obtain

`01m23 − `02m13 + `03m12 + `12m03 − `13m02 + `23m01 = 0.
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If we view a∨ b as a fixed line and c∨d as varying, this shows that the lines
which meet a ∨ b in P(3,F) correspond to the points on the intersection of
the Klein quadric with the hyperplane with coordinate vector

(`23,−`13, `12, `03,−`02, `01).

This hyperplane contains the point corresponding to a∨b, and a straightfor-
ward calculation shows that it is the tangent hyperplane to the quadric at
this point. Thus ` meets m if and only if ˆ̀∨ m̂ is contained in K. It follows
that the set of lines passing through a fixed point in P(3,F) determine a
subspace of rank three in K.

A second class of rank three subspaces is provided by the sets of lines
which lie in a given plane in P(3,F). There are [4] = q3 +q2 +q+1 subspaces
of each type. Since we already know that a hyperbolic quadric in P(5,F)
contains

2(1 + q)(1 + q2)
subspaces of rank three, we have therefore found all rank three subspaces
on K. Note that any two subspaces of the same type have a unique point in
common, while two subspaces of different types are either disjoint or meet
in a line. Any line in K is contained in a rank three subspace on K. Hence
a line in K corresponds to q + 1 concurrent coplanar lines in P(3,F). If `
and m are two skew lines in P(3,F) then ˆ̀ and m̂ are not collinear in K
and Tˆ̀∩ Tm̂ is a quadric in a subspace of rank four with (q + 1)2 points.
By ??Corollary 6.1.2 and Lemma 6.3.1 it is smooth, and thus must be a
hyperbolic quadric. If n is a third line in P(3,F) skew to ` and m then the
intersection of Tˆ̀, Tm̂ and Tn̂ is a conic. (Since n̂ is not collinear in K with
ˆ̀or m̂, the intersection cannot contain a line.) Thus each regulus in P(3,F)
corresponds to a plane in P(5,F) meeting K in a smooth conic. Each spread
of P(3,F) determines a set of q2 + 1 points on K. This set cannot contain
two points lying on a line of K, therefore no two of its points lie on a line
of K, and no three of its points are collinear in P(5,F). Each line of P(3,F)
lies on q + 1 points and in q + 1 planes of P(3,F); hence each point of K
lies on 2(q+ 1) maximal subspaces. Therefore any set of points of K which
meets every subspace of rank three must have at least

2(q + 1)(q2 + 1)/2(q + 1) = q2 + 1

points in it. If O is a set of q2 + 1 points meeting each maximal subspace
then there must be exactly one point of it in each maximal subspace. Hence
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no two points of O can lie on a line of K, and so no three points of O can
be collinear in P(5,F). Thus it determines a spread in P(3,F). An ovoid
in a quadric is a set of points which has exactly one point in each maximal
subspace. We have just proved that an ovoid in the Klein quadric has
exactly q2 + 1 points, and corresponds to a spread in P(3,F).

20.3.1 Lemma. A spread in P(3,F) determines a Desarguesian plane if
and only if the ovoid it determines in the Klein quadric is contained in a
subspace of P(5,F) with rank four.

Proof. The case |F| = 2 is left as an exercise; henceforth we assume that
|F| > 2. Let S be a spread in P(3,F) and suppose that Ŝ is contained in a
subspace H of rank four in P(5,F). Then H ∩K is a quadric in P(3,F) and,
as it contains an ovoid, it can only be an elliptic quadric. As |S| = q2 + 1,
it follows that Ŝ must be an elliptic quadric. Since any plane section of an
elliptic quadric in P(3,F) is either a point or a smooth conic, we deduce
that S must be regular.

We now assume conversely that S is a regular spread, and seek to show
that its image in K spans a space of rank four. We may assume without
loss that the spread contains the subspaces V (0), V (∞), V (I) and V (ρ), for
some matrix ρ. If V (σ) is another component of the spread then the proof
of Theorem 1.2 shows that for some scalar κ, the subspace V (κσ) lies in a
regulus with V (∞), V (I) and V (τ). Similarly, V (σ) lies in a regulus with
V (0), V (∞) and V (κσ). The image of any regulus in P(3,F) is contained
in a plane in P(5,F), hence we deduce that the image of V (σ) in K lies in
the span of the images of V (0), V (I), V (∞) and V (ρ). Therefore the image
of our spread lies in a subspace of rank four.

20.4 Reguli in Higher Dimensions
Our definition of a regulus can be extended to vector spaces of even dimen-
sion greater than four. Consider the pairwise skew subspaces U , V and W
of rank m in P(2m − 1,F). If w is a point not in U ∪ V then w ∨ V is a
subspace of rank m+ 1 and hence must meet U in a point. The line joining
this point to w must meet V , because V is a hyperplane in w ∨ V . Thus,
for each point w not in U ∩V , there is a unique line through it which meets
both U and V . If we now allow w to range over the points of W , we thus
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obtain a set of pairwise skew lines, each meeting U , V and W in exactly
one point. We will define a regulus in V (2m,F) to be a set of pairwise skew
subspaces of dimension m, indexed by the elements of F, such that any line
which meets three of these subspaces is contained in their union. Regular
spreads are defined as before. Over the field with two elements they are still
uninteresting. Now suppose that V = V (2m,F) and that ρ is an element
of GL(V ) such that U and Uρ are skew. If u ∈ U let L(u) be the line
u ∨ uρ and if κ ∈ F, let U(κ) be the subspace {u + κuρ : u ∈ U}. (Here
U(∞) = Uρ.) It is easy to see that⋃

u∈U
L(u) =

⋃
κ∈F∪∞

U(κ).

20.4.1 Theorem. The subspaces U(κ), where κ ∈ F ∪∞, form a regulus.
All reguli arise in this way.

Proof. Exercise.
??Lemma 1.1 extends immediately to higher dimensions. Thus the pair-

wise skew subspaces V (σi) lie on a regulus if and only if

(σ2 − σ4)−1(σ4 − σ1) = κ(σ2 − σ3)−1(σ3 − σ1).

(The proof of ??Lemma 1.1 actually works in all cases, not just in dimension
four.) We will still call a spread regular if it contains all subspaces on the
regulus generated by any three of its components. The translation plane
determined by a regular spread is Pappian when the underlying field is
finite.

We outline a proof of this, under the asumption that |F| > 2. Our proof
of ??Theorem 1.2 actually shows that the following is true. Suppose Σ
determines a spread S of V = U⊕U containing V (0) and V (∞) and, for any
two components V (ρ1) and V (ρ2), all the subspaces on the regulus through
V (∞), V (ρ1) and V (ρ2) belong to S. Then Σ ∪ 0 is a vector space over
our underlying field F. By ??Lemma 3.2.3, this implies that the translation
plane π determined by the spread is ((∞), V (∞))-transitive. Hence, if a
spread is regular, p is a point on the line at infinity and ` is the line joining it
to o then π is (p, `)-transitive. If π is both (p, `)- and (p, `∞)-transitive then
it is (p,m)-transitive for all lines m through p. Hence p corresponds, in the
dual plane, to a translation line. Accordingly each point on `∞ determines
a translation line in the dual plane. By ??Theorem 3.4.2 the plane π is
Moufang and, by ??Theorem 3.4.3, it must be Pappian.

239





Part III

Lines

241





Chapter 21

Lines and Bounds

We consider special sets of lines in real and complex space. The simplest
to describe are equiangular lines in Rd: this is a set of lines such that the
angle between any two distinct lines is the same. If x and y are unit vectors
spanning lines in Rd, the angle between them is determined by |〈x, y〉|2.
Note that this quantity does not change if we replace y (say) by −y. Now
we can define a set of lines in Cd to be equiangular if there is a real constant
α2 such that, for any two unit vectors x and y spanning distinct lines in the
set we have |〈x, y〉|2 = α2.

The other case of interest are sets of orthonormal bases of Rd or Cd,
such that for any two vectors x and y in distinct bases, the value of |〈x, y〉|2
is the same. A pair of orthonormal bases with this property is said to be
unbiased, and in general a set of orthonormal bases is mutually unbiased if
each pair is unbiased.

We will refer to |〈u, v〉| as the angle between the lines spanned by u and
v. (This is an abuse of notation: in the real case, it actually the cosine of
the angle between the lines and, in the complex case, it is not clear what
an angle is.)

In the cases of interest to us, we will see that we can readily derive a
good upper bound on the maximum size of a set of equiangular lines, or a
set of mutually unbiased bases. The chief difficulty is to construct sets of
lines realizing these bounds.
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21.1 Projections
A line ` is a dimensional subspace of an inner product space V and hence can
be represented by a basis, that is, any non-zero vector in `. We can reduce
redundancy by choosing a unit vector as a basis but even over the reals
this still leaves a choice—between −x and x—while over C a unit vector is
only determined up to multiplication by a complex number of norm 1. (In
quantum physics these are known as phase factors.)

We can eliminate redundancy by using projections. If U is a subspace
of V with an orthonormal basis u1, . . . , ud then the matrix

PU :=
d∑
i=1

uiu
∗
i

represents orthogonal projection onto the subspace spanned by u. Hence

P = P ∗ = P 2

and U is the image of PU and U⊥ is its kernel. In particular

tr(PU) = rk(PU) = dim(U).

The space of linear operators on V is an inner product space, with inner
product

〈A,B〉 := tr(A∗B) = sum(A ◦B).
If P and Q are projections then

‖P −Q‖2 = tr((P −Q)2)
= tr(P 2 +Q2 − PQ−QP )
= tr(P ) + tr(Q)− 2 tr(PQ)
= tr(P ) + tr(Q)− 2〈P,Q〉.

If P and Q are projections onto subspaces of dimension d, it follows that

‖P −Q‖2 = 2d− 〈P,Q〉;

if P and Q are projections onto lines spanned by unit vectors u and v
respectively, then

P = uu∗, Q = vv∗
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and
tr(PQ) = tr(uu∗vv∗) = tr(v∗uu∗v) = |u∗v|2,

whence
‖P −Q‖2 = 2− 2|u∗v|2.

Projections are Hermitian matrices, and the Hermitian matrices of order
d× d form a real vector space of dimension d2. Over R our projections are
real symmetric matrices, and these form a real vector space of dimension(
d+1

2

)
.

21.2 Equiangular Lines: The Absolute
Bound

We derive upper bounds on the size of set of equiangular lines in Rd and
Cd. The observation is that a set of vectors in an inner product space is
linearly independent if and only if the Gram matrix of the set is invertible.

Our first results provides the absolute bound on the maximum size of a
set of equiangular lines.

21.2.1 Theorem. The cardinality of a set of equiangular lines in Cd is at
most d2; in Rd it is at most

(
d
2

)
.

Proof. Let P1, . . . , Pm be the projections onto a set of equiangular lines with
angle α and let G be the Gram matrix of these projections relative to the
trace inner product. Then Gi, i = 1 for all i and, if i 6= j. then Gi,j = α2.
Therefore

G = (1− α2)I + α2J

and, since α2 < 1, it follows that G is invertible. This implies that the
matrices P1, . . . , Pm are linearly independent.

Over C, projections are Hermitian and the space of complex Hermitian
matrices has dimension d2 (over R). Over R, projections are symmetric and
the space of real symmetric matrices has dimension

(
d
2

)
.

21.2.2 Lemma. Assume P1, . . . , Pm are projections onto a set of equiangu-
lar lines in Cd or Rd. If the absolute bound is tight, then∑

r

Pr = m

d
I
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21. Lines and Bounds

Proof. If the absolute bound is tight, the projections P1, . . . , Pm are a basis
for the space of Hermitian/symmetric matrices. So there are constants cr
such that

I =
∑
r

crPr.

Assume that angle between distinct lines is α. Then

1 = 〈I, Ps〉 =
∑
r

cr〈Ps, Pr〉 = cs +
∑
r 6=s

crα
2 = (1− α2)cs +

∑
r

cr.

From this we see first that the coefficients cr are all equal, and hence they
are all equal to d/n.

A set of unit vectors x1, . . . , xm such that∑
r

xrx
∗
r = m

d
I

is known as a tight frame. A set of unit vectors that is equiangular and a
tight frame is an equiangular tight frame. (The size of an equiangular tight
frame need not meet the absolute bound, as we will see.)

The six diagonals of the icosahedron in R3 form an equiangular tight
frame, so at least the real absolute bound is tight once. (We will say more
later.)

21.2.3 Lemma. If there is an equiangular tight frame in Cd with angle α,
then α2 = (d+ 1)−1; In Rd we have α2 = (d+ 2)−1.

Proof. If ∑
r

Pr = m

d
I

then
P1 +

∑
r>1

P1Pr = m

d
P1

and taking traces yields

1 + (m− 1)α2 = m

d
.

Therefore
α2 = m− d

d(m− 1)
and, on substituting in the correct value for m, we get the stated values for
α.
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21.3 Equiangular Lines: The Relative
Bound

We derive what we call the relative bound on the size of an equiangular set
of lines; this bound depends on the angle as well as the dimension.

21.3.1 Theorem. If there is an equiangular set of n lines in Cd or Rd with
angle α and dα2 < 1, then

n ≤ d− dα2

1− dα2 .

Equality holds if and only if the lines form an equiangular tight frame.

Proof. Let P1, . . . , Pm be projections onto equiangular lines with angle α
and set

S = m

d
I −

∑
r

Pr.

Then

0 ≤ 〈S, S〉 = m2

d
− 2m

2

d
+m+m(m− 1)α2

= m
(
−m
d

+ 1 + (m− 1)α2
)

and consequently (1
d
− α2

)
m ≤ 1− α2;

this yields our bound. Equality holds if and only if S = 0.
Note that if α2 = (d+ 1)−1, we recover the absolute bound for complex

equiangular lines and if α2 = (d+ 2)−1 we get the real absolute bound.

21.4 Type-II Matrices
We denote the Schur inverse of a matrix W , if it exists, by W (−). An n×n
complex matrix W is a type-II matrix if it is Schur invertible and

WW (−)T = nI.

Any Hadamard matrix is an example. We say that a complex matrix is flat
if its entries all have the same absolute value.
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21. Lines and Bounds

21.4.1 Lemma. Any two of the following conditions on a square complex
matrix W imply the third:

(a) W is type-II.

(b) W is flat.

(c) W is a non-zero scalar multiple of a unitary matrix.

We leave the proof of this an exercise. You should also show that the
Kronecker product of two type-II matrices is type-II. The next result pro-
vides a class of examples of type-II matrices that are not flat in general.

21.4.2 Lemma (Chan and Godsil). Let N be a square 01-matrix and sup-
pose W = aJ + (b− a)N , where a 6= ±b. Then W is type-II if and only if
N is the incidence matrix of a symmetric design.

We introduce another class of type-II matrices. We say that an n × n
matrix C is a generalized conference matrix if:

(a) C is Hermitian.

(b) C ◦ I = 0.

(c) If i 6= j, then |Ci,j| = 1.

(d) The minimal polynomial of C is quadratic

It is easy to check that symmetric conference matrices are generalized
conference matrices. If C is a skew-symmetric conference matrix, then iC
is Hermitian and is hence a generalized conference matrix. In both these
cases the minimal polynomial is t2− n+ 1 and C + iI respectively i(C + I)
is a flat type-II matrix.

If the minimal polynomial of C is t2 + βt+ γ, then

C2 + βC + γI = 0

and so C2 ◦ I − γI. It follows that γ = n− 1.

21.4.3 Theorem (Chan and Godsil). If C is a generalized conference ma-
trix with minimal polynomial t2 − βt + n − 1 and z + z−1 + β = 0, then
zI + C is type-II.
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We leave the proof of this as an exercise—it is a straightforward verifi-
cation. In [??], it is shown that if W is a Hermitian type-II matrix with
constant diagonal, then it arises from a generalized conference matrix.

In the next section we establish a connection between generalized con-
ference matrices and equiangular tight frames.

21.5 Type-II Matrices from Equiangular
Tight Frames

We have used the Gram matrix of a set of projections onto equiangular lines,
now we turn to a different Gram matrix. Assume x1, . . . , xm are a set of
unit vectors in dimension d, spanning a set of equiangular lines with angle
α. Then we can write their Gram matrix G as

G = I + α2S

where S is Hermitian with zero diagonal and all off-diagonal entries have
absolute value 1. We call it the Seidel matrix of the set of lines. Let U be
the n× d matrix with i-th row u∗i . Then

G = UU∗

and
U∗U =

∑
r

xrx
∗
r.

21.5.1 Theorem. A set of equiangular lines forms a tight frame if and only
if its Seidel matrix is a generalized conference matrix.

Proof.

21.6 Lines with Few Angles from Group
Matrices

The degree set of a set of lines with projections P1, . . . , Pm is the set

{〈Pr, Ps〉 : r 6= s}.

Let Γ be an abelian group. We use Γ ∗ to denote its group of characters.
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21. Lines and Bounds

21.6.1 Theorem (Godsil and Roy). Let X be a connected k-regular bipar-
tite graph with adjacency matrix

A =
(

0 B
BT 0

)
,

where B is a group matrix for an abelian group Γ of order n. Let u be
a vertex in X and if ψ is a character of Γ , let ψu denote the restriction
of ψ to the neighbourhood of u. Then the degree set of the lines in Ck

spanned by the vectors ψu consists of the numbers θ/k, where θ runs over
the non-negative eigenvalues of X not equal to k.
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Chapter 22

Real Lines

The first definition is easy enough: a set of lines in Rn is equiangular if
the angle between any two distinct lines is the same. The simplest example
would be the coordinate axes in Rd, which gives us a set of size d. The first
problem is to determine the maximum size of a set of equiangular lines in
Rd.

22.1 Projections
A line ` is a 1-dimensional subspace of V and hence can be represented by
a basis, that is, any non-zero vector in `. We can reduce redundancy by
choosing a unit vector as a basis but even over the reals this still leaves a
choice—between −x and x—while over C a unit vector is only determined
up to multiplication by a complex number of norm 1. (In quantum physics
these are known as phase factors.)

We can eliminate redundancy by using projections. If U is a subspace
of V with an orthonormal basis u1, . . . , ud then the matrix

PU :=
d∑
i=1

uiu
∗
i

represents orthogonal projection onto. Hence

P = P ∗ = P 2

and U is the image of PU and U⊥ is its kernel. In particular

tr(PU) = rk(PU) = dim(U).

251



22. Real Lines

The space of linear operators on V is an inner product space, with inner
product

〈A,B〉 := tr(A∗B) = sum(A ◦B).
If P and Q are projections then

‖P −Q‖2 = tr((P −Q)2)
= tr(P 2 +Q2 − PQ−QP )
= tr(P ) + tr(Q)− 2 tr(PQ)
= tr(P ) + tr(Q)− 2〈P,Q〉.

If P and Q are projections onto subspaces of dimension d, it follows that

‖P −Q‖2 = 2d− 〈P,Q〉;

if P and Q are projections onto lines spanned by unit vectors u and v
respectively then

P = uu∗, Q = vv∗

and
tr(PQ) = tr(uu∗vv∗) = tr(v∗uu∗v) = |u∗v|2

whence
‖P −Q‖2 = 2− 2|u∗v|2.

If we are working over R then |u∗v| is the cosine of the angle between the
lines spanned by u and v. Hence we will call |u∗v|2 a squared cosine, even
over C.

Projections are Hermitian matrices, and the Hermitian matrices of order
d× d form a real vector space of dimension d2. Over R our projections are
real symmetric matrices, and these form a real vector space of dimension(
d+1

2

)
.

22.2 Equiangular Lines
We begin by a deriving sharp upper bound on the size of a set of equiangular
lines in Rd. The first step is another representation of lines. Suppose x is a
non-zero vector. Then the matrix

X = 1
〈x, x〉

xxT
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22.2. Equiangular Lines

is symmetric and idempotent and its image is the line spanned by x. Thus
X represents orthogonal projection onto the line spanned by x. Note that if
we replace x by c, where c 6= 0, the matrix X does not change. In particular
x and −x give rise to the same matrix X. Thus X represents our line and
does not depend on the choice the basis of the line.

Further, suppose xi and xj are unit vectors and

Xi := xix
T
i , Xj = xjx

T
j .

Then
XiXj = 〈xi, xj〉xixTj

and
〈Xi, Xj〉 = tr(XiXj) = 〈xi, xj〉2.

Thus 〈Xi, Xj〉 is the squared cosine of the angle between the lines spanned
by xi and xj. Also 〈Xi, Xi〉 = 1.

22.2.1 Theorem. A set of equiangular lines in Rd has size at most
(
d+1

2

)
.

Proof. Suppose our lines are spanned by vectors x1, . . . , xn, with correspond-
ing projections X1, . . . , Xn, and that the square cosine is γ. We prove that
the matrices X1, . . . , Xn are linearly independent. Since these matrices lie
in the real vector space of d× d symmetric matrices, which has dimension(

d+ 1
2

)
,

the theorem follows immediately.
Assume that c1, . . . , cn are scalars and

0 =
n∑
i=1

ciXi.

Take the inner product of each side with Xr. Then

0 = cr +
∑
i 6=r

ciγ

= (1− γ)cr + γ
∑
i

ci.
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Since this holds for r = 1, . . . , n, we see that cr is independent of r. There-
fore we must have

0 =
n∑
i=1

Xi,

but the trace of the right side is n, and so it cannot be zero. We conclude
that the matrices Xi are linearly independent.

The above bound on the size of an equiangular set of lines is known as
the absolute bound. You may convince yourself that it is tight in R2. (We
will consider the question of tightness in more detail later.) Note that if we
have an equiangular set of n lines in Rd, the intersection of these lines gives
us a set of 2n points, namely the 2n unit vectors that span the lines. If xi
and xj are two of these vectors, then

‖xi − xj‖2 = 2− 2〈xi, xj〉 ≥ 2− 2√γ

Using this and some spherical geometry, we could derive an upper bound
on the size of our set. However the resulting bound depends on γ and is
exponential in d.

