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Preface
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Chapter 1

Association Schemes

We offer an introduction to association schemes, starting from an algebriac view-
point.

1.1 Coherent Algebra

schur product

coherent algebra: Schur-closed and ∗-closed matrix algebra (with J ).

1.1.1 Lemma. A coherent algebra has a unique basis consisting of 01-matrices.

If A is a coherent algebra, then the identity matrix is the sum of the diagonal ma-
trices from the canonical basis. The algebra is homogeneous if I belongs to the
standard basis.

1.1.2 Lemma. A commutative coherent algebra is homogeneous.

An association scheme is a set of matrices that form the canonical basis for a
commutative coherent algebra.

Axioms

1.2 Coherent Algebras as Commutants of Permutations

1.2.1 Lemma. The commutant of a set of permutation n×n matrices is Schur-closed;
equivalently, the commutant of a permutation group is a coherent algebra.

The commutant of the permutation group G is homogeneous if and only if G is
transitive.

examples: generously transitive permutation groups.
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1. ASSOCIATION SCHEMES

1.3 Quantum Permutations

Let P be an n×matrix with entries from some algebra of d×d matrices (e.g., Matd×d (C)).

We say that a matrix P over the ring Matd×d (C) is a quantum permutation if:

(a) The entries of P are projections.

(b) Each row and each column of P sums to I .

If R = Z, then the only idempotents are 0 and 1 and in this case a quantum
permutation is a permutation.

There is a simple construction of quantum permutations based on Latin squares.
Let z1, . . . , zn be an orthonormal basis for Cn . If L is an n ×n Latin square, let P be
the n ×n matrix we get replacing each entry i of L by zi z∗

i .

1.3.1 Lemma. If P1, . . . ,Pk are d × d projections and
∑

r Pr = Id , then Pr Ps = 0 if
r 6= s.

Proof. If
∑

r Pr = Id , then

Pk =∑
r

Pk Pr = Pk +Pk

(∑
r 6= kPr

)
,

and hence

Pk

(∑
r 6= kPr

)
= 0

and therefore

0 = ∑
r 6=k

tr(Pk Pr )

As projections are positive semidefinite, tr(Pk Pr ) ≥ 0 and equality holds if and only
if Pk Pr = 0.

1.3.2 Lemma. If P is a quantum permutation, then P∗P = I (i.e., P is unitary).

Suppose M and N are quantum permutations of order n×n. We define the n×n
block matrix M ?N by

(M ?N )i , j =
∑

r
Mi ,r ⊗Nr, j

We leave the proof of the following as an exercise.

1.3.3 Lemma. If M and N are quantum permutations of order n ×n, then M ?N is
too. Further, if M and N commute with A, so does M ?N .

2



1.4. Coherent Algebras as Commutants of Quantum Permutations

1.4 Coherent Algebras as Commutants of Quantum
Permutations

The matrices M such that M×Id commute with P form a matrix algebra that con-
tains I and J .

Since P∗P = I , the matrix P∗ is a polynomial in P and so if A⊗ I commutes with
P , it commutes with P∗; consequently if A⊗ I commutes with P , so does A∗.

1.4.1 Theorem. The commutant of a set of n×n permutation matrices is a coherent
algebra.

Proof. We show that if P is a quantum permutation that commutes with M ⊗ I and
N ⊗ I , it commutes with (M ◦N )⊗ I .

The i j -block of (M ⊗ I )P is ∑
r

Mi ,r Pr, j

and, by hypothesis, this is equal to the i j -block of P (M ⊗ I ):∑
s

Ms, j Pi ,s .

We have ∑
r

Mi ,r Pr, j
∑

s
Ni ,s Ps, j =

∑
r

(Mi ,r Ni ,r )Pr, j

where the right side is the i j -block of ((M ◦N )⊗ I )P . Similarly∑
r

Mr, j Pi ,r
∑

r
Nr, j Pi ,r =

∑
r

(Mr, j Nr, j )Pi ,r

where the right side is the i j -block of P ((M ◦ N )⊗ I ). Since the left sides of the
previous pair of equations are equal, our result follows.

This result is easy to prove, and is left to the reader. One consequence of it is
that quantum isomorphic graphs are cospectral with cospectral complements.

Following Atserias et al (arXiv:1611.09837v3), we define two graphs X and Y on
n vertices to be quantum isomorphic if there is a quantum permutation P of order
n ×n, with entries projections of order d ×d , such that

(A(X )⊗ Id )P = P (A(Y )⊗ Id ).

If X = Y , we have a quantum automorphism of X . Since P is unitary, the matrices
A(X )⊗ I and A(Y )⊗ I are similar, and so we see that quantum isomorphic graphs
are cospectral. From Lemma 1.3.3 though, it follows that if X and Y are quantum
isomorphic, the coherent algebras generated by A(X ) and A(Y ) are isomorphic.

There are graphs that are quantum isomorphic but not isomorphic. (See [?].)
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1. ASSOCIATION SCHEMES

1.5 Type-II Matrices

We use W (−) to denote the Schur inverse of a matrix W (which need not be square).
We that an n ×n matrix W is a type-II matrix if W W −)T = nI . Hadamard matrices
provide one class of type-II matrices. More generally a unitary matrix is type-II if
and only if it is flat. For any nonzero complex number t , the matrix

W =


1 1 1 1
1 1 −1 −1
1 −1 t −t
1 −1 −t t


is type II.

A monomial matrix is the product a permutation matrix and an invertible diag-
onal matrix. The monomial matrices of a given order form a group. If M and N are
monomial and W it type-II, then MW N is type-II. We say that MW N and W are
equivalent. If W is type-II so is W T , but in general W and W T are not equivalent. If
W1 and W2 are type-matrices, so is W1 ⊗W2.

The next result is easy to verify.

1.5.1 Lemma. For an n ×n matrix, any two of the following statements imply the
third:

(a) W is a type-II matrix.

(b) n−1/2W is unitary.

(c) |Wi , j | = 1 for all i and j .

We say a type-II matrix is flat if all its entries have the same absolute value. The
character table of an abelian group is a flat type-II matrix. A flat real type-II matrix
is a Hadamard matrix.

Nomura [?] has shown that there are exactly three equivalence classes of 5×5
type-II matrices. One class is represented by the character table of the cyclic group
of order five, the other two have representatives of the form αI + J (so here W (−)

is not equivalent to W ). Haagerup [?] has shown that if n is not prime, there are
infinitely many equivalence classes of unitary type-II matrices of order n.

For any complex number t , the matrix

W =


1 1 1 1
1 1 −1 −1
1 −1 t −t
1 −1 −t t


is type II. Next we have the Potts models : if W is n ×n and

W = (t −1)I + J ,

4



1.5. Type-II Matrices

then

W W (−)T = ((t −1)I + J )((t−1 −1)I + J )

= ((2− t − t−1)I + (n −2+ t + t−1)J ,

whence it follows that W is type II whenever 2− t − t−1 = n, i.e., whenever t is a root
of the quadratic

t 2 + (n −2)t +1.

As the first example suggests, any Hadamard matrix is a type-II matrix, and it is
not unreasonable to view type-II matrices as a generalization of Hadamard matri-
ces.

1.5.2 Lemma. An n×n matrix W is type-II if and only if for any two diagonal matri-
ces D1 and D2,

〈D1,W −1D2W 〉 = 1

n
tr(D1) tr(D2).

Proof. We have

〈ei eT
i ,W −1e j eT

j W 〉 = tr(ei eT
i W −1e j eT

j W ) = eT
i W −1e j eT

j W ei = (W −1)i , j W j ,i ,

and so our claim for D1 = ei eT
i and D2 = e j eT

j if and only if

(W −1)i , j W j ,i = 1

n
.

It holds for all i and j if and only if W −1 = 1
n W (−1)T , i.e., if W is type II. The result

now follows by linearity.

1.5.3 Corollary. If W is type II of order n ×n and D is diagonal,

(W −1DW )i ,i = 1

n
tr(D).

1.5.4 Lemma. Suppose P1, . . . ,Pk are pairwise orthogonal projections summing to
I . If W is a k ×k type-II matrix and we define

Ui =
∑

j
Wi , j Pi (i = 1, . . . ,k),

then U1, . . . ,Uk are invertible and∑
i

Pi ⊗Pi =
∑

i
Ui ⊗U−1

i .

If W is unitary, so are U1, . . . ,Uk .

5



1. ASSOCIATION SCHEMES

1.6 Nomura Algebras of Type-II Matrices

If W is an m×n Schur-invertible matrix, we define n2 vectors Yi , j (W ) (for 0 ≤ i , j ≤
n) by

Wi / j =W ei ◦W (−)e j .

The Nomura algebra NW of W is the set of n×n complex matrices for each each of
the n2 vectors Wi / j is an eigenvector. This is a matrix algebra.

1.6.1 Lemma. The matrix W is type-II if and only if J ∈NW .

If W is type-II, it is invertible and therefore for fixed j , the vectors

Wi / j = ∂ j (W )−1W ei

are linearly independent. If M ∈NW , we defineΘW (M) to be the n×n matrix such
that

MWi / j = (ΘW (M)i , j )Wi / j .

The mapΘW is linear on NW and injective. We also have

ΘW (M N ) =ΘW (M)◦ΘW (N ).

Let W be a type-II matrix of order n ×n. Define matrices Fi , j =Fi , j (W ) by

Fi , j = 1

n
Wi / j (W j /i )T = 1

n
∂i (W )(W e j )(−1)(W e j )T ∂i (W )−1.

We note that Fi ,i = 1
n J and

F T
i , j =F j ,i ,

Further
F (−)

i , j = nW j /i (Wi / j )T = n2F j ,i .

If W is flat, then Fi , j is Hermitian.
If W is a type-II matrix, the columns of W (−) form a dual basis to the set of

columns of W . It follows that the matrices Fi , j are idempotents and that∑
i

Fi , j = I =∑
j

Fi , j .

Now we can prove a very important result due to Nomura:

1.6.2 Theorem. If M ∈NW , thenΘW T (ΘW (M)) = nM T .

Proof. Assume M ∈ NW . Then MFi , j = Θ(M)i , j Fi , j and, summing this over j
yields

M =∑
j
Θ(M)i , j Fi , j .

6



1.7. Type-II Matrices and Quantum Permutations

Therefore

Mr,s = 1

n

∑
j
ΘW (M)i , j

Wr,i

Wr, j

Ws, j

Ws,i
= 1

n

Wr,i

Ws,i

∑
j
ΘW (M)i , j

Ws, j

Wr, j
.

If follows that
nMr,s (W T )s/r =ΘW (M)(W T )s/r .

and this yields our result.

This theorem tells us many things. First, we see thatΘW andΘW T are invertible
and that NW is closed under transposes. Since im(ΘW T ) is Schur-closed, we also
see that NW is Schur-closed. As NW is Schur-closed, it has a basis of 01-matrices
and, consequently, NW is closed under complex conjugation. To sum up, NW is
the Bose-Mesner algebra of an association scheme, and NW T is the Bose-Mesner
algebra which we can view as dual to NW .

1.7 Type-II Matrices and Quantum Permutations

Let FW be the n2×n2 block matrix with i j -block equal to Fi , j ; we call it the matrix
of idempotents of W . Since F T

i , j =F j ,i , we see that F is symmetric.

If F τ is the matrix we get by applying the transpose map to each block of F , i.e.,
the partial transpose. Then

F τ = 1

n
F (−).

Let S be the operator on Cn ⊗Cn that sends u ⊗ v to v ⊗u (for all u and v).

1.7.1 Lemma. If W is type-II, then FW T = SFW S.

Proof. We have

n(Fi , j (W ))r,s =
Wr,i

Wr, j

Ws, j

Ws,i
= Wr,i

Ws,i

Ws, j

Wr, j
=

W T
i ,r

W T
i ,s

W T
j ,s

W T
j ,r

= n(Fr,s (W T ))i , j .

Here the left hand and right hand terms are equal respectively to

(ei ⊗er )T F (W )(e j ⊗es ), (er ⊗ei )T F (W T )(es ⊗e j )

and the result follows.

1.7.2 Theorem. If W is a type-II matrix, then F is type-II. If in addition W is flat,
then F is flat and is a quantum permutation matrix.

Proof. For fixed i , the vectors W e j form a basis of Cn and the vectors n−1(W e j )(−)

form a basis dual to this. Hence the matrices

1

n
(W e j )(−1)(W e j )T

are pairwise orthogonal idempotents and sum to I . Therefore for fixed i the matri-
ces Fi , j are pairwise orthogonal idempotents that sum to I .

Since F T = F , it also follows that each column of FW consists of pairwise or-
thogonal idempotents that sum to I . If W is flat, then Fi , j is Hermitian.

7



1. ASSOCIATION SCHEMES

1.7.3 Theorem. Let W be a type-II matrix and let FW be the associated matrix of
idempotents. The set of matrices M such that [I ⊗M ,FW ] = 0 is equal to NW . The
set of matrices N such that [N ⊗ I ,FW ] = 0 is equal to NW T .

Proof. We have that [I ⊗M ,FW ] = 0 if and only if [M ,Fi , j ] = 0 for all i and j . Now
M commutes with a rank-1 matrix uv∗ if and only if u is a right eigenvector for M .
Hence [M ,Fi , j ] = 0 for fixed i and all j if and only if M ∈NW .

For the second claim,

S((N ⊗ I )FW )S = (I ⊗N )FW T ,

from which the assertion follows.

One consequence of this result is that NW is the commutant of the set of matri-
ces

{Fi , j : j = 1, . . . ,n}.

We also see that NW T ⊗NW is contained in the commutant of FW .
Since the set of matrices N such that N ⊗ I commutes with FW is Schur-closed,

this set of matrices is itself is Schur-closed. Therefore NW T and NW are Schur-
closed.

8



Chapter 2

Products and Tensors

We show how to use the Kronecker product of matrices, or equivalently the tensor
product of algebras, to construct new association schemes from old.

2.1 Tensor Powers

We consider constructions of association schemes that make use of the tensor prod-
uct.

2.1.1 Lemma. If Ao , . . . , Ad and B0, . . . ,Be are two association schemes with d and e
classes respectively, then the matrices

Ai ⊗B j , 0 ≤ i ≤ d , 0 ≤ j ≤ e

form an association scheme with de+d +e classes, and that the Bose-Mesner alge-
bra of this product is the tensor product of the Bose-Mesner algebras of its factors.

Proof. This is not hard to verify directly. Alternatively let the two schemes be de-
noted by A and B respectively. It follows from ?? and ?? that the tensor product

C[A ]⊗C[B]

is closed under matrix and Schur multiplication. Since it contains J and is transpose-
closed, we deduce that it is the Bose-Mesner algebra of a scheme. The dimension
of this algebra is (d+1)(e+1) and hence this product scheme has the stated number
of classes.

Similarly we have a power construction:

2.1.2 Lemma. If A is an association scheme with d classes, then C[A ]⊗k is the
Bose-Mesner algebra of an association scheme with (d +1)k −1 classes.

It is not hard to construct new association schemes with a large number of
classes, hence the previous two constructions are not as useful as we might hope.

9



2. PRODUCTS AND TENSORS

However there is an interesting construction based on the tensor power, which we
develop now.

Suppose V is a vector space. We define an action of Sym(k) on V ⊗k by declaring
that if

x1 ⊗·· ·⊗xk

and σ ∈ Sym(k), then
σ : x1 ⊗·· ·⊗xk 7→ x1σ⊗·· ·⊗xkσ.

It follows that σ induces a linear map from V ⊗k to itself (which we will denote by σ.
If e1, . . . ,ed is a basis for V , then the products

ei1 ⊗·· ·⊗eik

form a basis for V ⊗k . Since σ permutes the elements of this basis, the matrix repre-
senting σ is a permutation matrix.

Note that some elements of V ⊗k are left fixed by the action of Sym(k). As exam-
ples we have the diagonal terms

ei ⊗·· ·⊗ei

and, when k = 2, the sum
e1 ⊗e2 +e2 ⊗e1

is fixed by Sym(2). We define the k-th symmetric power of V to be the subspace of
V ⊗k formed by the vectors that are fixed by each element of Sym(k). If dim(V ) = d ,
then its k-th symmetric power has dimension

(d+k−1
k

)
.

2.1.3 Theorem. If A is an association scheme with d classes, then the k-th sym-
metric power of C[A ] is an association scheme with

(d+k
k

)−1 classes.

Proof. The k-th symmetric power of C[A ] is the centralizer of a set of permutation
matrices, and therefore it is Schur-closed by ??. It is closed under matrix multipli-
cation and transpose and contains I and J , and it is commutative since C[A ] is.
Therefore it is the Bose-Mesner algebra of an association scheme.

We call the scheme produced by this construction the k-th symmetric power of
A , and we denote it by H(k,A ).

We note the proof of the previous theorem theorem also yields that a symmetric
power of a coherent algebra is again a coherent algebra, and this power is homoge-
neous if the input is.

2.2 Generalized Hamming Schemes

In this section we offer an alternative, more concrete, construction of the symmet-
ric power and consider some examples.

