ALGEBRAIC
COMBINATORICS

©1993 C. D. Godsil
To Gillian
Preface

There are people who feel that a combinatorial result should be given a "purely combinatorial" proof, but I am not one of them. For me the most interesting parts of combinatorics have always been those overlapping other areas of mathematics. This book is an introduction to some of the interactions between algebra and combinatorics. The first half is devoted to the characteristic and matchings polynomials of a graph, and the second to polynomial spaces. However anyone who looks at the table of contents will realise that many other topics have found their way in, and so I expand on this summary.

The characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. The matchings polynomial of a graph G with n vertices is

$$
\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k p(G, k) x^{n-2k},
$$

where $p(G, k)$ is the number of k-matchings in G, i.e., the number of subgraphs of G formed from k vertex-disjoint edges. These definitions suggest that the characteristic polynomial is an algebraic object and the matchings polynomial a combinatorial one. Despite this, these two polynomials are closely related and therefore they have been treated together. In developing their theory we obtain as a by-product a number of results about orthogonal polynomials. The number of perfect matchings in the complement of a graph can be expressed as an integral involving the matchings polynomial. This motivates the study of moment sequences, by which we mean sequences of combinatorial interest which can be represented as the sequence of moments of some measure.

To be brief, if not cryptic, a polynomial space is obtained by associating an inner product space of "polynomials" to a combinatorial structure. The combinatorial structure might be the set of all k-subsets of a set of v elements, the symmetric group on n letters or, if the reader will be generous, the unit sphere in \mathbb{R}^n. Given this set-up it is possible to derive bounds on the sizes of "codes" and "designs" in the structure. The derivations are very simple and apply to a wide range of structures. The resulting bounds are often classical—the simplest and best known is Fisher's inequality from design theory.
Polynomial spaces are perhaps impossibly general. We distinguish one important family which corresponds, when the underlying set is finite, to \(Q \)-polynomial association schemes. The latter have a well-developed theory, thanks chiefly to work of Delsarte. Our approach enables us to rederive and extend much of this work. In summary, the theory of polynomial spaces provides an axiomatisation of many of the applications of linear algebra to combinatorics, along with a natural way of extending the theory of \(Q \)-polynomial association schemes to the case where the underlying set is infinite.

From this discussion it is clear that to make sense of polynomial spaces, some feeling for association schemes is required. Hence I have included a reasonably thorough introduction to this topic. To motivate this in turn, I have also included chapters on strongly regular and distance-regular graphs. Orthogonal polynomials arise naturally in connection with polynomial spaces and distance-regular graphs, and thus form a connecting link between the two parts of this book.

My aim has been to write a book which would be accessible to beginning graduate students. I believe it could serve as a text for a number of different courses in combinatorics at this level, and I also hope that it will prove interesting to browse in. The prerequisites for successful digestion of the material offered are:

Linear algebra: Familiarity with the basics is taken for granted. The spectral decomposition of a Hermitian matrix is used more than once. The theory is presented in Chapter 2. Positive semi-definite matrices appear. A brief summary of the relevant material is included in the appendix.

Combinatorics: The basic language of graph theory is used without preamble, e.g., spanning trees, bipartite graphs and chromatic number. Once again some of this is included in the appendix. Generating functions and formal power series are used extensively in the first half of the book, and so there is a chapter devoted to them.

Group theory: The symmetric group creeps in occasionally, along with automorphism groups of graphs. The orthogonal group is mentioned by name at least once.

Ignorance: By which I mean the ability to ignore the odd paragraph devoted to unfamiliar material, in the trust that it will all be fine at the end.

I have not been able to draw up a dependence diagram for the chapters which would not be misleading. This is because there are few chains of argument extending across chapter boundaries, but many cases where the
material in one chapter motivates another. (For example it should be possible to get through the chapter on association schemes without reading the preceding chapter on distance-regular graphs. However these graphs provide one of the most important classes of association schemes.)

By way of compensation for the lack of this traditional diagram, I include some suggestions for possible courses.

