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A Proof

The adjacency matrices of these graphs are of the form(
0 Bi

BT
i 0

)

where

B1 =


0 0 0
0 1 1
1 0 1
1 1 0

 , B2 =


1 1 1
1 0 0
0 1 0
0 0 1


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Proof, ctd.

If Q = 1
2J4 − I4, then

QQT = Q2 = I ,

so Q is orthogonal. Also

QB1 = B2,

from which it follows that(
Q 0
0 I

)(
0 B1

BT
1 0

)(
QT 0
0 I

)
=
(

0 B2
BT

2 0

)
.

This proves our graphs are cospectral. (Since Q1 = 1, it also
follows that their complements are cospectral.)
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Weighted Adjacency Matrices

After you have worked with the adjacency matrix for while, it
might occur to you that we could choose scalars a, b and c, and
consider matrices of the form

aI + bA + cJ .

Theorem
Let X1 and X2 be cospectral graphs and let a, b and c be scalars
with b 6= 0. Then X1 and X2 are cospectral if and only if the
matrices

aI + bA(X1) + cJ , aI + bA(X2) + cJ

are similar.
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Some Graphs. . .
If X and Y are as shown:

X Yvu

and Z is their 0-sum:

X Y
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. . . and their Characteristic Polynomial

then:
Lemma

φ(Z , t) = φ(X\u, t)φ(Y , t)+φ(X , t)φ(Y\v, t)−tφ(X\u, t)φ(Y\v, t)
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A Tree and Two Vertices

There is no automorphism of the following tree T that maps the
vertex u to the vertex v. . .

u v
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Two Subgraphs

. . . but T \u and T \ v are isomorphic:

v

u

Hence φ(T \u, t) = φ(T \ v, t).
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Constructing Cospectral Trees

It follows that, for any tree X , the two trees below are cospectral
and are not isomorphic:

X
u v

X
u v
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Almost all Trees are Cospectral

Theorem (Allen Schwenk)
The proportion of trees on n vertices that are determined by their
characteristic polynomial goes to zero as n →∞.
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Allen Schwenk
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A Limb of a Tree

Schwenk proved that almost all trees contain a given limb, for
example, the following on 11 vertices:

X
u v
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Zhu and Wilson: A Table
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A Quote: 2008
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McKay’s Limbs: 1977
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Walk Matrices

Definition

Let A be the adjacency matrix of the graph X on n vertices and
let 1 denote the all-ones vector of length n. The walk matrix of X
is the n × n matrix (

1 A1 . . . An−11
)
.
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Automorphisms

The automorphism group of X is (isomorphic to) the group of
permutation matrices P that commute with A.

Lemma

If P ∈ Aut(X) then P fixes each column of W .

Proof.
P1 = 1 and therefore:

PAr1 = ArP1 = Ar1.
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Asymmetric Graphs

Corollary

If rk(W ) = n then X is asymmetric.

Proof.
If P is an automorphism then PW = W . If W is invertible, then
P = I .
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Awfulness

Definition
A graph X is awful if its walk matrix is invertible.

Exercise
A graph is awful if and only if its complement is.
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The Scapegoat
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An Example
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More Examples

0

1 n2 3 4 5 6 7 8
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A Sequence

6 7 9 10 15 19 21 22 25 27 30 31
34 37 39 42 45 46 49 51 54 55 57 61
66 67 69 70 75 79 81 82 85 87 90 91
94 97 99 102 105 106 109 111 114 115 117 121
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Awful Algebra

Theorem (Godsil)
Let X be a graph with adjacency matrix A. The following claims
are equivalent:

X is awful.
The matrices A and J generate the algebra of all n × n
matrices.
The matrices AiJAj (0 ≤ i, j < n) are a basis for the space of
n × n matrices.
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A Conjecture

Conjecture
Almost all graphs are awful.
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Data

#vxs #graphs #asymmetric #awful
6 156 8 8
7 1044 152 92
8 12346 3696 2332
9 2744668 135004 85036

(Computations carried out with Fidel Barrera-Cruz)
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Brouwer and Spence’s Computations
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Walk Equivalence

Definition
Let X and Y be graphs with walk matrices WX and WY
respectively. We say that X and Y are walk equivalent if

W T
X WX = W T

Y WY .

Note that
(W T W )i,j = 1T Ai+j1.

