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Cospectral Graphs with Cospectral Complements
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The adjacency matrices of these graphs are of the form
0 B
B 0

where
00 0 111
01 1 100
Bi=11 010 2=|0 10
110 00 1
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Proof, ctd.

If @=%Jy— Iy, then
QQT =@ =1,
so @ is orthogonal. Also
QB = DBs,
from which it follows that
(65 )55 (r %)
0 I1)\Bf o0 o 1) \Bf o)

This proves our graphs are cospectral. (Since Q1 =1, it also
follows that their complements are cospectral.)
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Weighted Adjacency Matrices

After you have worked with the adjacency matrix for while, it
might occur to you that we could choose scalars a, b and ¢, and
consider matrices of the form

al + bA + cJ.

Theorem

Let X1 and X3 be cospectral graphs and let a, b and c be scalars
with b # 0. Then X1 and Xy are cospectral if and only if the
matrices

al +bA(Xy) +cJ, ol +bA(Xy) + cJ

are similar.
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If X and Y are as shown:

LD

and Z is their 0-sum:




then:

¢(Z7 t) = ¢(X\u7 t)¢( e t)+¢(X7 t)¢( Y\’U, t)_t(:b(X\u’ t)¢( Y\Ua t)
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A Tree and Two Vertices

There is no automorphism of the following tree T that maps the
vertex u to the vertex v. ..
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Two Subgraphs

...but T\ wand T\ v are isomorphic:

bo boedo

Hence ¢( T\ u,t) = ¢(T\ v, t).
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Constructing Cospectral Trees

It follows that, for any tree X, the two trees below are cospectral
and are not isomorphic:
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Almost all

Theorem (Allen Schwenk)

The proportion of trees on n vertices that are determined by their
characteristic polynomial goes to zero as n — oo.
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Allen Schwenk
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A Limb of a

Schwenk proved that almost all trees contain a given limb, for
example, the following on 11 vertices:

)
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Zhu and

Size | Number A L
8 23 0.087 0
9 A7 0.213 0
10 | 106 0.075 0
11 | 235 0.255 | 0.0255
12 | 551 0.216 | 0.0109
13 | 1301 0.319 | 0.0138
14 | 3159 0.261 | 0.0095
15 7741 0.319 | 0.0062

16 | 19320 0.272 | 0.0035
17 | 48629 0.307 | 0.0045
18 | 123867 0.261 | 0.0019
19 | 317955 0.265 | 0.0014
20 | 823065 0.219 | 0.0008
21 | 2144505 0.213 | 0.0005
22 | 5623756 0.177 | 0.00028
23 | 14828074 | 0.168 | 0.00019




graphs at all sizes. Both the Laplacian and its normalised counterpart show
a decreasing trend, suggesting that for larger trees the fraction which are
cospectral in these matrices could be negligible. The trend for the adjacency
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Walk Matrices

Definition

Let A be the adjacency matrix of the graph X on n vertices and
let 1 denote the all-ones vector of length n. The walk matrix of X
is the n X n matrix

(1 A1 ... A"‘ll).
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Automorphisms

The automorphism group of X is (isomorphic to) the group of
permutation matrices P that commute with A.

Lemma

If P € Aut(X) then P fixes each column of W.

Proof.
P1 =1 and therefore:

PA"1 = A"P1=A"1.
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If tk(W) = n then X is asymmetric. O

If P is an automorphism then PW = W. If W is invertible, then
P=1 O




A graph X is awful if its walk matrix is invertible. '

A graph is awful if and only if its complement is.
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The Scapegoat
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A Sequence

Matrices
Spectra
Generators

Cospectral Graphs
Awful Graphs

6 7 9 10 15 19 21 22 25 27 30 31
34 37 39 42 45 46 49 51 54 b5 57 61
66 67 69 70 75 79 8 82 8 8 90 91
94 97 99 102 105 106 109 111 114 115 117 121
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Awful Algebra

Theorem (Godsil)

Let X be a graph with adjacency matrix A. The following claims
are equivalent:

e X is awful.