Suppose A is an association scheme with Schur idempotents A0, . . . , Ad and
vertex set V . If u and v are two elements of V n , let h(u, v) be the vector of length
d +1 whose i -th entry hi (u, v) is the number of coordinates j such that u j and v j

10



2.3. A Tensor Identity

are i -related. The entries of h(u, v) sum to n; conversely any non-negative vector
of length n whose entries sum to n is equal to h(u, v) for some u and v . If α is a
non-negative vector of length d+1 and 1Tα= n, define Aα to be the 01-matrix with
rows and columns indexed by V n and with (Aα)u,v = 1 if and only if h(u, v) = α.
This set of matrices forms the k-th symmetric power of A . If A is the scheme with
one class on q vertices, then H(n,A ) is the Hamming scheme H(n, q).

By way of a more particular example, suppose I , A1 and A2 form an association
scheme with two classes, i.e., the association scheme of a strongly regular graph.
The Schur idempotents of A ⊗A are the nine matrices

I , I ⊗ A1, A1 ⊗ I ,
I ⊗ A2, A2 ⊗ I , A1 ⊗ A2,

A2 ⊗ A1, A1 ⊗ A1, A2 ⊗ A2.

The Schur idempotents of H(2,A ) are

I , I ⊗ A1 + A1 ⊗ I , I ⊗ A2 + A2 ⊗ I ,
A1 ⊗ A2 + A2 ⊗ A1, A1 ⊗ A1, A2 ⊗ A2.

2.3 A Tensor Identity

We use A⊗B to denote the Kronecker product of two matrices A and B . We offer a
more exalted version of Seidel’s identity, due to Koppinen.

2.3.1 Theorem. Let A be an association scheme with d classes. Then

d∑
i=0

1

v vi
Ai ⊗ AT

i =
d∑

i=0

1

mi
Ei ⊗Ei .

Proof. Suppose that V is an inner product space and u1, . . . ,uk and v1, . . . , vk are
two orthogonal bases for a subspace U of V . If

R =
k∑

i=1

1

〈ui ,ui 〉
ui u∗

i

and

S =
k∑

i=1

1

〈vi , vi 〉
vi v∗

i ,

and x ∈ V , then Rx and Sx are both the orthogonal projection of x onto U . So
Rx = Sx for all x and therefore R = S. Since

x y∗ = x ⊗ y∗,

we thus have
k∑

i=1

1

〈ui ,ui 〉
ui ⊗u∗

i =
k∑

i=1

1

〈vi , vi 〉
vi ⊗ v∗

i . (2.3.1)
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2. PRODUCTS AND TENSORS

Now let vec : Matm×n(C) →Cmn be the linear map given by

vec(A) =

Ae1
...

Aen

 .

If M ∈ Matn×n(C), let M # denote the linear map from Matn×n(C) to C given by

M #(X ) := tr(M∗X ).

Note that
M #(X ) = vec(M)∗ vec(X ).

Then (2.3.1) yields that

d∑
i=0

1

v vi
Ai ⊗ A#

i =
d∑

i=0

1

mi
Ei ⊗E #

i .

Consequently
d∑

i=0

1

v vi
Ai ⊗vec(Ai )T =

d∑
i=0

1

mi
Ei ⊗vec(E i )T

and therefore
d∑

i=0

1

v vi
Ai ⊗ Ai =

d∑
i=0

1

mi
Ei ⊗E i .

Let I denote the identity map on Matv×v (C) and τ the transpose map. If we
apply I ⊗τ to both sides of this identity, the result follows.

We let K denote either of the two sums in the statement of 2.3.1. Since E j ⊗E j

is self-adjoint, we have K ∗ =K and therefore we also have

K =
d∑

i=0

1

v vi
AT

i ⊗ Ai .

2.4 Applications

We present three applications of our tensor identity.
First, suppose X ∈ Matv×v (C) and T : C[A ]⊗C[A ] → C[A ] is the linear mapp-

ping given by
T (C ⊗D) = tr(D X )C .

Therefore

T (K ) =
d∑

i=0

1

v vi
tr(AT

i X )Ai =
d∑

i=0

1

mi
tr(Ei X )Ei .

An association scheme A with d classes is pseudocyclic if its valencies v1, . . . , vd

are all equal and its multiplicities mi are all equal. If we denote the common value
of these parameters by m, then v = dm +1. Koppinen’s identity yields that

K = 1

v
I + 1

vm

d∑
i=1

A⊗2
i = E0 + 1

m

d∑
i=1

E⊗2
i .

12



2.4. Applications

Here
d∑

i=1
A⊗2

i

is the adjacency matrix of a regular graph. The previous equality shows that it has
exactly three eigenvalues (vm−m, v−m and −m), and therefore it is the adjacency
matrix of a strongly regular graph.

The simplest example of a pseudocyclic scheme is the scheme with d classes as-
sociated to the odd cycle C2d+1. (In this case the strongly regular graph is L(K2d+1,2d+1).)

We offer another proof of the inequality (??).

2.4.1 Theorem. Let A be an association scheme with d classes on v vertices and let
R be a subset of {1, . . . ,d}. If C is an R-clique and D is an R-coclique, then |C ||D| ≤ v .

Proof. Let C be an R-clique and D an R-coclique, with characteristic vectors y and
z respectively. Let S be the subset C ×D of V ×V , with characteristic vector x. Then
x = y ⊗ z and

xT (Ai ⊗ Ai )x = yT Ai y zT Ai z = 0

if i 6= 0. So

xT x = xT

(∑
i

1

v vi
Ai ⊗ Ai

)
x =

d∑
j=0

1

m j
xT (E j ⊗E j )x.

The matrices Ei are positive-semidefinite, and therefore so are the matrices Ei ⊗Ei .
Consequently each term in the last sum is non-negative, and thus

|S| = xxT ≥ xT (E0 ⊗E0)x = |S|2
v2 .

Therefore |S| ≤ v .

Notes

Bailey [?] also offers a detailed treatment of constructions based on tensor products.
Delsarte [?, ???] introduced what we called the generalised Hamming schemes, call-
ing them ???. Its applications in 2.4 are new, although the results themselves are not.
(In particular the pseudocyclic schemes we present were first found by [?].)
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Chapter 3

Translation Schemes

Suppose Γ is an abelian group of order v . The conjugacy class scheme on Γ is a
scheme with v − 1 classes, and each minimal Schur idempotent is a permutation
matrix. Many interesting schemes arise as subschemes of these; they are known as
translation schemes.

3.1 Characters

Let Γ be a finite abelian group. A character of Γ is a homomorphism from Γ into
the multiplicative group formed by the non-zero complex numbers. The set of all
characters of Γ is denoted by Γ, and is called the character group of Γ. Ifψ ∈ Γ∗ and
g ∈ Γ, then g k for some integer k. Therefore

ψ(1) =ψ(g k ) =ψ(g )k ,

whence we see that ψ(g ) is a k-root of unity. It follows that

ψ(g−1) =ψ(g ).

The trivial character is the map that sends each element of Γ to 1. If ϕ and ψ are
characters, we define the map ϕψ by

ϕψ(g ) :=ϕ(g )ψ(g ).

Using this definition it follows that Γ∗ is an abelian group. If ψ ∈ Γ∗, then ψ−1 =ψ.
To give an example, suppose Γ=Zn . Let θ be an n-th root of unity in C and let

g be a generator for Γ. Then the map

g k 7→ θk

is readily seen to be a character of Γ. Thus each n-th root of unity determines a
character of Γ, and these characters form a subgroup of Γ∗ with order n. For further
progress, we need the following.

15



3. TRANSLATION SCHEMES

3.1.1 Lemma. If ψ is a non-trivial character of the finite abelian group Γ, then∑
g∈Γ

ψ(g ) = 0.

Proof. If a ∈G then ∑
g∈Γ

ψ(g ) = ∑
g∈Γ

ψ(ag ) =ψ(a)
∑
g∈Γ

ψ(g ),

whence we see that if ψ(a) 6= 1, then
∑

g ψ(g ) = 0.

If S ⊆ Γ and ψ ∈ Γ∗, we define

ψ(S) = ∑
g∈S

ψ(g ).

The previous result thus states that if ψ is not trivial, then ψ(Γ) = 0.

3.1.2 Corollary. If ϕ and ψ are characters of Γ, then

∑
g∈Γ

ϕ(g )ψ(g ) =
{
|Γ|, if ϕ=ψ;

0, otherwise.

Proof. Apply the lemma to the product ϕψ.

We define the sum in this corollary to be the inner product of ϕ and ψ; we
see that distinct characters are orthogonal. It follows that the elements of Γ∗ are
linearly independent elements of the vector space CG of complex-valued functions
of Γ. Since this space has dimension |Γ|, we conclude that

|Γ∗| ≤ |Γ|.

We can now show that Γ∗ and Γ are isomorphic abelian groups. We saw above that
Z∗

n contains a subgroup isomorphic to Γ, and therefore

Z∗
n
∼=Zn .

A finite abelian group is the direct product of cyclic groups. If A and B are finite
abelian groups then we may assume inductively that

(A×B)∗ ∼= A∗×B∗,

and so our claim follows.

Let Γ be a finite abelian group of order n. A character table of Γ is the n ×n
matrix with i j -entry equal to the value of the i -character on the j -th element of Γ.
By 3.1.2,

H H∗ = nI .

Also
H ◦H = J .

16



3.2. Translation Graphs

For example, the character table of Zn
2 may be taken to be the Kronecker prod-

uct of n copies of (
1 1
1 −1

)
.

For another example, let Γ be Zn and suppose η is a primitive n-th root of unity.
The matrix P with rows and columns indexed by Γ and with

Pi , j = ηi j

is a character table for Γ. Since this is symmetric, any finite abelian group has a
symmetric character table.

3.2 Translation Graphs

Let G be a group and suppose C ⊆ G . The Cayley graph X (C ) is the graph with
vertex set G and arc set

{(g ,h) : hg−1 ∈C }.

Define
C−1 = {c−1 : c ∈C }

and call C inverse-closed if C =C−1. Then X (C ) is a directed graph if and only if C
is not inverse-closed, and it will contain loops if 1 ∈C . We do not insist that Cayley
graphs be undirected, but we do insist that they do not have loops.

If a ∈G , let ρa be the map that sends x in G to xa. Then ρa is a permutation of G
and an automorphism of X (C ). Hence G acts as a regular group of automorphisms
of X (C ). Conversely, if G acts as a regular group of automorphisms of a graph X , we
may choose a vertex v in X and define C to be the set of elements g of G such that
(v, g v) is an arc in X . Then X is isomorphic to the Cayley graph X (C ).

We define a translation graph to be a Cayley graph for an abelian group. One
advantage of translation graphs is that their eigenvalues and eigenvectors are more
accessible, as we show now.

Suppose Γ is an abelian group of order v . Each character of G can be extended
to a function on the subsets of Γ as follows. Suppose ψ ∈ Γ∗ and S ⊆ Γ. Then

ψ(S) := ∑
g∈S

ψ(g ).

3.2.1 Lemma. Let X be a Cayley graph for the abelian group Γ, relative to the subset
C . Each character ψ of Γ is an eigenvector for A(X ) with eigenvalue ψ(C ).

Proof. A function ψ on V (X ) is an eigenvector if there is a complex number λ such
that

λψ(g ) = ∑
h∼g

ψ(h)

Since ∑
h∼g

ψ(h) = ∑
c∈C

ψ(cg ) =ψ(g )
∑
c∈C

ψ(c) =ψ(g )ψ(C ),

17



3. TRANSLATION SCHEMES

we see that ψ is an eigenvector with eigenvalue ψ(C ).
Assume V =V (d ,F) is a vector space. A Cayley graph for V is a translation graph.

A Cayley graph for V is linear if its connection set is closed under multiplication by
the non-zero elements of F. Any Cayley graph for V (d ,GF (2)) is linear, as is any
undirected Cayley graph for V (d ,GF (3)).

3.3 Translation Schemes and their Duals

Let Γ be a finite abelian group of order v . Each element of Γ gives rise to a permuta-
tion of Γ—the permutation corresponding to a maps g in Γ to g a. Hence for each
element g in Γ we have a permutation matrix P (g ); the map g 7→ P (g ) is a group
homomorphism. Therefore

P (g )P (h) = P (h)P (g ), P (g−1) = P (g )T .

We have P (1) = I and
∑

g P (g ) = J . Hence the matrices P (g ) form an association
scheme with v −1 classes. (This is in fact the conjugacy class scheme on Γ, but the
description we have just presented may be more transparent.) We call it the abelian
group scheme on Γ.

3.3.1 Lemma. Let A be an association scheme with v vertices. Then A has v −1
classes if and only if it is the association scheme of an abelian group.

Proof. Suppose A has v vertices and v classes A0, . . . , Av−1. Since
∑

i Ai = J , we
have vi = 1 for each i . It follows that Ai is a permutation matrix, and that together
they form an abelian group of order v .

We define a translation scheme to be a subscheme of an abelian group scheme.
The Hamming schemes and the bilinear forms schemes are translation schemes.

Let F be a finite field of order q and suppose K is a subgroup of F∗, the multi-
plicative group of F. The cyclotomic scheme has the elements of F as its vertices,
and (u, v) is i -related if and only if v −u lies in the i -th coset of K . Hence if k = |K |,
this scheme has (q−1)/k classes each of valency k. This scheme is symmetric if and
only if −1 ∈ K . It is a translation scheme relative to the additive group of F. If q = pn

for some prime n, then the scheme is linear if and only if K contains GF (p)∗.

Let A be a subscheme of the scheme coming from the abelian group Γ. Then
Γ acts by right multiplication as a group of permutations on itself, and thus Γ acts
transitively on the vertices of A . In particular, Γ≤ Aut(Xi ) for i = 1, . . . ,d and there-
fore each Xi is a Cayley graph for Γ relative to a subset Ci . The sets Ci partition Γ\1
and are closed under inverses, that is, for each i we have C−1

i =C j for some j .
The matrix of eigenvalues P of an abelian group scheme is the character table

of the group. Thus the columns of P are indexed by the elements of the group, the
rows by the characters and the i j -entry is the value of the i -th character on the j
element. Assumeπ is a partition C0, . . . ,Cd of Γ such that C0 = {1} and the set of cells
is inverse-closed. Let S be the characteristic matrix of π. Then by ??, the dimension
of the algebra generated by the matrices Ai = A(X (Ci )) is equal to the number of
distinct rows of PS. Further, by ??, is this dimension is e+1, then e ≥ d and equality

18



3.4. Geometry, Codes and Graphs

holds if and only if A0, . . . , Ad form an association scheme. (We will discuss this
from a somewhat different viewpoint in Section 4.7.)

If equality holds then π determines a partition of Γ∗ into d +1 cells, D0, . . . ,Dd

say. It is not hard to show that one of these cells consists of the trivial character, and
that the set of cells in inverse-closed. Hence we obtain an association scheme on
Γ∗. We call this scheme the dual of the scheme determined by π. Thus translation
schemes come in dual pairs.

3.4 Geometry, Codes and Graphs

Let V be the vector space of dimension d over the finite field GF (q). The 1-dimensional
subspaces of V are the points of the projective space PG(d − 1, q). Suppose Ω ⊆
PG(d − 1, q). We can represent the set Ω by the columns of a d × |Ω| matrix M
whose columns are homogeneous coordinate vectors for the elements of Ω. We
call the row space of M the code of Ω. The kernel of M is the dual code of Ω. We
will usually denote the code ofΩ by C (Ω), or by C . The dual code of C is C⊥.

If Ω⊆ PG(d −1, q), then 〈Ω〉 denotes the smallest projective subspace that con-
tains Ω. The dimension of Ω is the projective dimension of 〈Ω〉; the rank rk(Ω) is
the dimension of the subspace of V corresponding to the projective subspace 〈Ω〉.
(The rank is one greater than the projective dimension.) We note that rk(Ω) is equal
to the dimension of its code.

Using the machinery we have just defined, we can translate geometric ques-
tions about Ω into questions about its code. However there is also a translation
into graph theory. Suppose M is a matrix representing Ω. Let X (Ω) denote the
Cayley graph for the additive group of V with the non-zero scalar multiples of the
columns of M as its connection set. Thus X is a Cayley graph on qd vertices, with
valency (q −1)|Ω|. It is connected if and only rk(M) = d , and this holds if and only
if rk(Ω) = d . These Cayley graphs are the most important examples of linear Cayley
graphs (as defined at the end of Section 3.2).

If C is a subspace of V , its coset graph is the graph with the cosets of C as its ver-
tices, and the number of edges joining two cosets C1 and C2 is equal to the number
of vectors in C2 at Hamming distance one from a given vector in C1. This definition
allows a coset graph to have loops as well as multiple edges.

3.4.1 Lemma. The coset graph of a code C is simple if and only if the minimum
distance of C is at least three.

Note that the columns of M are distinct, and so the dual code ofΩhas minimum
distance at least three. (A code with minimum distance at least three is often called
a projective code .)

3.4.2 Lemma. If Ω ⊆ PG(d −1, q), then X (Ω) is the coset graph of the dual code of
Ω.

There is also a direct geometric description of X (Ω). View PG(d − 1, q) as the
hyperplane at infinity of the affine geometry AG(d , q). The vertices of AG(d , q) are
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3. TRANSLATION SCHEMES

the elements of V and its subspaces are the cosets of the linear subspaces of V .
Construct a graph with vertex set V by defining two distinct points to be adjacent if
the unique line through them meets the hyperplane at infinity in a point of Ω; this
graph is X (Ω).