22.3 The Relative Bound
We derive a second bound on the size of an equiangular set of lines. This
bound depends both on d and the squared cosine γ. (It will also be easier
to give examples where it is tight.)

Suppose X1, . . . , Xn are the projections onto a set of equiangular lines in
Rd with squared cosine γ. If the number of lines meets the absolute bound,
then these projections span the vector space of d × d symmetric matrices,
whence there are scalars ci such that

I =
∑
i

ciXi.

If we take the inner product of each side with Xr, we find that

1 = (1− γ)cr + γ
∑
i

ci

As before this implies that cr is independent of r. Comparing traces, we
conclude that, if the absolute bound holds, then∑

i

Xi = n

d
I.
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This may motivate the following. We forget the absolute bound and
compute 〈

νI −
∑
i

Xi, νI −
∑
i

Xi

〉
= ν2d− 2νn+ n+ (n2 − n)γ

Here the left side is nonnegative for any choice of ν, so we substitute n/d
for ν in the right side and deduce that

0 ≤ n2

d
− 2n

2

d
+ n+ (n2 − n)γ

= n

d
(−n+ d+ d(n− 1)γ)

and consequently
n(1− dγ) ≤ d− dγ.

If dγ < 1, we conclude that the following relative bound holds.

22.3.1 Theorem. If there is an equiangular set of n lines in Rd with squared
cosine γ, then

n ≤ d− dγ
1− dγ

and, if equality holds and X1, . . . , Xn are the projections onto the lines, then∑
i

Xi = n

d
I.

If equality holds, we will see that the possible values for γ are quite
restricted. If ∑

i

Xi = n

d

then taking the inner product of each side with X1 yields

1− γ + nγ = n

d

and consequently
γ = n− d

d(n− 1) .

In particular, if we have an equiangular set of
(
d+1

2

)
lines in Rd with

projections X1, . . . , Xn, then

γ = 1
d+ 2 .
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22. Real Lines

A set of unit vectors x1, . . . , xn forms a tight frame in Rd if
∑
i

xix
T
i = n

d
I.

22.4 Gram Matrices
Suppose x1, . . . , xn is a set of unit vectors in Rd that span a set of equian-
gular lines with squared cosine γ, and let G be their Gram matrix. Then
we may write

G = I +√γS,

where S is a symmetric matrix with all diagonal entries zero, and all off-
diagonal entries equal to ±1. We call S the Seidel matrix of the set of
vectors. Further

1
2(J − I + S)

is the adjacency matrix of a graph. Since the lines are determined up
to an orthogonal transformation by the gram matrix, it follows that each
equiangular set of lines is determined by a graph. (The correspondence is
many-to-one, since we may replace xi by −xi without changing the set of
lines. The leads to the concept of switching classes of graphs, but we do
not go into this now.)

The next result will be the key to our analysis.

22.4.1 Lemma. Suppose x1, . . . , xn is a set of unit vectors in Rd that span
a set of equiangular lines with squared cosine γ and let G be their Gram
matrix. If the relative bound holds with equality, then

G2 = n

d
G.

Proof. Let Xi = xix
T
i . If the relative bound is tight, then

∑
i

Xi = n

d
I.

Let U be the d× n matrix with x1, . . . , xn as its columns. Then∑
i

Xi = UUT
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and G = UTU . Hence

G2 = UT (UUT )U = n

d
UTU = n

d
G.

It follows that the minimal polynomial of G is

t2 − n

d
t

and therefore the eigenvalues of G are n/d (with multiplicity d) and 0 (with
multiplicity n− d). If

S = 1
√
γ

(G− I)

then the eigenvalues of S are

n− d
d
√
γ
, − 1
√
γ

with respective multiplicities d and n − d. A symmetric matrix with one
eigenvalue is a scalar multiple of I; we have found that if there is an equian-
gular set of lines meeting the relative bound, then the Seidel matrix S is a
symmetric matrix with only two eigenvalues. Note that the procedure is re-
versible: given a Seidel matrix with only two eigenvalues, we can construct
a set of equiangular lines with size meeting the relative bound.

If S is a Seidel matrix with exactly two eigenvalues α and β, then

0 = (S − αI)(S − βI) = S2 − (α + β)S + αβI.

Since the diagonal of S is zero, it follows that each diagonal entries of S2

is equal to −αβ. On the other hand since the off-diagonal entries of S are
all ±, each each diagonal entry of S2 is equal to n − 1. Thus we see that
the product of the eigenvalues of S is 1−n. Hence the eigenvalues of S are
(n− 1)√γ and −1/√γ.

22.5 Number Theory
Suppose F and E are fields and F ≤ E. If a ∈ E, the minimum polynomial
of a over F is the monic polynomial ψ of least degree with coefficients in F
such that ψ(a) = 0, if it exists. We will only be concerned with cases where
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F = Q and E = C. An element which does not have a minimal polynomial is
transendental, otherwise it is algebraic. The elements of C whose minimal
polynomial over Q have integer coefficients are called algebraic integers;
these form a ring. The minimal polynomial of a over F is irreducible over
F. Two elements of E are algebraic conjugates over F if they have the same
minimal polynomial.

Note that E is a vector space over F, we denote its dimension by |E : F|
and, if it is finite, we may say that E is an extension of F with degree equal
to E : F|. A quadratic extension is an extension of degree two. If a ∈ E,
then the set F[a] of all polynomials in a with coefficients from F is a vector
space over F; its dimension is the degree of the minimal polynomial of a.

Suppose φ(t) is the characteristic polynomial of the integer matrix A.
If λ is an eigenvalue of A, thenφ(λ) = 0 and it follows that the minimal
polynomial of a divides φ. Hence each zero of the minimal polynomial, that
is, each algebraic conjugate of λ, is an eigenvalue of A. Further all algebraic
conjugates of λ will have the same algebraic multiplicity.

22.5.1 Lemma. If there is an equiangular set of n lines in Rd with squared
cosine γ such that the relative bound holds, then either 1/√γ is an integer,
or n = 2d and 1/√γ lies in a quadratic extension of the rationals.

Proof. Since S is an integer matrix, its eigenvalues are algebraic integers.
Further if λ is an eigenvalue of S, then all its algebraic conjugates are
eigenvalues of S with multiplicities equal to the multiplicity of λ. Since S
has exactly two eigenvalues with multiplicities n−d and d we see that either
λ is an integer, or n = 2d and λ is a quadratic irrational. Since −1/√γ is
an eigenvalue of S, the second claim follows.

We have seen that if we have an equiangular set of
(
d+1

2

)
lines in Rd,

then γ = (d+ 2)−1. Hence we have the following.

22.5.2 Corollary. If there is an equiangular set of lines in Rd meeting the
absolute bound and d ≥ 4, then d+ 2 is the square of an integer.

We will see later that d+2 must actually be the square of an odd integer.
Examples of sets of lines meeting the absolute bound are known when d = 2,
3, 7 or 23 (and we will present them later). No other examples are known.
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22.6 Switching
If X is a graph then

S = A(X)− A(X)
is a Seidel matrix and so, if X has v vertices and least eigenvalue τ with
multiplicity m, then

S − γI
is the Gram matrix of an equiangular set of v lines in Rv−m with squared
cosine γ−2. Suppose D is a v × v diagonal matrix with diagonal entries
±1. Then D = D−1 and so DSD is a Seidel matrix which is similar to
S. As far as lines are concerned, replacing S by DSD is equivalent to
multiplying some of the spanning unit vectors −1, and so geometrically
nothing interesting is happening. However DSD is the Seidel matrix of
some graph Y , and we want to determine the relation between X and Y .

If σ ⊆ V (X), we define Xσ to be the graph we get from X by comple-
menting the edges that join vertices in σ to vertices not in σ. If σ denotes
the complement of σ, then in set theoretic terms E(Xσ) is the symmetric
difference of E(X) and the edge set of the complete bipartite graph with
bipartition

(σ, σ)
We say that Xσ is obtained by switching about the subset σ. Note that
switching twice about σ restores X to itself, and that

Xσ = Xσ.

If D is the v × v diagonal matrix such that Di,i = −1 if i ∈ σ and Di,i = 1
if i /∈ σ, then

DS(X)D = S(Xσ).
This reconciles the graph theory and the linear algebra.

It is not hard to show that any sequence of switchings on subsets of
X can be realised by switching on a single subset. So we say graphs X
and Y are switching equivalent if Y is isomorphic to Xσ for some σ, and
the graphs that are switching equivalent to X form its switching class. If
σ is the neighborhood of a vertex v in X, then v is an isolated vertex in
Xσ; in this case we say that Xσ is obtained by switching off v. In 22.10
we introduce the graph of a set of equiangular lines; this determines the
switching class of X. (More precisely, it reduces switching equivalence of
graphs on v vertices to isomorphism of certain graphs on 2v vertices.)
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22.7 Paley Graphs
Let F be a finite field of order q, where q ≡ 1 modulo four. The Paley graph
on q vertices has F as its vertex set, and two field elements are adjacent if
and only if their difference is a non-zero square in F. (The condition on q
assures that we obtain a graph rather than a directed graph. The 5-cycle
is the Paley graph associated to the field of order 5.

A Paley graph is self-complementary and is strongly regular with pa-
rameters (

q,
q − 1

2 ; q − 5
4 ,

q − 1
4

)
.

Its eigenvalues are its valency (with multiplicity 1) and

1
2(1±√q).

each with multiplicity (q − 1)/2.

22.7.1 Lemma. If X is a Paley graph on q vertices and S = S(X ∪K1),
then S2 = qI.

Proof. Exercise.

Since tr(S) = 0, the eigenvalues ±√q each have multiplicity (q + 1)/2.
Hence

S +√qI

is the Gram matrix of a equiangular set of q + 1 lines in R(q+1)/2.
In particular, the Paley graph on five vertices provides us with a set of

six equiangular lines in R3. This realizes the absolute bound (and provides
a construction of the icosahedron).

A v × v matrix C with zero diagonal and entries ±1 off the diagonal is
a conference matrix if

CTC = (v − 1)I.

The Seidel matrices we have just constructed are symmetric conference
matrices.
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22.8 A Spherical 2-Design
Suppose we have a set of n equiangular lines in Rd with squared cosine γ.
We may assume without loss that one of the lines is spanned by the first
standard basis vector e1, and then we can choose unit vectors x2, . . . , xn
spanning the remaining n− 1 lines so that

〈e1, xi〉 = √γ.

This means that each vector xi can be written as

xi =
(√

γ
yi

)

where ‖yi‖ =
√

1− γ. Hence the projection onto the line spanned by xi has
the form (

γ
√
γyTi√

γyi yiy
T
i

)
.

Now assume that the relative bound is tight. If X1, . . . , Xn denote the
projections onto our lines, then

n∑
i=1

Xi = n

d
I.

If we let zi denote the unit vector (1− γ)−1/2yi, then we have∑
i

zi = 0,
∑
i

ziz
T
i = n

d− dγ
I.

It follows that the vectors zi provide an example of what we will come to
call a spherical 2-design. Now we simply show that these vectors determine
a strongly regular graph on n− 1 vertices.

The first step is to note that since

γ + yTi yj = xTi xj = ±√γ

we have
zTi zj =

±√γ − γ
1− γ .

We define a graph G with the vectors zi as its vertices, where two distinct
vectors are adjacent if their inner product is positive. Let Z denote the
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22. Real Lines

(d − 1) × (n − 1) matrix with the vectors zi as its columns. If A := A(G),
then

ZTZ = I +
√
γ − γ

1− γ A−
√
γ + γ

1− γ (J − I − A)

=
1 +√γ
1− γ I +

2√γ
1− γA−

√
γ + γ

1− γ J. (22.8.1)

On the other hand

ZZT =
∑
i

ziz
T
i = n

d− dγ
I

and therefore
(ZTZ)2 = n

d− dγ
ZTZ.

This implies that ZTZ has exactly two eigenvalues, and from (22.8.1) it
follows that A has exactly three eigenvalues. Since ∑ zi = 0, we see that

JZTZ = ZTZJ = 0,

and therefore G is regular. Thus G is a regular graph with three eigenvalues,
and therefore it is strongly regular. (A strongly regular graph can arise in
this way if and only if k = 2c.)

You are invited to show that if z is an eigenvector of A that is orthogonal
to 1, then its eigenvalue is one of

1
2

(
n− d
d
√
γ
− 1

)
= 1

2[(n− 1)√γ − 1], 1
2

(
− 1
√
γ
− 1

)
.

If we compare these with the eigenvalues of the Seidel matrix, we deduce
that if the eigenvalues of the Seidel matrix are integers, they must be odd
integers.

For any strongly regular graph, c− k = θτ and as k = 2c it follows that
k = −2θτ . Hence the valency of G is

k = 1
2√γ ((n− 1)√γ − 1))(1 +√γ).
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22.9 An Example
We construct a set of 28 vectors xi,j in R8 by defining xi,j to be the vector
with i-th and j-th entries equal to 3, and all other entries equal to −1. The
entries of each of these vectors sum to zero, and so they span a set of lines
in R7 with squared cosine 1/9. Since

28 =
(

8
2

)
,

we have equality in the absolute bound. Choose x1 to be the vector with
first two entries equal to 3 (which is not a unit vector but that will not
matter). The neighbors of x1 in the graph of the lines consists of the 27
vectors of the form ±xi,j with positive inner product with x1. This set of
vectors consists of the 12 vectors with first or second entry equal to 3, and
the fifteen vectors with first two entries equal to 1.

The eigenvalues of the Seidel matrix are 9 and −3, and the eigenvalues
of the neighborhood in the two-graph are 4 and −2. The valency is 16. If
the eigenvalues of the neighborhood are k, θ and τ , then

(t− θ)(t− τ) = t2 − (a− c)t− (k − c).

Hence we have

c = k + θτ, a = c+ θ + τ = k + θτ + θ + τ

and for the graph at hand

c = 8, a = 10.

22.10 Graphs from Equiangular Lines
Let x1, . . . , xn be a set of n unit vectors in Rd, spanning a set of equiangular
lines with squared cosine γ. The graph of this set of lines has the 2n vectors
±xi as its vertices, and two such vectors are deemed to be adjacent if their
inner product is √γ. Thus its vertex set is partitioned into n pairs

{xi,−xi}

and if j 6= i then xj is adjacent to exactly one of the vectors xi and −xi.
So the subgraph induced by two pairs is isomorphic to 2K2.
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22.10.1 Lemma. If Y is the graph of a set of equiangular lines, then we
may write A(Y ) in the form

A(Y ) =
(
A(X) A(X)
A(X) A(X)

)

where A(X)− A(X) is the Seidel matrix of the set of lines.

22.10.2 Corollary. Suppose Y is the graph of a set of n equiangular lines.
Then

φ(A(Y ), t) = φ(S, t)φ(Kn, t).

Proof. If
A(Y ) =

(
A A
A A

)

where A = A(X) for some graph X, then(
I 0
I I

)(
A A
A A

)(
I 0
−I I

)
=
(
A− A A

0 A+ A

)
.

As an exercise, you may prove that if the graph of an equiangular set of
n lines is either connected with diameter three, or is isomorphic to 2Kn.

If u, v and w are distinct vertices in the graph of an equiangular set of
lines and

dist(u, v) = dist(u,w) = 3

then
N(v)\w = N(w)\ c,

since N(v) and N(w) are sets of size n− 1 disjoint from u ∪N(u).

22.10.3 Theorem. If L is an equiangular set of lines in Rd that meets
the relative bound, then its graph is an antipodal distance-regular graph of
diameter three, and the neighbourhood of any vertex is strongly regular.

Proof. We have already proved the second claim, in 22.8. Given this it is
easy to show that the graph is distance regular and antipodal with diameter
three. Do it.
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The graph of a set of equiangular lines is sometimes called a two-graph;
we say a two-graph is regular if each neighborhood is regular. A two-graph
is regular if and only if the size of corresponding set of lines meets the
relative bound.

22.10.4 Theorem. If Y is a two-graph, the following are equivalent:

(a) Y is distance regular.

(b) The neighborhood of each vertex of Y is regular.

(c) The neighborhood of each vertex of Y is strongly regular.

(d) The neighborhood of some vertex is strongly regular with k = 2c.
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Chapter 23

Complex Lines

We investigate the complex analogs of the results in the previous chapter.

23.1 The Absolute Bound
If x is a non-zero vector in Cd then the matrix

1
x∗x

xx∗

represents orthogonal projection onto the line spanned by x. This is a
Hermitian matrix with rank one. If X and Y are projections onto complex
lines, we define the inner product

tr(X∗Y )

to be the squared cosine of the angle between the two lines. If x and y are
unit vectors and X = xx∗ and Y = yy∗, then

tr(X∗Y ) = 〈x, y〉〈y, x〉 = |〈x, y〉|2.

23.1.1 Theorem. A set of equiangular lines in Cd has size at most d2.

Proof. Suppose X1, . . . , Xn are the projections onto an equiangular set of
n lines in Cd with squared cosine γ. We show that these projections form
a linearly independent set in the vector space of Hermitian d× d matrices,
and deduce the bound from this.
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23. Complex Lines

Assume that we have real scalars c1, . . . , cn such that

0 =
∑
i

ciXi.

If we take the inner product of both sides with Xr, on the left, we get

0 = (1− γ)r +
∑
i

ciγ,

from which we deduce that cr is independent of r and hence that

0 =
∑
i

Xi.

Since the trace of the right side is n, we have a contradiction and so we
conclude that X1, . . . , Xn is linearly independent.

The set of d×d Hermitian matrices is a real vector space with dimension
d2, and therefore n ≤ d2 as asserted.

23.2 The Relative Bound
Physicists are only interested in equiangular sets of size d2; we will consider
a broader class of problems.

Suppose X1, . . . , Xn are the projections onto a set of n equiangular lines
with squared cosine γ, and that there are scalars c1, . . . , cn such that

I =
∑
i

ciXi.

Then taking the inner product with Xr as before, we deduce that cr is
independent of r, and hence that∑

i

Xi = n

d
I.

It follows that
1− γ + nγ = n

d
and so

γ = n− d
d(n− 1)

When n = d2, this yields that

γ = 1
d+ 1 .
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23.2.1 Theorem. If there is an equiangular set of n lines in Cd with squared
cosine γ and dγ < 1, then

n ≤ d− dγ
1− dγ

and, if equality holds and X1, . . . , Xn are the projections onto the lines, then∑
i

Xi = n

d
I.

Proof. Exercise.

23.3 Gram Matrices
The Gram matrices of sets of equiangular lines in Cd do not lead to graphs
in general, but they still have some interesting properties.

Suppose x1, . . . , xn are unit vectors spanning a set of equiangular lines
in Cd with squared cosine γ, let G be their Gram matrix and let S be the
matrix defined by

G = I +√γS.
Thus S is a Hermitian matrix with zero diagonal and with all off-diagonal
entries having absolute value 1.

Assume now that the relative bound is tight, and let Z be the d × n
matrix with the vectors x1, . . . , xn as its columns. Then

G = ZTZ

and
ZZT = n

d
I,

whence
G2 = n

d
G.

Thus the eigenvalues of G are 0 (with multiplicity n − d) and n/d (with
multiplicity d) and therefore the eigenvalues of S are

− 1
√
γ
,

n− d
d
√
γ

with respective multiplicities n− d and d.
In general the entries of S are not integers and thus we cannot argue,

as we did in the real case, that γ−1/2 must be an integer.
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23.4 Type-II Matrices
We use A ◦ B to denote the Schur product of two matrices with the same
order. If A ◦B = J , we say that B is the Schur inverse of A, and write

B = A(−).

A v × v complex matrix W is a type-II matrix if

WW (−)T = vI.

Note that ifW is any Schur invertible v×v matrix, then the diagonal entries
of WW (−)T are all equal to v. Hadamard matrices are type-II matrices.

IfW is type II, then so areW T andW (−). IfD is diagonal and invertible,
then DW andWD are both type II; if P is a permutation matrix then PW
andWP are type-II. IfW1 andW2 are type-II matrices, so is their Kronecker
product W1 ⊗W2.

We say that a complex matrix is flat if all its entries have the same
absolute value. Hadamard matrices are flat.

23.4.1 Lemma. If W is a square complex matrix, then any two of the
following imply the third:

(a) W is type II.

(b) A non-zero scalar multiple of W is unitary.

(c) W is flat.

Proof. Exercise.
Suppose x1, . . . , xn is an equiangular set of n lines in Cd with squared

cosine γ and the relative bound is tight. Let G be the Gram matrix of a
set of unit vectors spanning these lines and set

S = 1
√
γ

(G− I).

From the previous section, the eigenvalues of S are

τ := − 1
√
γ
, θ := n− d

d
√
γ
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23.4. Type-II Matrices

and so (S − τI)(S − θI) = 0 and hence

S2 = (θ + τ)S − θτI = n− 2d
d
√
γ
S + (n− 1)I.

23.4.2 Lemma. Suppose S is the Seidel matrix of an equiangular set of n
lines in Cd with squared cosine γ. If the relative bound is tight and

λ+ λ−1 + n− 2d
d
√
γ

= 0,

then λI + S is a type-II matrix.

Proof. We note that
S = S∗ = S(−)T

and therefore

(λI + S)(λI + S)(−)T = (λI + S)(λ−1I + S(−)T )
= (λI + S)(λ−1I + S)
= I + (λ+ λ−1)S + S2

= I(1− θτ) + (λ+ λ−1 + θ + τ)S.

The lemma follows immediately.

Let us call a matrix d-flat if its off-diagonal entries all have the same
absolute value and its diagonal entries all have the same absolute value.
We say that a d-flat matrix isnormalized if it off-diagonal entries all have
absolute value 1, and its diagonal entries are real.

23.4.3 Lemma. SupposeW is a normalized d-flat type-II matrix. IfWi,i =
δ 6= 1 and S := W − δI, then S is the Gram matrix of a set of equiangular
lines realizing the relative bound.