Hence any two k-regular graphs on n vertices are walk equivalent.
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Cospectral Graphs

Lemma
If two graphs X and Y are cospectral, then their complements are
cospectral if and only if they are walk equivalent.
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Two Walk-Equivalent Awful Graphs
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Walk-Equivalent Awful Graphs

Theorem (Wang & Xu)

If X and Y are walk-equivalent awful graphs, then Q = WXW−1
Y

is orthogonal, QT AXQ = AY and Q1 = 1.

So walk-equivalent awful graphs are cospectral with cospectral
complements.
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Example

Q = 1
2



2 0 0 0 0 0 0 0
0 1 −1 1 1 0 0 0
0 0 0 1 −1 0 1 1
0 1 1 0 0 0 1 −1
0 −1 1 1 1 0 0 0
0 0 0 −1 1 0 1 1
0 0 0 0 0 2 0 0
0 1 1 0 0 0 −1 1


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Rationality

The matrix Q is clearly rational. The experimental evidence seems
to indicate that usually 2Q is integral. If 2Q is integral, the
structure of Q is known (Wang & Xu). Up to permutation
equivalence we have:
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Structure I

Assume
A =

(
1 1
1 1

)
, B =

(
1 −1
−1 1

)
.

Then we may have one of the matrices

1
2

(
A B
B A

)
,

1
2

A B 0
B 0 A
0 A B

 , 1
2


A B 0 0
B 0 A 0
0 A 0 B
0 0 B A

 , . . .
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Structure IIa

Otherwise we have one of

1
2



1 0 0 1 1 −1 0
1 0 1 0 −1 0 1
1 1 0 0 0 1 −1
−1 1 1 1 0 0 0
0 1 0 −1 1 0 1
0 −1 1 0 1 1 0
0 0 −1 1 0 1 1


I + P2 + P3 − P4, P7 = I .
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Structure IIb

1
2



1 0 0 1 1 −1 0 0
1 0 1 0 −1 0 1 0
1 1 0 0 0 1 −1 0
−1 1 1 1 0 0 0 0
0 1 −1 0 0 0 1 1
0 −1 0 1 0 1 0 1
0 0 1 −1 1 0 0 1
0 0 0 0 1 1 1 −1


I + Q1 + Q2 + Q3 −Q1Q2Q3, Q2

i = I , QiQj = QjQi .
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Generating the Unitary Group

Theorem (Godsil)
If X is awful and A is its adjacency matrix, then the matrices

exp(iAt), exp(iJt) (t ≥ 0)

generate a dense subgroup of the unitary group.

The operators exp(iAt) determine a continuous quantum walk.
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The Unitary Group

The unitary group U (n) consists of all complex matrices Q such
that Q∗Q = I . The relevant property of the unitary group is that,
if U and V are “very small” matrices such that

I + U , I + V

are unitary, then I + (UV −VU ) is unitary.
This implies that the vector space spanned by the “very small”
matrices is closed under the Lie product

[U ,V ] := UV −VU .

(We can make this rigorous if we replace “very small” by “tangent
space at I ”.)
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Showing we have Generators

The tangent space at I in the unitary group consists of all
skew Hermitian matrices, that is, the matrices H such that
H ∗ = −H .
We can show that if X is awful, the Lie algebra generated by
A and J consists of all real n × n matrices.
Using this we can prove that iA and iJ generate the Lie
algebra of skew Hermitian matrices.
Since the unitary group is connected, it follows that our
matrix exponentials generate a dense subgroup of it.
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Sparser Generators?

Let D denote the diagonal matrix of valencies of X . If X is
connected then ker(A−D) is spanned by 1. By spectral
decomposition, it follows that J = 11T is a polynomial in A−D.

Lemma
If X is awful, then A and D generate the algebra of all n × n
matrices.
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This Week’s News, I

We can extend the concept of awfulness to subsets of V (X). If b
is the characteristic vector of a subset S of V (X), call it awful if
the matrix (

b Ab . . . An−1b
)

is invertible. This is the original notion if S = V (X). If S is awful
then A and bbT generate the full matrix algebra.
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This Week’s News, II

If S ⊆ V (X) and R ⊆ V (Y ) such that

W T
X ,SWX ,S = W T

Y ,RWY ,R

we say that S and R are walk equivalent. If X and Y are
cospectral and S and R are awful subsets, and

Q := WY ,RW−1
X ,S

then QAXQ−1 = AY . If S and T are walk equivalent as well, then
Q is orthogonal.

Awful vertices seem to be common.
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That’s It!
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