We will see that there are many interesting connections between the properties
ofΩ, its code C and its graph X (Ω). Before we can develop these, we need informa-
tion about the eigenvalues and eigenvectors of X .

Let tr denote the trace map from the field F of order q to its prime field (of order
p). If θ is a complex primitive p-th root of 1, then the map

x 7→ θtr(aT x)

is a character of the additive group of V , which we denote by ψa . If a ∈V , then

a⊥ := {x : aT x = 0}.

Usually we will view a⊥ as a subset of PG(d −1, q).

3.4.3 Theorem. IfΩ⊆ PG(d −1, q) andψa is as above, thenψa is an eigenvector for
X (Ω) with eigenvalue q |Ω∩a⊥|− |Ω|.
Proof. The connection set C of X (Ω) consists of the vectors γx, where γ varies over
the non-zero elements of F and x varies over the columns of M . Then

x 7→ tr(γaT x)

is a linear map from F to GF (p). It is onto, and so takes each possible value exactly
q/p times as γ varies over F. Since the sum of the distinct powers of θ is zero,

∑
γ∈F\0

θtr(γaT x) =
{
−1, x 6= 0;

q −1, x = 0.

Therefore ψa(C ) = q |Ω∩a⊥|− |Ω|.
Geometrically |Ω∩a⊥ is the number of points ofΩ that lie on the hyperplane of

PG(d −1, q) with coordinate vector aT . If γ 6= 0, then

q |Ω∩a⊥| = q |Ω∩ (γa)⊥|,

whence we see that each hyperplane gives rise to q − 1 eigenvectors for X (Ω), all
with the same eigenvalue.

3.5 Language

In this section we develop a set of dictionaries, allowing us to translate between the
languages of finite geometry, coding theory and graph theory.

We assume thatΩ is a subset of PG(d−1, q) with rank d and size m, represented
by a matrix M . We denote the code ofΩ by C and its graph by X .
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3.5. Language

Suppose H is a hyperplane in PG(d −1, q), with coordinate vector hT . The el-
ements of Ω∩hT index the zero entries of hT M . If wt(x) denote the weight of the
code word x, then

|Ω∩hT | = m −wt(hT M).

Thus a hyperplane of PG(d −1, q) that intersects Ω in exactly i points determines
q−1 code words of weight m−i , and q−1 eigenvectors of X with eigenvalue qi −m.
In particular, the eigenvalues of X and their multiplicities are determined by the
weight enumerator of the code ofΩ.

3.5.1 Lemma. LetΩ be a set of m points in PG(d −1, q) and let τ be the least eigen-
value of X (Ω). Then τ≥−m, and equality holds if and only if the code ofΩ contains
a word of weight n.

3.5.2 Theorem. LetΩ be a set of n points in PG(d −1, q) with code C . Then X (Ω) is
q-colourable if and only if C⊥ contains a word of weight n.

Proof. If there is no word of weight n in C⊥, then the least eigenvalue of X (Ω) is
greater than −n. The valency of X (Ω) is n(q −1) and so the ratio bound yields that

α(X (Ω)) < |V (X )|
1+ n(q−1)

n

= |V (X )|
q

.

Hence χ(X (Ω)) > q .
Conversely, let M be a matrix that represents Ω and suppose aT M is a word of

weight n in the code of Ω. If x and y are vertices of X (Ω) and aT x = aT y , then
aT (x − y) = 0 and therefore x and y are not adjacent in X (Ω). Hence the map x 7→
aT x is a proper colouring of X (Ω) using the elements of F.

3.5.3 Corollary. Let Ω be a set of points in PG(d − 1, q). To determine the least
eigenvalue of X (Ω) fromΩ is NP-hard.

Proof. Take M to be the incidence matrix of an orientation of a graph Y . If aT M
has no zero entries, the vector a determines a proper colouring of Y with q colours.
If q = 3, then Y is 3-colourable if and only if the code over GF (3) generated by
M contains a word of weight n. Hence X (M) is 3-colourable if and only if Y is 3-
colourable. Since it is NP-hard to decide if a graph is 3-colourable, we are done.

We also see that it is NP-hard to decide if the adjacency matrix of a Cayley graph
for Zn

2 is invertible (over R).
The connection between eigenvalues of the coset graph and the weight distri-

bution of the code appears to be folk-lore. Some information appears in Delorme
and Solé (European J. Comb. 12 (1991)) [***but I have not checked this yet***].

The covering radius of a code C is the least integer r such that every word is at
distance at most r from a word of C .

3.5.4 Lemma. The covering radius of C⊥(Ω) is equal to the diameter of X .
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3. TRANSLATION SCHEMES

A cap in projective space is a set of points such that no three are collinear.

3.5.5 Lemma. SupposeΩ⊆ PG(d −1, q). Then the following are equivalent:

(a) Ω is a cap.

(b) The minimum distance of C⊥ is at least four.

(c) X (Ω) is triangle-free.

22



Chapter 4

Duality

4.1 The Discrete Fourier Transform

The set Cn of n ×n circulants over F is closed under matrix and Schur multiplica-
tion and contains I and J , the units for these multiplications. (Thus it is the Bose-
Mesner algebra of the association scheme of the cyclic group of order n.) We intro-
duce an important endomorphism of this algebra.

Let Ebe an extension field of F that contains a primitive n-th root of unity. Equiv-
alently, E is a splitting field for t n − 1. Let θ be a fixed n-th root of unity in E. If
M = p(R), define

Θ(M) =
n−1∑
i=0

p(θi )R i .

ThusΘ is an endomorphism, a linear operator on Cn . We call it a duality map .

4.1.1 Lemma. If M ∈Cn thenΘ2(M) = nM T .

Proof. It is enough to show thatΘ2(Rk ) = nRT . We have

Θ2(Rk ) =∑
j
θk jΘ(R j ) =∑

i , j
θk jθi j R i

=∑
i

(∑
j
θ j (i+k)

)
R i .

The inner sum is zero unless i =−k, when it is n. ThereforeΘ2(Rk ) = R−k and since
R−1 = RT , the result follows.

4.1.2 Theorem. If M , N ∈Cn thenΘ(M N ) =Θ(M)◦Θ(N ) andΘ(M◦N ) = 1
nΘ(M)Θ(N ).

Proof. We have

Θ(p(R)q(R)) =∑
i

p(θi )q(θi )R i =
(∑

i
p(θi )R i

)
◦
(∑

i
q(θi )R i

)
,

which is the first claim. The second follows from this and the previous lemma.
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4. DUALITY

4.1.3 Theorem. If M T =∑
v µi R i , then MΘ(R i ) =µiΘ(R i ).

Proof. We have

MΘ(R i ) = v−1Θ2(M T )Θ(R i )

=Θ(Θ(M T )◦R i )

=Θ(µi R i )

=µiΘ(R i ). ]

It follows from this that the entries ofΘ(M) are eigenvalues of M , and the columns
ofΘ(Ri ) are eigenvectors for all circulants.

Define the weight of a circulant to be the number of non-zero entries in a col-
umn.

4.1.4 Lemma. If deg(q(t )) = `, thenΘ(q(R)) has weight at least n −`.

Proof. If deg(q(t )) = `, then at most ` distinct powers of θ are zeros of q and so
Θ(q(R)) has at most ` zero entries in any column.

The following result is the BCH-bound.

4.1.5 Theorem. If M = ϕ(R) and ϕ(t ) vanishes on k consecutive powers of θ, the
minimum distance of the column space of M is at least k +1.

Proof. Suppose M = p(R). If p(t ) has k consecutive powers of θ as zeros, thenΘ(M)
has k cyclically consecutive zeros in its first column. Hence there is an integer s
such that last k entries in R sΘ(M) are zero, and therefore there is a polynomial q(t )
with degree at most n −1−k such that

R sΘ(M) = q(R).

Consequently
Θ(q(R)) =Θ(R s )◦Θ2(M)

has weight at least k +1. SinceΘ(R s ) =Θ(R)◦s has no zero entries andΘ2(M) = M T ,
it follows that M has weight at least k +1.

If g (t ) is a polynomial, then g (R)M = g (R)p(R) and g (t )p(t ) vanishes on k con-
secutive powers of θ. Therefore g (R)M has weight at least k+1, for any polynomial
g . This implies that the minimum weight of the column space of M is at least k+1.

M is diagonalisable if and only n ·1 6= 0 in F.
The subset {0,3,4,9,11} in Z21 is a cyclic difference set for a projective plane of

order four. Hence if
ψ(t ) = 1+ t 3 + t 4 + t 9 + t 11

then N = p(R) is the incidence matrix of a plane of order four. Since deg(p) = 11,
we see that rk(N ) ≥ 10 over Z2. We can check though that ψ divides t 21 −1: in fact

(t −1)ψ(t )ψ∗(t ) = t 21 −1

and consequently rk(N ) = 10.

24



4.2. The Hadamard Transform

4.2 The Hadamard Transform

In the previous we worked with a duality related to the cyclic group. Here we intro-
duce an analogous duality map related to the elementary abelian group Zn

2 . It may
help to view this as the additive group of a vector space of dimension n over Z2.

When working with the cyclic group we used circulant matrices, which are lin-
ear combinations of the powers of R, where R is a cyclic permutation matrix. We
introduce the analagous matrices for Zn

2 . First define a matrix P

P =
(
0 1
1 0

)
.

If u ∈Z2, define Au to be the Kronecker product

Au := P u1 ⊗·· ·⊗P un .

Then A0 = I ,
Au Av = Au+v

(and in particular A2
u = I ). It follows that the map

u 7→ Au

is a group isomorphism. A simple induction argument on n yields that∑
u

Au = J .

(Partition the sum over the vectors u such that u1 = 0 and the vectors u with u1 = 1.)
It follows that the matrices in

A := {Au : u ∈Zn}

are linearly independent. Define F[A ] to be vector space over F spanned by the
matrices in A . (For our purposes here, F=Rwill suffice.)

If u ∈Zn , define the function ψu :Zn → {−1,1} by

ψu(v) = (−1)uT v .

Define a duality mapΘ on F[A ] by setting

Θ(Au) =∑
v
ψu(v)Av

and extendΘ to F[A ] by linearity. We have at once that

Θ(I ) = J .

Then

Θ(Au)Θ(Av ) =∑
x

∑
y
ψu(x)ψv (y)Ax Ay

=∑
x,y

(−1)uT x+vT y Ax+y

= ∑
x,x+y

(−1)(u−v)T x (−1)vT (x+y) Ax+y .
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4. DUALITY

Since ∑
x

(−1)(u−v)T x =
{

2n , u = v ;

0, otherwise

we conclude that

Θ(Au)Θ(Av ) = δu,v 2nΘ(Au).

Consequently, for all M and N in F[A ],

Θ(M)Θ(N ) = 2−nΘ(M ◦N ).

We also haveΘ(Au)◦Θ(Av ) =Θ(Au+v ), whenceΘ(Au Av ) =Θ(Au)◦Θ(Av ) and

Θ(M N ) =Θ(M)◦Θ(N ).

Next

AuΘ(Av ) = Au
∑
w
ψv (w)Aw =∑

w
(−1)vT w Au+w

= (−1)vT u
∑
w

(−1)vT (u+w) Au+w

=ψu(v)Θ(Av )

which shows that the columns of Θ(Av ) are eigenvectors for Au . Moreover, we see
that the entries ofΘ(M) are the eigenvalues of M .

We leave the proof of the next result as an exercise.

4.2.1 Theorem. If M ∈ F[A ], thenΘ2(M) = 2n M .

Since Θ(I ) = J , it follows that Θ(J ) = 2n I . The proof of 4.1.3 is easily modified to
yield our next result.

4.2.2 Theorem. If M ∈ F[A ], then the entries ofΘ(M) are the eigenvalues of M .

4.2.3 Lemma. If M ∈ F[A ], then tr(Θ(M)) = sum(M).

Proof. Let ρ denote the sum of a row of M . We have

I ◦Θ(M) = 2−nΘ2(I )◦Θ(M)

= 2−nΘ(Θ(I )M)

= 2−nΘ(J M)

= 2−nΘ(ρ J )

= ρI

Therefore tr(Θ(M)) = sum(M).
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4.3 Two Matrix Duals

Let C be a linear code of length n and let ai denote the number of words in C of
weight i . The weight enumerator WC (x, y) is the polynomial

WC (x, y) =
n∑

i=0
ai xn−i y i .

It is a surprising fact that WC⊥ can be obtained from WC (x, y), and in a simple way.
If C is a linear binary code of length n, define the matrix AC by

AC := ∑
u∈C

Au .

4.3.1 Lemma. If C is a binary linear code, thenΘ(AC ) = |C |AC⊥ .

Proof. If β is a basis for C , then ∏
u∈β

(I + Au) = AC .

and accordinglyΘ(AC ) is the Schur product of the matrices

Θ(I + Au) = J +Θ(Au),

where u runs over β. Now

J +Θ(Au) =∑
v

(1+ (−1)uT v )Av = 2
∑

v∈u⊥
Av

and therefore the Schur product of the matrices J +Θ(Au) is 2|β|AC⊥ , as required.

Let K be the matrix

K :=
(
0 1
1 0

)
.

If M is a matrix M⊗n denotes the Kronecker product of n copies of M .

4.3.2 Lemma. We have ∑
u

xn−wt(u) ywt(u) Au = (xI + yK )⊗n .

Proof. Let e1, . . . ,en denote the standard basis for Zn
2 . If u ∈Zn

2 , then

u =∑
i

ui ei .

Then
Au = K u1 ⊗·· ·⊗K un

and so xn−wt(u) ywt(u) Au is the Kronecker product of the n terms x1−ui yui K ui for
i = 1, . . . ,n. This implies the lemma.
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4.3.3 Lemma. We haveΘ(M ⊗N ) =Θ(M)⊗Θ(N ).

Proof. The entries ofΘ(M)⊗Θ(N ) are the products of the entries ofΘ(M) andΘ(N ),
and these are the eigenvalues of M and N . The products of the eigenvalues of M
and N are the eigenvalues of M ⊗ N , and these are the entries of Θ(M ⊗ N ). [We
have neglected some bookkeeping, you are welcome to supply it. :-)]

4.3.4 Corollary. We have

Θ
(∑

u
xn−wt(u) ywt(u) Au

)
=∑

u
(x + y)n−wt(u)(x − y)w t (u) Au .

Proof. We haveΘ(I ) = J . Since K = J − I ,

Θ(K ) =Θ(J )−Θ(I ) = 2I − J .

Therefore

Θ(xI + yK ) = x J +2y I − y J = (x − y)(J − I )+ (x + y)I = (x + y)I + (x − y)K .

We now obtain the result by applying Lemmas 4.3.2 and 4.3.3.

4.4 MacWilliams Theorem

We apply the results from the previous section to derive MacWilliams theorem, a
fundamental result in Coding Theory.

4.4.1 Theorem. Let C be a binary linear code of length n. Then

WC⊥ (x, y) = 1

|C |WC (x + y, x − y).

Proof. Set M equal to
∑

u xn−wt(u) ywt(u) Au . Then the diagonal entries of AC⊥M are
each equal to WC⊥ (x, y), whence

tr(AC⊥M) = 2nWC⊥ (x, y).

Using 4.2.3, we have

tr(AC⊥M) = 2−n tr(Θ2(AC⊥M))

= 2−n sum(Θ(AC⊥M))

= 2−n sum(Θ(AC⊥ )◦Θ(M))

= 2−n |C⊥|sum(AC ◦Θ(M))

= |C |−1 sum(AC ◦Θ(M)).

Since the row sum of AC ◦Θ(M) is WC (x + y, x − y), the last term above is equal to
2n |C |−1WC (x + y, x − y), and so the theorem is proved.
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By way of example, suppose C is the code of the plane of order four. Our com-
putations in ?? yield that the weight enumerator of C is

x21 +21x16 y5 +210x13 y8 +280x12 y9 +280x9 y12 +210x8 y13 +21x5 y16 + y21.

Using MacWilliams theorem, we find the weight enumerator of the dual is

x21 +168x15 y6 +210x13 y8 +1008x11 y10 +280x9 y12 +360x7 y14 +21x5 y16.

4.4.2 Theorem. The length of a doubly even binary self-dual code is divisible by 8.

Proof. If C is self-dual with length n, then |C | = 2n/2 and

WC (x, y) = 2−n/2WC (x + y, x − y) =WC

( x + yp
2

,
x − yp

2

)
.

Therefore WC (x, y) is invariant under the substitution represented by the matrix

τ= 1p
2

(
1 1
1 −1

)
.

Since C is doubly even, it is also invariant when we replace y by i y (with i 2 = −1).
Equivalently it is invariant under the substitution represented by

σ=
(
1 0
0 i

)
.

We find that

(τσ)3 = 1+ ip
2

I .

Hence if θ := (1+ i )/
p

2, the substitution

x 7→ θx, y 7→ θy

leaves WC (x, y) invariant. But

WC (θx,θy) = θnWC (x, y)

and as θ is a primitive 8-th root of unity, this implies that 8 | n.

4.5 Projective Planes

We use the theory at hand to prove that there is no projective plane of order n,
where n ≡ 6 modulo 8.