Proof. Assume W is v × v. We see that S(−)T = S∗ and so

W (−)T = δ−1I + S∗.

Therefore
vI = WW (−)T = I + δS∗ + δ−1S + SS∗ (23.4.1)
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and on taking the conjugate-transpose of this, we get

vI = I + δS + δ−1S∗ + SS∗.

Comparing this with (23.4.1) yields that

(δ − δ−1)S = (δ − δ−1)S∗.

Therefore S is Hermitian and so (23.4.1) implies that

S2 + (δ + δ−1)S − (v − 1)I = 0.

If τ is the least eigenvalue of S, then

I + 1
τ
S

is positive semidefinite with one positive eigenvalue.

23.5 The Unitary Group
Let V be an inner product space. A linear operator M on V is orthogonal
if

〈Mu,Mv〉 = 〈u, v〉

for all u and v in V . If the inner product is complex we often call an
orthogonal operator unitary. The matrix that represents an orthogonal
operator relative to an orthogonal basis is also said to be orthogonal. The
adjoint M∗ of M is the operator defined by the condition

〈U,Mv〉 = 〈M∗u, v〉.

Thus M is unitary if and only if M∗ = M−1.
An orthogonal operator clearly preserves the length of a vector.

23.5.1 Lemma. A linear operator preserves length if and only if it is or-
thogonal.

Proof. We assume the inner product is complex, as this case is slightly
trickier and it implies the real case.
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If M is a unitary linear operator on V and x, y ∈ V , then

〈x+ y, x+ y〉 = 〈Mx+My,Mx+My〉
= 〈Mx,Mx〉+ 〈My,My〉+ 〈Mx,My〉+ 〈My,Mx〉
= 〈x, x〉+ 〈y, y〉+ 〈Mx,My〉+ 〈My,Mx〉

Therefore
〈x, y〉+ 〈y, x〉 = 〈Mx,My〉+ 〈My,Mx〉

Setting ix in place of x in this identity yields

−i〈x, y〉+ i〈y, x〉 = −i〈Mx,My〉+ i〈My,Mx〉

and therefore
〈x, y〉 = 〈Mx,My〉

for all x and y.
We construct a useful class of unitary mappings. Suppose ϕ ∈ V ∗ \ 0

and y ∈ V \0. If we define the mapping τ by

τ(x) := x+ ϕ(x)y

then τ is linear and fixes each vector in kerϕ. Then

〈τ(x), τ(x)〉 = 〈x, x〉+ ϕ(x)〈x, y〉+ ϕ(x)〈y, x〉+ ϕ(x)ϕ(x)〈y, y〉 (23.5.1)

and if τ preserves length, then ϕ(x) = 0 whenever 〈y, x〉 = 0. Thus the
kernel of the linear map

x 7→ 〈y, x〉
is contained in ker(ϕ). Since both kernels have codimension one in V , they
are equal and consequently there is a non-zero scalar λ such that

ϕ(x) = λ〈y, x〉

for all x.
If we substitute φ(x) = −λ〈y, x〉/〈y, y〉 in (23.5.1) then

〈τ(x), τ(x)〉 = 〈x, x〉 − (λ+ λ− λλ)〈x, y〉〈y, x〉
〈y, y〉

and therefore τ preserves length if and only if

λ+ λ− λλ = 0,

which happens if and only if ‖1− λ‖ = 1.

273



23. Complex Lines

23.5.2 Corollary. The map τ : V → V given by

τ(x) = x− 2〈y, x〉
〈y, y〉

y

is unitary.

We note that
τ(y) = y − 2y = −y

and from this it follows that τ 2 = 1. The map τ is therefore called a complex
reflection.

23.6 A Special Group
A diagonal matrix is unitary if its diagonal entries have absolute value 1.
If D is a diagonal matrix and P a permutation matrix of the same order,
then PDP T = D′ is diagonal and so PD = D′P . Define two d×d matrices
X and Y as follows. Let e0, . . . , ed−1 be the standard basis for Cd, with the
understanding that the indices 0, . . . , d − 1 are integers modulo d, and set
θ = exp(2πi/d). Then

Xei = ei+1, Y ei = θiei.

Thus X is a permutation matrix and Y is diagonal. The Weyl-Heisenberg is
the group generated byX, Y and θI. (A physicist would call it a generalized
Pauli group.)

We investigate some of the properties of this group, which we denote by
G. We calculate

XY ei = θiei+1, Y Xei = θi+1ei+1,

and thus
Y X = θXY,

in particular X and Y do not commute. It also follows from this relation
that each element of our group can be written in the form

θrXsY t
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where 0 ≤ r, s, t ≤ d− 1. This shows that |G| ≤ d3. You should prove that
equality holds.

The subgroup if G consisting of the elements θrI is central with order
d. The quotient G/D is abelian and is isomorphic to Z2

d.

23.6.1 Lemma. The group G acts irreducibly on Cd.

Proof. Suppose U is a non-zero subspace that is fixed by G, and let u be a
non-zero vector in it. Then U contains Xru for all r, and so we may assume
without loss that u1 6= 0. Then the vector∑

r

Y ru = ce1,

for some scalar c. Hence U contains 1, and since er = Xre1, we conclude
that U contains a basis for Cd. Therefore U = Cd, and so we have shown
that no proper subspace of Cd is G-invariant.

This lemma has important consequences. First, it implies that the only
matrices that commute with all elements of G are the scalar matrices. Sec-
ond it implies that the subspace of Matd×d(C) spanned by the elements of
G has dimension d, and thus this subspace is Matd×d(C). (The second fact,
due to Burnside, implies the first, due to Schur.)

The Weyl-Heisenberg group can be used to construct sets of d2 equian-
gular lines in Cd. The idea is to choose a non-zero vector f in Cd, and
consider the lines spanned by the images of f under the action of the d3

elements of the group. This will produce at most d2 lines, and in certain
cases the result is a set of d2 equiangular lines. To be more specific, if d = 2
we make take f to be one of the two vectors

1√
6

 ±√3±
√

3
eiπ/4

√
3∓
√

3


When d = 3 we make take f to be

1√
2

1
1
0

 .
There is no algorithm for finding f , but examples have been constructed in
dimensions 2− 7 and 18. An example is also known when d = 8, although
it uses a different group. The physicists call f a fiducial vector.
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Wootters http://arxiv.org/pdf/quant-ph/0406032
Renes, Blume-Kohout, Scott, Caves http://arxiv.org/abs/quant-ph/

0310075
Flammia http://arxiv.org/pdf/quant-ph/0605050
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Chapter 24

Spherical Designs

24.1 Orthogonal Polynomials
We work with real inner products on the vector space of polynomials R[t],
or the subspace of real polynomials with degree at most n. We assume that
this inner product satisfies

〈p, tq〉 = 〈tp, q〉.

Multiplication by t is a linear endomorphism of R[t], the given condition
asserts that this endomorphism is self-adjoint relative to the given inner
product. We will also assume that if f is a non-zero polynomial and f(t) ≥ 0
for all t, then

〈1, f〉 > 0.
Examples. If w(t) is a non-negative real function such that for non-

negative integers m, ∫
t2mw(t) dt <∞

then we may take
〈p, q〉 :=

∫
p(t)q(t)w(t) dt.

As particular cases, we might have

〈p, q〉 =
∫ 1

−1
(1− t2)m/2 dt

or
〈p, q〉 = 1√

2π

∫ ∞
−∞

p(t)q(t) exp(−t2/2) dt.
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A sequence of polynomials pn (n ≥ 0) is a sequence of orthogonal poly-
nomials if

(a) deg(pn) = n for all n.

(b) If i 6= j, then 〈pi, pj〉 = 0.

Any such sequence can be constructed by using Gram-Schmidt to obtain
an orthogonal basis for R[t] from the basis

1, t, t2, . . .

Note that this sequence is not completely determined; if we multiply each
term in a sequence of orthogonal polynomials by a non-zero scalar, the
resulting sequence is still a sequence of orthogonal polynomials. We can
eliminate this ambiguity by normalizing the polynomials. There are three
common ways to do this. We could take the polynomials to be monic, we
might arrange that they be orthonormal, or we could choose a scalar a which
is not a zero of any of the polynomials and then assume that pn(a) = 1 for
all n.

24.2 A Three-Term Recurrence
24.2.1 Theorem. If (pn)n≥0 is a sequence of orthogonal polynomials, then
there are scalars an, bn and cn such that for each n,

tpn(t) = bnpn−1(t) + anpn(t) + cnpn+1(t).

Proof. We first observe that pn is orthogonal to all polynomials of degree
less then n. So if r < n− 1, then

0 = 〈pn, tpr〉 = 〈tpn, pr〉

Similarly if r > n + 1, then 〈tpn, pr〉 = 0. Therefore tpn must be a linear
combination of pn−1, pn and pn+1.

If we normalize our polynomials so that pn is monic for all n, then cn = 1
for all n. Further, the coefficient of pn in the expansion of tpn−1 as a linear
combination of orthogonal polynomials is 1. Hence

〈tpn, pn−1〉 = 〈pn, tpn−1〉 = 〈pn, pn〉 > 0
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and consequently

bn = 〈pn, pn〉
〈pn−1, pn−1〉

.

We also have
an = 〈pn, tpn〉

〈pn, pn〉
.

24.2.2 Lemma. Suppose pn is a member of a sequence of orthogonal poly-
nomials and q | pn. If q ≥ 0, then q is constant.

Proof. Assume p = qh. Then

〈p, h〉 = 〈1, ph〉 = 〈1, qh2〉

and since qh2 ≥ 0, it follows that 〈p, h〉 > 0. On the other hand if q is not
constant then δ(h) < n and 〈p, h〉 = 0.

24.2.3 Theorem. If pn is a member of a sequence of orthogonal polynomi-
als, then its zeros are real and simple.

Proof. If the zeros of pn are not all real, then since its coefficients are real
it must have a complex conjugate pair of zeros, θ and θ say. So

q(t) := (t− θ)(t− θ)

is a real factor of pn that is non-negative for all t. By the previous lemma,
this is impossible.

If θ is a zero of pn that is not simple, then

q(t) = (t− θ)2

is a real factor of pn that is non-negative for all t.

Using the three-term recurrence, we could prove that the zeros of pn−1
are real and interlace the zero of pn.

24.3 The Unit Sphere
24.3.1 Lemma. Pol(Ω, r) = Hom(r)⊕ (x2

1 + · · ·+ x2
d) Hom(r − 1).
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24.3.2 Corollary.

dim Pol(Ω, r) =
(
d+ r − 1

r

)
+
(
d+ r − 2
r − 1

)
.

Let Ω denote the unit sphere in Rd. If f and g are functions on Ω, we
define

〈f, g〉 =
∫
fg dµ

where µ denotes the usual measure on Ω. Note that

〈1, f〉

is the average value of f on Ω.
If a ∈ Ω and p ∈ R[t], we define the function pa by

pa(x) := p(aTx).

We say that pa is a zonal polynomial relative to a.
If we fix a then the inner product on Pol(Ω,) gives an inner product on

R[t]. The corresponding family of orthogonal polynomials is known as the
Gegenbauer polynomials. Here the inner product is given by

〈f, g〉 =
∫ 1

−1
f(t)g(t) (1− t2)(d−3)/2dt.

If gi denotes the i-th Gegenbauer polynomial, we use ga,i to denote (gi)a.
We will refer to ga,i as a Gegenbauer polynomial. Note that if gi(1) = 0,
then 1 − t is a non-negative factor of gi(t). It follows that gi(1) 6= 0 and
hence we may choose our normalization so that

〈ga,i, ga,i〉 = ga,i(a).

The polynomials ga,i are known as zonal orthogonal polynomials on the
sphere.

We note that

g0(t) = 1
g1(t) = dt

2g2(t) = (d+ 2)(dt2 − 1)
6g3(t) = d(d+ 4)[(d+ 2)t3 − 3t]

24g4(t) = d(d+ 2)(d+ 8)[(d+ 2)(d+ 4)t4 − 6(d+ 2)t2 + 3]
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24.4 Two Bounds
Suppose Φ ⊆ Ω. The degree of Φ is the size of the set

{xTy : x, y ∈ Φ, x 6= y}.

We call the set the degree set of Φ. If f ∈ Pol(Ω,), then

〈1, f〉Φ := 1
|Φ|

∑
x∈Φ

f(x).

We say that Φ has strength at least r if

〈1, f〉 = 〈1, f〉Φ

for all f in Pol(Ω, r).

24.4.1 Theorem. If Φ ⊆ Ω and deg(Φ) = s, then

|Φ| ≤ dim Pol(Ω, r).

Proof. If D is the degree set of Φ, we define

ϕ(t) :=
∏
λ∈D

t− λ
1− λ.

Then ϕa(a) = 1 and ϕa(b) = 0 if b ∈ Φ \a. Therefore the restrictions to Φ
of the functions ϕa for a in Φ are linearly independent, and so the functions
ϕa are linearly independent.

24.4.2 Theorem. If Φ is a subset of Ω with strength r, then

|Φ| ≥ dim(Pol(Ω,
⌊
t

2

⌋
)).

Proof. Let h1, . . . , hn be an orthonormal basis for Pol(Ω,
⌊
t
2

⌋
)). Then hihj

has degree at most t and consequently

〈hi, hj〉 = 〈hi, hj〉Φ.

Therefore the restrictions to Φ of the functions hi are orthogonal, and there-
fore these restrictions are linearly independent elements of the space of real
functions on Φ, whose dimension is |Φ|.
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24.5 Harmonic Polynomials
We define Harm(r) to be the orthogonal complement to Pol(Ω, r − 1) in
Pol(Ω, r). The elements of Harm(r) are harmonic polynomials of degree r.

If f ∈ Pol(Ω,), let Pa(f) denote the orthogonal projection of f onto the
space of zonal polynomials relative to a. If γ lies in the orthogonal group
O(d) we define fγ by

fγ(x) := f(γx).
We make two claims:

(a) Pa(f) is equal to the average of the functions fγ, where γ runs over the
subgroup of O(d) that leaves a fixed.

(b) deg(Pa(f)) ≤ deg(f).

24.5.1 Theorem. If ρa,r := ∑
j≤r ga,j and deg(f) ≤ r, then 〈f, ρa,r〉 = f(a).

Proof. We have
〈Pa(f), ga,i〉 = 〈f, ga,i〉

and therefore
Pa(f) =

∑
i≤r

〈f, ga,i〉
〈ga,i, ga,i〉

ga,i.

Since 〈ga,i, ga,i〉 = ga,i, this implies that

Pa(f)(a) =
∑
i≤r
〈f, ga,i〉 = 〈f, ρr〉.

To complete the proof, note that Pa(f)(a) = f(a).
The next result is known as the addition rule, and plays a very important

role.

24.5.2 Corollary.
〈ga,i, gb,j〉 = δi,jga,i(b).

Proof. If j < i, then deg(Pa(gb,i)) < i and therefore

〈ga,i, gb,j〉 = 〈ga,i, Pa(gb,j)〉 = 0.

If i = j, then

〈ga,i, gb,i〉 = 〈ρa,i, gb,i〉 = gb,i(a) = ga,i(b).
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24.5.3 Theorem. If p1, . . . , pn is an orthonormal basis for Harm(r), then

ga,r(x) =
n∑
i=1

hi(a)hi(x).

Proof. Since 〈hi, hi〉 = 1, we have

ga,r =
n∑
i=1
〈ga,r, pi〉pi =

n∑
i=1
〈ha,r, pi〉pi =

n∑
i=1

hi(a)hi.

24.6 Linear Programming
24.6.1 Lemma. If Φ is a finite subset of Ω, then ∑a,b∈Φ ga,r(b) ≥ 0.

Proof. We have

∑
a,b∈Φ

ga,r(b) =
∑
a,b∈Φ

∑
i

hi(a)hi(b) =
∑
i

(∑
a∈Φ

hi(a)
)2

≥ 0.

Essentially the same argument shows that the kernel ga,r(b) is positive
semidefinite.

24.6.2 Theorem. Suppose Φ is a subset of Ω with degree s and let F (t)
be a polynomial such that

(a) degF ≤ s.

(b) F (1) = 1.

(c) If a, b ∈ Φ and a 6= b, then Fa(b) ≤ 0.

(d) 〈F, ga,i〉 ≥ 0.

Then
|Φ| ≤ F (1)

〈1, Fa〉
.

Proof. Assume
Fa =

s∑
i=0

figa,i.
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We have
〈1, Fa〉Φ = 1

|Φ|

(
1 +

∑
b∈Φ\a

Fa(b)
)
≤ 1
|Φ|

and therefore
1
|Φ|
≥ 1
|Φ|

∑
a∈Φ
〈1, Fa〉Φ

= 1
|Φ|

∑
a∈Φ

s∑
i=0

fi〈1, ga,i〉Φ

=
s∑
i=0

fi
|Φ|2

( ∑
a,b∈Φ

ga,i(b)
)

≥ f0.

By way of example, suppose

F (t) = (tα)(t− β).

Then
f0 = αβ + 1

d
, f1 = −α + β

d
, f2 = 2

d(d+ 1)
and consequently if −1 ≤ α, β ≤ 1 and

α + β ≤ 0, αβ ≥ 1
d
,

then a subset of Ω with degree set contained in {α, β} has size at most

d(1− α)(1− β)
1 + dαβ

.
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Chapter 25

Frames

25.1 Isoclinic Subspaces
Let U and V be two k-dimensional subspace of an inner product space W ,
and let P and Q be the corresponding orthogonal projections. Then P
maps the unit sphere in V to an ellipsoid in U . The shape of this ellipsoid
is determined by the extreme points of the function

‖Pv‖2 = v∗P ∗Pv = v∗Pv,

where v runs over the unit vectors in V . We say that V is isoclinic to U is
there is a constant λ such that

v∗Pv = λv∗v.

If V is isoclinic to U with parameter λ, then

x∗Q∗PQx = λx∗Q∗QX = λx∗Qx

for all x in w. Hence we see see that U and V are isoclinic with parameter
λ if and only if

QPQ = λQ.

Thus we have translated a geometric condition into a linear algebraic one.
Our next result shows that is a symmetric relation.

25.1.1 Lemma. The subspace U is isoclinic to V if and only if V is isoclinic
to U .
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25. Frames

Proof. Let R be a matrix whose columns form an orthonormal basis for
U , and let S be a matrix whose columns form an orthonormal basis for V .
Then

RR∗ = P, SS∗ = Q

and
QPQ = SS∗RR∗SS∗ = S(S∗RR∗S)S∗.

If QPQ = λQ, then it follows that

λSS∗ = S(S∗RR∗S)S∗

and therefore
λI = S∗S(S∗RR∗S)S∗S = S∗RR∗S.

Hence R∗SS∗R = λI and so

λP = λRR∗ = R(R∗SS∗R)R∗ = PQP.

Note that tr(PQP ) = tr(QPQ), and so if rk(P ) = rk(Q) and QPQ =
λP , then PQP = λP . A consequence of the proof is that U and V are
isoclinic if and only the matrix λ−1R∗S is orthogonal.

As exercises, prove that if P and Q are projections then (P −Q)2 com-
mutes with P and Q. Also if U and V are isoclinic with parameter λ,
then

(P −Q)3 = (1− λ)(P −Q).
This implies that the eigenvalues of P −Q are

0, ±
√

1− λ;

since tr(P − Q) = 0, the non-zero eigenvalues have equal multiplicity. Un-
fortunately I have no idea what to do with this information :-(

25.2 Matrices
We investigate sets of pairwise isoclinic k-subspaces in Rn. Let U be the
column space of the matrix

R =
(
Ik
0

)
.
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Suppose S is the n× k matrix

S =
(
Y
Z

)
where S∗S = Ik. Then the column spaces of R and S are λ-isoclinic if and
only if

λI = S∗RR∗S = Y ∗Y.

Since
I = S∗S = Y ∗Y + Z∗Z

we then have Z∗Z = (1− λ)I. If

T =
(

λ1/2I
λ−1/2ZY ∗

)

then T = λ−1/2SY ∗, so col(T ) = col(S) and T ∗T = I.

25.2.1 Lemma. If V is λ-isoclinic to the column space of(
Ik
0

)
then V is the column space of a matrix(

λ1/2Ik
λ−1/2Z

)
where Z∗Z = (1− λ)I.

Now suppose
a2I + A∗A = b2I +B∗B = I;

then the column spaces of the matrices

R =
(
aI
A

)
, S =

(
bI
B

)
are isoclinic if and only if R∗S is a scalar multiple of an orthogonal matrix.
We have

R∗S = abI + A∗B

and so our spaces are ν-isoclinic if and only if

(abI + A∗B)(abI +B∗A) = νI.

Equivalently, ν−1/2(I + A∗B) must be unitary.
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25.3 Equiangular Subspaces
Suppose that P1, . . . , Pm are projections onto e-dimensional subspaces of
d-dimensional vector space. We say that they are equiangular if there is a
scalar α2 such that

tr(PiPj) = α2

whenever i 6= j. We note that

tr(P −Q)2 = 2e− 2 tr(PQ)

where tr(P −Q)2 is the Euclidean distance between the matrices P and Q.
So we could have used “equidistant” in place of “equiangular”.

25.3.1 Lemma. An equiangular set of projections is linearly independent.

Proof. Suppose we have scalars c1, . . . , cm such that

0 =
∑
i

ciPi.

Then

0 =
∑
i

tr(PrPi) = cre+ α2∑
i 6=r

ci = e(cr − α2) + α2
∑
i

ci.

From this we deduce that cr is independent of r and hence that cr = 0 for
all r.

The projections Pi are Hermitian and so, if we work over C, they lie in
a real vector space of dimension d2. Over R they lie in a space of dimension
d(d + 1)/2. These upper bounds are known as the absolute bounds. The
bound supplied by the following theorem is the relative bound.