1. The matchings polynomial and moment sequences:
 1–3, 4.1–2, 4.4, 5.1–2, 5.6, 6, 7, 8.1–3, 9.

2. The characteristic polynomial:
 1.1, 2, 3, 4.1–4, 5.1–4, 5.6, 6, 8.

3. Strongly regular graphs, distance-regular graphs and association schemes:
 2, 5.1–2, 8, 10–13.

4. Equitable partitions and codes in distance-regular graphs:
 2, 5.1–2, 5.6, 8.1–2, 11, 12.

5. Polynomial spaces:
 2, 8.1–2, 10, 12.1–4, 13.1, 13.6, 14–16.

In making these suggestions I have made no serious attempt to consider the time it would take to cover the material indicated. On the basis of my own experience, I think it would be possible to cover at most three pages per hour of lectures. On the other hand, it would be easy enough to pare down the suggestions just made. For example, Chapter 3 covers formal power series and generating functions and depending on the backgrounds of one's victims, this might not be essential in (1) and (2).

I have been helped by advice and comments from Ed Bender, Andries Brouwer, Dom de Caen, Michael Doob, Mark Ellingham, Tony Gardiner, Bill Martin, Brendan McKay, Gillian Nonay, Jack Koolen, Gordon Royle, J. J. Seidel and Ákos Seress. Dom in particular has made heroic efforts to protect me from my own stupidity. I am very grateful for all this assistance. I would also like to thank John Kimmel and Jim Geronimo of Chapman and Hall for their part in the production of this book.
Contents

Preface vii

Contents xi

1 The Matchings Polynomial 1
 1.1 Recurrences 1
 1.2 Integrals 4
 1.3 Rook Polynomials 7
 1.4 The Hit Polynomial 16
 1.5 Stirling and Euler Numbers 11
 1.6 Hit Polynomials and Integrals 13
 Exercises 14
 Notes and References 16

2 The Characteristic Polynomial 19
 2.1 Coefficients and Recurrences 19
 2.2 Walks and the Characteristic Polynomial 22
 2.3 Eigenvectors 23
 2.4 Regular Graphs 25
 2.5 The Spectral Decomposition 27
 2.6 Some Further Matrix Theory 30
 Exercises 33
 Notes and References 36

3 Formal Power Series and Generating Functions 37
 3.1 Formal Power Series 37
 3.2 Limits 38
 3.3 Operations on Power Series 40
 3.4 Exp and Log 41
 3.5 Non-linear Equations 43
 3.6 Applications and Examples 45
 Exercises 48
 Notes and References 49
4 Walk Generating Functions

4.1 Jacobi's Theorem 51
4.2 Walks and Paths 55
4.3 A Decomposition Formula 57
4.4 The Christoffel-Darboux Identity 59
4.5 Vertex Reconstruction 61
4.6 Cospectral Graphs 65
4.7 Random Walks on Graphs 68
 Exercises 70
 Notes and References 72

5 Quotients of Graphs

5.1 Equitable Partitions 75
5.2 Eigenvalues and Eigenvectors 77
5.3 Walk-Regular Graphs 79
5.4 Generalised Interlacing 82
5.5 Covers 84
5.6 The Spectral Radius of a Tree 86
 Exercises 87
 Notes and References 90

6 Matchings and Walks

6.1 The Path-Tree 93
6.2 Tree-Like Walks 98
6.3 Consequences of Reality 100
6.4 Christoffel-Darboux Identities 104
 Exercises 108
 Notes and References 109

7 Pfaffians

7.1 The Pfaffian of a Skew Symmetric Matrix 113
7.2 Pfaffians and Determinants 114
7.3 Row Expansions 117
7.4 Oriented Graphs 119
7.5 Orientations 121
7.6 The Difficulty of Counting Perfect Matchings 123
 Exercises 125
 Notes and References 127
Contents

8 Orthogonal Polynomials 131
 8.1 The Definitions 131
 8.2 The Three-Term Recurrence 133
 8.3 The Christoffel-Darboux Formula 135
 8.4 Discrete Orthogonality 137
 8.5 Sturm Sequences 140
 8.6 Some Examples 144
 Exercises 145
 Notes and References 146

9 Moment Sequences 149
 9.1 Moments and Walks 150
 9.2 Moment Generating Functions 153
 9.3 Hermite and Laguerre Polynomials 156
 9.4 The Chebyshev Polynomials 158
 9.5 The Charlier Polynomials 160
 9.6 Sheffer Sequences of Polynomials 164
 9.7 Characterising Polynomials of Meixner Type 165
 9.8 The Polynomials of Meixner Type 167
 Exercises 171
 Notes and References 174

10 Strongly Regular Graphs 177
 10.1 Basic Theory 177
 10.2 Conference Graphs 180
 10.3 Designs 184
 10.4 Orthogonal Arrays 187
 Exercises 188
 Notes and References 192