We work with linear codes over GF (2). A code is even if all its word have even
weight, and it is doubly even if all words have weight divisible by four. If C is a
binary code of length n, the extended code by adding an (n + 1)-th coordinate to
each code word, such that the weight of the extended code word is even. (Thus we
are adding a parity check; the operation is trivial if C is even.)
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4.5.1 Theorem. Let N be the incidence matrix of a projective plane with order n and
let C be the linear code spanned by the rows of N over GF (2). Then the extended
code is self-dual and doubly even.

Proof. Let N be the incidence matrix of our projective plane. Let N1 denote the
matrix we get by adding a final column equal to 1 to N . Since n is even and since
equal row of N has weight n+1, the rows of N1 have even weight. One consequence
is that each word in row(N ) has even weight.

Further
N N T = nI + J

and hence
N1N T

1 = (nI + J )+ J = 0 mod 2.

It follows that the code generated by the rows of N1 is self-orthogonal. As n ≡ 2
modulo four, each row of N1 has weight divisible by four, whence it follows that all
code words in row(N1) have weight divisible by four.

Each row of N1 has length n2 +n +2, and it remains for us to show that

rk(N1) = 1

2
(n2 +n +2).

Since 1 lies in col(N ) over GF (2), we see that N1 and N have the same rank. We will
therefore compute rk(N ).

Let v = n2 +n+1 and let H be a parity check matrix for C —in other words, H is
a binary matrix with linearly independent rows such that N H T = 0 and

rk(N )+ rk(H) = v.

(Or to put it yet another way, the rows of H are a basis for ker(N ).) Permuting
columns of N and H if needed, we may assume that H has the form(

Ir K
)

where r = rk(H). Let H1 be given by

H1 =
(

Ir K
0 Iv−r

)
.

Now view N and H1 as 01-matrices overQ.
Since det(H1) = 1, we have

det(N ) = det(N H T
1 ).

Since N H T = 0 modulo two, each entry in the first r columns of N H T
1 is even, and

therefore 2r divides det(N ). Now

N N T = nI + J ,

from which it follows that

det(N ) = (n +1)nn(n+1)/2.
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As both n +1 and n/2 are odd, we conclude that r ≤ n(n +1)/2. This implies that

rk(N ) = v − r ≥ 1

2
(n2 +n +2);

since rk(N1) = rk(N ) and since row(N1) is self-orthogonal,

rk(N1) = (n2 +n +2)/2.

If n ≡ 6 modulo eight, then n2 +n +2 ≡ 4 modulo eight. Consequently by 4.4.2,
there is no binary doubly even self-dual code of this length. Thus we have the fol-
lowing result.

4.5.2 Corollary. If n ≡ 6 modulo eight, there is no projective plane of order n.

This condition is weaker than the Bruck-Ryser-Chowla theorem, but certainly
easier to use.

4.6 Duality

We say an association scheme A is formally self-dual if Q = P .
If i ∈ {0,1, . . . ,d}, we define i T to be the element of i ∈ {0,1, . . . ,d} such that Ai T =

AT
i . We recall that p j (k) = p j (kT ).

4.6.1 Theorem. Let A be an association scheme on v vertices such that Q = P and
letΘ be the linear mapping from C[A ] to itself such thatΘ(Ai ) =∑

j pi ( j )A j . Then:

(a) Θ(Ai ) = vEi .

(b) Θ(I ) = J ,Θ(J ) = v I .

(c) Θ(M N ) =Θ(M)◦Θ(N ) for all M and N in C[A ].

(d) Θ(M ◦N ) = 1
vΘ(M)Θ(N ) for all M and N in C[A ].

(e) If B is a subscheme of A , thenΘ(B) is also a subscheme.

Proof. Since pi ( j ) = qi ( j ), we have

Θ(Ai ) =
d∑

j=0
qi ( j )A j = vEi .

In particular,Θ(I ) = J .
Next

Θ(vEi )) =∑
j

qi ( j )Θ(A j ) =∑
j ,k

qi ( j )p j (k)Ak =∑
j ,k

qi ( j )p j (kT )AT
k .

Since QP = v I , it follows that
Θ(vEi ) = v AT

i .
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Hence
Θ2(M) = v M T (4.6.1)

for all M in C[A ]. (Note thatΘ(J ) = v I .)
Since the entries of Θ(Ai ) are the eigenvalues of Ai , we see that Θ(Ai A j ) =

Θ(Ai )◦Θ(A j ) and hence
Θ(M N ) =Θ(M)◦Θ(N ), (4.6.2)

for all M and N in C[A ].
Finally

Θ(Ai ◦ A j ) = δi , j vEi = 1

v
Θ(Ai )Θ(A j ).

and thus

Θ(M ◦N ) = 1

v
Θ(M)Θ(N ). (4.6.3)

for all M and N in C[A ].

If Θ is a map satisfying the conditions of this theorem, we call it a duality map .
The matrix representingΘ relative to the basis A0, . . . , Ad is P .

Suppose A is the scheme of the cyclic group of order v . If θ is a primitive v-th
root of 1 then we may assume that

Pi , j = θ(i−1)( j−1). (4.6.4)

It is easy to verify that PP = v I , so this scheme is formally self-dual. The map Θ

is essentially the discrete Fourier transform. We may take θ from any field F that
contains a primitive v-th root of 1, and thus we may defineΘ on F[A ].

It seems reasonable to define an association scheme on v vertices to be self-
dual if there is an endomorphism Θ of Matn×n(C) such that Θ(Ai ) = vEi for i =
0,1, . . . ,d .

If A and B are schemes and the matrix of eigenvalues of B is the complex
conjugate of the matrix of dual eigenvalues of A , we say that A and B are formally
dual . In this case we can define a map Θ as above, and a slightly modified version
of 4.6.1 still holds. If Θ is induced by an endomorphism of Matn×n(C), we say the
pair of schemes is dual .

De Caen observed that if A and B are dual, then the product scheme A ⊗B is
self-dual. Hence we might choose to view self-duality as the fundamental concept.

Each translation scheme is either self-dual or has a distinct dual translation
scheme. The only known examples of dual pairs of non-isomorphic schemes arise
in this way. The Higman-Sims scheme is self-dual and is not a translation scheme.

4.7 Dual Partitions

Let G be an abelian group. Then G is isomorphic to its character group G∗ and we
use ψa to denote the character corresponding to a in G .

Assume π is a partition of G with {0} as one cell. If C0 = {0} and

π= {C0,C1, . . . ,Cr }
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then we have Cayley graphs X1, . . . , Xr with connection sets C1, . . . ,Cr . Their adja-
cency matrices A1, . . . , Ad commute and sum to J − I . If a ∈G , the profile of a is the
vector

(ψa(C0)), . . . ,ψa(Cr ).

We say that a and b are equivalent if their profiles are equal, and the equivalence
classes of this relation form a partition

π∗ = {D0, . . . ,Ds }

with D0 = {0}.

4.7.1 Lemma. We have |π∗| ≥ |π|. Equality holds if and only if the graphs X1, . . . , Xr

form an association scheme, in which case we also get an association scheme with
r classes on the characters.

Proof. See “Algebraic Combinatorics”.

Now let V = V (d ,F) be a vector space, where |F| = q and the characteristic of F
is p. Set C = {0} and let

C1, . . . ,Cr

be a partition of the non-zero elements of V , such that each cell is closed under
multiplication by the non-zero elements of F. (So each Cayley graph X (Ci ) is lin-
ear.) As in the previous section, this partition of V determines a partition of the
characters of V into s classes, where s ≥ r and s = r if and only if the graphs X (Ci )
form an association scheme.

To get further, we need more information on the characters of V . Assume η is a
primitive p-th root of unity in C and let tr be the trace map from F to GF (p). Then
the map

ψa : x 7→ ηtr(aT x)

is a character and all characters of V arise in this way. The next result is a restate-
ment of Theorem 3.4.3.

4.7.2 Theorem. Let M be a d ×m matrix of F such that no two columns are linearly
independent. Let C be the set of (q−1)m non-zero scalar multiples of the columns
of M . If a ∈V , then

ψa(C ) = (q −1)m −qwt(aT M).

If C is closed under multiplication by non-zero elements of F, then C ∪ {0} is
the union of 1-dimensional subspaces of V = V (d ,F). Therefore any partition of
the complete graph on the vectors of V into r linear Cayley graphs corresponds to
a partition of the 1-dimensional subspaces of V , and thus can be represented by
matrices M1, . . . , Mr , each with d rows, such that the matrix

M = (
M1 . . . Mr

)
has exactly (qd − 1)/(q − 1) columns, no two linearly independent. If a ∈ V , we
define its profile to be the vector of length r with i -th entry wt(aT Mi ). This gives a
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partition of V \0 with at least r classes. If there are exactly r classes we get a pair of
association schemes on V . The first consists of the graphs X1, . . . , Xr . The second,
dual, scheme consists of the Cayley graphs with the “profile classes” as connection
sets.

Note that if a 6= 0, then ∑
i

wt(aT Mi ) = wt(aT M ),

where (q −1)wt(aT M ) is the number of non-zero vectors x such that aT x 6= 0. So
the profile of a is determined by the its first r −1 entries.

4.8 Difference Sets in Schemes

Let A denote an association scheme on v vertices. A difference set in A is 01-
matrix A such that

A AT = nI +λJ

for some positive integers n and λ. Hence A is an incidence matrix for a symmetric
design. It is easy to verify that if A is a difference set then so is J − A, and thus we
may assume A ◦ I = 0 is we like. If k is the row sum of A, then n = k −λ.

Consider the case where A is a difference set and A = AT . Then the squares of
the eigenvalues of A are λv +n and n. If k denotes the row sum of A, then k is an
eigenvalue of A and

k2 =λ(v −1)+k;

the remaining eigenvalues of A are ±pn. If tr(A) = 0, there are positive integers a
and b such that 1+a +b = v and

k +a
p

n −b
p

n = tr(A) = 0.

Accordingly

b −a = kp
k −λ

,

from which it follows that k−λ is a perfect square. Since A has exactly three distinct
eigenvalues, it is the adjacency matrix of a strongly regular graph with a = c.

The case where A is not symmetric is more complex. Since A lies in the Bose-
Mesner algebra of the scheme, A AT = AT A and therefore A is normal. A normal
matrix is symmetric if and only if its eigenvalues are real, consequently some eigen-
values of A are complex. The valency aside, all eigenvalues of A have absolute valuep

k −λ. The matrix A is still an incidence matrix of a symmetric design.
Suppose A is a 01-matrix in A with each row summing to k. Since A is normal,

A = LDL∗ where L is unitary. Hence

AT = A∗ = LDL∗

and thus if Az = θz, then AT z = θz and A AT z = |θ|2z. If the valency k is a simple
eigenvalue of A and its remaining eigenvalues each have absolute value

p
k −λ,

then A AT − (k −λ)I has rank one. It follows that A is a difference set.
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Classical difference sets arise as difference sets in the association scheme of an
abelian group Γ. In this case we can view the first row of A as the characteristic
function of a subset S of Γ, and the eigenvalues are the complex numbers

ψ(S)+ ∑
g∈Γ

ψ(g ).
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Chapter 5

Bent Functions

We consider bent functions from the point of view of association schemes. We de-
velop the connections with continuous quantum walks and with covers. We study
crooked functions, which are closely associated with bent functions, and which
give rise to interesting drackns.

5.1 Functions and Schemes

Suppose A is an association scheme with d classes where, as usual, we useC[A ] to
denote its Bose-Mesner algebra. If f is a complex function on {0, . . . ,d}, we define a
matrix f (A ) in C[A ] by

f (A ) =
d∑

i=0
fi Ai .

If M ∈C[A ], then eT
1 M can be viewed as a function on {0, . . . ,d}. We note that

( f g )(A ) = f (A )◦ g (A )

and so the mapping f 7→ f (A ) is an isomorphism. Thus complex functions on
{0, . . . ,d} correspond to elements of C[A ], and multiplication of functions becomes
Schur products of matrices.

This becomes more interesting if A is the group scheme for an abelian group Γ.
In this case

Ax Ay = Ax+y .

Now

f (A )g (A ) =∑
x,y

fx g y Ax Ay =
∑

z

(∑
x

fx gz−x

)
Az

and the function on Γ whose value on z is
∑

x fx gz−x is called the convolution of f
and g , denoted f ? g .

The group scheme for an abelian group admits a duality map Θ, which (as we
recall from Section 4.6) satisfies the following conditions:

(a) Θ(Ai ) = |Γ|Ei .
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(b) Θ(I ) = J ,Θ(J ) = |Γ|I .

(c) Θ(M N ) =Θ(M)◦Θ(N ) for all M and N in C[A ].

(d) Θ(M ◦N ) = |Γ|−1Θ(M)Θ(N ) for all M and N in C[A ].

(e) Θ2(M) = v M

It follows that

Θ( f (A )) = |Γ|∑
i

fi Ei

and therefore the eigenvalues of |G|−1Θ( f (A )) are the entries of f (A ), that is, they
are the values of f .

We observe that the eigenvalues of Θ(M) are the entries of Θ2(M), i.e., they are
the entries of v M .

IfΓ=Zn , thenΘ is the discrete Fourier transform, and ifΓ=Zd
2 , it is the Hadamard

transform.
If M is flat, then the eigenvalues of Θ(M) all have the same absolute value, and

so some scalar multiple of Θ(M) is unitary (and if the entries of M have absolute
value 1, thenΘ(M) is unitary). Similarly if M is unitary,Θ(M) is flat.

5.2 Bent Functions

Let Γ be an abelian group and let A denote its association scheme. A bent function
on Γ is a function f such that f (A ) is a flat unitary matrix.

The original, and usual, definition of a bent function is that it is a function f
from Zd

2 to Z2 such that f (A ) is a Hadamard matrix. Bent functions were intro-
duced by Rothaus (the first published paper is: O. S. Rothaus On “Bent” Functions,
Journal of Combinatorial Theory, Series A. 20, 300–305.)

Bent functions on the cyclic groupZn are also known as “cyclic n-roots”. Haagerup
[?] proved that if p is prime, only finitely many cyclic p-roots exist. (If they exist,
their entries are algebraic numbers.)

Although it is not immediately clear that it is useful, we could extend our defini-
tion to general schemes. We are then close to the problem of identifying the type-II
matrices that lie in the Bose-Mesner algebra of an association scheme. Ada and I
solved this for strongly regular graphs, and she used this solution to determine the
flat unitary matrices that lie in the Bose-Mesner algebra of a strongly regular graph.

Using the duality map on translation schemes, we see that each bent function
f has a dual f̂ , such that

Θ( f (A )) = f̂ (A )

This dual is a bent function. (For the Boolen case, this was alreqdy observed by
Rothaus.)

Since the Kronecker product of flat unitaries is a flat unitary matrix, we have a
product operation on bent functions.
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5.3 Boolean Functions

Formally, a Boolean function of arity d is a function from subsets of {1, . . . ,d} to
Z2. It follows that Boolean function is the characteristic function of a subset of the
power set of {1, . . . ,d}. If fS and fT are respectively the characteristic functions of
subsets S and T , then

fS fT = fS ∪T

and, using ⊕ to denote symmetric difference,

fS + fT = fS ⊕T .

Any Boolean function of arity d can be expressed as a polynomial in the variables
x1, . . . , xd ; we simply define xi to be f{i }. If f is Boolean, then

x 7→ (−1) f (x)

is a ±1-valued function on Zd
2 .

The polynomial x1x2 is a bent function in two variables. If f = x1x2, then

f (A ) =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1


Since the Kronecker product of two symmetric Hadamard matrices with constant
diagonal is a symmetric Hadamard matrix with constant diagonal, it is a bent func-
tion. We see that

x1x2 +x3x4

is a bent function onZ4
2, it is the Kronecker square of the previous example. If d > 2

and we view f = x1x2 as a function on Zd
2 , then

f (A ) =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

⊗ Jd−e

If f is expressed as a polynomial, then f (A ) is the Schur product of matrices
fi (A ), where fi runs over the monomials in f . (Schur multiplication of ±1-valued
functions corresponds to symmetric difference.) The polynomial

x1x2 +x3x4 +x1x3 +x2x4 +x1x4 +x2x3

is a bent function on Z4
2 (check this), its Hadamard matrix is the Schur product of

three bent functions, each isomorphic to our first example.
Suppose f : Zd

2 → Z2. We can use the support of f as the connection set of a
Cayley graph. (If we are feeling fussy, we might assume f (0) = 0, but one loop per
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vertex is not a problem.) There is a second subset we might reasonably use, namely
the set

D = {(x, f (x) : x ∈Zd
2 ).

(This is the graph of f , in the Calculus sense of the word ‘graph’.) Let D denote
the elements of D with last entry 0, and let D1 consist of the elements with last
entry 1. The Cayley graph X (Zd+1

2 ,D) is then is the superposition of two Cayley
graphs X (Zd+1

2 ,D0) and X (Zd+1
2 ,D1). The first of these is isomorphic to two vertex-

disjoint copies of the Cayley graph X (Zd
2 , f −1(0)), the second is isomorphic to K2 ×

X (Zd
2 , supp( f )). Note that one of these two Cayley graphs will have a loop on each

vertex. If f (0) = 0, it will be the first and in this X (Zd+1
2 ,D) is the switching graph of

X (Zd
2 , f −1(0)).