25.3.2 Theorem. If the projections P1, . . . , Pm are equiangular with angle
α2 and dα2 ≤ e, then

m ≤ d(e− α2)
e2 − dα2 ,

equality holds if and only if
∑
i

Pi = me

d
I.
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25.3. Equiangular Subspaces

Proof. We set
S :=

∑
i

(
Pi −

e

d
I
)

Then S = S∗ and therefore tr(S2) ≥ 0, which yields

0 ≤
∑
i

tr
(
Pi −

e

d
I
)2

+
∑
i 6=j

tr
[(
Pi −

e

d
I
)(
Pj −

e

d
I
)]

= m
(
e− e2

d

)
+m(m− 1)

(
α2 − e2

d

)
.

Our bound follows from this. If equality holds that tr(S2) = 0 and therefore
S = 0.

If P and Q are projections onto isoclinic spaces with parameter λ, then

λe = tr(λP ) = tr(PQP ) = tr(PQ) = α2.

Thus λ = α2/e and our expression for m becomes

m = d(1− λ)
e− dλ

.

This bound (for equi-isoclinic subspaces) is due to Lemmens and Seidel.
They also note that the absolute bound cannot be tight if e > 1, because
the projections Pi lie in the subspace of mappings Q such that P1QP1 is a
scalar multiple of Q and this has codimension e(e+ 1)/2.

A set P1, . . . , Pm of projections with rank e such that∑
Pi = me

d

is known as a tight fusion frame. If e = 1, it is a tight frame.
If Ri is a matrix whose columns form an orthonormal basis for im(Pi),

then
Pi = RiR

∗
i .

So if ∑i Pi = (me/d)I, then
me

d
I =

∑
i

RiR
∗
i .

If R denotes the d×me matrix(
R1 . . . Rm

)
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then
RR∗ =

∑
i

RiR
∗
i = me

d
I

and accordingly R∗R is a scalar multiple of a projection of order me×me.
(It has a block decomposition where the ij-block is R∗iRj; this block is a
scalar multiple of an orthogonal matrix.)

25.4 Tight Frames
Let V be an inner product space. A sequence of vectors x1, . . . , xm is a
frame if there are positive reals A and B such that, for any vector z in V
we have:

A‖z‖2 ≤
∑
i

|〈xi, z〉|2 ≤ B‖z‖2.

If we define
S :=

∑
xix
∗
i

then the inner term in the inequalities above is equal to z∗Sz and the best
choice for A and B will the be the least and largest eigenvalues of S. The
matrix S is called the frame operator. It is invertible if and only if the
vectors xi span V . A frame is tight if A = B or, equivalently, if S is a scalar
matrix. A frame is uniform if all vectors in it have the same norm.

As an exercise, show that any frame can be extended to a tight frame
by adding at most dim(V )− 1 vectors.

25.4.1 Lemma. If the size of a set of equiangular lines meets the relative
bound, then the corresponding projections form a tight frame.

25.4.2 Theorem. A set of unit vectors forms a tight uniform frame if and
only if it is a spherical 2-design.
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Chapter 26

276

In this chapter we consider equiangular sets of lines in real space that meet
the absolute bound.

26.1 Cocliques
A coclique in a graphs is a set of vertices such that no two are adjacent.
Cocliques are also known as independent sets. Here our concern is with
cocliques in regular two graphs. The maximim size of a coclique in X is
denoted by α(X).

Suppose X is the graph of a set of equiangular lines in Rd, with squared
cosine γ. The vertices of X are unit vectors, and the unit vectors x1, . . . , xs
form a coclique if and only if

〈xi, xj〉 = −√γ

when i 6= j. Hence the submatrix of the Gram matrix of the vertices of X
is equal to

I −√γ(J − I) = (1 +√γ)I −√γJ
Since this is a principal submatrix of a Gram matrix, it must be positive
semidefinite and hence its eigenvalues are non-negative. Now the eigenval-
ues of this matrix are

1 +√γ, 1− (s− 1)√γ

and we have the following:

291



26. 276

26.1.1 Lemma. If X is the graph of a set of equiangular lines with square
cosine γ, then

α(X) ≤ 1 + 1
√
γ
.

We can deduce more when equality holds. In this case the row sums of
I − √γ(J − I) are zero, and so if this matrix is the Gram matrix of the
unit vectors x1, . . . , xr, then the sum of these vectors must be zero. If y is
a vertex of X then

s∑
i=1
〈y, xi〉 =

〈
y,

s∑
i=1

xi

〉
= 0

and if neither y nor −y lies in S, then 〈y, xi〉 = ±√γ and so if y has exactly
r neighbors in S, then

0 = r
√
γ + (s− r)(−√γ) = 2r√γ − s√γ

and hence r = s/2. It follows that each vertex not in S or −S is adjacent
to exactly half the vertices in S.
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Chapter 27

Mutually Unbiased Bases

Suppose x1, . . . , xd and y1, . . . , yd are two orthonormal bases of some inner
product space. We say these two bases are mutually unbiased if there is a
real scalar γ such that, for all i and j,

〈xi, yj〉|2 = γ.

We will call γ the squared cosine of the set of bases. A set of bases is
mutually unbiased if each pair from it is unbiased. The columns of the two
matrices (

1 0
0 1

)
,

(
1 −1
−1 1

)
form a mutually unbiased pair of bases in R2.

27.1 Basics
Suppose x1, . . . , xd and y1, . . . , yd are a pair of mutually unbiased bases. If

yj =
∑
i

cixi

then
1 = ‖yi‖2 =

d∑
i=1
|ci|2 = dγ.

Therefore
γ = 1

d
.
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The columns of the unitary matricesM and N form a mutually unbiased
pair of bases if and only if the columns of I and M−1N do. Thus any set of
r mutually unbiased bases can be specified by a set of r unitary matrices,
one of which is the identity.

27.1.1 Lemma. IfM is unitary and I andM are unbiased, then A is flat.

Recall that unitary matrix is a type-II matrix if and only if it is flat.
Thus each flat unitary matrix determines a mutually unbiased pair of bases.

27.2 Bounds
27.2.1 Theorem. A set of mutually unbiased bases in Cd contains at most
d+ 1 bases; in Rd we have at most d

2 + 1 bases.

Proof. Suppose we have vectors xi,j where 1 ≤ i ≤ m and for each i, the
vectors xi,1, . . . , xi,d form an orthonormal basis. Assume further that these
bases are mutually unbiased. Let Xi,j denote the projection corresponding
to xi,j and let G be the Gram matrix of the projections. Then G has the
form

Imd + γ((Jm − Im)⊗ Jd).
We determine the rank of G. Its eigenvalues are

γ(m− 1)d+ 1, 1− γd, 1

with respective multiplicities 1, m − 1 and md − m. As dγ = 1, we see
that rk(G) = md − d + 1. Hence the projections Xi,j span a subspace of
the space of Hermitian matrices with dimension md−m+ 1 and so, in the
complex case,

md−m+ 1 ≤ d2,

from which it follows thatm ≤ d+1. In the real case we getm ≤ (d+2)/2.

27.3 MUB’s
If x1, . . . , xd and y1, . . . , yd are two orthonormal bases in Cd, we say that
they are unbiased if there is a constant γ such that for all i and j,

〈xi, yj〉〈yj, xi〉 = γ.
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In other words, the angle between any two lines spanned by vectors in
different bases is the same. A set of orthonormal bases is mutually unbiased
if each pair of bases in it is unbiased. If U and V are d×d unitary matrices
then their columns provide a pair of orthonormal bases, and these bases
are unbiased if and only if the matrix U∗V is flat. Note that U∗V is itself
unitary, and that its columns and the standard basis of Cd are unbiased.

The two bases (
0
1

)
,

(
1
0

)
; 1√

2

(
1
1

)
,

1√
2

(
1
−1

)

are mutually unbiased.
The angle between lines corresponding to vectors from distinct orthogo-

nal bases is determined by d. To see this, suppose x1, . . . , xd and y1, . . . , yd
are orthogonal and unbiased with |〈xi, yj〉|2 = γ. Then since x1, . . . , xd is
an orthonormal basis

y1 =
∑
〈xi, y1〉xi

and
〈y1, y1〉 =

∑
i

|〈xi, y1〉|2 = dγ.

Hence γ = d−1 (and |〈xi, yj〉| = d−1/2).
Our goal is to find mutually unbiased sets of bases with maximal size.

How large can a mutually unbiased set of bases be? If P and Q are pro-
jections onto lines spanned by two vectors from a set of mutually unbiased
bases, then 〈P,Q〉 is 0, 1 or d−1. The Gram matrix of the projections onto
lines spanned by vectors from a set of mutually unbiased bases is

G = Im ⊗ Id + 1
d

(Jm − I)⊗ Jd.

We determine the rank of G by counting its nonzero eigenvalues. The
eigenvalues of (Jm − I)⊗ Jd are

eigenvalue multiplicity
(m− 1)d 1

0 m(d− 1)
−d m− 1
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Thus the eigenvalues of I + 1
d

(Jm − I)⊗ Jd are

eigenvalue multiplicity
m 1
1 m(d− 1)
0 m− 1

Thus rk(G) = 1 +md−m and therefore

1 +md−m ≤ d2,

from which it follows that m ≤ d+ 1.
Note. If we work in Rd we get

1 +md−m ≤ d2 + d

2
and then we find that m ≤ 1 + d

2 .
The columns of a unitary matrix form an orthonormal basis. In fact a

matrix H is unitary if and only if its columns form an orthonormal basis.
Suppose H and K are unitary then the columns of H and K are unbiased
if and only if all entries of H∗K have absolute value 1√

d
. So H∗K is flat and

since it is a product of unitary matrices it is unitary. Note that H and K
are unbiased if and only if I and H∗K are. Thus each flat unitary matrix
gives a pair of unbiased bases in Cd (matrix, identity).

Suppose the columns of matrices H1, . . . , Hm and K1, . . . , Km form mu-
tually unbiased bases in Cd and Ce respectively. Then the Kronecker prod-
ucts

Hi ⊗Ki

give a set of m mutually unbiased bases in Cde. (This is very easily verified.)
It follows that in any dimension there is a set of at least three mutually
unbiased bases.

27.4 Real MUB’s
We briefly consider the real case. This received almost no attention prior
to the physicists’ work on the complex case.

We note first that a flat orthogonal matrix is a scalar multiple of a
Hadamard matrix. It follows that if we have a real pair of mutually unbiased
matrices in Rd then either d = 2 or 4 | d.
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27.4.1 Lemma. If there is a set of three mutually unbiased bases in Rd,
then d is an even square.

Proof. Suppose H and K are d × d Hadamard matrices such that the
columns of

I,
1√
d
H,

1√
d
K

are mutually unbiased. Then
1
d
HTK

must be a flat real orthogonal matrix and therefore

1√
d
HTK

is a Hadamard matrix. This implies that
√
d must be rational.

27.4.2 Lemma. If there is a set of four mutually unbiased bases in Rd,
then 16 | d.

Proof. Suppose we have four mutually unbiased bases in Rd, the first of
which is the standard basis, and assume that d = 4s2. Then the last three
bases come from three Hadamard matrices H, K and L such that if x, y
and z respectively are columns from these three matrices, then

〈x, y〉 = 〈x, z〉 = 〈y, z〉 = 2s.

We consider the equation

〈1, (x+ y) ◦ (x+ z)〉 = 〈x+ y, x+ z〉.

Since x, y and z are ±1 vectors, the entries of x + y and x + z are 0 and
±2 and therefore the left side above is divisible by 4. On the other hand

〈x+ y, x+ z〉 = 〈x, x〉+ 〈x, y〉+ 〈x, z〉+ 〈y, z〉 = 4s2 ± 2s± 2s± 2s

and therefore s must be even.
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27. Mutually Unbiased Bases

27.5 Cayley Graphs and Incidence
Structures

Let G be an abelian group and suppose D ⊆ G. The Cayley graph X(G,D)
has the elements of G as its vertices, and (g, h) is an arc if hg−1 ∈ D. Any
character ψ of G is an eigenvector for A(X), with eigenvalue ψ(D).

The restriction ψ�D lies in Cd, and if ψ and ϕ are characters of G, then
〈ψ �D,ϕ�D〉 = (ψϕ−1)D.

Since the product ψϕ−1 is a character of G, we see that the above inner
product is an eigenvalue of X(G,D). In particular the squared cosine of the
angle between the complex lines spanned by ψ�D and ϕ�D is the absolute
value of an eigenvalue of X(G,D).

If D ⊆ G then we can view the translates Dg, where g ∈ G, as the
blocks of an incidence structure. If N is the adjacency matrix of X(G,D),
then the adjacency matrix of the incidence graph of this incidence structure
can be taken to be

A =
(

0 N
NT 0

)
.

Then
A2 =

(
NNT 0

0 NTN

)
.

Now since G is abelian, NNT = NTN and hence if θ is an eigenvalue of A,
then θ2 is an eigenvalue of NNT .

On the other hand, since N is normal, there is an orthogonal basis of
Cv that consists of common eigenvectors of N and NT . If

Nz = λz

then
NT z = λz

and z is an eigenvector for NNT with eigenvalue λλ. It follows that
θ = ±|λ|.

Since an incidence graph is bipartite, its spectrum is symmetric about zero,
and we conclude that the number of negative eigenvalues of the incidence
graph is equal to the number of different values taken by the squared cosine
of the angles between the v lines in Cd corresponding to the characters of
G.
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27.6 Difference Sets
We apply the machinery developed in the previous section to construct sets
of d2 − d + 1 equiangular lines in Cd. While this is interesting in its own
right, it also serves as a warm up for the more difficult task of constructing
mub’s.

The group algebra of the group G over C consists of all sums∑
g

cgg

where only finitely many of the coefficients cg are not zero. (As our groups
will be finite, this restriction will not be an issue.) We add and multiply
these sums in the obvious fashion. IfD ⊆ G, we identifyD with the element∑

d∈D
d

of the group algebra. We also use D−1 to denote∑
d∈D

d−1.

Then DD−1 can be viewed as the multiset of differences gh−1, where g and
h run over the elements of D. (One advantage of the group algebra setup
is that we can avoid reference to multisets.)

A subset D of G is a difference set if there is an integer λ such that

DD−1 = |D|1G + λ(G− 1G).

The difference set is parameterized by the triple

(|G|, |D|, λ);

we call λ the index of the difference set. This definition of difference set is
consistent with the one we used in 5.1, except that there we used abelian
groups with addition (rather than multiplication) as the group operation.

If D ⊆ G, then we can form an incidence structure with the elements
of G as its points and the translates Dg (for g in G) as its blocks. In the
cases of interest to us there will be |G| distinct translates of D.
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27.6.1 Lemma. If D is a difference set in the group G with index λ, then
the associated incidence structure is a symmetric design with parameter set
(|G|, |D|, λ).

Proof. Exercise.
The incidence matrix of the incidence structure is the adjacency matrix

of the Cayley graph X(G,D).

27.7 Difference Sets and Equiangular Lines
Suppose D is a difference set with index λ in the abelian group G and
assume d = |D| and v = |G|. Then the vectors

ψ �D,

where ψ runs over the characters of G, span a set of v lines in Cd. To
determine the angles, we need the values |ψ(D)|. We have

|ψ(D)|2 = ψ(D)ψ(D) = ψ(DD−1)

and since
DD−1 = d1G + λ(G− 1G)

it follows that
|ψ(D)|2 = d− λ+ λψ(G).

If ψ is the trivial character, then ψ(D) = d and ψ(G) = v and consequently

v = 1 + d2 − d
λ

.

If ψ is not trivial, then ψ(G) = 0 and

|ψ(D)|2 = d− λ.

This implies that the restrictions ψ�D form a set of equiangular lines in Cd.
In particular, when λ = 1 we obtain a set of d2− d+ 1 equiangular lines in
Cd. It can be shown that this set of lines meets the relative bound.

Since the values of a character of an abelian group are roots of unity, the
set of lines we obtain from a difference set are spanned by flat vectors. And
since he characters form a group, these vectors form a group under Schur
multiplication. (This group is a homomorphic image of G. Is it isomorphic
to G?)
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27.8 Relative Difference Sets and MUB’s
Let G be a group with a normal subgroup N . A subset D of G is a relative
difference set if

DD−1 = |D|1G + λ(G−N). (27.8.1)
Thus a difference set relative to the identity subgroup is a difference set as
before.

We offer a relevant example. Let F be a field of odd order q, let G be
the vector space of dimension two over F and let N be the subgroup (0,F)
of G. Then

D = {(x, x2) : x ∈ F}
is a difference set relative to N with index 1.

The defining equation for a relative difference set implies that no two
elements of D lie in the same coset of N , and thus wwe have the bound

|D| ≤ |G : N |.

A relative difference set is semiregular if equality holds in this bound. Only
semiregular relative difference sets will be of interest to us.

If we set d equal to |D| and apply the trivial character to each side of
(27.8.1), we find that

d2 = d+ λ|N |(|G : N | − 1)

and consequently if D is semiregular, then

d = λ|N |, |G| = λ|N |2.

We can divide the characters of G into three classes:

(a) The trivial character ψ, for which ψ(G) = |G|.

(b) Non-trivial characters ψ such that ψ�N is trivial, where ψ(G) = 0 and
ψ(N) = 0.

(c) Non-trivial characters ψ such that ψ�N is not trivial, where ψ(G) and
ψ(N) are both zero.

We note that the characters whose restriction to N is trivial form a
subgroup N∗ of the character group G∗, isomorphic to (G/N)∗. The corre-
sponding values of |ψ(D)|2 are
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(a) |D|2,

(b) |D| − λ|N | = 0,

(c) |D|.

If ϕ and ψ are characters of G, then ϕ�D and ψ �D are orthogonal if and
only if ϕψ−1�N is trivial. Hence the characters in a given coset of N∗ form
an orthogonal basis of Cd, and so we obtain as set of d/λ mutually unbiased
bases. We may adjoin the standard basis to this set, thus arriving at a set
of 1 + λ−1d mub’s in Cd.

27.9 Type-II Matrices over Abelian Groups
Let N be a group. If W is a matrix with entries from N , we define W (−)

to be the matrix with the same order such that

(W (−))i,j = W−1
i,j .

A type-II matrix over N is a v× v matrix W with entries from N such that

WW (−)T = vI + λN(J − I).

If we apply the trivial character of N to both sides, we obtain the equation

J2 = vI + λ|N |(J − I),

whence we have
v = λN.

Suppose N is abelian. If ψ is a character of N , letWψ denote the matrix
we get by applying ψ to the entries of W . Then ψ(N) = 0 if ψ is not trivial
and

WψW
∗
ψ = vI.

Thus Wψ is a flat type-II matrix. If ϕ is also a character of N , then

Wψ ◦Wϕ = Wψϕ

and so the matrices Wψ form a group of order |N | under Schur multiplica-
tion.
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27.10 Difference Sets and Equiangular
Lines

27.10.1 Lemma. Let G be an abelian group of order n, and let ψ1, . . . , ψn
be the characters of G. Suppose N is a 01-group matrix over G. If hT is
a row of N , then the number of angles between the lines spanned by the
vectors h ◦ ψr is one less than the number of eigenvalues of NNT .

Proof. If ψ and ϕ are characters of G, then

〈h ◦ ψ, h ◦ ϕ〉 = 〈h, ψ ◦ ϕ〉 (27.10.1)

If χ is a character for G, then Nχ = λχ for some λ and therefore, since the
entries of χ are complex numbers of norm 1,

|〈h, χ〉| = |λ|.

So
|〈h ◦ ψ, h ◦ ϕ〉|2

is equal to the eigenvalue of NNT on ψϕ.
Note that if the weight of the vector h above is d, then the vectors h ◦ψ

lie a d-dimensional subspace of Cn.
If X is the incidence graph the design, then

A(X) =
(

0 N
NT 0

)

and
A(X)2 =

(
NNT 0

0 NTN

)
.

It follows that number of angles is equal to the number of non-negative
eigenvalues of X.

If N is a group matrix over Zn2+n+1 and an incidence matrix for a
projective plane of order n, then

NNT = nI + J

which has eigenvalues (n + 1)2 and n (with multiplicity 1 and n2 + n re-
spectively). Hence we obtain a set of n2 + n + 1 equiangular lines in Cn+1
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whenever n is a prime power. The size of this set of lines meets the relative
bound, as you are invited to prove.

A complex matrix is flat if all its entries have the same absolute value.
The vectors spanning the d2 − d + 1 lines are flat; it can be shown that a
set of flat equiangular lines in Cd has size at most d2 − d+ 1.

27.11 Affine Planes
Let V be a vector space of dimension two over GF (q); we write it elements
as pairs (x, y). Let [a, b] denote the set of points

{(x, y) : y = ax+ b}.

This a line in the affine plane over GF (q), and as we vary a and b we get all
lines except those parallel to the y-axis—the lines with infinite slope. It is
easy to verify that this structure is a divisible semisymmetric design. Our
problem is to show that there is an abelian group of automorphisms acting
regularly on points and lines.

There are two obvious sets of automorphisms. Let Tu,v : V → V be
given by

Tu,v(x, y) = (x+ u, y + v).

We call the maps Tu,v translations, they form an abelian group of order q2.
If (x, y) is on the line [a.b], then

y + v − (a(x+ u) + b) = (y − ax− b)− (au− v)

and therefore Tu,v(x, y) is on [a, b− au+ v]. Thus we can define the image
of [a, b] under Tu,v to be [a, b − au + v], and with this definition Tu,v is
an automorphism of our incidence structure. We see that translations are
automorphisms that each line to a parallel line. In particular you may show
that the group of translations has q orbits on lines.

We can also define dual translations Su,v by

Su,v[a, b] = [a+ u, b+ v].

Then
y − (a+ u)x− (b+ v) = y + ux+ v − ax− b
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and so Su,v maps lines on (x, y) to the lines on (x, y + ux + v). Again we
get a group of automorphisms, with q orbits on points.