11 Distance-Regular Graphs 195
 11.1 Some Families 195
 11.2 Distance Matrices 197
 11.3 Parameters 198
 11.4 Quotients 200
 11.5 Imprimitive Distance-Regular Graphs 201
 11.6 Codes 205
 11.7 Completely Regular Subsets 208
 11.8 Examples 212
 Exercises 215
 Notes and References 217
Contents

12 Association Schemes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Generously Transitive Permutation Groups</td>
<td>221</td>
</tr>
<tr>
<td>12.2 p's and q's</td>
<td>221</td>
</tr>
<tr>
<td>12.3 P- and Q-Polynomial Association Schemes</td>
<td>228</td>
</tr>
<tr>
<td>12.4 Products</td>
<td>230</td>
</tr>
<tr>
<td>12.5 Primitivity and Imprimitivity</td>
<td>232</td>
</tr>
<tr>
<td>12.6 Codes and Anticodes</td>
<td>236</td>
</tr>
<tr>
<td>12.7 Equitable Partitions of Matrices</td>
<td>241</td>
</tr>
<tr>
<td>12.8 Characters of Abelian Groups</td>
<td>243</td>
</tr>
<tr>
<td>12.9 Cayley Graphs</td>
<td>245</td>
</tr>
<tr>
<td>12.10 Translation Schemes and Duality</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>251</td>
</tr>
<tr>
<td>Notes and References</td>
<td>255</td>
</tr>
</tbody>
</table>

13 Representations of Distance-Regular Graphs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Representations of Graphs</td>
<td>261</td>
</tr>
<tr>
<td>13.2 The Sequence of Cosines</td>
<td>263</td>
</tr>
<tr>
<td>13.3 Injectivity</td>
<td>264</td>
</tr>
<tr>
<td>13.4 Eigenvalue Multiplicities</td>
<td>267</td>
</tr>
<tr>
<td>13.5 Bounding the Diameter</td>
<td>270</td>
</tr>
<tr>
<td>13.6 Spherical Designs</td>
<td>272</td>
</tr>
<tr>
<td>13.7 Bounds for Cliques</td>
<td>276</td>
</tr>
<tr>
<td>13.8 Feasible Automorphisms</td>
<td>278</td>
</tr>
<tr>
<td>Exercises</td>
<td>279</td>
</tr>
<tr>
<td>Notes and References</td>
<td>282</td>
</tr>
</tbody>
</table>

14 Polynomial Spaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Functions</td>
<td>285</td>
</tr>
<tr>
<td>14.2 The Axioms</td>
<td>287</td>
</tr>
<tr>
<td>14.3 Examples</td>
<td>289</td>
</tr>
<tr>
<td>14.4 The Degree of a Subset</td>
<td>291</td>
</tr>
<tr>
<td>14.5 Designs</td>
<td>293</td>
</tr>
<tr>
<td>14.6 The Johnson Scheme</td>
<td>295</td>
</tr>
<tr>
<td>14.7 The Hamming Scheme</td>
<td>297</td>
</tr>
<tr>
<td>14.8 Coding Theory</td>
<td>299</td>
</tr>
<tr>
<td>14.9 Group-Invariant Designs</td>
<td>300</td>
</tr>
<tr>
<td>14.10 Weighted Designs</td>
<td>301</td>
</tr>
<tr>
<td>Exercises</td>
<td>302</td>
</tr>
<tr>
<td>Notes and References</td>
<td>305</td>
</tr>
</tbody>
</table>
15 Q-Polynomial Spaces 307
15.1 Zonal Orthogonal Polynomials 307
15.2 Zonal Orthogonal Polynomials: Examples 309
15.3 The Addition Rule 311
15.4 Spherical Polynomial Spaces 313
15.5 Harmonic Polynomials 315
15.6 Association Schemes 316
15.7 Q-Polynomial Association Schemes 319
15.8 Incidence Matrices for Subsets 323
15.9 \(J(v, k) \) is Q-Polynomial 326
 Exercises 328
 Notes and References 330

16 Tight Designs 333
16.1 Tight Bounds 333
16.2 Examples and Non-Examples 336
16.3 The Grassman Space 338
16.4 Linear Programming 341
16.5 Bigger Bounds 343
16.6 Examples 345
 Exercises 347
 Notes and References 349

Appendix: Terminology 353

Index of Symbols 355

Index 359