The first is X (Zd+1
2 ,C0), which is isomorphic to two disjoint copies of the Cayley

graph of Zd with the complement of supp( f ) as its connection set. The second is
X (Zd+1

2 ,C1), isomorphic to the direct product of K2 with the Cayley graph for Zd
2

with connection set supp( f ). [*** Switching graph of complement ***]
We can extend all this to the case where our abelian group is the additive group

of the vector space V (d ,F), where |F| has order q and characteristic p. In place
of Boolean functions, we consider functions f from V to F. To obtain complex-
valued functions, choose a (non-identity) p-th root of unity in C, and work with the
function

x 7→ θtr(x);

in other words, choose a character χ in the additive group of F and work with the
compositions χ◦ f .

5.4 Sage Code for Boolean Functions

# convert an integer to a binary vector of length d
def bin(n,d):

res = []
i = 0
while i < d:

n,r = divmod(n,2)
res = [r] + res
i += 1

return VectorSpace(GF(2),d)(res)

# inverse of above
def num( bvec):

num = 0
twop = 1
for digit in bvec:

if digit != 0:
num = num + twop

twop = 2*twop
return num

40



5.5. Weighing Matrices

from sage.crypto.boolean_function import BooleanFunction
R.<x0, x1, x2, x3, x4> = BooleanPolynomialRing()
g=BooleanFunction(x0*x1+x2*x3+x0*x3*x4+x1*x2*x4+x2*x3*x4)
# g.is_plateaued()

# It’s not clear to me what the domain of a Boolean function is, but
they seem

# to accept integers

# compute support of boolean function
def bfnconn(bfun):

op = []
n = bfun.nvariables()
VS = VectorSpace(GF(2),n)
return [ bin(k,n) for k in range(2^n) if bfun(k)]

# get the eigenvalues
# g.walsh_hadamard_transform()

# get cubelike graph with bfnconn as connection set
# X = cubelike(bfnconn)

# compute unscaled weighing matrix from a plateaued function, i.e,
compute dual

def Theta(bfun):
n = bfun.nvariables()
VS = VectorSpace(GF(2),n)
op = 0
for va in VS:

vec = vector([(-1)^(vx.dot_product(va)) for vx in VS])
op += (-1)^(bfun(num(va)))*vec.outer_product(vec)

return op

5.5 Weighing Matrices

We study weighing matrices, which are a generalization of Hadamard matrices.

We say that a v × v matrix W with entries ±1 is a weighing matrix with weight
w if W T W = w I . A weighing matrix of weight v is a Hadamard matrix and you
might prove that a weighing matrix of weight v −1 is permutation equivalent to a
conference matrix. If H is a Hadamard matrix, then the matrices

(
0 H

H T 0

)

is a weighing matrix. If W1 and W2 are weighing matrices of the same order and
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5. BENT FUNCTIONS

weight, then (
W1 0

0 W2

)
is a weighing matrix. The Kronecker product of two weighing matrices is a weighing
matrix.

If W is a weighing matrix W with weight w , then w−1/2W is orthogonal, whence
its eigenvalues have absolute value 1.

We say W is regular if its row sums are all equal. If W 1 = ρ1, then

ρW T 1 =W T W 1 = w1

and so each column of W sums to w/ρ. By the “findamental theorem of accoun-
tancy”, the sum of the row sums of a matrix is equal to the sum of its column sums,
and hence ρ = w/ρ. Therefore w is a perfect square and ρ =±pw .

5.5.1 Lemma. Assume W is a v ×v weighing matrix with sign ε in the Bose-Mesner
algebra of the group scheme of Zd

2 . Then w is an even power of two, and the eigen-
values of W are ±pw . The row sum of W is 1

2 (w ±p
w). Further:

(a) If tr(W ) 6= 0, the multiplicity of
p

w is

1

2

(
v + tr(W )p

w

)
.

(b) If tr(W ) = 0, then the two eigenvalues have the same multiplicity.

Proof. Since W is symmetric, its eigenvalues are ±pw . The row sum of W is an
eigenvalue of W , whence it is equal to ±pw . The number of non-zero entries in a
row is w and, if exactly b entries are positive, the row sum is 2b − w , so b = (w +
±pw)/2.

If
p

w has multiplicity a as an eigenvalue of W , then

tr(W ) = a
p

w − (v −a)
p

w = (2a − v)
p

w .

If tr(W ) 6= 0, it follows that
p

w divides v and

a = 1

2

(
v + tr(W )p

w

)
.

We remark that W determines a 2-ev double cover of the graph with adjacency
matrix W ◦2.

5.6 Dual Weighing Matrices

Define the sign of a weighing matrix W to be tr(W )sum(W ). (This is an abuse,
because it could be zero.) The matrices W and −W have the same sign.
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5.6.1 Lemma. Assume W is a v×v weighing matrix of weight w in the group scheme
of Zd

2 . Then w−1/2Θ(W ) is a ±1-matrix with eigenvalues 0 and ±w−1/2v . Let B
be the 01-matrix in the scheme such that w−1/2Θ(W ) = 2B − J . If ε = W1,1, the
eigenvalues of B are

v

2
(1+εw−1/2), 0, ±v

2
w−1/2,

where the first eigenvalue is simple and the multiplicity of 0 is v −w if ε= 0 and is
otherwise v −1−w .

Proof. We see thatΘ(W ) is a matrix with entries ±pw . The eigenvalues ofΘ(W ) are
the entries ofΘ2(W ), i.e., the entries of vW . Accordingly w−1/2Θ(W ) is a ±1-matrix
with eigenvalues 0 and ±w−1/2v .

There is a 01-matrix B in C[A ] such that

w−1/2Θ(W ) = 2B − J

and then

2Θ(B)− v I =Θ(2B − J ) = w−1/2Θ2(W ) = w−1/2vW,

which implies that

Θ(B) = v

2
(I +w−1/2W ).

If W ◦ I = 0, it follows that the eigenvalues of B are

v

2
, 0, ±v

2
w−1/2.

If W ◦ I = I , the eigenvalues of B are

v

2
(1+w−1/2), 0, ±v

2
w−1/2

and if W ◦ I =−I , they are

v

2
(1−w−1/2), 0, ±v

2
w−1/2.

We will refer to the graph with adjacency matrix B as the graph of the dual
weighing matrix.

A ±1-valued function Zd
2 on G is said to be plateaued if the non-zero eigenval-

ues of H = f (A ) all have the same absolute value. If the non-zero eigenvalues of H
are ±ρ, then the entries of ρ−1Θ(H) are 0,±1 and its eigenvalues are ±v/ρ. There-
fore

(ρ−1/2Θ(H))2 = v2

ρ2 I ,

which implies that ρ−1Θ(H) is a weighing matrix with weight v2/ρ2. Hence ρ2 ≥ v
(and if ρ2 = v , then ρ−1Θ(H) is a Hadamard matrix). Thus plateaued functions are
dual to weighing matrices.

43



5. BENT FUNCTIONS

If ρ2 = 2v , then f is said to be a semibent function. (Plateaued, semibent, you
can’t make this stuff up, hmm, well. . . ) When d is odd, a semibent function is dual
to a weighing matrix of order 2d ×2d with weight 2(d+1)/2. The Boolean functions

x0x1 +x0x2 +x1x2, x0x1 +x2x3 +x0x3x4 +x1x2x4 +x2x3x4

are semi-bent. The graph underlying the weighing matrix of the second function is
a drackn.

We could generalize the idea of a weighing matrix to general abelian group
schemes by assuming only that its non-zero elements all have the same absolute
value. So if W were a weighing matrix in a scheme of the finite abelian group G ,
its scaled dual would be a matrix with entries ±1 and with all non-zero eigenvalues
having the same absolute value.

[Apparently any Boolean function of degree at most two is plateaued—see Sec-
tion 5.1 in Claude Carlet1 and Emmanuel Prouff: “On plateaued functions and their
constructions”.) It seems that the dual of a linear function is a permutation.

5.7 Walk-Regular Graphs

A regular graph with at most four distinct eigenvalues is walk regular, and so by
Lemma 5.6.1, the graph of a dual weighing matrix is walk regular. We can say a little
more (following van Dam and Omidi).

5.7.1 Lemma. Let X be a connected regular graph with exactly four eigenvalues

k, θ, 0, −θ.

Then A2m+1 lies in span{I , J , A} for all non-negative integers m.

Proof. Assume p(t ) = t (t 2 −θ2). Then (by spectral decomposition)

1

n
p(k)J = p(A) = A3 −θ2 A

and therefore A3 ∈ span{I , J , A}. But this equation also implies that

A2m+3 −θ2 A2m+1 = 1

n
p(k)k2m J

and the lemma follows.

A graph is said to be strongly `-walk regular if ` > 1 and A` ∈ span{I , J , A}. So
the graph of a dual weighing matrix is strongly `-walk regular for all odd integers `
(with `> 1). (It’s not clear what we might do with this information.)

For more on strongly `-walk regular graphs, see van Dam and Omidi.
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5.8 Hadamard Matrices

A Hadamard matrix is a v × v weighing matrix with weight v , so the theory above
from the previous section implies that if H is a regular Hadamard matrix, then v is
a perfect square and the row sum of H is ±pv .

If H lies in the Bose-Mesner algebra of Zd
2 , it is a bent function. Replacing H by

−H if needed, there is a 01-matrix B in the scheme (with zero diagonal) such that
H = J − 2B . Let σ be the row sum of H . Then 2B = J − H and since H J = J , the
eigenvalues of J −H are

v −σ, ±pv .

Here σ=±pv and therefore the eigenvalues of B are

1

2
(v ±p

v), ±1

2

p
v .

The first eigenvalue here is the row sum of B , since it is simple we see that B is the
adjacency matrix of a connected regular graph with exactly three eigenvalues. Thus
B is the adjacency matrix of a strongly regular graph.

5.9 Projective Two-Weight Codes

A linear code is a two-weight code if its non-zero code words have only two dif-
ferent weights. A code C is projective if the minimum weight of its dual code as
at least three; equivalently C is projective if no column of its generator matrix is
a scalar multiple of another. If M is the generator matrix of a projective code, the
Cayley graph X (M) has col(M) as its vertex set, with two elements of col(M) adja-
cent if their difference is a scalar multiple of a column of M . (So X (M) is a linear
Cayley graph.) In the absence of warnings, assume that the rows of M are linearly
independent.

Any cubelike graph can be expressed as X (M) for a suitable d ×m matrix over
Z2. In this case, X (M) is strongly regular if and only if row(M) is a projective two-
weight code. Therefore any weighing matrix in the group scheme of Zd

2 determines
a projective two-weight code.

5.10 Hamming Schemes

We work with Hamming schemes. We choose a finite commutative ring R and iden-
tify the vertices of the Hamming scheme with the elements of Rd . (Our rings will
be finite fields and Z4.) If χ is a character of the additive group of R, we can define
a pairing, a bi-additive map β from Rd ×Rd to C by mapping (u, v) in Rd ×Rd to

χ
(∑

i
ui vi

)
.

If a is fixed, the map
x 7→β(ax)

45



5. BENT FUNCTIONS

is a character of Rd ; we denote it by βa . The distinct characters βa (for a ∈ Rd ) form
an orthogonal basis for the space of complex functions on Rd . We define the weight
of βa to be the Hamming weight of a. The advantage of this is that the characters of
weight r form an orthogonal basis for the r -th eigenspace of the Hamming scheme.∑

z
(−1) f (z)(−1)a·z =∑

z
(−1) f (z)+a·z

[*** goal is to show that bent functions are at max distance from affine functions
***]

5.11 Uniform Mixing and PST

A continuous quantum walk is a family of unitary matrices U (t ) of the form

U (t ) := exp(i t A).

(So it’s a 1-parameter subgroup of the unitary group.) The matrix A is the Hamil-
tonian of the walk, and is required to be hermitian; for us it will be the adjacency
matrix of a graph. A quantum walk admits uniform mixing if there is a time τ such
that U (τ) is flat. The simplest example is when A is the adjacency matrix of K2,
where uniform mixing occurs at time π/4.

If our walk is based on a graph in a translation scheme and uniform mixing
occurs at time τ, then U (τ) is a flat unitary. Hence we have a bent function. It
is important to note though that a given bent function need not be of the form
exp(i t A) for some 01-matrix A.

If Γ = Zd
2 and f is a real-valued bent function, then H = f (A ) is a symmetric

Hadamard matrix with constant diagonal and H 2 = 2d I . Thus if U (τ) flat and real,
then U (2τ) = I . If we have uniform mixing at time τ and pst at time 2τ, then there
is a complex root of unity γ such that U (τ)4 = γI . So H = γ−1/4U (τ) is a flat unitary
and Θ(H) is a flat unitary with entries in {±1,±i }. Therefore H is a bent function
over Ze

4 (for some e).
[*** Cao, Feng. Uniform mixing on abelian Cayley graphs. (https://arxiv.

org/abs/1911.07495): real bent functions in Zd
2 admit fast uniform mixing ***]

[*** Tan, Feng, Cao. Perfect state transfer on abelian Cayley graphs. (https:
//arxiv.org/abs/1712.09260): real bent functions in Zd

2 give fast pst ***]

5.12 Crooked Functions

5.13 Now forZ4

We consider functions from Zd
4 to {±1,±i }; we refer to these as quaternary func-

tions . We work in the association scheme over Zd
4 . Any quaternary function de-

termines a matrix in the scheme with entries {±1,±i }, and so we have a flat matrix.
We want this to be unitary, which means it is a flat unitary matrix, and in this case
the dual will be a flat unitary matrix with entries roots of unity and eigenvalues in
{±1,±i }.
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5.14. To Do

Suppose H is an n ×n matrix with entries from {±1,±i } and H0, H1 are the real
matrices such that H = H0 + i H1. Then

nI = (H0 + i H1)∗(H0 + i H1) = H T
0 H0 +H T

1 H1 + i (H T
0 H1 −H T

1 H0),

implying that H T
0 H1 is symmetric. This also implies that H T

0 H0 +H T
1 H1 = nI . Fur-

ther, the 2n ×2n matrix (
H0 +H1 H0 −H1

H1 −H0 H0 +H1

)
is a Hadamard matrix if and only H is a complex Hadamard matrix.

Let H be an n × n complex Hadamard matrix, and let Si denote the sum of
the entries in the i -th row of H . Then

∑
i |Si |2 = n2 (exercise) and, using Cauchy-

Schwarz, we deduce that
∑

i |Si | ≤ n
p

n and with equality if and only if |Si | =
p

n
for all i . Now suppose each row of H sums to σ. Since H∗H = nI and H is normal,
all eigenvalues of H have absolute value

p
n. As σ is an eigenvalue, |σ| = p

n. Now
there are integers a, b, c, d such that

σ= (a −b)+ i (c −d)

and therefore
n = |σ|2 =σσ= (a −b)2 + (c −d)2

5.14 To Do

1. Get examples of plateaued functions.

2. Study the graphs associated with these functions. (Cayley graph on support
of functions, four graphs from weighing matrix).

3. Does a plateaued function give rise to a 3-class scheme?

4. BH4 matrices in abelian group schemes, please.

5. Study duals of BH4 matrices.

6. If H is BH4, is H ◦H a Hadamard matrix? (Sometimes? When?)
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Chapter 6

Type-II Matrices

6.1 Eigenspaces

The algebra NW determines a scheme consisting of n ×n matrices. We describe
how we can determine the eigenmatrix of the scheme. Let us say that vectors Ya,b

and Yr,s overlap if Y T
a,bYr,s 6= 0.

6.1.1 Lemma. If Ya,u and Yb,c overlap then (Θ(M))u,a = (Θ(M))b,c .

Proof. As the vectors Yu,i for fixed u form a basis, Yb,c lies in their span. In fact

Yb,c =
1

n

∑
i

(Y T
i ,uYb,c )Yu,i .

So

(Θ(M))b,c Yb,c = MYb,c =
1

n

∑
i

(Y T
i ,uYb,c )(Θ(M))u,i Yu,i .

Multiply both sides of this by Y T
a,u to get

(Θ(M))b,c Y T
a,uYb,c =

1

n
(Y T

a,uYb,c )(Θ(M))u,aY T
a,uYu,a

= Y T
a,uYb,c (Θ(M))u,a .

If Y T
a,uYb,c 6= 0, this implies that (Θ(M))u,a = (Θ(M))b,c .

We define a graph with vertex set Ω. Define i and j to be adjacent if there are b
and c such that Yb,c overlaps both Yu,i and Yu, j . Note u is adjacent to itself, and to
no other vertex. Any matrix

∑
Fi , where i ranges over the vertices in a component

of this graph, is a matrix idempotent of the scheme belonging to NW . (The key
point is that this sum lies in NW .)

We have the following observation, due to Jaeger et al [?].

6.1.2 Lemma. Let W be a Hadamard matrix of order n. If NW is non-trivial, then n
is divisible by eight.
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Proof. Let wi denote W ei . Normalize W so that w1 = 1 and assume 1, i , j and k are
distinct. Then

(w1 +wi )◦ (w1 +w j )◦ (w1 +w j )

is the Schur product of three vectors with entries 0,±2. The sum of the entries of
this vector is

〈1, w◦3
1 〉+〈1, w◦2

1 ◦ (wi +w j +wk )〉
+〈1, w1 ◦ (wi ◦w j +wi ◦wk +w j ◦wk )〉+〈1, wi ◦w j ◦wk〉

Since W is a Hadamard matrix, the second and third terms here are zero, whence
we deduce that, modulo 8,

n +〈1, wi ◦w j ◦wk〉 = 0

and therefore, if n is not divisible by 8, then wi cannot be orthogonal to w j ◦wk .