What we need though is an abelian group with one orbit on points and
one orbit on lines. Define

Ru,v = Tu,vSu,0.

Then these q2 automorphisms from an abelian group of order q2 that acts
transitively on point and on lines. Consequently we get a set of q mutually
unbiased bases in Cq, that are all unbiased relative to the standard basis.

This construction does not make use of the fact that finite fields are
associative, and we may use a commutative semifield in place of a field. All
known examples of mub’s can be constructed in this way.

27.12 Products
If H1, . . . , Hm is a set of unitary matrices describing a set of mub’s in Cd

and K1, . . . , Km is a second set giving mub’s in Ce, then the products

Hi ⊗Ki, (i = 1, . . . ,m)

give us a set of mub’s in Cde. This may not seem to be a very efficient
construction, but in many cases it is the best we can do. If d is a prime
power then there is a mutually unbiased set of bases of size d+1 in Cd; hence
this product construction guarantees the existence of a mutually unbiased
set of three bases in any dimension. When d ∼= 2 modulo four, there is no
better bound known in general.

There is one construction, due to Beth and Wocjan, which is better than
the product construction in some cases. Suppose we have an OA(k, q) and
a flat unitary matrix H of order q × q. Our array can be viewed as an
incidence structure with q2 lines and kq points. Let M be the incidence
matrix of the dual; this has order q2 × kq. Then the kd2 vectors

(1⊗Hei) ◦Mej

form k mutually unbiased bases in Cq2 . If q = 26, then the product con-
struction provides five mub’s in C576. There is an OA(26, 6), and so we
obtain six mub’s in C576.
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27.13 Amply-Regular Structures
An incidence structure is amply regular if there is a constant µ such that any
two vertices at distance two in its incidence graph have exactly µ common
neighbors. An amply regular incidence structure where µ = 1 is just a
partial linear space.

27.13.1 Lemma. If S is a connected amply-regular incidence structure and
µ > 1, then it is point and block regular and the number of points equals
the number of blocks.

Proof. See the exercises.

We say incidence structure is regular if its incidence graph is regular. A
connected regular amply-regular incidence structure is known as a semisym-
metric design.

An incidence structure is point divisible if we can partition its points
into classes such that two points are in the same class if and only if they
are not collinear. Dually we have block-divisible structures. If S is point
divisible, any block contains at most one point in each class.

If S is a semisymmetric design with parameters (v, k, λ), then each point
is collinear with exactly k(k−1)/λ other points. (You get to prove this in the
exercises, but there is a hint.) It follows that in a divisible semisymmetric
design, all point classes have the same size. Each block contains at most
one point from each class.

27.13.2 Lemma. A semisymmetric design is point divisible if and only if
it is block divisible.

Proof. Let N be the incidence matrix a point-divisible semisymmetric de-
sign with parameters (v, k, λ). Assume that the point classes have size f ,
and that there are exactly m of them. We have

NNT = kI + λA, NTN = kI + λB

where A and B are the adjacency matrices of graphs X and Y respectively.
Since the design is point divisible, X is a complete multipartite graph mKf .
As NNT and NTN are cospectral, Y is cospectral to X and therefore it too
must be isomorphic to mKf .
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We will refer to the classes of a divisible semisymmetric design as its
fibres. If S is divisible with fibres of size f , then

NNT = kI + λ(Jm − Im)⊗ Jf = (k − λ)I + λJ − λIm ⊗ Jf .

We consider a relevant class of examples. Let A be an affine plane of
order q with a parallel class deleted, for example in the classical case delete
the lines parallel to the y-axis. Now let S be the incidence structure formed
from the q2 points ofA and the q2 lines remaining. This is a divisible regular
and amply-regular incidence structure with parameters (q2, q, 1) and fibres
of size q.

27.14 Quotients of Divisible Designs
A divisible semisymmetric design has a natural quotient structure on its
fibres, which we investigate here.

27.14.1 Lemma. Let α and β be disjoint blocks in a point-divisible semisym-
metric design. If x is a point on α and C is the point class of x, then β
contains exactly one point from C and α is the only block on x disjoint from
β.

Proof. Let s be the number of blocks on x disjoint from β. Since α∩ β = ∅
we have that s ≥ 1. Count flags (z, γ) where z ∈ β and γ is on x and z.
This yields

|β \C|λ = (k − s)λ

and so the number of points on β collinear with x equals the number of
blocks on x that meet β. Since β cannot contain two points in C, we see
that s = 1.

This lemma can be used to provide another proof that point-divisible
semisymmetric designs are block-divisible. It implies that two blocks in the
same block class meet the same k point classes.

27.14.2 Lemma. Let S be a divisible semisymmetric (v, k, α)-design, with
classes of size f . Two distinct intersecting blocks are incident with the same
point classes if and only if each block meets each point class.
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Proof. The number of points collinear with a given point is k(k− 1)/λ and
therefore

f = v − k(k − 1)
λ

.

If we divide each side of this by f and rearrange, we find that

v

f
= k(k − 1)

fλ
+ 1

and so
v

f
− k = k(k − 1)

fλ
− (k − 1) = (k − 1)k − fλ

λ

So v = kf if and only if k = λf .
If v = kf then each block meets each meets each point class.
Now assume conversely that there are distinct intersecting blocks α and

β that meet the same point classes. If θ is a point or a block, let [θ] denote
its class. By the previous lemma, each block in [β] meets the same set of
point classes, and therefore each point in one of this classes lies in a block
from [β]. Hence each of the k points on α must lie in a block from [β] and,
since α /∈ [β], each of these blocks meets α in λ points. Therefore k = fλ.

A divisible semisymmetric design where each block meets each point
fibre is a transversal design.

27.14.3 Corollary. Let S be a divisible semisymmetric (v, k, λ) design with
fibres of size f . If k > fλ, then the quotient of S is a symmetric design
with parameters (v/f, k, λf). If k = λf , then S is a transversal design.

Suppose S is a divisible semisymmetric design with v = kf . If we set

F = {1, . . . , f}

then we can represent each block by a k-tuples of elements from F . This set
of k-tuples forms an orthogonal array with index λ, that is, an OAλ(f, k).
If λ = 1, we have an OA1(k, k). An affine plane gives an OA1(k, k + 1),
and it is not hard to show that any OA1(k, k) can be extended to an affine
plane.
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27.15 Incidence Graphs
If S is a divisible semisymmetric design with parameters (v, k, λ) and with
fibres of size f , then

NNT = kI + λ(Jm − Im)⊗ Jf = (k − λ)I + λJ − λIm ⊗ Jf .

We compute the eigenvalues of this matrix. There are three relevant sub-
space of Rv. First, the constant vectors. These form a 1-dimensional
eigenspace with eigenvalue k2. Next we have the subspace formed by the
vectors that are constant on fibers and sum to zero. If z is such a vector,
then (Im ⊗ Jf )z = fz

NNT z = (k − λf)z

and we have an eigenspace with dimension v
f
−1. Finally the vectors which

sum to zero on each fibre form an eigenspace of dimension v − v
f

with
eigenvalue k − λ.

27.15.1 Theorem. Let S be a divisible semisymmetric design with param-
eters (v, k, λ) and fibres of size f . If v = kf and S has an abelian group G
of automorphisms, then the standard basis of Ck together with the vectors
formed by the restriction of a character of G to a block form a set of 1 + v

f

mutually unbiased bases in Ck.

We find examples of structures that satisfy these conditions.
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Chapter 28

Permutation Groups

We offer an introduction to some of the theory of permutation groups.

28.1 Permutation Groups and
Representations

A permutation group on the setX is a subgroup of Sym(X). A permutation
representation of the group G is a homomorphism from G into Sym(X).
The image in Sym(X) of G is isomorphic to a quotient group of G; if it is
isomorphic to G itself then we say that the representation is faithful. If g
is a permutation of X and Y ⊆ X then we define the set Y g by

Y g := {ig : i ∈ Y }.

We call Y g a translate of Y under the action of G. If Y g = Y we say that
Y is fixed by g. If Y g = Y for all elements g in the permutation group
G then we say similarly that Y is fixed by G. The set Y is fixed by g if
and only if it is fixed by the subgroup 〈g〉. Observe that, having defined
Y g for each subset Y of G and each element g of G, we have described a
permutation representation of G on the power set of X.

If A ⊆ G and i ∈ X then

iA = {ia : a ∈ A}.

A subset S of X is an orbit of G if it is fixed by G and, given any two
elements i and j of S, there is an element g in G such that ig = j. We
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could equivalently define an orbit to be a minimal fixed subset of X. We
will also refer to the orbits of an element g, when strictly we mean the orbits
of 〈g〉. Any fixed subset of X is a disjoint union of orbits. An orbit can
consist of just one element, in which case it is called a fixed point. A group
with just one orbit is said to be transitive. If G is permutation group on X
then its elements are functions defined on X. Hence if g ∈ G and Y ⊆ X
then the restriction g �Y is defined. If Y is an orbit of G then g �Y is a
permutation of Y , and the set

{g �Y : g ∈ G}

is a permutation group on Y . We denote this group by G�Y , and observe
that the mapping g 7→ g�Y is a homomorphism from G into Sym(Y ). Thus
it is a permutation representation of G, and generally not a faithful one.

If G and H are permutation groups acting respectively on the disjoint
sets X and Y then G×H acts on X ∪ Y according to the rule

(g, h) : i 7→
{
ig, if i ∈ X;
ih, if i ∈ Y .

This gives us a permutation group on X ∪Y which we could call the sum of
G and H. Both X and Y are fixed sets for this group. We can also define
an action of G×H on X × Y by insisting that

(g, h) : (i, j) 7→ (ig, jh).

This gives a permutation group on X × Y , which is called the product of
X and Y . The product of G and H is transitive if and only if G and H
are both transitive; the sum of G and H is never transitive. It is easy to
extend these definitions to sum and products of any number of permutation
groups.

There are a number of ways of constructing permutation groups from a
given abstract group. In a particular a given group G acts on its underlying
set of elements by conjugation. This associates to an element g in G the
mapping such that, if x ∈ G then

x 7→ xg = g−1xg.

It is easy to check that this is a permutation representation of G, which is
faithful if and only if the centre Z(G) is trivial, and is never transitive. An
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orbit of G in this case is known as a conjugacy class. More generally we
can regard G as acting on the set of all subsets of G: if A ⊆ G and g ∈ G
then define Ag to be

{ag : a ∈ A}.
If A and B are subsets of G and B = Ag for some element g of G then
we say A and B are conjugate subgroups of G. A group also acts on its
subsets by left multiplication: assign to each element g of the mapping λg
such that

λg : S 7→ gS = {gx : x ∈ S}.
We also have the representation of G on its subsets by right multiplication;
here ρg is given by

ρg : x 7→ xg−1.

The action of G on its one-element subsets by left and multiplication are
known respectively as the left and right regular representations of G. They
are both transitive and faithful. If S is a subgroup of G then its orbit under
right multiplication by elements of G consists of the right cosets of S. The
representation arising by restriction to this orbit will be faithful if and only
if S contains no normal subgroup of G.

28.2 Counting
Let G be a permutation group on X. If i ∈ X then the point-stabilizer Gi

is the subgroup of G formed by the elements which fix i. If i1, . . . , ir are
distinct elements of X then

Gi1,...,ir :=
r⋂
j=1

Gij ,

i.e., it is the subgroup of elements which fix each point in S. If g ∈ G then

fix g = {i ∈ X : ig = i}

and, for any subset A of G,

fixA =
⋂
a∈A

fix a.

Of course, fix g = fix 〈g〉 and, more importantly, fixAg = fixAg.
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28.2.1 Lemma. Let G be a permutation group on the set X and let Ω be
an orbit containing the point i. Then there is bijection between the right
cosets of Gi in G and the elements of Ω. Furthermore, j ∈ Ω if and only if
Gj is conjugate to Gi in G.

Proof. Suppose that g ∈ G and ig = j. Then ih = j if and only if igh−1 = i,
i.e., if and only if hg−1 ∈ Gi. But hg−1 ∈ Gi if and only if h ∈ Gig, which
proves our first claim. The second claim follows from the observation that
g−1Gig = Gig.

The first part of this lemma is often called the “orbit-stabilizer relation”.
It can be expressed in the form

|iG| = |G : Gi|.

Equivalently, the length of an orbit ofG is equal to the index of the stabilizer
of an element from the orbit. This lemma also shows that every transitive
permutation group can be obtained by considering its action on the cosets
of some subgroup by right multiplication. If the group G acts on its set of
elements by conjugation and x ∈ G then the stabilizer of x is known as the
centralizer of x. It is denoted by CG(x). When G acts on the conjugates of
a subgroup H then the stabilizer of H is called the normalizer of H, and
denoted by NG(H). From the second part of ??Lemma 3.1, we see that the
latter representation can be obtained by considering the action of G on the
cosets of NG(H) by right multiplication.

28.2.2 Lemma. The number of orbits of a permutation group is equal to
the average number of points fixed by an element of the group.

Proof. Let G be a permutation group on X. Consider the set P of ordered
pairs (i, g), where i ∈ X and g ∈ Gi. Then

|P| =
∑
g∈G
| fix g|.

Assume that X is the disjoint union of orbits X1, . . . , Xr. Then we also
have

|P| =
r∑
j=1

∑
i∈Xj

|Gi|. (28.2.1)

The cardinality of Gi is independent of the choice of i in Xj, by the previous
lemma. Hence ∑i∈Xj

|Gi| equals |Xj| |Gi| for some i in Xj. Since |Xj| =
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|G : Gi|, the inner sum in (28.2.1) is equal to |G : Gi| |Gi|, and so the right
side of (28.2.1) is just |G| times the number of orbits of G. It follows that
the number of orbits of G is equal to |G|−1∑

g∈G | fix g|, which is what we
claimed.

We now consider some of the consequences of the previous results, start-
ing with ??Lemma 3.1. Consider the case where G is a p-group, acting by
conjugation on its set of elements. By ??Lemma 3.1, each orbit of G must
have prime power length. Also there is at least one orbit of length one,
since the identity element e is conjugate only to itself. It follows that that
the number of fixed points is non-zero, and divisible by p. Hence there is
an element x of G such that G = CG(x). In other words the centre Z(G)
of a p-group is always a non-trivial subgroup.

As a more complicated example, we establish the existence of Sylow p-
subgroups. Let G be a group of order n = mpk, where (m, p) = 1. Let P the
be the set of all subsets of G with cardinality pk. Then G acts on this set by
right multiplication. If β ∈ P then β is a union of left cosets of its stabilizer
Gβ. Hence |Gβ| must divide |β| = pk and so, by the orbit-stabilizer relation,
|βG| is divisible by m. If |βG| = m then |Gβ| is a subgroup of G with order
pk, i.e., it is Sylow p-subgroup. If |βG| > m then it must be divisible by p.
Thus we see that either G has a Sylow p-subgroup, or else all orbits of G
on P have length divisible by p. But the latter is impossible, because

|P| =
(
mpk

pk

)

is congruent to m modulo p. (The proof of this is straightforward.)

Finally we present a simple application of Burnside’s lemma.

28.2.3 Lemma. Let G be a transitive permutation group on the set X. If
|X| > 1, there is an element of G with no fixed points.

Proof. Suppose |X| = n. The identity element of G fixes n points, and so
if all the other elements of G have fixed points then the average number of
points fixed by an element of G is greater than one. Hence G must have at
least two orbits, and cannot be transitive.

If g ∈ G with exactly m fixed points then it fixes exactly mk points from
Xk. By Burnside’s lemma then, the number of orbits of G on Xk is equal
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to
|G|−1 ∑

g∈G
| fix g|k.

When G is transitive on X, this is equal to the number of orbits of a point-
stabilizer Gx on Xk−1. (The proof of this is left as an exercise.) If G is
transitive on X then the number of orbits of G on X2 is known as its rank.

28.3 Transitivity
Let G be a permutation group on X and let U be a subgroup of G. If
i ∈ fixU and g ∈ NG(U) then

igU = igUg−1g = iUg = ig.

Hence fixU is fixed by g. Thus fixU is a union of orbits of NG(U). Our
next result, due to Jordan, determines when it is a single orbit.

28.3.1 Theorem. Let G be a transitive permutation group on the set X,
let x be an element of X and let U be a subgroup of Gx. Assume that, if
g ∈ G such that U g ≤ Gx, there is an element h of Gx with U g = Uh. Then
NG(U) acts transitively on fixU .

Proof. Let y be a second point fixed by U . (If there is no such y, there
is nothing to prove.) Since G is transitive, it contains an element g that
x = yg. Then xg−1Ug = yUg = yg = x, whence U g fixes x. Thus
U g ≤ Gx and so, by our hypothesis, there is an element h of Gx such that
Uh = U g. From this we see that U gh−1 = U and therefore gh−1 ∈ NG(U).
Now ygh−1 = xh−1 = x, and so we have found that there is an element of
NG(U) sending y to x. It follows immediately that NG(U) acts transitively
on fixU .

Two important cases where this result applies are when U = Gx, and
when U is a Sylow p-subgroup of Gx, for some prime p.

A permutation groupG acting onX is said to be regular if it is transitive,
and any element which fixes a point is the identity. Thus all point-stabilizers
of a regular group are trivial and so, by the orbit-stabilizer relation, |G| =
|X|. Conversely, if G is transitive and |G| = |X| then G is regular. The left
and right regular representations of group give regular permutation groups.
It can be shown that NG(Gx) acts regularly on fixGx.
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28.3.2 Lemma. (Gleason). Let G be a permutation group on X and let p
be a prime. Suppose Y is a subset of X such that, for each point y in Y
there is a p-subgroup of P (y) of G which fixes y, but no other point of X.
Then Y is contained in an orbit of G.

Proof. Assume y ∈ Y and let P (y) be as above. Under the action of P (y),
the G-orbit yG divides into orbits. With the exception of the orbit formed
by y itself, each of these has length divisible by p. Thus |yG| ≡ 1, modulo
p. Now suppose that z ∈ Y , but not in yG. As z is the unique fixed point
of P (z), it follows that P (z) fixes no point in yG. Hence each P (z)-orbit
contained in yG has length divisible by p, and so |yG| must be divisible by
p. This contradicts our previous conclusion, and forces us to conclude that
Y ⊆ yG.

Gleason’s lemma implies that the Sylow p-subgroups of a group are
conjugate. To see this, let G be a group and let P be the set formed by its
Sylow p-subgroups. TheG acts on P by conjugation. Any Sylow p-subgroup
of G fixes a unique element of P (namely itself) (why?), its remaining orbits
all have length divisible by p. Thus we can apply Gleason’s lemma to deduce
that G acts transitively on P , and hence that the Sylow p-subgroups are
conjugate. (Note also that since |P| ≡ 1 modulo p, any p-subgroup of G
fixes at least one element of P . This implies that each p-subgroup lies in a
Sylow p-subgroup.) Gleason’s lemma can in turn be derived from the fact
that the Sylow p-subgroups of a group are conjugate.

We can now show that if G is a transitive group and U is a Sylow p-
subgroup of Gx then it satisfies the hypothesis of Jordan’s Theorem. For
if U is a Sylow p-subgroup of Gx and U g ≤ Gx then U g is also a Sylow
p-subgroup of Gx. Thus it is conjugate to U in Gx.

28.4 Higher Transitivity
If G is a permutation group on the set X the we can define an action of
G on the set Xk off ordered k-tuples as follows. If (x1, . . . , xk) ∈ Xk and
g ∈ G then

(x1, . . . , xk)g := (x1g, . . . , xkg).
Thus we obtain a collection of representations of G, one for each value of
k. Since no k-tuple of distinct elements can be mapped to a k-tuple with a
repeated element, these representations will not be transitive when k > 1,
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even if G is. A permutation group on X is said to be k-transitive if it acts
transitively on the ordered k-tuples of distinct elements from X. We see
immediately that, if k > 1, a k-transitive group is also (k − 1)-transitive.

28.4.1 Lemma. A group G acting on X is k-transitive if and only if it is
transitive, and the stabilizer of any point x of X is (k − 1)-transitive on
X \x.

Proof. Exercise.

Following the classification of the finite simple groups, it possible to list
all the 2-transitive permutation groups. It is too soon for us to say much
about them, but we can give some examples. The symmetric and alternat-
ing groups on n letters are, respectively, n- and (n − 2)-transitive. The
general linear group GL(n,F) induces a 2-transitive group of permutations
of the points of PG(n− 1F). If X = F ∪∞ then the group formed by the
mappings

x 7→ ax+ b

cx+ d
,

with a, b, c and d from F and ad−bc 6= 0, is 3-transitive. (Here one operates
with ∞ the way a calculus student would always like to. Thus 1/∞ = 0,
∞/∞ = 1, etc.) Apart from the symmetric and alternating groups there
are only two further 4-transitive groups and two 5-transitive groups. (These
are the Mathieu groups.)

28.5 Homogeneity
Instead of considering the action of G on Xk, we may also look at its action
on the set

(
X
k

)
of all k-subsets of X. (For combinatorial purposes, this

is often more natural.) A permutation group is k-homogeneous if it acts
transitively on

(
X
k

)
. If |X| = n then G is k-homogeneous if and only if it is

(n− k)-homogeneous. Our first difficulty appears at once. When is it true
that a k-homogeneous group, is also (k − 1)-homogeneous?

28.5.1 Lemma. (Wielandt). Let G be a k-homogeneous group on X, with
k ≥ 2. Suppose that if q is a prime power dividing k then q ≤ |X|+ 1− k.
Then G is (k − 1)-homogeneous.
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Proof. Let Ω be an orbit of G in its action on
(
X
k−1

)
. Since G is k-

homogeneous, each k-set from X must contain the same number of (k− 1)-
sets from Ω. Let this number be `; it will suffice to show that ` = k. Choose
an integer s such that k ≤ s ≤ |X|, a subset S of X with size s and consider
the ordered pairs (A,B), where A ∈ Ω, B ∈

(
S
k

)
and A ⊆ B. There are(

s
k

)
` such pairs. Since every set A lies in exactly (s − k + 1) different sets

B, it follows that s− k + 1 divides
(
s
k

)
``. This must hold for all integers s

between k and |X|; in particular we may choose s equal to k + q − 1, for
some prime power q dividing k. Then, if m = 1 + (k/q), we find that q
divides (

k + q − 1
k

)
` =

(
k + q − 1
q − 1

)
` =

(
qm− 1
q − 1

)
`.