@ The matrices A and J generate the algebra of all n x n
matrices.

e The matrices A*'JA7 (0 < i,j < n) are a basis for the space of
n X n matrices.

o’
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Almost all graphs are awful. l
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Data

#vxs Ftgraphs F#asymmetric #awful

6 156 8 8

7 1044 152 92

8 12346 3696 2332
9 2744668 135004 85036

(Computations carried out with Fidel Barrera-Cruz)
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Brouwer and Spence’'s Computations

Fraction of graphs with cospectral mate
25 T T T T T T

28

15

18

#uith nate

a 2 4 6 8 18 12

#vertices
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Walk Equivalence

Definition
Let X and Y be graphs with walk matrices Wx and Wy
respectively. We say that X and Y are walk equivalent if

WEWx = Wik Wy.

Note that o
(WEw);; =174,

Hence any two k-regular graphs on n vertices are walk equivalent.
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If two graphs X and Y are cospectral, then their complements are
cospectral if and only if they are walk equivalent.
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Walk-Equivalent Awful Graphs

Theorem (Wang & Xu)

If X and Y are walk-equivalent awful graphs, then () = Wx W;l
is orthogonal, QTAxQ = Ay and Q1 = 1.

So walk-equivalent awful graphs are cospectral with cospectral
complements.
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Rationality

The matrix @ is clearly rational. The experimental evidence seems
to indicate that usually 2@Q) is integral. If 2@ is integral, the
structure of @ is known (Wang & Xu). Up to permutation
equivalence we have:

Chris Godsil Awful Graphs



Assume

1/4a B\ 1(4 B 0y 4
§BA"BOA’§
0 A B

co W
o oW
oo
o o



Otherwise we have one of

10
10
11

L

210 1
0 —1
0 0

I+ P?+ p3— P4,

—_ o = O = O

1 -1
-1 0
0 1
0 0
1 0
1 1
0 1
PT=1.

—_

—= O = O




= Q;Q:-

2
)

I+ Q1+ Q2+ Q3 — Q1 Q20s,
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Generating the Unitary Group

Theorem (Godsil)

If X is awful and A is its adjacency matrix, then the matrices
exp(iAt), exp(iJt) (t>0)

generate a dense subgroup of the unitary group.

The operators exp(7At) determine a continuous quantum walk.
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The Unitary Group

The unitary group U(n) consists of all complex matrices @ such
that Q*@Q = I. The relevant property of the unitary group is that,
if U and V are “very small” matrices such that

I+U, I+V

are unitary, then I + (UV — VU) is unitary.
This implies that the vector space spanned by the “very small”
matrices is closed under the Lie product

(U, V]:= UV - VU.

(We can make this rigorous if we replace “very small” by “tangent
space at I")
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Showing we have Generators

@ The tangent space at [ in the unitary group consists of all
skew Hermitian matrices, that is, the matrices H such that
H*=—-H.

@ We can show that if X is awful, the Lie algebra generated by
A and J consists of all real n x n matrices.

@ Using this we can prove that A and iJ generate the Lie
algebra of skew Hermitian matrices.

@ Since the unitary group is connected, it follows that our
matrix exponentials generate a dense subgroup of it.
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Sparser Generators?

Let D denote the diagonal matrix of valencies of X. If X is
connected then ker(A — D) is spanned by 1. By spectral
decomposition, it follows that J = 117 is a polynomial in A — D.

Lemma

If X is awful, then A and D generate the algebra of all n x n
matrices. []
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We can extend the concept of awfulness to subsets of V(X). If b

is the characteristic vector of a subset S of V(X), call it awful if
the matrix

(b Ab ... An—lb)

is invertible. This is the original notion if S = V(X). If S is awful
then A and bbT generate the full matrix algebra.
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This Week's News, I

If SC V(X)and RC V(Y) such that
WY sWx,s=Wy Wy

we say that S and R are walk equivalent. If X and Y are
cospectral and S and R are awful subsets, and

Q:= Wyr W;Zlg

then QAx Q! = Ay. If S and T are walk equivalent as well, then
@ is orthogonal.

Awful vertices seem to be common.
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1
That's It!
-
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