6.2 Hadamard Matrices

A Hadamard matrix is a ±1-matrix of order n ×n such that

H T H = nI .

Since H ◦H = J it follows that H is a type-II matrix. Hadamard matrices have long
been of interest to combinatorialists. Since they are the simplest examples of type-
II matrices, we summarize what is known about their Nomura algebras here.

6.2.1 Lemma. If W is real then all matrices in NW are symmetric.

Proof. If W is real then the eigenvectors Ya,b are real. Hence the Schur idempotents
of the scheme have only real eigenvalues. Since NW is closed under transposes and
is a commutative algebra, the Schur idempotents are real normal matrices. A real
normal matrix is symmetric if and only if its eigenvalues are real.

The following is a new proof of a result due to Jaeger et al [?].

6.2.2 Lemma. Let W be a Hadamard matrix of order n. If NW is non-trivial, then n
is divisible by eight.

Proof. Let wi denote W ei . Normalise W so that w1 = 1 and assume 1, i , j and k are
distinct. Then

(w1 +wi )◦ (w1 +w j )◦ (w1 +wk )

is the Schur product of three vectors with entries 0,±2. The sum of the entries of
this vector is

〈1, w◦3
1 〉+〈1, w◦2

1 ◦ (wi +w j +wk )〉
+〈1, w1 ◦ (wi ◦w j +wi ◦wk +w j ◦wk )〉+〈1, wi ◦w j ◦wk〉 (6.2.1)
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Since W is a Hadamard matrix, the second and third terms here are zero, whence
we deduce that, modulo 8,

n +〈1, wi ◦w j ◦wk〉 = 0

and therefore, if n is not divisible by 8, then Yi ,1 = wi cannot be orthogonal to Y j ,k =
w j ◦wk .

If H is a Hadamard matrix of order less than 32, its Nomura algebra is a prod-
uct of Potts models. (Unpublished computations by Allan Roberts and the second
author.)

Hadamard matrices form a special case of a more general class of type-II ma-
trices. A complex matrix is flat if all its entries have the same absolute value. The
following result is easy to prove.

6.2.3 Lemma. For an n ×n matrix, any two of the following statements imply the
third:

(a) W is a type-II matrix.

(b) n−1/2W is unitary.

(c) |Wi , j | = 1 for all i and j .

In other words, a unitary matrix is type-II if and only if it is flat. The character
table of an abelian group is flat, type-II and unitary. Flat unitary matrices appear in
quantum physics in connection to mutually unbiased sets of orthogonal bases.

6.3 Symmetric Designs

We consider the type-II matrices with exactly two distinct entries that are not Hadamard
matrices.

6.3.1 Theorem. Suppose W = a J + (b − a)N , where N is a 01-matrix and a 6= ±b.
Then W is type II if and only if N is the incidence matrix of a symmetric design.

Proof. Let N be the incidence matrix of a symmetric (v,k,λ)-design, and let W be
given by

W = J + (t −1)N ,

where

t = 1

2(k −λ)

(
2(k −λ)− v ±

√
v(v −4(k −λ))

)
.

We show that W is a type-II matrix.
We have

W (−) = (t−1 −1)N + J
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and, as N J = N T J = k J and J 2 = v J ,

W W (−)T = (t −1)(t−1 −1)N N T + (k(t + t−1 −2)+ v)J

= (t −1)(t−1 −1)(k −λ)I + ((k −λ)(t + t−1 −2)+ v)J .

The coefficient of J is zero if

(k −λ)(t −1)2 + v(t −1)+ v = 0,

which yields sufficiency.
We now prove the converse. If W has exactly two distinct entries, there is no

harm in assuming that we have

W = J + (t −1)N

for some 01-matrix N and some complex number t such that t 6= ±1. Then W (−)T =
J + (t−1 −1)N T and so, if W is v × v , we have

W W (−)T = v J + (t −1)N J + (t−1 −1)J N T + (t −1)(t−1 −1)N N T .

Since W W (−)T = v I and N N T is symmetric, this implies that

M := (t −1)N J + (t−1 −1)J N T

is symmetric. We work with this. Note that this equation yields

M −M T = (t − t−1)N J + (t−1 − t )J N T = (t − t−1)(N J − (N J )T ).

Since M = M T and t 6= ±1, this forces us to conclude that N J is symmetric. Hence
there is a positive integer k such that

N J = J N T = k J .

Returning to our expression for W W (−)T , we now have

W W (−)T = (v +k(t + t−1 −2))J + (2− t − t−1)N N T . (6.3.1)

Since (2−t−t−1) =−(t−1)2/t and t 6= 1, it follows that N N T is a linear combination
of I and J , and consequently N is the incidence matrix of a symmetric design.

Note that if v +k(t + t−1 −2) = 0 in 6.3.1) then we get N N T = kI . Since N is a
square 01-matrix, N N T = kI only when k = 1. In this case, N is the incidence matrix
of the complement of the complete design, and W = J+(t−1)N is equivalent to the
Potts model.

If H is a Hadamard matrix, we may multiply it fore and aft by diagonal matrices,
thus setting all entries in the first row and column to 1. If H1 is the matrix we get
from this by deleting the first row and column, then

1

2
(H1 + J )

is the incidence matrix of a symmetric design. This gives a large class of examples
of symmetric designs.
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6.3.2 Lemma. Suppose W is a type-II matrix of the form (t −1)N + J , where N is the
incidence matrix of a symmetric (v,k,λ)-design. If v > 3, then all matrices in NW T

are symmetric.

Proof. We show that 〈Yi , j ,Yi , j 〉 6= 0 when v > 3. By ??, it follows that Θ(M)i , j =
Θ(M) j ,i for all M in NW and for all i and j .

We have

〈Yi , j ,Yi , j 〉 = (k −λ)(t 2 + t−2)+ v −2k +2λ

= (k −λ)(t 2 −2+ t−2)+ v,

and so, if 〈Yi , j ,Yi , j 〉 = 0 then

t 2 −2+ t−2 = −v

(k −λ)
.

From our computations in the proof of the previous theorem,

(k −λ)(t −2+ t−1)+ v = 0, (6.3.2)

and so

t −2+ t−1 = −v

(k −λ)
.

As

t 2 −2+ t−2 = (t −2+ t−1)(t +2+ t−1),

these equations imply that, if 〈Yi , j ,Yi , j 〉 = 0, then

t +1+ t−1 = 0,

whence (6.3.2) implies that v = 3(k −λ).
Since v(v −1)λ= vk(k −1), if v = 3(k −λ), then

k2 = k + (v −1)λ= (3λ+1)(k −λ)

and therefore

k2 − (3λ+1)k +3λ2 +λ= 0

This discriminant of this quadratic is

1+2λ−3λ2 = (1−λ)(1+3λ),

which is negative if λ> 1. The lemma follows.

6.3.3 Lemma. Let N be the incidence matrix of a symmetric design, and let W be a
type-II matrix of the form (t −1)N + J . If t 6= −1, then the difference of two distinct
columns of N is an eigenvector for the Nomura algebra of W .
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Proof. If u is a point in the design and α and β are the i -th and j -th blocks in the
design, then

(Yi , j )u =


t , if u ∈α\β;

t−1, if u ∈β\α;

1, otherwise.

By the previous lemma, Yi , j and Y j ,i have the same eigenvalues for any matrix in
NW . Therefore the vector

(t − t−1)−1(Yi , j −Y j ,i )

is an eigenvector for each matrix in NW , but this vector is just the difference of the
i -th and j -th columns of N .

We note that if t = −1 then (t −1)N + J is type II if and only if it is a Hadamard
matrix. The previous lemmas lead to the following disappointing consequence.

6.3.4 Theorem. Suppose W is a type-II matrix of the form (t −1)N + J , where N is
the incidence matrix of a symmetric (v,k,λ)-design. If v > 3 and t 6= −1, then the
Nomura algebra of W is trivial.

Let Zi , j := Nei −Ne j for some i 6= j . If k is distinct from i and j then

〈Zi , j , Nek〉 = 〈Nei , Nek〉−〈Ne j , Nek〉 =λ−λ= 0

while
〈Zi , j , Nei 〉 = k −λ.

We conclude that 〈Zi , j , Zi ,k〉 = k −λ and therefore at least one of

Y T
i ,k Yi , j , Y T

k,i Yi , j , Y T
i ,k Y j ,i and Y T

k,i Y j ,i

is non-zero. It follows from ?? and 6.3.2 that

Θ(M)i ,k =Θ(M)i , j

for any matrix M from NW . It follows that NW must be trivial.

6.4 Equiangular Lines

We consider sets of lines in Cd . A set of lines in Cd spanned by the unit vectors
x1, . . . , xn is equiangular if there is a real number α such that

|〈xi , x j 〉| =α

whenever i 6= j . Note that it is reasonable to take the absolute value here, because
if λ ∈C and |λ| = 1 then λxi and xi are unit vectors spanning the same line. We will
refer to α as the angle between the lines. We are also interested in equiangular sets
of lines in Rd ; the above definition still works in this case. We have the following
result, due to [?].
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6.4.1 Theorem. If there is a set of n equiangular lines in Cd or Rd with angle α and
dα2 < 1, then

n ≤ d(1−α2)

1−dα2 .

Proof. Suppose x1, . . . , xn are unit vectors spanning a set of equiangular lines in Cd

and suppose Xi := xi x∗
i . Then Xi is a Hermitian matrix that represents orthogonal

projection onto the line spanned by xi . Assume that |〈xi , x j 〉| = α when i 6= j . The
space of Hermitian matrices is a real inner product space with inner product 〈X ,Y 〉
given by

〈X ,Y 〉 = tr(X Y ).

Then 〈Xi , Xi 〉 = 1 and if i 6= j then

〈Xi , X j 〉 = tr(Xi X j ) = tr(xi x∗
i x j x∗

j )

= tr(x∗
j xi x∗

i x j )

= |x∗
i x j |2

=α2.

If
Z :=∑

i
Xi

then
〈Z , Z 〉 = n + (n2 −n)α2

and if γ ∈R, then

〈Z −γI , Z −γI 〉 = n + (n2 −n)α2 −2γn +γ2d .

Here the right side is a quadratic in γ, and is non-negative for all real γ. Its mini-
mum value occurs when γ= n/d , which implies that

−n2

d
+n(1+α2(n −1)) ≥ 0.

The theorem follows from this.

Note that the above proof still works if we replace C by R and ‘Hermitian’ by
‘symmetric’.

We say a set of lines is tight if equality holds in the bound of the previous theo-
rem. We say that an n ×n matrix C is a generalized conference matrix if:

(a) C is Hermitian

(b) Ci ,i = 0 for all i .

(c) |Ci , j | = 1 if i 6= j .

(d) The minimal polynomial of C is quadratic.
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Note that a conference matrix is an n × n matrix with diagonal entries zero and
off-diagonal entries ±1, such that CC T = (n − 1)I . It is known that a conference
matrix is equivalent to a symmetric or skew symmetric conference matrix. If C is
symmetric then it is Hermitian and C 2 − (n −1)I = 0. If C is skew symmetric, then
iC is Hermitian and (iC )2 − (n −1)I = 0.

6.4.2 Corollary. Suppose x1, . . . , xn are unit vectors that span a set of equiangular
lines in Cd with angle α and Gram matrix G , and suppose G = I +αC . Then the set
of lines is tight if and only if C is a generalized conference matrix.

Proof. Suppose x1, . . . , xn span a set of equiangular lines in Cd , let Xi be the orthog-
onal projection onto the line spanned by xi and set Z =∑

i Xi . If this set of lines is
tight, then

〈Z −γI , Z −γI 〉 = 0

and consequently ∑
i

Xi = n

d
I .

Let U be the n ×d matrix with i -th row equal to x∗
i . Then

U∗U =∑
i

Xi = n

d
I .

Now G :=UU∗ is the Gram matrix of the unit vectors x1, . . . , xn ; since UU∗ and U∗U
have the same non-zero eigenvalues with the same multiplicities it follows that the
eigenvalues of G are 0 and n/d . Since our set of lines is equiangular, we may write

G = I +αC .

Here C is Hermitian, its diagonal entries are zero, its off-diagonal entries all have
absolute value 1, and its minimal polynomial is quadratic. Thus it is a generalized
conference matrix.

For the converse, suppose that C is a non-zero Hermitian matrix with zero diag-
onal and

C 2 −βC −γI = 0.

Then the diagonal entries of C 2 are positive, whence γ 6= 0 and C is invertible. If τ is
the least eigenvalue of C , then

G := I − 1

τ
C

is Hermitian and all its eigenvalues non-negative. Assume rk(G) = d . Since tr(G) =
n it follows that the eigenvalues of G are 0 and n/d . Hence there is an n ×d matrix
U such that

U∗U = n

d
I , UU∗ =G .

Thus G is Gram matrix of the columns of U∗, and so these columns span a set of
equiangular lines in Cd . Since U∗U = (n/d)I , the set of lines is tight.
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Conditions (a) and (c) in the definition of generalized conference matrix imply
that (C 2)i ,i = (n −1)I , whence the minimal polynomial of C has the form z2 −βz −
(n −1), for some β.

6.4.3 Theorem. Suppose C is a generalized conference matrix of order n ×n with
minimal polynomial z2 −βz − (n −1). If t + t−1 +β= 0, then t I +C is type II.

Proof. If C is a generalized conference matrix, then

(t I +C )(−)T = t−1I +C

and therefore

(t I +C )(t I +C )(−)T = I + t−1C + tC (−)T +CC (−)T

= I + (t + t−1)C +C 2

= I + (t + t−1)C +βI + (n −1)I

= nI + (t + t−1 +β)C .

Hence t I +C is type-II if

t + t−1 +β= 0.

We derive a converse to this result, under weaker conditions.

6.4.4 Theorem. Let W be a type-II matrix with all diagonal entries equal to c and
with quadratic minimal polynomial. If W −cI is Hermitian, it is a scalar multiple of
a generalized conference matrix.

Proof. Suppose that W is n ×n and

W 2 −βW −γI = 0.

Since W is invertible, γ 6= 0 and

W −1 =− 1

γ
(βI −W ).

Hence

J = nW ◦W −T =−n

γ
(βW ◦ I −W ◦W T ),

from which we find that

W ◦W T =βW ◦ I + γ

n
J . (6.4.1)

It follows that all off-diagonal entries of W have the same absolute value (namely√
γ/n).
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6.5 Strongly Regular Graphs

A graph X is strongly regular if it is not complete and there are integers k, a and c
such that the number of common neighbours of an ordered pair of vertices (u, v)
is k, a or c according as u and v are equal, adjacent or distinct and not adjacent.
Trivial examples are provided by the graphs mKn and their complements. The Pe-
tersen graph provides a less trivial example. A strongly regular graph X is primitive
if both X and its complement are connected; an imprimitive strongly regular graph
is isomorphic to mKn or its complement. A strongly regular graph X gives rise to
an association scheme with two classes, corresponding to X and its complement.
Conversely each association scheme with two classes determines a complementary
pair of strongly regular graphs.

6.5.1 Theorem. Let X be a primitive strongly regular graph with v vertices, valency
k, and eigenvalues k, θ and τ, where θ > τ. Let A1 be the adjacency matrix of X and
A2 the adjacency matrix of its complement. Suppose

W := I +x A1 + y A2.

Then W is a type-II matrix if and only if one of the following holds

(a) y = x = 1
2 (2− v ±

p
v2 −4v).

(b) x = 1 and y = 1+ 1
2(k̄−λ)

(−v ±
√

v2 −4(k̄ −λ)v) and A2 is the incidence matrix of

a symmetric (v, k̄,λ)-design where k̄ = v −k −1.

(c) x =−1 and y = 1
2 (λ±

p
λ2 −4) (where λ= (1+θτ)−1(2−2θτ− v)), and A1 is the

incidence matrix of a symmetric design.

(d) x +x−1 is a zero of the quadratic z2 −αz +β−2 with

α= 1

θτ
[v(θ+τ+1)+ (θ+τ)2],

β= 1

θτ
[−v − v(1+θ+τ)2 +2θ2 +2θτ+2τ2]

and

y = 1

(x −x−1)

(
θτx −1

(θ+1)(τ+1)
(x +x−1 −2+ v)− (v −2)x −2

)
.

Proof. We use ` to denote valency v − 1− k of the complement of X . Then the
eigenvalues of A2 are v −1−k, −1−τ and −1−θ and the equation W W (−)T = v I is
equivalent to

(1+kx +`y)(1+kx−1 +`y−1) = v,

(1+θx + (−θ−1)y)(1+θx−1 + (−θ−1)y−1) = v,

(1+τx + (−τ−1)y)(1+τx−1 + (−τ−1)y−1) = v.
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6.5. Strongly Regular Graphs

Note that this set of equations is invariant under the substitutions

x 7→ x−1, y 7→ y−1

and also under the substitutions

x 7→ y, y 7→ x, θ 7→ −θ−1, τ 7→ −τ−1.