The last binomial coefficient is not divisible by p (another combinatorial
exercise), hence q must divide `. Consequently k divides ` and so k = ` as
required.

If |X| = n and 2k ≤ n then every prime power dividing k satisi-
fies the condition of the lemma, and so it follows that a group acting k-
homogeneously on X must also act (k − 1)-homogeneously. As a some-
what more bizarre, and less important example, consider a 2-homogeneous
group of degree 8. Such a group is 6-homogeneous, by the lemma it is 5-
homogeneous, and hence also 3-homogeneous. It was proved by Livingstone
and Wagner that if k ≥ 2 then a k-homogeneous group is (k− 1)-transitive,
and is even k-transitive if k ≥ 5. (They also proved that k-homogeneous
groups are (k − 1)-homogeneous.)

We prove one result in this direction after the following preliminary.

28.5.2 Lemma. Let G be a permutation group on X and let P be a Sylow
p-subgroup of G. If x ∈ X and q is power of p dividing |xG| then q divides
|xP |.

Proof. We have
|xG||Gx : Px| = |G : Gx||Gx : Px| = |G : Px| = |G : P ||P : Px| = |G : P ||xP |.
Since |G : P | is not divisible by p, we see that q must divide |xP |.

28.5.3 Lemma. Let G be a k-homogeneous group on a set X of n points,
where 2k ≤ n. If there is a non-identity element of G fixing each point in a
subset of X of size k − 1 then G is (k − 1)-transitive.
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Proof. Let T be a subset of X with size k − 1. Since G is k-homogeneous,
|GT∪x| is independent of the choice of x in X\T . It follows that all orbits of
GT on X \T have same length, ` say. Since GT is not the trivial subgroup,
` > 1. Let p be a prime divisor of ` and let P be a Sylow p-subgroup of
GT . By the previous lemma we obtain that all orbits of P on X \T have
length divisible by p and hence that fixP = T . By a simple extension
of Gleason’s lemma, which we have left as exercise, it follows that G is
(k − 1)-transitive.

28.5.4 Corollary. Let G act k-homogeneously on the set X. If |X| ≥
k! + k − 1 then G is (k − 1)-transitive.

Proof. Assume |X| = n. If G is k-homogeneous then
(
X
k

)
is a single orbit

and so
(
n
k

)
must divide |G|. Suppose that Y is a subset of

(
X
k−1

)
such that

GY is trivial. Then the orbit of Y under the action of G (on (k − 1)-tuples
of distinct elements of X) has length equal to |G|, and therefore |G| cannot
be greater than nk−1. Thus we have

n(k)

k! ≤ |G| ≤ n(k−1),

which implies that n − k + 1 ≤ k!. Given our hypothesis, it follows from
this that GY cannot be trivial, and so by the previous lemma G must be
(k − 1)-transitive.

28.6 Primitivity and Imprimitivity
Let G be a transitive permutation group on the set X. A non-empty subset
S of X is a set of imprimitivity for G if any two translates of S are either
equal or disjoint. (Such sets are often called “blocks”, but this would be
inconvenient for us.) There are two trivial cases; if S is a singleton or the
entire set. A group is imprimitive if there is a non-trivial set of imprimitivity,
and is otherwise primitive. The group G acts as a permutation group on
the distinct translates of S. The set of translates of a set of imprimitivity
will be called a system of imprimitivity. Since the translates of S partition
X, it follows that |S| divides |X|. Thus every transitive permutation group
of prime degree is primitive. It is an easy exercise to show that every 2-
transitive group is primitive. There are two important characterisations of
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primitive groups, the first of which we present now. (The second will be
??Theorem 8.2.)

28.6.1 Lemma. Let G be a transitive permutation group. Then G is prim-
itive if and only if the stabilizer of a point is a maximal subgroup of G.

Proof. Suppose that S is a non-trivial set of imprimitivity for G and that
1 ∈ S. If g ∈ G1 then 1 ∈ Sg and therefore S = Sg. Thus G1 is contained
in the subgroup H of G formed by the permutations which fix S as a set. If
x ∈ S not equal to 1 then 1h = x for some element h of G. Then x ∈ Sh∩S
and so Sh = S. Hence G1 is a proper subgroup of H. Conversely, if G1 < H
and H < G then S = 1H is a set of imprimitivity for G. For suppose that
g ∈ G and 1h ∈ 1Hg for some element h of H. Then 1hg−1 = 1h′, where
h′ ∈ H, implying that h′gh−1 ∈ G1. As G1 ≤ H, this implies that g ∈ H
and hence that 1Hg = 1H. Accordingly the translates of 1H are equal or
disjoint. Since

|1H| = |H : G1| < |G : G1|,

we see that 1H 6= X and as G1 < H, we also see that 1H is not a singleton.
Hence it is a non-trivial set of imprimitivity.

If A and B are subsets of a group G then

AB = {ab : a ∈ A, b ∈ B}.

Even if A and B are subgroups of G, the product set AB is not generally
a subgroup. In fact, if A,B ≤ G then AB ≤ G if and only if AB = BA.
Hence if A E G and B ≤ G then AB ≤ G.

28.6.2 Lemma. Let G be a transitive permutation group on the set X
and let 1 be a point in X. A subgroup H of G is transitive if and only if
G1H = G.

Proof. The subgroup H is transitive if and only if for each point i in X
there is an element hi in H such that 1hi = i. This is equivalent to requiring
that H contain a complete set of coset representatives for G1 in H, and this
yields the lemma.

A permutation group is said to be 1
2 -transitive if its orbits all have the

same length. More generally, it is t1
2 -transitive if it is t-transitive and the

stabilizer of t points is 1
2 -transitive.
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28.6.3 Lemma. Let G be a transitive permutation group on X and let N
be a normal subgroup of G. IfN is not transitive onX then it is 1

2 -transitive,
and its orbits form a system of imprimitivity for G.

Proof. If N is not transitive then G1N 6= G. Since N E G, the product
G1N is thus a subgroup of G, strictly contained in G. If G1N = G1 then
N ≤ G1. Then 1N = 1 and, for any element g of G,

1gN = 1gNg−1g = 1Ng = 1g.

Thus every point in X is fixed by N and so N = 〈e〉. If G1 < G1N then 1N
is a set of imprimitivity for G. It is not hard to show that the remaining
orbits of N are translates of this, and hence that they all have the same
size.

Thus normal subgroups of transitive permutation groups can provide
sets of imprimitivity. A second source is provided by the next result.

28.6.4 Theorem. (Witt). Let G be a transitive permutation group on the
set X and let 1 be a point in X. Let U be a subgroup of G1 such that if
g ∈ G and U g ≤ G1 then U g = U . Then fixU is a set of imprimitivity for
G.

Proof. Denote fixU by F . If 1g ∈ F then 1gU = 1g and so 1gUg−1 = 1.
Hence U g−1 ≤ G1 and so U g−1 = U . Consequently

Fg = (fixU)g−1 = fixU g−1 = fixU = F.

This shows that F is a set of imprimitivity for G.

By way of example, consider the cube. This graph has the property that,
for each vertex i in it, there is a unique vertex i′ at distance three from it.
If G is the automorphism group of the cube, we can thus deduce that Gi

fixes i and i′, but no other vertices. Thus {i, i′} is a set of imprimitivity. A
subgroup U satsifying the condition of Witt’s theorem is said to be weakly
closed in G1. Any weakly closed subgroup U of G1 satisfies the conditions of
Jordan’s theorem (??Theorem 4.1), that is, any conjugate of U contained in
G1 is conjugate to U using an element of G1. A weakly closed subgroup of
G1 is necessarily normal, although not all normal subgroups need be weakly
closed.

324



28.7. Generously Transitive Permutation Groups

28.7 Generously Transitive Permutation
Groups

A permutation group G on the set X is generously transitive if each pair
of distinct points of X is swapped by some element of G. The dihedral
group of order 2n acting in the natural fashion on a set of n points provides
a simple example. Generously transitive permutation groups are closely
related to association schemes.

28.7.1 Lemma. Let G be a generously transitive permutation group of
rank d+ 1 on the set X. Then the adjacency matrices of the orbitals of G
form an association scheme with d classes.

Proof. Let Ω0, Ω1, . . . , Ωd be the orbitals of G, with respective adjacency
matrices A0 = I, A1, . . . , Ad. We only have to verify that AiAj is a linear
combination of these adjacency matrices, for all i and j. If x and y are
points in X then the xy-entry of AiAj is equal to the number, pij say, of
points z such that (x, z) ∈ Ωi and (z, y) ∈ Ωj. If (x′, y′) lies in the same
orbital as (x, y) then, since there is an element of G mapping (x, y) to
(x′, y′), pij is also equal to the number of points z such that (x′, z) ∈ Ωi

and (z, y′) ∈ Ωj. This implies that AiAj is an integral linear combination
of A0, . . . , Ad.

The group G in the previous result can be viewed as a group of permu-
tation matrices. If P is one of these matrices then P TAiP = Ai and so
AiP = PAi. Thus P commutes with each of the matrices Ai and it can
actually be shown that the linear span of these matrices is the vector space
of all matrices which commute with each matrix in G. The next result is a
simple criterion for generous transitivity.

28.7.2 Lemma. (Shult). Let G be a transitive permutation group on X. If
G contains an involution with exactly one fixed point then it is generously
transitive.

Proof. Let X ′ = X ∪ ∞. Let T be the set of all involutions in G with
exactly one fixed point. Each element of T determines a 1-factor in the
complete graph K ′ with vertex set X ′. Let K be the complete graph with
vertex set X. Suppose that s and t are elements of T fixing the points x
and y respectively. The graph F ′ formed by the union of the edges of the 1-
factors corresponding to s and t is a disjoint union of even cycles. Hence the
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subgraph F of K obtained by deleting the vertex ∞ from F ′ is the disjoint
union of even cycles, and a single path with an odd number of vertices in
it. This path has x and y as its endpoints, and its edges come alternately
from s and t. The vertices of this path form an orbit for D = 〈x, y〉 with
odd length, m say. The group D is dihedral, with order 2m. It can viewed
as the automorphism group of a cycle with odd length, and a moment’s
thought shows that it is generously transitive. Thus there is an element
of D interchanging x and y, and hence there an element of G which does
this.

The above proof actually shows that if s fixes x and t fixes y then then
there is an involution in 〈s, t〉, conjugate to s and to t, and interchanging x
and y. (This also implies that the involutions in G with exactly one fixed
point are all conjugate.)

Exercises
(28.2.1)

1. Show that every permutation group is a subgroup of a sum of transitive
permutation groups.

2. Give an example of a permutation group with no fixed points and such
that every element fixes at least one point.

3. Prove that G acts k-transitively on X if and only if it acts transitively,
and the stabilizer of any point x of X acts (k − 1)-transitively on X \x.

4. A permutation group acting on X is k-closed if it is not contained in a
larger subgroup of Sym(X) having the same orbits on Xk. Show that a
group is 1-closed if and only if it is the sum of some number of symmetric
groups.

5. Show that the automorphism group of a directed graph is 2-closed.

6. Show that the collineation group of a projective plane is 3-closed.

7. Let G be a permutation group on the set X. Show that if G is abelian
then its 2-closure is abelian, with the same exponent. Show that any
prime which divides the order of the 2-closure of G must divide the
order of G. (Here G might not be abelian.)
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8. Show that if G acts transitively on X and x ∈ X then the number of
orbits of G on Xk is equal to the number of orbits of Gx on Xk−1.

9. Let G act transitively on X, let x be an element of X and and let U be
a subgroup of Gx. Suppose that the conjugates of U contained in Gx fall
into exactly t conjugacy classes under the action of the elements of Gx.
Show that fixU falls into exactly t orbits under the action of NG(U).

10. Prove the following extension of Jordan’s theorem. LetG be a t-transitive
permutation group on X and let U be a subgroup of G1 (1 ∈ X) such
that if U g ≤ G1 for some element g of G then U g = Uh for some element
h of G1. Then NG(U) acts t-transitively on fixU .

11. Show that a transitive permutation group is regular if and only if the
stabilizer of a point is normal. Hence show that if G is a transitive
permutation group, then NG(Gx) acts regularly on fixGx.

12. Let G be a permutation group on the set X. If, for each t-subset T of G,
there is a p-subgroup P of G with fixP = T , show that G is t-transitive.
(This is an extension of Gleason’s lemma.)

13. If A and B are subgroups of G, show that |AB| = |A||B|/|A∩B|. Show
also that AB is a subgroup of G if and only if AB = BA.

14. Let G be a transitive permutation group on X and S be an orbit of
subgroup of G which contains the point 1 of X. Show that the intersec-
tion of the translates of S which contain 1 is set of imprimitivity for G.
(What happens if S is an arbitrary proper subset of X?)

15. Let H and K be subgroups of G. A double coset is a subset of the
form HgK. Show that the distinct double cosets with respect to H
and K formed as g ranges over the elements of G partition G. If G acts
transitively on X and x ∈ X, show that the distinct double cosets G1gG1
correspond to the orbits of G1.

16. Let G be transitive group on the set X and let N be a normal subgroup
of G. Show that the number of orbits of N on X divides |G : N |.

17. Let G be a p-group. If H < G, show that H < NG(H).

18. Show that the number of Sylow p-subgroups of a group is congruent to
1 modulo p.
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19. Let H and K be subgroups of G such that G = HK. Show that there is
a Sylow p-subgroup P of H and a Sylow p-subgroup Q of K such that
PQ is a Sylow p-subgroup of G. (This is proved in the text, under the
assumption that K E G.)

20. Let G be a transitive permutation group such that G1 is cyclic. Show
that any subgroup of G1 is weakly closed, and determine when it is
strongly closed. (Hint: if C is cyclic and K ≤ C show that K consists
of all elements in C with order dividing |K|.)

21. Let X and Y be orbits of the group G and let d be the greatest common
divisor of their lengths. If x ∈ X, show that all orbits of Gx contained
in Y have length divisible by d.

22. Let G be transitive group on the set X. Show that, if no two orbits of
G1 have same length, G is generously transitive. (Is this still true if we
only require that no two non-trivial orbits have the same length?)

23. Let G act generously transitively on the set X, and let S be a set of
imprimitivity for G. Show that G{S}�S is generously transitive, and the
permutation group induced by G on the translates of S is also generously
transitive.

Notes
Biggs and White [BigWh] provide a group-theoretic construction of the
Mathieu groups, and an introduction to the Higman-Sims group. (This is
one of the sporadic simple groups.) The book by Burnside [Burn] is, natu-
rally enough, written in an outdated style. However it is well worth careful
study. Huppert and Blackburn [HuppBl] provide a considerable amount of
information, but it is less immediately accessible in that it makes use of
character theory. (The first volume of this book, written by Huppert alone,
also contains considerable information on permutation groups, in German.)
Passman’s book [Pass] is elegantly written, and is devoted to classifying
the sharply t-transitive permutation groups (with t ≥ 2). Tsuzuku [Tsuz]
presents a reasonable amount of information about groups acting on de-
signs and geometries, but his presentation often follows the original papers
very closely. Wielandt’s book [Wiel] is the standard reference. Most papers
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on permutation groups contain claims of the type “We use the notation of
Wielandt [n]”. (Fortunately these claims are generally false.)
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Chapter 29

2-Transitive Groups

We introduce Frobenius groups, and obtain some information on the sharply
4-transitive groups.

29.1 Frobenius Groups
We call a group sharply t-transitive if it is t-transitive and the stabilizer
of any set of t points is the identity. (Thus a sharply 1-transitive group is
the same as a regular group.) A group is elementary abelian if it is abelian
and all non-identity elements in it have the same order. Such a group is
necessarily isomorphic to Znp for some prime p and integer n; equivalently
it can be regarded as a vector space over GF (p).

29.1.1 Lemma. Let G be a sharply 2-transitive group on the set X. Then
G has a regular normal subgroup which is an elementary abelian p-group,
and |X| is a power of p.

Proof. Set n equal to |X|. Since G is sharply 2-transitive, it has order
n(n− 1), and any point-stabilizer has order n− 1. Let γ be an element of
G with order p, for some prime p dividing n. As p cannot divide n− 1, we
see that γ has no fixed points. Any two distinct point-stabilizers have only
the identity in common, since it is the only element fixing two points. It
follows that there are n(n− 2) elements in G with exactly one fixed point,
and hence n − 1 elements with none. Suppose α ∈ G fixing the point 1 in
X. If α commutes with γ then

1γ = 1αγ = 1γα.
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Hence α fixes two points, and so it is the identity. Therefore CG(γ) ∩Gi =
〈e〉, for any point i in X. The element γ has |G : CG(γ)| distinct conjugates
in G and these all have no fixed points. Hence |G : CG(γ)| ≤ n − 1 and
|CG(γ)| ≥ n. If |CG(γ)| > n then CG(γ) must contain two elements sending
1 to the same point of X and therefore it contains a non-identity element
fixing 1. Therefore |CG(γ)| = n. It follows that CG(γ) consists of the
identity and the n− 1 elements of G with no fixed points. It is therefore a
regular normal subgroup of G. It also follows that the non-identity elements
of CG(γ) are conjugate to γ, from which we deduce that they all have order
p and that they commute. Thus CG(γ) is an elementary abelian p-group.

It is well known, in some circles, that every sharply 2-transitive group
of permutations corresponds to an affine plane (a so-called nearfield plane).
If F is a field then the mappings τa,b defined on F by

τa,b(x) = ax+ b, a 6= 0,

form a sharply 2-transitive group of permutations of F.
A Frobenius group is a transitive permutation group such that only

the identity fixes two or more elements, and some non-identity element
fixes a point. Thus any sharply 2-transitive group is a Frobenius group.
In a Frobenius group any two distinct point-stabilizers must intersect in
the identity subgroup. Hence if G is a Frobenius group of degree n then it
contains exactly n−1 elements with no fixed points. (For if a point-stabilizer
has order m then |G| = nm and there are exactly n(m− 1) elements fixing
a single point, and the identity fixes n.) The dihedral groups of order 2p
acting on a set of p sympols are Frobenius groups when p is prime. In
??Lemma 1.1 above we saw that the elements of G having no fixed points,
together with the identity, formed a regular normal subgroup. This is true
in any Frobenius group, but has only been proved using character theory.
(The difficulty is to show that this set is a subgroup, and not just a subset.)
This normal subgroup is known as the kernel of the Frobenius group. It was
proved by Thompson that the kernel of a Frobenius group is nilpotent, i.e.,
its Sylow p-subgroups are normal for each p. From this it follows that an
abstract group can have at most one representation as a Frobenius group.
The existence of the kernel is easily established for Frobenius groups where
the point-stabilizers have even order.

29.1.2 Lemma. LetG be a Frobenius group acting on the setX, containing
an element of even order which fixes a point. Then the elements of G with
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no fixed point, together with the identity form a regular abelian normal
subgroup of G.

Proof. We may assume that |X| = n and that G1 has r involutions in it.
Each of these fixes exactly one point, and hence is a product of (n − 1)/2
disjoint transpositions. Then G contains rn involutions, which together use
up rn(n − 1)/2 transpositions. Since Sym(X) contains exactly

(
n
2

)
trans-

positions, if r > 1 there must be two distinct involutions in G containing
a common transposition. The product of these two elements thus fixes at
least two points, and is therefore the identity. Thus we have shown that G1
contains a unique involution.

Our next step is to show that the product of two distinct involutions has
no fixed points. Let a and b be distinct involutions. If i ∈ X and iab = i
then ia = iabb = ib. Hence both either i = ia = ib or a and b contain the
transposition (i, ia). The latter is impossible while if a and b both fix i then
they are both involutions in Gi, hence they are equal.

Let T be the set of all involutions in G and let N be the set formed
by the identity and the fixed-point free elements of G. By the previous
paragraph, if a ∈ T then aT ⊆ N . As T and N both have cardinality n, it
follows that aT = N . Similarly Ta = N and hence TT = N . Since a2 = e,

NN = TaaT = TT = N

from we deduce that N is a subgroup of G. Since the set of fixed-point free
elements of G is closed under conjugation, N E G. Therefore N is regular
normal subgroup of G. It remains to show that it is abelian. If g ∈ N = aT
then g = ab for some b in T and ga = a−1aba = ba = (ab)−1 = g−1. Hence
if g and h lie in N then

g−1h−1 = gaha = (gh)a = (gh)−1 = h−1g−1.

This shows that any two elements of N commute, and so N is abelian.
Frobenius groups arise more often than might be expected. By way of

example, we offer:

29.1.3 Lemma. (Wielandt). Let G be a 3
2 -transitive permutation group

on the set X. Then either G is primitive, or it is a Frobenius group.

Proof. Suppose that G is 3
2 -transitive and imprimitive. Let B be set of

imprimitivity for G with cardinality k and let the length of an orbit of G1
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on X \ 1 be m. Assume that 1 ∈ B and that i ∈ X \B. Let Gi,B be the
subgroup of Gi fixing B as a set. We break up the proof into a number of
steps.

29.1.4 Claim. (a) k and m are coprime.

ForG1 fixes B as a set, and so B consists of 1 and a number of non-trivial
orbits of G1. Hence m divides k − 1.

29.1.5 Claim. (b) |Gi : Gi,B| = m.

As i /∈ B the set BGi is both a disjoint union of orbits of Gi with length
m, and a disjoint union of translates of B. Hence both k and m divide
N = |BGi| and so km must divide N . Since each point of BGi belongs to a
Gi orbit of a point in B we have N ≤ km, whence N = km. The number of
translates of B in BGi is equal to |Gi : Gi,B|, and therefore |Gi : Gi,B| = m.

29.1.6 Claim. (c) Let b′ be a point in B \ b. Then Gi,B = Gi,b = Gi,(B) ≤
G(B) ≤ Gb,b′ .

(Here G(B) is the subgroup of G fixing each point in B and Gi,(B) =
Gi ∩ G(B).) For any point b in X \ i we have that m = |Gi : Gi,b|. From
this we deduce that if b ∈ B and i /∈ B then Gi,b and Gi,B have the same
index in Gi, and are consequently equal. In particular Gi,b is independent
of the choice of b in B, implying that Gi,b = Gi,(B). Finally Gi,(B) ≤ G(B)
and G(B) ≤ Gb,b′ .

29.1.7 Claim. (d) Gi,b = Gb,b′ = G(B).

Since Gb,b′ has index m in Gb, it follows that Gb,b′ and Gi,b have the
same order, and so by (c) they are equal to each other and to G(B).

29.1.8 Claim. (e) Let C be the unique translate of B containing i. Then
Gi,b = G(C).

Clearly Gb,i = Gi,b. If we replace b by i and B by C then we may repeat
the arguments above to deduce that Gb,i = G(C).

We can now complete the proof of the lemma. From (d) and (e) we see
that G(B) = G(C), and so any element of G which fixes each point in B must
fix each point in C. It follows that G(B) = G(Bg) for any element g of G.
Hence G(B) = 〈e〉 and so, by (d), all stabilizers of two points are trivial.
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29.2. Normal Subgroups of 2-Transitive Groups

29.2 Normal Subgroups of 2-Transitive
Groups

As the orbits of a normal subgroup form a system of imprimitivity and,
as 2-transitive groups are necessarily primitive, a normal subgroup of 2-
transitive group must be transitive. If N E G then N1 = N ∩ G1 E G1,
and therefore N1 is a normal subgroup of G1, which is transitive on the set
of points other than 1. Ths shows that a normal subgroup of a 2-transitive
group is 3

2 -transitive. But more can be said.

29.2.1 Lemma. Let G be a 2-transitive permutation group on X and let
N be a regular normal subgroup of G. Then N is an elementary abelian p-
group. If the stabilizer of a point is primitive in its action on the remaining
points then p = 2 or |X| ≤ 3.

Proof. Suppose that g ∈ G1 and h ∈ N . Then

1hg = 1gg−1hg = 1hg.

As G1 acts transitively on X\1, every point in X\1 can be written as 1hg for
some element g of G1. As N is transitive 1hg = 1k and as N1 = 〈e〉, we thus
have hg = k. Thus any two non-identity elements of H are conjugate as
elements of G, and so all elements of H\e have the same order. Hence H is a
p-group. Since the centre ofH is a characteristic subgroup of N , it is normal
in G and so, if it is not transitive, its orbits form a system of imprimitivity
for G. However G is 2-transitive, and hence primitive. Consequently Z(H)
is transitive. As Z(H)1 E Z(H), it follows that Z(H) must be regular.
Hence H and Z(H) have the same order, which means they are equal, and
H is abelian. Thus we have shown that H is an elementary abelian p-group.

Suppose p > 2 and let h be an element of H. If g ∈ G1 and 1h = 1hg
then

1h = 1hg = 1gg−1hg = 1hg,

implying that h = hg. It follows that hn = (hn)g for any integer n and
hence that g fixes each point in 1〈h〉. Therefore G1,1h fixes at least p − 1
points. By Witt’s theorem (??Theorem 1.7.4) the fixed points of G1,1h form
a set of imprimitivity for G1 in its action on X \ 1. So if p > 2 and G1 is
primitive then this set of imprimitivity must be trivial. Thus G1,1h must fix
each point in X \ 1 and every element of N must be a power of h. Hence
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N is a cyclic group of prime order and G1 is a primitive regular group of
degree p−1. It is easy to see that a primitive regular group must have prime
degree. (Use the fact that the identity must be a maximal subgroup.) But
if p− 1 is a prime then p = 3.

Note that Sym(3) is 3-transitive and has a regular normal subgroup.
Also Sym(4) is 4-transitive, and has a regular normal subgroup of order
four. However this is the only 4-transitive group with a regular normal
subgroup, and no 5-transitive group has a regular normal subgroup.

It is difficult to study 2-transitive groups without becoming involved
with simple groups. Before proving one result which supports this assertion,
some preliminaries are in order. The commutator of two subgroups H and
K of a group G is defined to be

[H,K] := 〈h−1k−1hk : h ∈ H, k ∈ K〉.

We observe that [H,K] is the identity subgroup if and only if the elements
of H commute with the elements of K.

29.2.2 Lemma. Let H and K be normal subgroups of the group G. Then
[H,K] ≤ H ∩K.

Proof. If H E G and h ∈ H then k−1hk ∈ H for all k in K. Hence
[H,K] ≤ H in this case. If we also have that K E G then [H,K] ≤ K,
whence the lemma follows.

29.2.3 Theorem. (Burnside). Let N be a minimal normal subgroup of the
2-transitive group G. If N is not regular, it is primitive and simple.

Proof. If N E G then it is 3
2 -transitive and therefore either primitive or

Frobenius. If it is a Frobenius group then its kernel is a proper normal
subgroup of G, hence N must be primitive.

Suppose that M is a minimal proper normal subgroup of N . Since N
is primitive, M is transitive. As M is not normal in G, there is an element
g of G such that M 6= M g. Since M E N , it follows that M g E N and so
M ∩M g E N . As M is minimal and not equal to M g, this implies that
M ∩M g = 〈e〉. By ??? we now find that [M,M g] = 〈e〉, and therefore the
elements of M commute with the elements of M g. If x ∈ M and 1x = 1
then, for any y in M g,

1yx = 1xy = 1y
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and so each point in 1M g is fixed by x. Therefore M must be regular.
Suppose that h ∈ G such that Mh is distinct from M and M g and let

H be the subgroup 〈M,M g〉 of N . Then Mh and H are both normal in N ,
so Mh ∩ H E N . As Mh is a minimal normal subgroup of N , we deduce
that either Mh ∩H = 〈e〉 or Mh ≤ H. If the former holds then arguing as
above we find that the elements of Mh and H commute, and hence that H
is regular. This is impossible, since |H| = |M |2 andM is regular. Therefore
all subgroups of G conjugate toM are contained in H. Accordingly H E G
and so, by the minimality of N we obtain that N = H. If Mh is distinct
from M g then MhM g ≤ H and

|MhM g| = |Mh||M g|/|Mh ∩M g| = |M |2 = |H|,

whenceMhM g = H. Further, an element ofM commutes with any element
of Mh or M g, implying that M ≤ Z(H). Hence H is abelian, and is
therefore regular. This is still impossible.

Thus we conclude that there are exactly two distinct conjugates of M
in G. Consequently the normalizer K of N in G must have index two in G.
As K contains N , it is transitive and so G = G1K. Since K E G, it follows
that K1 = K ∩G1 E G1. Furthermore,

|G : K| = |G1K : K| = |G1K|
|K|

= |G1||K|
|G1 ∩K||K|

= |G1 : K1|

and thus K1 has index two in G1.
Since K1 E G1 its orbits form a system of imprimitivity for G1 in its

action on X \ 1. Hence G1 induces a permutation group on the orbits of
K1. The stabilizer of an orbit in this action contains K1, and so by the
orbit-stabilizer relation, the number of orbits is at most |G1 : K1| = 2. If
K1 is transitive on X \ 1 then K is 2-transitive on X and M , as a normal
subgroup of K, is abelian. Thus we may assume that K1 has two orbits on
X \ 1. Note that these orbits have same length, since they are permuted
transitively by G1.

The argument in the first part of the proof of ??stab1 now shows that
the elements ofM divide into two conjugacy classes, of equal size, under the
action of K. Therefore the order of M is divisible by at most two distinct
primes. If it is divisible by only one prime then it is a p-group and its centre
is non-trivial and, since all elements of M are conjugate under the action
of K1, we deduce that M is abelian. Thus we may assume that there are
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primes p and q such that every non-identity element of M has order p or
q. Note that p and q are the only prime divisors of m = |M |. Let x be an
element of order p lying in the centre of a Sylow p-subgroup P of M . Then
CM(x) contains P and therefore |M : CM(x)| = qr for some integer r. Since
each conjugacy class of elements of M under the action of K is the disjoint
union of conjugacy classes of M , the number of elements in M with order p
is divisible by q. The two non-trivial orbits of K j=have length (m− 1)/2;
hence the number of p-elements in M is (m−1)/2 and thus q divides m−1.
It also divides m which is coprime to m − 1. This contradiction forces us
to conclude that N has no proper normal subgroups, i.e., it is simple.

This result indicates a close connection between 2-transitive permuta-
tion groups and the classification of the finite simple groups. Indeed, fol-
lowing the classification of the latter, it is possible to write down an explicit
list of the 2-transitive permutation groups.

29.3 Sharply t-Transitive Groups
All the sharply t-transitive groups with t ≥ 2 were determined long before
the finite simple groups were classified. It is not too difficult to describe all
sharply t-transitive groups with t ≥ 4, as we will see. Three preliminary
results are needed.

29.3.1 Lemma. Let A be an abelian group of odd order and let τ be an
automorphism of A with order two. Let CA(τ) be the set of elements of
A fixed by τ and let IA(τ) be the elements mapped to their inverses by τ .
Then A = CA(τ)IA(τ) and CA(τ) ∩ IA(τ) = 〈e〉.

Proof. Since A has no elements of order two, CA(τ)∩ IA(τ) = 〈e〉. If a ∈ A
then

(aaτ )τ = aτa = aaτ ∈ CA(τ)

and
(a(aτ )−1)τ = aτa−1 = (a(aτ )−1)−1 ∈ IA(τ).

Further (aaτ )a(aτ )−1 = a2. This shows that every element of A which is a
square is the product of an element of CA(τ) with an element of IA(τ). As
A has odd order the mapping a : 7→ a2 is onto; every element is a square.
This proves the lemma.
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If a = c1g1 = c2g2, where ci ∈ CA(τ) and gi ∈ IA(τ) (for i = 1, 2) then

c−1
2 c1 = g2g

−1
1 .

Here the left side belongs to CA(τ) while the right side is in IA(τ). Hence
both sides must equal the identity. This shows that an element of A can
be expressed in at most one way as a product of an element of CA(τ) and
IA(τ).

29.3.2 Lemma. Let A be an elementary abelian 2-group and let τ be an
automorphism of it with order two. Then |A| ≤ |CA(τ)|2.

Proof. Let B be the set
{a−1aτ : a ∈ A}.

We note that B is a subgroup of A and the mapping

τ − 1 : a 7→ a−1aτ

is a homomorphism of A onto B. Hence

|B| = |A|/ ker(τ − 1).

But B ≤ CA(τ), since a = a−1 for every element a of A. Further, CA(τ) =
ker(τ − 1), whence we obtain that |CA(τ)| ≥ |A|/|CA(τ)|.

Our next result is another transitivity lemma.

29.3.3 Lemma. Let G be a group acting t-transitively on X. If Q is a p-
subgroup of G, maximal subject to fixing at least t+ 1 points, then NG(Q)
acts t-transitively on fixQ.

Proof. Let T be a t-subset of X and let G(T ) denote the subgroup of T
fixing each point in T . We may assume without loss that Q ≤ G(T ). If Q
is a Sylow p-subgroup of G(T ) then the claim follows from Witt’s theorem
(??Theorem 1.7.4). Otherwise let S be set of t points from fixQ. Then Q is
a proper subgroup of a Sylow p-subgroup P of G(S). From our assumption
on Q we see that S = fixP . Hence each t-subset of fixQ is the fixed point
set of the p-group NP (Q). As Q E NG(Q), its fixed point set is a union of
orbits of NG(Q). By the t-transitive version of Gleason’s lemma, it follows
that NG(Q) is t-transitive on fixQ.
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29.3.4 Lemma. Let G be a 3-transitive group on X. If the stabilizer of
any three points has even order and the stabilizer of any four is trivial then
|X| = 5 or 11, and G is sharply 4-transitive.

Proof. Let x and y be two points of X and set H equal to Gxy. Then H
is a Frobenius group on X ′ = X \ xy. By hypothesis the point stabilizers
in H have even order and thus, by ??frob, we find that H has a regular
abelian normal subgroup A. If z ∈ X ′ then the proof of ??frob shows that
Hz contains a unique involution t and that at = a−1 for each element a of
A. If a ∈ A and zag = za then

za = ztt−1at = zat.

Then at ∈ A and ata−1 fixes z. Since A is regular on X \ xy, this implies
that at = a. Thus there is a bijection between the points of X \xy fixed by
t and the elements of A fixed by t.

Since t is an involution, it interchanges some pair of elements, u and v
say, from X ′. As Gz is 2-transitive, there is an element g in G mapping u
and v respectively to x and y. Let s = tg. Then s fixes z and interchanges
x and y. Hence it fixes X ′ as a set. From this it follows that if a ∈ A then
as is a permutation fixing X ′ as a set and acting fixed-point freely on it.
Therefore as must lie in the kernel of the Frobenius group H, i.e., aS ∈ A.
Thus s normalizes A. Since t has exactly three fixed points, so does s.
Hence |CA(s)| = 3. The subgroup Hz is also normalized by s, from which
it follows that ts = t, since t is the unique involution in Hz. Thus t and s
commute and so ts = st is an involution. Since the stabilizer of any four
points of X is trivial, ts must fix one or three points. Hence |CA(gs)| ≤ 3.
As an element of A is fixed by ts if and only if it is inverted by s, we thus
have |IA(s)| = 1 or 3.

From ??ab1 we now deduce that |A| = 3 or 9, and therefore |X| = 5 or
11. If |X| = 5 then |G| = 5 · 4 · 3 · 2 and G is sharply 4-transitive. Suppose
that |X| = 11. Then

|G| = 11 · 10 · 9 · k,

where k = 2, 4, or 8. Let P be a Sylow 11-subgroup of G. We need
information about the order of N = NG(P ). It is a transitive group on
X, with P as a regular normal subgroup. Hence |N | = |N1||P |. The only
element ofN1 which commutes with each element of P is the identity. Hence,
if h ∈ N then the mapping x 7→ xh is a non-identity automorphism of P .
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Thus N1 is isomorphic to a subgroup of Aut(P ) and, as |Aut(P )| = 10, we
deduce that |N1| divides 10. Therefore |G : NG(P )| is equal to 9k times
a divisor, ` say, of 10. Since |G : NG(P )| equals the number of Sylow 11-
subgroups of G, it must also be congruent to 1 modulo 11. Thus we are
forced to conclude that ` = 2 and k = 8, and hence that G is sharply
4-transitive.

29.3.5 Lemma. If G is a sharply 4-transitive group on X then |X| = 4, 5,
6 or 11.

Proof. If |X| is odd then we appeal to the previous lemma. Suppose that
|X| is even and that x, y and z are distinct elements of X. Then Gxy is a
sharply 2-transitive group, on X ′ = X\xy. Hence it contains an elementary
abelian normal subgroup A, and Gz contains a unique involution t such that
at = a−1 for all elements a of A. Note that since |X ′| is even, A is 2-group.
Since t fixes at most two points of X ′ we see that |CA(g)| ≤ 2 and so, by
Lemma 3.2, |A| ≤ 4. Hence |X| ≤ 6.

29.4 Generously k-Transitive Groups
We call a group G on X generously k-transitive if the stabilizer of any k−1
points is generously transitive on the remaining points. If Y ⊆ X, let GY

be the subgroup of G fixing Y as a set.

29.4.1 Lemma. A group G is generously k-transitive on X if and only
GY �Y is isomorphic to Sym(Y ), for any subset Y in

(
X
k+1

)
.

Proof. Suppose G is generously k-transitive and Y ∈
(
X
k+1

)
. If x and y

are elements of Y then there is an element τ of G that fixes each element
of Y \ {x, y} and swaps x and y. Now τ �Y is a transposition, and so we
deduce that GY �Y contains all transpositions of the elements of Y . Hence
it is isomorphic to Sym(Y ). The converse is immediate.

29.4.2 Lemma. Let G be a generously k-transitive group on X and let Y
be a k-subset of X. Then G(Y ) and GY have the same orbits on X \Y .

Proof. Clearly G(Y ) E GY . Suppose that a and b are elements of X \ Y
and g ∈ GY such that ag = b. Since the restriction of GY ∪a to Y ∪ a is
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the symmetric group, there is an element h of G such that ah = a and
h�Y = g �Y . Then ahg = ag = b and hg �Y is the identity.

29.4.3 Lemma. (Wagner). Let G be a 3-transitive group on X, where |X|
is odd and greater than three. Then any non-identity normal subgroup of
G is 3-transitive.

Proof. Suppose N is a non-identity normal subgroup of G. If N is regular
then, by ??Lemma 2.1, either |N | = 3 or N is a 2-group. Therefore N is not
regular, and hence it is 5

2 -transitive. In particular |N | is even. Let t be an
involution in N and let ∆ = {1, 2, 3} be a subset of X. As G is 3-transitive,
we may assume that 1t = 1 and 2t = 3. Thus

(12) ∈ (N∆ �∆) E (G∆ �∆) ∼= Sym(3).

The only normal subgroup of Sym(3) containing a transposition is Sym(3)
itself. It follows now that N must be generously 2-transitive. As N is
5
2 -transitive, N12 is 1

2 -transitive on X \ {1, 2}. Hence all orbits of N12 on
X\{1, 2} have length dividing |X|−2, which is odd (in the number-theoretic
sense). Suppose N is not 3-transitive. Then N12 must have at least two odd
orbits on X \{1, 2}. Let P be a Sylow 2-subgroup of M = N{1,2}. Since M
and N12 have the same orbits on X \ {1, 2} it follows that M has two odd
orbits on X \ {1, 2} and so P must fix at least two points. Consequently
there is an element g of G such that P g ≤ N12. This implies that |M : N12|
is odd, which is odd (even impossible) since |M : N12| = 2.

This result shows that a sharply 3-transitive group of odd degree must
be simple. If q = 2k then the group PGL(2, q) acts sharply 3-transitively
on a set of size q + 1 and is thus simple when q > 2. In particular we find
that Alt(5) is simple.

Exercises
1. If G is a 5

2 -transitive group with a regular normal subgroup, show that
it has degree four. Show that a 5-transitive group cannot have a regular
normal subgroup.

2. If G is 2-transitive on X and x and y are distinct points from X, show
that G{x,y} has at most one orbit of odd length.
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3. If G acts sharply 5-transitively on V , show that |V | = 11.
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Chapter 30

Association Schemes

30.1 Definition
First an example. Let D be a design with blocks of size k, and define
matrices A0, . . . , Ad with rows and columns indexed by the blocks of D,
such that

(Ai)α,β =

1, |α ∩ β| = k − r;
0, otherwise.

So the Ai are symmetric 01-matrices that sum to J , and A0 = I. We call
them the block intersection matrices of the design. Any automorphism of
D must commute with each of the matrices Ai, and hence it must commute
with any matrix in the algebra that they generate. Thus in some sense
our design is most regular if the dimension of this algebra is as small as
possible. Since A0, . . . , Ad are linearly independent, the lower bound on
this dimension is one ore than the degree of D, and if equality holds then
there are interesting consequences.

First, for each i and j the product AiAj belongs to the algebra, and
therefore there must be scalars pi,j(r) such that

AiAj =
k∑
r=0

pi,j(r)Ar.

Second, from this we see that AiAj is symmetric, which implies that Ai and
Aj commute.
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The opreceding discussion may motivate the following definijtion. An
association scheme with d classes is a set A of 01-matrices A0, . . . , Ad such
that

(a) A0 = I.

(b) ∑iAi = J .

(c) ATi ∈ A for each i.

(d) There are scalars pi,j(r) such that AiAj = ∑
i pi,j(r)Ar.

(e) AiAj = AjAi for all i and j.

If Ai = ATi , we say that the scheme is symmetric. This is the only
case we will consider (and then (e) is redundant). The matrices A1, . . . , Ad
can be viewed as adjacency matrices of graphs X1, . . . , Xd. We will say
that these graphs form an association scheme—this means an association
scheme is a set of matrices or a set of graphs, whichever suits us. We use
R[A] to denote the vector space spanned by the matrices in the scheme;
this is known as its Bose-Mesner algebra. Since J ∈ R[A] and since R[A]
is commutative, each matrix Ai commutes with J and therefore each graph
in the scheme is regular.

30.2 Schematic Designs
30.2.1 Theorem. Let D be a design with degree s and strength t. If
t ≥ 2s − 2, then the block intersection matrices of D from an association
scheme with s classes.

A design is said to be schematic if its intersection matrices form an
association scheme. It is an exception for a design to be schematic. Any
symmetric design is trivially schematic. A 2-design with degree two is
schematic, and so each 2-(v, k, 1) gives us an association scheme with two
classes. A graph X and its complement form an association scheme with
two classes if and only if X (and X) are strongly regular.

Using Hamming distance we can define “intersection matrices” for an
orthogonal array. The analog of Theorem 30.2.1 holds for orthogonal arrays
as well. If an orthogonal array has degree s and strength t and t ≥ 2s− 2,
then its intersection matrices form an association scheme with s classes.
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Accordingly each orthogonal array with index one and strength two gives
rise to a pair of strongly regular graphs.

A finite set S of points on the unit sphere in Rd has strength at least t
if the average over the points in the set of a polynomial of degree at most
t is equal to its average over the entire sphere. Then S is a 2-design if and
only if ∑

x∈S
xxT = |S|

d
I.