The missing details in the following calculations were performed in Maple.
If we set

X := x + 1

x
, Y := y + 1

y
, Z := x

y
+ y

x

then, from our three equations we get

k`Z +k X +`Y = v −1−k2 −`2,

−θ(θ+1)Z +θX − (θ+1)Y = v −1−θ2 − (θ+1)2, (6.5.1)

−τ(τ+1)Z +τX − (τ+1)Y = v −1−τ2 − (τ+1)2. (6.5.2)

These three equations are linearly dependent: if θ has multiplicity m and τ has
multiplicity n as an eigenvalue of A1, then the first equation plus m times the sec-
ond plus n times the third is zero. In fact, our three equations are equivalent to the
following pair.

Y −2+ v = θτ

(θ+1)(τ+1)
(X −2+ v), (6.5.3)

Z −2 = 1

(θ+1)(τ+1)
(X −2+ v). (6.5.4)

Given the definitions of Y and Z , we can view this as a pair of linear equations in y
and y−1, whence we find that

y(x −x−1) = θτx −1

(θ+1)(τ+1)
(x +x−1 −2+ v)− (v −2)x −2.

Assume x2 6= 1. If we define

p(x) := τθx3 + (1− v +2θ+2τ−θv −τv)x2 − (2θ+τθ+2τ+ v)x −1,

then (6.5.3) and (6.5.4) hold if and only if

y = p(x)

(θ+1)(τ+1)(x2 −1)
, y−1 = −x2p(x−1)

(θ+1)(τ+1)(x2 −1)
.

Then the previous expressions for y and y−1 hold if and only if

−x2p(x)p(x−1) = [(θ+1)(τ+1)(x2 −1)]2.

We deduce that x must be a root of the polynomial

(x2 + (v −2)x +1)(x4 −αx3 +βx2 −αx +1) (6.5.5)
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where

α= 1

θτ
[v(θ+τ+1)+ (θ+τ)2],

β= 1

θτ
[−v − v(1+θ+τ)2 +2θ2 +2θτ+2τ2].

If x is a root of the quadratic factor in (6.5.5), then X −2+v = 0 and so Equations
(6.5.3) and (6.5.4) imply that Y = 2− v and Z = 2. Since

Z −2 = (x − y)2

x y
,

it follows that

y = x = 1

2
(2− v ±

√
v2 −4v).

This is the Potts model solution.
We turn to the quartic factor in (6.5.5), which is equal to

x2
((

x +x−1)2 −α(
x +x−1)+β−2

)
.

From this we see that X must be a zero of the quadratic

z2 −αz +β−2 (6.5.6)

and thus (d) holds.
To complete the proof we consider the cases where x2 = 1. If x = 1 then Table ??

yields that A2 is the incidence matrix of a symmetric design. So we assume x =−1.
Equations (6.5.3) and (6.5.4) imply that

Y −2+ v = θτ(Z −2).

Since Z =−Y if x =−1, we find that

(1+θτ)Y = 2−2θτ− v

whence

y = 1

2
(λ±

√
λ2 −4),

where

λ= 2−2θτ− v

1+θτ .

(The denominator cannot be zero because τ≤−2 and θ ≥ 1 for any primitive strongly
regular graph.)

If x =−1 then Z =−Y and X =−2; if we add equations (6.5.3) and (6.5.4) we get

v −4 = (θτ+1)(v −4)

(θ+1)(τ+1)
.

whence we find that v −4 or θ+τ= 0. Since, for any strongly regular graph,

A2 − (θ+τ)A+θτI = (k +θτ)J ,

we see that if θ+τ= 0, then A2 =−θτI + (k +θτ)J . Therefore A is the incidence ma-
trix of a symmetric design (with zero diagonal and symmetric incidence matrix).
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Jaeger [?] showed that if W is a spin model then X is formally self-dual. If X is
formally self-dual then v = (θ−τ)2 and the quadratic (6.5.6) becomes(

z − τ2 −θ2 +2τ

θ

)(
z − θ2 −τ2 +2θ

τ

)
.

In addition to the Potts model solutions, Equations (6.5.3) and (6.5.4) give

x = 1

2τ

(
θ2 −τ2 +2θ±

√
(θ−τ)(θ−τ+2)(θ+τ)(θ+τ+2)

)
and

y = 1

2(θ+1)

(
θ2 −τ2 +2(θ+1)±

√
(θ−τ)(θ−τ+2)(θ+τ)(θ+τ+2)

)
,

or

x = 1

2θ

(
τ2 −θ2 +2τ±

√
(θ−τ)(θ−τ−2)(θ+τ)(θ+τ+2)

)
and

y = 1

2(τ+1)

(
τ2 −θ2 +2(τ+1)±

√
(θ−τ)(θ−τ−2)(θ+τ)(θ+τ+2)

)
.

Hence there are at most six type-II matrices, up to equivalence, in the Bose-Mesner
algebra of a formally self-dual strongly regular graph.

We now determine what happens to the imprimitive strongly regular graphs,
which will arise in the next section.

6.5.2 Theorem. Let A1 be the adjacency matrix of mKk+1 and A2 the adjacency ma-
trix of its complement. Suppose

W := I +x A1 + y A2.

Then W is a type-II matrix if and only if one of the following holds

(a) W is equivalent to the Potts model,

(b)

x = (kv −2k −1)y2 − (v −2k −2)y −1

k(1− y2)

and

y + y−1 = 2(k +1)2 − v(k2 +1)

(k +1)2 −kv

where v = m(k +1).

Proof. The eigenvalues of A1 are k and −1, so θ = k and τ = −1. The equation
W W (−)T = v I are equivalent to Equations (6.5.1) and (6.5.2):

−k(k +1)Z +k X − (k +1)Y = v −1−k2 − (k +1)2

X = −v +2.

Solving this as a pair of linear equations in x and x−1 gives

k(1− y2)x = (kv −2k −1)y2 − (v −2k −2)y −1.
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Assume y2 6= 1. Then Equations (6.5.1) and (6.5.2) are equivalent to

x = p(y)

k(1− y2)

and

x−1 = −y2p(y−1)

k(1− y2)

where
p(y) = (kv −2k −1)y2 − (v −2k −2)y −1.

Now these expressions for x and x−1 hold if and only if

−y2p(y−1)p(y) = k2(1− y2)2.

We deduce that y must be a root of the quartic(
y2 + (v −2)y +1

)(
y2 −βy +1

)
where

β= 2(k +1)2 − v(k2 +1)

(k +1)2 −kv
.

If y is a root of y2 + (v −2)y +1 then we deduce from Equation (6.5) that x = y and
W is the Potts model.

If y = 1 then Y = 2, Z = X and Equation (6.5.1) becomes X = −v
k2 + 2. Equa-

tions (6.5.1) and (6.5.2) imply k = 1. In this case, A1 is a permutation matrix and
W = J + (x −1)A1 is equivalent to the Potts model.

If y =−1 then Y =−2, Z =−X and Equation (6.5.1) becomes

X = v −2k2 −4k −4

k2 +2k
.

Equations (6.5.1) and (6.5.2) imply

2− v = v −2k2 −4k −4

k2 +2k
,

which leads to v = 4 and x =−1. In this case, −W = J −2I is the Potts model.

6.6 Covers of Complete Graphs

Now we know that the Bose-Mesner of algebra of an association scheme with two
classes contains type-II matrices different from the Potts models. Given this, it is
natural to ask what happens in schemes with more than two classes; in this section
we consider the next simplest case. We will see that non-trivial type-II matrices do
arise, and that the amount of effort required to establish this increases consider-
ably.
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We say a graph of diameter d is antipodal if whenever u, v and w are vertices
and

dist(u, v) = dist(v, w) = d ,

then u = w or dist(u, w) = d . If X is antipodal, then the relation “at distance 0 or
d" is an equivalence relation. The cube and the line graph of the Petersen graph
provide two examples with d = 3. If X is antipodal with d = 2, then it is the comple-
ment of a collection of complete graphs. If X is an antipodal graph with diameter
d , then its ‘antipodal classes’ form the vertices of a distance-regular graph with the
same valency and diameter bd

2 c.
Here we are interested in distance-regular antipodal graphs with diameter three.

To each such graph there is a set of four parameters (n,r, a1,c2). The integer n is the
number of antipodal classes, and r is the number of vertices in each class. If (u, v)
is a pair of vertices from X and dist(u, v) = 1 then u and v have exactly a1 common
neighbours; if dist(u, v) = 2 they have exactly c2 common neighbours. The value
of a1 is determined by n, r and c2, so it is conventional to provide only the triple
(n,r,c2).

6.6.1 Theorem. Suppose X is an antipodal distance regular graph of diameter three
with parameters (n,r,c2) and let Ai be the i -th distance matrix of X , for i = 1,2,3.
Then the matrix

W = I +x A1 + y A2 + z A3

is type-II if and only if

(a) x = y and W is a type-II matrix in the Bose-Mesner algebra of r Kn .

(b) y =−x−1 and x is a solution of a quadratic equation.

(c) y 6= −x−1 and the possible values of (x, y) are the points of intersection of two
quartics in x and y .

Proof. We use θ and τ to denote eigenvalues of X not equal to −1 or n −1. Now W
is a type-II matrix if and only if the following system of equations are satisfied:

(1−x − (r −1)y + (r −1)z)

(
1− 1

x
− (r −1)

y
+ (r −1)

z

)
= nr, (6.6.1)

(1+θx −θy − z)(1+θx−1 −θy−1 − z−1) = nr, (6.6.2)

(1+τx −τy − z)(1+τx−1 −τy−1 − z−1) = nr. (6.6.3)

Subtracting (6.6.3) from (6.6.2) gives

(x − y)z−1 + (x−1 − y−1)z = (x − y)+ (x−1 − y−1)+ (θ+τ)(x − y)(x−1 − y−1). (6.6.4)

Adding θ times this to (6.6.2) yields

z−1 + z =−θτ(x − y)(x−1 − y−1)+2−nr. (6.6.5)

Solving (6.6.4) and (6.6.5) as two linear equations in z and z−1, we get

(x − y)
(
(1+x y)z −θτ(x − y)2 − (θ+τ)(x − y)+ (nr −1)x y −1

)= 0. (6.6.6)
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There are three cases. First if x = y we are lead to type-II matrices contained in the
Bose-Mesner algebra of r Kn (including the Potts models). Second, if x y =−1 then
(6.6.6) yields a quadratic in X := x +x−1:

−θτX 2 − (θ+τ)X −nr = 0 (6.6.7)

and (6.6.5) gives

z−1 + z = −θτX 2 −nr +2

= (θ+τ)X +2. (6.6.8)

Solving (6.6.1) and (6.6.8) as two linear equations in z and z−1 gives

z = p(x)

r x(x +1)(x −1)(r −1)

and

z−1 = −x4p(x−1)

r x(x +1)(x −1)(r −1)

where

p(x) = (r −1)(θ+τ+1)x4 + (θ+τ+ r − rθ− rτ)x3 +
(3rθ− r 2τ− r 2θ+3r − rθτ+3rτ−2−2θ−2τ−2r 2)x2 +
(−rθ− rτ+3r +θ+τ−2r 2)x − (r −1)(rθ+ rτ−1−τ−θ).

Now these expressions for z and z−1 hold if and only if

−x4p(x−1)p(x) = [r x(x +1)(x −1)(r −1)]2

which gives a quartic in X . Applying (6.6.7) to this quartic, we can express X =
x +x−1 in r , θ, and τ. Hence x is a solution of a quadratic equation.

Finally if x 6= y or −y−1, Equations (6.6.4) and (6.6.5) are equivalent to

z = 1

(1+x y)

(
θτ(x − y)2 + (θ+τ)(x − y)− (nr −1)x y +1

)
,

and

z−1 = 1

x y(1+x y)

(
θτ(x − y)2 − (θ+τ)(x − y)x y − (nr −1)x y +x2 y2) .

Now substituting these two expressions into (6.6.1) gives a quartic in variables
x and y while zz−1 = 1 gives another one.

Note that r Kn is a strongly regular graph, so the possible type-II matrices are
determined by the results of the previous section.

Calculations performed in Maple showed that the resultant with respect to x
of the two quartics in case (c) is a non-zero polynomial in y of degree at most 30.
By the elimination property of resultants [?], the resultant vanishes at any common
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solution of the two quartics. Hence these two quartics vanish at no more than thirty
values for y . Similarly, the resultant with respect to y of these two quartics is a non-
zero polynomial in x of degree at most 30 and they vanish at no more than thirty
values for x. Consequently there are finitely many type-II matrices, up to scalar
multiplication, in the Bose-Mesner algebra of an antipodal distance regular graph
of diameter three.

As a final remark, it could be true that each Bose-Mesner algebra is equal to the
set of all polynomials in some type-II matrix. The results of the last two sections
imply this is true for schemes with at most two classes, and for antipodal schemes
with three classes. (Since we do not have strong evidence either way, we will not
make any conjecture.)
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Chapter 7

Quantum Latin Squares, Quantum
Automorphisms

7.1 Quantum Latin Squares from Flat Unitaries

We can use flat unitary matrices to construct quantum Latin squares, as we now
describe. Suppose H is flat and n ×n and H∗H = I . If M is a matrix, let ∂i (M)
denote the diagonal matrix such that

(∂i (M))r,r = (Mei )r .

Note that if H is flat and unitary, then
p

n∂i (H) is unitary.
As customary, M ◦N denotes the Schur product of the matrices M and N (ex-

cept, unfortunately, in Musto and Vicary [?], where it denotes the usual matrix mul-
tiplication).

7.1.1 Theorem. If H is a flat unitary of order n ×n, the matrices
p

nH∂i (H)H∗ (for
i = 1, . . . ,n) define a quantum latin square.

Proof. Set Di =
p

n∂i (H) and define matrices

Ri = H∗Di H , (1, . . . ,d).

We observe that these matrices are unitary (because they are products of unitary
matrices).

We need to show that, if i 6= j , then R∗
i R j is a derangement. We have

R∗
i R j = H∗Di H H∗D j H = H∗Di D j H

and so
(R∗

i R j )k,k = eT
k H∗Di D j Hek = 〈Hei ◦Hek , He j ◦Hek〉.

Since H is flat,
〈Hei ◦Hek , He j ◦Hek〉 = 〈Hei , He j 〉

and we’re done.
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7.2 Unitary Error Bases

A unitary error basis is a set of n2 matrices from U (n), such that each pair of ele-
ments is trace-orthogonal. The canonical example is the set of four Pauli matrices
with n = 2. Unitary error bases provide a useful tool in quantum computing. For
the first part, our discussion follows Klappenecker and Rötteler [?] and we refer you
to this for more information—we will focus on constructions.

The example provided by the Pauli matrices can be generalized, using the Weyl-
Heisenberg group. To define this, let θ be a primitive complex dth root of 1. Let
Z be the diagonal matrix with (Z )r,r = θr−1 for r = 1, . . . ,d , and let X be the d ×d
permutation matrix such X er = er−1 (with the subscripts evaluated mod d). Let E

denote the set of d 2 matrices X i Z j for 0 ≤ i , j ≤ d − 1. To see that E is a unitary
error basis, first note that tr(X i ) and tr(Z i ) are both zero unless i = 0 and, since Z
is diagonal, tr(X i Z j ) = 0 unless i = j = 0. Now note that X Z = θZ X , and from this
it is easy to verify that we have unitary error basis.

There is a second construction, producing shift-and-multiply bases. Let L be a
Latin square of order d×d , and let H1, . . . , Hd be a sequence of flat unitary matrices.
Each row of L corresponds to a permutation matrix Qi ; define permutation matri-
ces Pi by Pi = Q−1

1 Qi . Then P1 = I and if i 6= j , then P−1
i P j is a derangement. (In

particular P2, . . . ,Pd are derangements.)
Now let E denote the set of matrices

p
dPi∂ j (H) with 1 ≤ i , j ≤ d . Then E is a

unitary error basis.

7.3 Magic Unitary Matrices

Let V be a fixed vector space. A magic unitary is a square matrix whose entries
are projections on V , such that the projections in each row and each column sum
to I . For us, dim(V ) will be finite, and under this assumption it follows that the
projections in a row or column will be pairwise orthogonal. If dim(V ) = d , it will
often be convenient to view an n ×n magic unitary as a block matrix of order nd ×
nd . We will not distinguish notationally between the magic unitary and the block
matrix.

As one example, if L is a quantum Latin square then we obtain a magic unitary
by replacing each unit vector x with the projection xx∗. (In fact the array of vectors
is a quantum Latin square if and only if this construction produces a magic unitary.)
We also see that if dim(V ) = 1, then a magic unitary is just a permutation matrix.

7.3.1 Lemma. Suppose P is an n ×n magic unitary with entries projections on V
and assume dim(V ) = d . Then the nd ×nd matrix associated with P is unitary.

Proof. Easy exercise.

Following Roberson et al [?], we define two graphs X and Y on n vertices to
be quantum isomorphic if there is a magic unitary P of order n ×n, with entries
projections of order d ×d , such that

(A(X )⊗ Id )P = P (A(Y )⊗ Id ).
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If X = Y , we have a quantum automorphism of X . Since P is unitary, the matrices
A(X )× I and A(Y )× I are similar, and so we see that quantum isomorphic graphs
are cospectral. We’ll see that more is true, but there are graphs that are quantum
isomorphic but not isomorphic. (See [?].)

7.3.2 Lemma. If P is a magic unitary, it commutes with J ⊗ Id .

This result is easy to prove, and is left to the reader. One consequence of it is
that quantum isomorphic graphs are cospectral with cospectral complements.