The degree of S is the size of the set of inner products xTy, for distinct
points x and y. If S has degree s and strength t and t ≥ 2s− 2, we get an
association scheme with s classes.
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Chapter 31

Matrix Theory

31.1 The Kronecker Product
If A and B are matrices over the same ring, we define their Kronecker
product A ⊗ B to be the matrix we get by replacing each entry Ai,j of A
with the matrix Ai,jB. Note that neither A nor B need be square. For
example, if x ∈ Fm and y ∈ Fn, then

x⊗ yT = xyT .

If A is an m × n matrix, then vec(A) is the mn × 1 matrix we get by
stacking the columns of A one on top of the other. So if e1, . . . , en is the
standard basis, then

vec(A) =


Ae1
...

Aen


The Kronecker product is bilinear, i.e., it is linear in each variable. We

also have
(A⊗B)T = AT ⊗BT .

The following properties are fundamental.

31.1.1 Theorem. If A, X and B are matrices such that the product AXBT

is defined, then

(I ⊗ A) vec(X) = vec(AX), (B ⊗ I) vec(X) = vec(XBT ).

349



31. Matrix Theory

One consequence of this is that

(A×B) = (I ⊗ A)(B ⊗ I) = (B ⊗ I)(I ⊗ A).

It also follows that if AC and BD are defined, then

(A⊗B)(C ×D) = AC ⊗BD.

In particular if Ax = λx and By = µy, then

(A⊗B)(x⊗ y) = λx⊗ µy = λµx⊗ y.

We have

(ei ⊗ gk)T (A⊗B)(fj ⊗ h`) = eTi Afj g
T
kBh`.

Because of this we can view the rows of A×B as being indexed by ordered
pairs (i, k), and the columns by ordered pairs (j, `). Then

(A⊗B)((i,k),(j,`)) = Ai,jBk,`

Suppose U and V are vector spaces. The vector space spanned by the
vectors

u⊗ v, u ∈ U, v ∈ V

is called the tensor product of U and V , and is denoted by U ⊗ V . (I will
become upset if refer to this as the Kronecker product of U and V .)

Suppose P is the linear mapping on V ⊗ V defined by the requirement
that

P (x× y) = y ⊗ x.

Prove that P 2 = I, that P commutes with A⊗ AT and that P (A⊗ AT ) is
symmetric

If A and B are m× n matrices, we define their Schur product A ◦B by

(A ◦B)i,j := Ai,jBi,j

(It is sometimes called the bad-student’s product.) Show that A ◦ B is a
principal submatrix of A⊗B.
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31.2 Normal Matrices
A matrix M over C is normal if it commutes with its conjugate-transpose.
Examples are Hermitian matrices and unitary matrices. If A = L∗DL where
L is unitary and D is diagonal, then A∗ = L∗DL; hence A is normal. So a
matrix that unitarily diagonalizable is normal.

The converse is true:

31.2.1 Theorem. A matrix M is unitarily diagonalizable if and only if it
is normal.

31.2.2 Theorem. Suppose A is a commutative algebra of v × v complex
matrices. If A is closed under complex-conjugate, then their is a basis for
Cv that consists of common eigenvectors for (the matrices in) A.

This theorem fails for the commutative algebra consisting of the matrices
of the form (

a b
0 a

)
, a, b ∈ R.

A square matrix N is normal if and only if for all vectors z we have

〈Nz,Nz〉 = 〈N∗z,N∗z〉. (31.2.1)

It is easy to verify that this holds if N is normal:

〈Nz,Nz〉 = z∗N∗Nz = z∗NN∗z = 〈N∗z,N∗z〉.

For the converse, show that (31.2.1) holds if and only if

〈Nz,Nw〉 = 〈N∗z,N∗w〉

for all z and w, and then show that z∗(N∗N −NN∗)w = 0 for all z and w
if and only if N∗N = NN∗.

31.3 Positive Semidefinite Matrices
A complex matrix M is positive semidefinite if M = M∗ and z∗Mz ≥ 0 for
all z. If M is positive semidefinite and zMz = 0 implies that z = 0, it is
positive definite.
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31.3.1 Theorem. If M is a Hermitian matrix, the following assertions are
equivalent:

(a) M is positive semidefinite.

(b) M = N∗N for some matrix N .

(c) The eigenvalues of M are non-negative.

A positive semidefinite matrix is positive definite if and only if it is invert-
ible. The sum of two positive semidefinite matrices is positive semidefinite,
and the sum of a positive definite and a positive semidefinite matrix is pos-
itive definite, hence invertible. Thus if r > λ and NNT = (r − λ)I + λJ ,
then NNT is invertible because (r−λ)I is positive definite and λJ = λ11T
is positive semidefinite.

31.3.2 Lemma. A Hermitian matrixM is positive semidefinite if and only
tr(MX) ≥ 0 for all positive semidefinite matrices X.

(The set of n × n positive semidefinite matrices is a convex cone; this
lemma implies that this cone is self dual. Talk to Levent Tuncel.)

Prove that a principal submatrix of a positive semidefinite matrix is
positive semidefinite. This implies that the diagonal entries of a positive
semidefinite matrix are non-negative. Prove that if M is positive semidefi-
nite and Mr,r = 0, then all entries in the r-th row and all entries in the r-th
column of M are zero.

Prove that if M and N are positive semidefinite, so is M ⊗N . Deduce
that ifM andN have the same order thenM◦N is also positive semidefinite.
(This is an important result due to Schur.)

31.4 Tight Partitions
A partition of V is a set whose elements, which we usually call cells, are
subsets of V . The characteristic matrix of P is the matrix whose columns
are the characteristic vectors of the cells of π. We use |π| to denote the
number of cells of π, and so the characteristic matrix of π has order |V |×|π|.
The columns of the characteristic matrix are linearly independent.
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If π is a partition of the points of a finite incidence structure. Declare
blocks α and β of the structure to be π-equivalent if, for each cell C of π,

|C ∩ α| = |C ∩ β|.

The π-equivalence classes are a partition of the blocks, which we call the
induced partition. We consider one important example. Suppose G is a
group of automorphisms of an incidence structure, let ρ be the partition
formed by the orbits of G on points and let σ be the partition formed by
the orbits of G on blocks. Then σ is a refinement of the induced partition
ρ∗. (And thus |σ| ≥ |ρ∗|.)

31.4.1 Theorem. Suppose S is a finite incidence structure and the rows
of the incidence matrix of S are linearly independent. If π is a partition of
the points and π∗ is the induced partition on blocks, then |π| ≤ |π∗|.

Proof. Let N be the incidence matrix of S and let P be the characteristic
matrix of π. Two blocks are π-equivalent if and only if the corresponding
columns of P TN are equal, and thus |π∗| is the number of distinct columns
of P TN . Hence rk(P TN) ≤ |π∗|.

We claim that the rows of P TN are linearly independent. For if xTP TN =
0 then, since the rows of N are linearly independent, xTP T = 0. However
the rows of P T are linearly independent and therefore x = 0. It follows that
rk(P TN) = |π|, and the theorem follows.

If the incidence matrix of an incidence structure has linearly independent
rows and π is a partition of the points such that |π| = |π∗|, we say that π
is a tight partition.

As is well known, the incidence matrix of a 2-design has linearly in-
dependent rows. We deduce that if G is a group of automorphisms of a
2-design then the number of orbits of G on blocks is at least as large as
the number of orbits on points. As a corollary we see that if G acts tran-
sitively on blocks, it must also act transitively on points. The points and
hyperplanes of a projective geometry form a 2-design, and we see that the
number of orbits of a group G of collineations on hyperplanes is as least as
large as the number of orbits on points. By duality we also get the reverse
inequality, whence we have that G has equally many orbits on points and
on hyperplanes.

The incidence matrix of a thick generalized quadrangle does not have
linearly independent rows.
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An incidence structure is square if its point and block sets have the same
size.

31.4.2 Lemma. If S is a square incidence structure whose incidence matrix
is invertible, then any automorphism of S fixes equally many points and
blocks.

Proof. Let N be an incidence matrix of S. An automorphism of S is a pair
of permutation matrices (P,Q) such that PNQT = N . If N is invertible
then

N−1PN = Q

and therefore tr(P ) = tr(Q). Since tr(P ) is the number of fixed points and
tr(Q) the number of fixed blocks, this proves the lemma.

Burnside’s lemma informs us that the number of orbits of a permutation
group on a set is equal to the average number of points fixed by a group
element. So the lemma implies that, for a group of automorphisms of a
square incidence structure with invertible incidence matrix, the number of
orbits on points is equal to the number of orbits on blocks. It does not
follow that the lengths of point orbits coincide with the length of the block
orbits. Consider for example a projective plane over a field of order q and
let G be the group of collineations that fix a point p. Then G has two orbits
on points, of length 1 and q2 + q, and two orbits on lines, of length q + 1
and q2.

Suppose π is a partition of the points of an incidence structure with
incidence matrix N and P is the characteristic matrix of π. Let Q be the
characteristic matrix of the induced partition. If M is the matrix formed
from the distinct columns of P TN , then

P TN = MRT .

Here M is of order |π| × |π∗|, and if the rows of N are linearly independent
then so are the rows of M—if xTM = 0 then xTP TN = 0. If the partition
π is tight, then M is square and invertible. We call M the quotient matrix
of N relative to π and π∗. (For the purposes of this discussion, we may
replace π∗ by any refinement and can still form a quotient matrix.)

A partition π∗ on the blocks of an incidence structure induces a partition
of its points, this will in general be a refinement of π.
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Chapter 32

Finite Fields

32.1 Arithmetic
We now start to develop the theory of finite fields. Let F be a field. The
identity element of F generates an additive subgroup of F. If this subgroup
is infinite, we say that F has characteristic zero. If F has characteristic zero,
the subgroup generated by 1 is isomorphic to Z; it follows that F contains
a subfield isomorphic to Q. This is the prime subfield of F—the minimal
subfield that contains 1. Both R and C are fields of characteristic zero.

Alternatively, the subgroup generated by 1 is finite. In this case the
characteristic of F is defined to be the order of this subgroup. If p is prime
and F = Zp, then the characteristic of F is p. The field of rational functions
over Zp is infinite, but its characteristic is p.

32.1.1 Theorem. Let F be a field. If the characteristic of F is not zero, it
is a prime number.

Proof. Suppose the characteristic of F is n and n = ab. Then n · 1 = 0 and
therefore

(a · 1)(b · 1) = n · 1 = 0.

Since F is a field, this implies that either a · 1 = 0 or b· = 1. If a · 1 = 0
then the order of the subgroup generated by 1 divides a. Therefore a = n
and b = 1. We conclude that n must be a prime number.

If the characteristic of F is positive, it follows that the prime field of F
is isomorphic to Zp, for some prime p. Hence F is a vector space over Zp
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for some prime p, and consequently

|F| = pn

for some integer n.

32.1.2 Corollary. The order of a finite field is the power of a prime.

We turn from addition to multiplication. The non-zero elements of a
field form an abelian group under multiplication, when the field is finite we
have a much stronger assertion.

32.1.3 Theorem. If F is finite, its non-zero elements form a cyclic group
under multiplication.

Proof. Let A denote the group formed by the non-zero elements of F. Let m
denote the exponent of A, that is, the least integer m such that am = 1 for
all a in A. Then every element of A is root of the polynomial tm− 1. Since
tm − 1 has at most m roots, |A| ≤ m. On the other hand, by Lemma ??,
we see that A contains an element of order m, and therefore it is cyclic.

We use F∗ to denote the set of non-zero elements of F. A generator of
the cyclic group F∗ is usually called a primitive element of F.

32.1.4 Corollary. If F is a finite field of order q and a ∈ F, the minimal
polynomial of a divides tq−1 − 1.

Proof. The non-identity elements of F form a cyclic group of order q−1, and
therefore aq−1 − 1 = 0. So the minimal polynomial of a divides tq−1 − 1.

32.2 Automorphisms
We study the automorphism of finite fields. Let F be a field. A map
σ : F→ F is an automorphism if it is a bijection and, for all a and b in F,

(a+ b)σ = aσ + bσ, (ab)σ = aσbσ.

The most familiar example is the operation of complex conjugation on the
complex numbers. We describe a second example. Let F be a field with
characteristic p. If i is an integer and 0 < i < p then the binomial coefficient(

p

i

)
= 0
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modulo p. Hence if x and y belong to F, then

(x+ y)p = xp + yp.

Since (xy)p = xpyp, it follows that the p-th power map x 7→ xp is an
automorphism of F. It is known as the Frobenius automorphism of F.

If γ is an automorphism of the field F, then fix(γ) is the subset

{a ∈ F : aγ = a}.

We say that fix(γ) is the set of elements of F fixed by γ. If Γ is a group of
automorphisms of F, then fix(Γ ) denotes the set of elements of F fixed by
each element of Γ . Hence

fix(Γ ) =
⋂
γ∈Γ

fix(γ).

It is easy to verify that fix(γ) is a subfield of F, and therefore fix(Γ ) is a
subsfield too. For example, if γ is complex conjugation on C, then fix(γ) =
R.

32.2.1 Lemma. Let F be a field of characteristic p, and let τ be the Frobe-
nius automorphism of F. Then fix(γ) is the prime subfield of F.

Proof. We have aτ = a if and only if ap − a = 0. Therefore fix(τ) is a
subfield of F consisting of the roots of tp − t, and therefore it is the prime
subfield.

If γ ∈ Aut(F), then for any a in F

aγ = (1a)γ = 1γaγ

and so 1γ = 1. Now

(1 + 1)γ = 1γ + 1γ = 1 + 1,

and a very simple induction argument yields that each element of the prime
subfield is fixed by γ.

32.2.2 Theorem. Let F be a finite field of characteristic p and order pn
and let τ be the Frobenius automorphism of F. Then F has a subfield of
order pk if and only if k | n. If k | n, then there is a unique subfield of order
pk; it is the fixed field of τ k.
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Proof. Let K be a subfield of F with order q = pk. Then F is a vector space
over K, and therefore there is an integer d such that

pn = |F| = |K|d = pkd.

This shows that k | n. Each element of K is a root of tpk − t, since this
polynomial has at most pk roots in F, there is at most one field of order pk.

If a ∈ F then aτk = a if and only if

ap
k − a = 0.

Accordingly fix(τ k) consists of roots of

tp
k − t.

If k | n, then tpk − t divides tq − t and therefore it has exactly pk roots in
F. Thus fix(τ k) is a subfield of order pk.

32.2.3 Corollary. If F is a finite field of characteristic p and order pd, then
the Frobenius automorphism of F has order d.

32.2.4 Theorem. Let q = pd, where p is prime. There is a unique field of
order q, which is the splitting field for the polynomial tq − t.

Proof. Let F denote the splitting field for tq − t over the field Zp. Then the
q roots of tq − t in F form the set of elements of F fixed by the q-th power
map a : 7→ aq, and therefore they form a subfield of F. Since this subfield
contains all roots of tq − q, it is the splitting field for tq − t and therefore
this subfield equals F. This shoiws that a field of order q exists.

Suppose E is a field of order q. Since F∗ is cyclic, the elements of F
give q distinct roots for tq − t, Since no subfield of E can contain all these
roots, E is a splitting field for tq − t. As all splitting fields for a polynomial
are isomorphic, this shows that there is a unique field of order q (up to
isomorphism).

Let q be a prime power and let E be an extension of degree d of a field
F with order q. Let a be a primitive element in E and let ψ be its minimal
polynomial over F. Then ψ is irreducible over F and

E = F(a) ∼= F[t]/(ψ).

358



32.3. Squares

This implies that deg(ψ) = n. By the theorem, for each positive integer d
there is a finite field E of order qd, and this field has a subfield of order q. We
conclude that for each positive integer d, there is an irreducible polynomial
in F[t] with degree d.

32.3 Squares
We describe the basic results concerning squares in finite fields.

An element in a field F that can be written as a2 for some a is, naturally,
called a square in F. We determine the squares in finite fields.

First let F be a finite field of characteristic two. Then F∗ is a cyclic
group of odd order. Every element in a group of order order is square. For
suppose x is a group element with odd order k. Then k + 1 is even and so

x =
(
x(k+1)/2

)2
;

therefore x is square.
Now consider a field F of order q, where q is odd. Then F∗ is a cyclic

group of even order. Let a be a primitive element of F, that is, a generator of
F∗. The non-zero squares in F are precisely the even powers of a, and these
form a subgroup of F∗ of order (q − 1)/2. Thus exactly half the non-zero
elements of F are squares.

Denote the set of non-zero squares in F by S. Since the index of S in F∗
is two, the quotient F∗/S is isomorphic to the subgroup of Z formed by the
set {1,−1}. Therefore map from F∗ to Z that assigns 1 to each square and
−1 to each non-square is a homomorphism. It follows that the product a
non-zero square with a non-square is not a square, and the product of two
non-squares is a square.

As a has order q − 1, we see that a(q−1)/2 is a root of t2 − 1 and is not
equal to 1. Hence a(q−1)/2 = −1 and from this we deduce that −1 is a
square if and only if (q − 1)2 is even. In other words, −1 is a square if and
only if q ≡ 1 mod 4.

Finally we prove that each element of F∗ is the sum of two squares.
Consider the set S + S. Since the order of S does not divide q, we see that
S is not an additive subgroup of F and therefore there is an element b in
(S + S) \S. Since b is not a square, the multiplicative coset bS is the set
of non-zero non-squares in F∗ and, as b is the sum of two squares, every
element in bS is the sum of two squares.
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Chapter 33

Reading Course

A reading course for projective geometry, based in large part on these notes.
Use any source of help you can find. Collaboration is recommended.

33.1 Incidence Structures
Read Section 1.1 on incidence structures.

1. Suppose P is a projective plane, possibly degenerate. Prove that the
following are equivalent:

(a) P contains a 4-arc.
(b) The incidence graph of P is thick.

2. Prove that an incidence structure is a projective plane if and only if its
incidence graph is bipartite with diameter three and girth six.

3. Determine the eigenvalues of the incidence graph of a (non-degenerate)
projective plane.

4. Show that the set of points and lines fixed by a group of collineations of
a projective plane is a projective plane, possibly degenerate. Determine
the degenerate projective planes.

5. Let p be a point and ` a line in the projective plane P of order n. Let X
be the subgraph of the incidence graph of P induced the points not on
` and the lines not on p. Show that X is an antipodal distance-regular
cover of Kn.n. [The converse also holds.]
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6. A generalized quadrangle is a partial linear space such that if p is a
point and ` is a line not on q, there is a unique point on ` collinear with
p. If thick, the incidence graph is semiregular (see e.g., G&R: AGT).
Determine what the possibilities are if the incidence graph is not thick.

7. Prove that an incidence structure is a generalized quadrangle if and only
if its incidence graph has diameter four and girth eight.

8. Let E be an extension field of F with degree three and assume q =
|F|. Then E is a 3-dimensional vector space over F, and its 1- and 2-
dimensional vector subspaces form a projective plane P . Use the fact
that the multiplicative group of a finite field is cyclic to show that there
is a cyclic group of collineations of P of order q2 + q+ 1, acting regularly
on the points of P . [Hence we may assume that the incidence matrix of
P is a circulant.]

Read Sections 4.4–5.4.

33.2 Collineations
A collineation of an incidence structure is an automorphism of its incidence
graph that map each of the colour classes to itself. So it is a pair (P,B)
of permutations such that P acts on the point and B acts on blocks and
incidence is preserved. In matrix terms, if N is the incidence matrix of the
structure, then (P,B) is a collineation if and only if PNQT = N .

Let (P ,B) be an incidence structure with an incidence matrix N . Let
ρ be a partition of P with characteristic matrix R. The i-th entry in
the column of RTN corresponding to the block β is the number of points
incident with β that lie in the i-th cell of ρ. Let ρ∗ be the partition of
B, where two blocks lie in the same cell if and only if the corresponding
columns of RTN are equal. We say ρ∗ is the partition induced by ρ.

33.2.1 Theorem. Let (P ,B) be an incidence structure, let ρ be a partition
of its points and let ρ∗ be the induced partition of its blocks. If the rows of
the incidence matrix of (P ,B) are linearly independent, then |ρ| ≤ |ρ∗|.

33.2.2 Corollary. Let I be an incidence structure and assume that the
rows of its incidence matrix are linearly independent. If Γ is a group of
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collineations of I, the number of orbits of Γ on blocks is at least as large
as the number of orbits on points.

1. Let γ be a non-identity collineation of a projective plane of order n that
fixes all points on some line `. Show that either:

(a) γ fixes exactly one point not on `, and the order of γ divides n− 1,
or

(b) γ does not fix any point off `, and the order of γ divides n.

A collineation as in (a) is known as a homology, in (b) we have an elation.

2. Characterizw the structures that arise as the set of fixed points and fixed
lines of a group of collineations of a generalized quadrangle.

363





Index

(p,H)-transitive, 153
G-matrix, 49
t-design, 5, 107
1-factor, 61
1-factorization, 61

absolute bound, 245
affine planes, 7
affine resolvable design, 83
amply regular, 306
angle, 243
annihilator, 109
antipodal, 66, 67
association scheme, 346
automorphism, 9
automorphism group, 9
axis of a transvection, 150

Baer subgeometry, 164
ball of radius e, 119
bicolored, 4
bilinear form, 16
biplane, 80
block graph, 79
block intersection matrices, 345
block regular, 4
Bose-Mesner algebra, 66, 346

central, 50

character, 51
characteristic matrix, 352
characteristic zero, 355
circle, 91
circulant, 49
class graph, 87
coclique, 59
code, 111
commutative semifield, 305
complete design, 7
congruent, 18
connected, 4
convex cone, 53
convolution, 50
core, 37
covering radius, 119
cross ratio, 163
cyclic, 111

degenerate GQ, 71
degree, 87, 107
degree set, 107, 249
difference set, 6, 50
distance, 85
distance graph, 66
distance regular, 65
distance transitive, 67
distance-regular graph, 66
dual, 3

365



Index

dual code, 111
dual group, 51
dual linear space, 4
dual translations, 304
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