7.3.3 Lemma. If P is a magic unitary that commutes with M ⊗ I and N ⊗ I , it com-
mutes with (M ◦N )⊗ I .

Proof. The i j -block of (M ⊗ I )P is ∑
r

Mi ,r Pr, j

and, by hypothesis, this is equal to the i j -block of P (M ⊗ I ):∑
s

Ms, j Pi ,s .

We have ∑
r

Mi ,r Pr, j
∑

s
Ni ,s Ps, j =

∑
r

(Mi ,r Ni ,r )Pr, j

where the right side is the i j -block of ((M ◦N )⊗ I )P . Similarly∑
r

Mr, j Pi ,r
∑

r
Nr, j Pi ,r =

∑
r

(Mr, j Nr, j )Pi ,r

where the right side is the i j -block of P ((M ◦ N )⊗ I ). Since the left sides of the
previous pair of equations are equal, our result follows.

From this lemma it follows that if X and Y are quantum isomorphic, the coher-
ent algebras generated by A(X ) and A(Y ) are isomorphic. But for this comment
to be useful we will need to define coherent algebras, and isomorphisms thereof.
(And it’s the second part that needs care.)

7.4 Coherent Algebras

A coherent algebra is a matrix algebra that is *-closed, contains J , and is closed
under Schur multiplication. (If it’s commutative, it’s an association scheme.)

7.4.1 Lemma. The commutant of a set of permutation matrices is a coherent alge-
bra.

Proof. Note that if P is a permutation matrix, then

P (A ◦B) = (PA)◦ (PB)

and it follows that if A and B commute with P , so does A ◦B .
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The full matrix algebra is Schur-closed and so if A is a *-closed matrix algebra,
the intersection of the *-closed and Schur-closed subalgebras that contain A is the
unique minimal coherent algebra that contains A . It is the coherent algebra gen-
erated by A . If A is the adjacency matrix of a graph, the coherent algebra of X is
the coherent algebra generated by A or, more precisely, by the algebra of polynomi-
als in A. Any permutation matrix that commutes with A must commute with each
element of this coherent algebra, and so it should not be surprising that coherent
algebras are a useful tool in the theory of graph isomorphism.

7.4.2 Lemma. A coherent algebra has a unique basis that is *-closed and consists of
Schur-orthogonal 01-matrices.

The sum of the elements in this basis is J , and the identity matrix will be the sum
of elements of the basis that are diagonal. The coherent algebra is homogeneous if
I is an element of the basis. The commutant of a permutation group is a coherent
algebra; it is homogeneous if and only if the group is transitive. A commutative
coherent algebra is necessarily homogeneous.

The above lemma implies that coherent algebras can be viewed as arising from
special partitions of the arc set of a complete directed graph.

7.5 Isomorphism of Coherent Algebras

We discuss isomorphism now. In a sense there is no issue: once we agree on what
maps we allow between coherent algebras, an isomorphism is an invertible map.
The problem is that even when we consider just matrix algebras, we have three
choices.

Clearly maps should be linear and a general linear mapΦwill have the form

Φ(M) =∑
r

Ar MB∗
r

for suitable matrices Ar and Br . We want Φ(I ) = I , which imposes the condition∑
r Ar B∗

r = I . Of course we also want

Φ(M N ) =Φ(M)Φ(N )

for all M and N . These constraints give us what we will call algebra homomor-
phisms.

The second alternative is to restrict ourselves to maps of the form

Φ(M) = A−1M A

Let us temporarily call these conjugacies.
The third alternative is to specialize our conjugacies to the cases where the in-

vertible matrices A are permutations.
The Noether-Skolem theorem states that any automorphism of a full matrix al-

gebra over a field is a conjugacy. Wedderburn’s theorem says that any semisimple
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matrix algebra is conjugate to a direct sum of matrix algebras. Together these re-
sults imply that isomorphic coherent algebras similar, i.e., the isomorphism is con-
jugacy.

Finally note that a coherent algebra can be viewed as a matrix algebra with a
distinguished basis—thus we are working with pairs (algebra,basis). If we are given
an ordered basis β1, . . . ,βm , we can define a multiplication by setting

βi ∗β j = δi , jβi

and then extending ∗ by linearity. We take our maps to linear maps that take or-
dered bases to ordered bases.

7.6 Type-II Matrices

We denote the Schur inverse, if it exists, of the matrix W by W (−). A complex n ×n
matrix W is a type-II matrix if

W W (−1)T = nI .

For any complex number t , the matrix

W =


1 1 1 1
1 1 −1 −1
1 −1 t −t
1 −1 −t t


is type II. Real Hadamard matrices provide further examples. A unitary matrix is a
type-II matrix if and only if it is flat. The Kronecker product of two type-II matrices
is a type-II matrix.

If W is an m ×n Schur-invertible matrix, we define n2 vectors Yi , j (W ) (for 0 ≤
i , j ≤ n) by

Wi / j =W ei ◦W (−)e j .

The Nomura algebra NW of W is the set of n×n complex matrices for each each of
the n2 vectors Wi / j is an eigenvector. This is a matrix algebra.

7.6.1 Lemma. The matrix W is type-II if and only if J ∈NW .

If W is type-II, it is invertible and therefore for fixed j , the vectors

Wi / j = ∂ j (W )−1W ei

are linearly independent. If M ∈NW , we defineΘW (M) to be the n×n matrix such
that

MWi / j = (ΘW (M)i , j )Wi / j .

The mapΘW is linear on NW and injective. We also have

ΘW (M N ) =ΘW (M)◦ΘW (N ).
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7.7 Duality for Nomura Algebras

Type-II Matrices and Magic Unitaries

Let W be a type-II matrix of order n ×n. Define matrices Fi , j =Fi , j (W ) by

Fi , j = 1

n
Wi / j (W j /i )T = 1

n
∂i (W )(W e j )(−1)(W e j )T ∂i (W )−1.

We note that Fi ,i = 1
n J and

F T
i , j =F j ,i ,

Further

F (−)
i , j = nW j /i (Wi / j )T = n2F j ,i .

If W is flat, then Fi , j is Hermitian.

If W is a type-II matrix, the columns of W (−) form a dual basis to the set of
columns of W . It follows that the matrices Fi , j are idempotents and that∑

i
Fi , j = I =∑

j
Fi , j .

Now we can prove a very important result due to Nomura:

7.7.1 Theorem. If M ∈NW , thenΘW T (ΘW (M)) = nM T .

Proof. Assume M ∈ NW . Then MFi , j = Θ(M)i , j Fi , j and, summing this over j
yields

M =∑
j
Θ(M)i , j Fi , j .

Therefore

Mr,s = 1

n

∑
j
ΘW (M)i , j

Wr,i

Wr, j

Ws, j

Ws,i
= 1

n

Wr,i

Ws,i

∑
j
ΘW (M)i , j

Ws, j

Wr, j
.

If follows that

nMr,s (W T )s/r =ΘW (M)(W T )s/r .

and this yields our result.

This theorem tells us many things. First, we see thatΘW andΘW T are invertible
and that NW is closed under transposes. Since im(ΘW T ) is Schur-closed, we also
see that NW is Schur-closed. As NW is Schur-closed, it has a basis of 01-matrices
and, consequently, NW is closed under complex conjugation. To sum up, NW is
the Bose-Mesner algebra of an association scheme, and NW T is the Bose-Mesner
algebra which we can view as dual to NW .
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7.8 Type-II Matrices and Magic Unitaries

Let FW be the n2×n2 block matrix with i j -block equal to Fi , j ; we call it the matrix
of idempotents of W . Since F T

i , j =F j ,i , we see that F is symmetric.

If F τ is the matrix we get by applying the transpose map to each block of F , i.e.,
the partial transpose. Then

F τ = 1

n
F (−).

Let S be the operator on Cn ⊗Cn that sends u ⊗ v to v ⊗u (for all u and v).

7.8.1 Lemma. If W is type-II, then FW T = SFW S.

Proof. We have

n(Fi , j (W ))r,s =
Wr,i

Wr, j

Ws, j

Ws,i
= Wr,i

Ws,i

Ws, j

Wr, j
=

W T
i ,r

W T
i ,s

W T
j ,s

W T
j ,r

= n(Fr,s (W T ))i , j .

Here the left hand and right hand terms are equal respectively to

(ei ⊗er )T F (W )(e j ⊗es ), (er ⊗ei )T F (W T )(es ⊗e j )

and the result follows.

7.8.2 Theorem. If W is a type-II matrix, then F is type-II. If in addition W is flat,
then F is flat and is a magic unitary matrix.

Proof. For fixed i , the vectors W e j form a basis of Cn and the vectors n−1(W e j )(−)

form a basis dual to this. Hence the matrices

1

n
(W e j )(−1)(W e j )T

are pairwise orthogonal idempotents and sum to I . Therefore for fixed i the matri-
ces Fi , j are pairwise orthogonal idempotents that sum to I .

Since F T = F , it also follows that each column of FW consists of pairwise or-
thogonal idempotents that sum to I . If W is flat, then Fi , j is Hermitian.

7.8.3 Theorem. Let W be a type-II matrix and let FW be the associated matrix of
idempotents. The set of matrices M such that [I ⊗M ,FW ] = 0 is equal to NW . The
matrices N such that [N ⊗ I ,FW ] = 0 is equal to NW T .

Proof. We have that [I ⊗M ,F ] = 0 if and only if [M ,Fi , j ] = 0 for all i and j . Now
M commutes with a rank-1 matrix uv∗ if and only if u is a right eigenvector for M .
Hence [M ,Fi , j ] = 0 for fixed i and all j if and only if M ∈NW .

For the second claim,

S((N ⊗ I )FW )S = (I ⊗N )FW T ,

from which the assertion follows.
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One consequence of this result is that NW is the commutant of the set of matri-
ces

{Fi , j : j = 1, . . . ,n}.

Questions and remarks:

• We might hope that the commutant of FW is NW T ⊗NW . Can we at least
show that this commutant is commutative? Is

FW = S(W ⊗W (−)T )?

• Survey magic unitaries. Examples which do not come from type-II matrices?
(There are many.) Can we characterize the magic unitaries of the form FW

(where W is type-II)? Note that the diagonal blocks of FW are equal to J .

• Relation between FW and FW T ? What doesΘ do?

• If W is a (real) Hadamard matrix, then FW is a Bush-type Hadamard.

• If Fi , j ∈NW , thenΘW (Fi , j ) is a permutation matrix.

Ξ

Ξ
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Chapter 8

Spin

8.1 Braids

The braid group on n strands Bn is the group generated by elements

σ1, . . . ,σn−1

subject to the relations:

σiσ j =σ jσi , if |i − j | ≥ 2

σiσ jσi =σ jσiσ j , if |i − j | = 1.

[braids, closure]
The map that takesσi to the transposition (i i+1) in the symmetric group Sym(n)

extends to a homomorphism from Bn . (Its kernel consists of the pure braids .)
The Temperley-Lieb algebra T Ln(β) contains a homomorphic image of the Braid

group.

8.2 Nomura Algebras

Let A and B be v × v matrices and suppose B is Schur invertible. The Nomura
algebra NA,B consists of all v × v matrices for which all the vectors

Aei ◦Be
(−)

j

are eigenvectors. If M ∈ NA,B , we define ΘA,B (M) to be the v × v matrix with i j -
entry equal to eigenvalue of M associated to Aei ◦Be j . Thus I ∈NA,B andΘA,B = J .

If M , N ∈NA,B , then

ΘA,B (M N ) =ΘA,B (M)◦ΘA,B (N ).

Thus NA,B is an algebra under matrix multiplication, and the image of NA,B under
ΘA,B is an algebra under Schur multiplication. We note that

NA,B =NB ,A
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while
ΘB ,A(M) =ΘA,B (M)T .

8.2.1 Lemma. If A is invertible and B is Schur invertible, then ΘA,B is injective and
NA,B is a commutative algebra.

A v × v matrix W is a type-II matrix if it is Schur invertible and

W W (−)T = v I .

Hadamard matrices provide one class of examples. If W is a type-II matrix, then W
is invertible and

W −1 = 1

v
W (−)T .

8.2.2 Lemma. The matrix W is a type-II matrix if and only if J ∈NW,W (−) .

The Nomura algebra NW,W (−) will play an important role in our work and so we
will denote it by NW . We also writeΘW forΘW,W (−) .

8.3 Braids

Let A, B and C be v × v matrices. We define endomorphisms X A , ∆B and YC of the
vector space Matn×n(C) by

X A(M) := AM , ∆B (M) := B ◦M , YC (M) := MC T .

(We could instead use respectively A ⊗ I , DB and I ⊗C , where DB is a diagonal
matrix with the entries of B as its diagonal entries and all three matrices are viewed
as elements of End(Matv×v (C)).)

8.3.1 Lemma. Suppose A,B ∈ Matv×v (C). Then R ∈ NA,B and ΘA,B (R) = S if and
only

XR∆B X A =∆B X A∆S .

We see that A ∈NA,B andΘA,B (A) = B if and only if

X A∆B X A =∆B X A∆B ;

we call this the braid relation . [If A is invertible and B is Schur invertible and A ∈
NA,B , does it follow thatΘA,B (A) = B?]

We note the following result, which we call the exchange identity .

8.3.2 Theorem. Let A, B , C , Q, R, S be v × v matrices. Then

X A∆B XC =∆Q XR∆S

if and only if
X A∆C XB =∆R XQ∆ST .

Proof. Apply each of the four products to the matrix ei eT
j .
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The bilinear form tr(M N T ) on Matv×v (C) is non-degenerate and hence allows
to define the adjoint of elements of End(Matv×v (C)). We denote the adjoint by trans-
pose and observe that

(X A)T = X AT , (∆B )T ) =∆B .

Thus the braid relation implies that

X AT∆B X AT =∆B X AT∆B .

8.4 Jones Pairs

We say that v×v matrices A and B form a one-sided Jones pair if A is invertible, B is
Schur invertible and A ∈NA,B . They form a Jones pair if (A,B T ) is also a one-sided
Jones pair.

8.4.1 Lemma. If (A,B) is a one-sided Jones pair, so are each of the following:

(a) (AT ,B).

(b) (A−1,B (−)).

(c) (D−1 AD,B), where D is diagonal and invertible.

(d) (A,BP ), where P is a permutation matrix.

(e) (λA,λB), for any non-zero complex number λ.

8.4.2 Lemma. The matrices A and B form a one-sided Jones pair if and only if for
all i and j we have

A(Aei ◦Be j ) = Bi , j (Aei ◦Be j ).

8.4.3 Corollary. Let (A,B) be a pair of v × v matrices and let D j be the diagonal
matrix formed from the j -th column of B . Then (A,B) is a one-side Jones pair if
and only if, for j = 1, . . . , v ,

AD j A = D j AD j .

8.4.4 Lemma. If (A,B) is a one-sided Jones pair, then each column of B sums to
tr(A).

Proof. From the previous result we have

A−1D j A = D j AD−1
j

whence A and D j are similar and tr(A) = tr(D j ). Therefore each column of B sums
to tr(A).

We say a Jones pair (A,B) is invertible if A is Schur invertible and B is invertible.

8.4.5 Theorem. Suppose (A,B) is a one-sided Jones pair and B is invertible, then A
and B are type-II matrices and the diagonal of A is constant.
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Proof. If A ∈NA,B then A−1 ∈NA,B and so

ΘB ,A(A−1) = B (−)T .

This implies that

X A−1∆A XB =∆A XB∆B (−)T (8.4.1)

and taking the transpose of this, we get

XB T∆A X A−T =∆B (−)T XB T∆A .

If we apply the right side to I we get B T (A ◦ A−T ), if we apply the left side to I the
result is

B (−)T ◦ (B T (A ◦ I )) = J (A ◦ I )

and hence

B T (A ◦ A−T ) = J (A ◦ I ).

Since B is invertible and its row sums are all equal t some constant β, this implies
that

A ◦ A−T = B−T J (A ◦ I ) =βJ (A ◦ I ).

The sum of the entries in the i -th column of A ◦ A−T is∑
r

(A−1)r,i (AT )r,i =
∑

r
(A−1)r,i Ai ,r = 1

and therefore all columns of J (A ◦ I ) must be equal. It follows that v A ◦ A−T = J and
so A is a type-II matrix with constant diagonal.

To complete the proof we multiply each side of (8.4.1) on the left by ∆A(−) and
on the right by XB−1 to obtain

∆A(−) X A−1∆A = XB∆B (−)T XB−1 .

Taking inverses on both sides yields

∆A(−) X A∆A = XB∆B T XB−1

and applying each side to I gives

A(−) ◦ (A(A ◦ I )) = B(B T ◦B−1).

Since the diagonal of A is constant, the left side here is equal to a J for some a and
so

B T ◦B−1 = aB−1 J

Arguing as before, the sum of a row of B T ◦B−1 is 1. Therefore B−1 J is a multiple of
J ; from this we see that B is a type-II matrix.
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8.4.6 Lemma. If (A,B) is Jones pair and A is Schur invertible, then B is invertible.

Proof. Apply both sides of (8.4.1) to J ; this yields

A−1(A ◦ (B J )) = A ◦ (BB (−)T ).

Since (A,B T ) is a Jones pair the row sums of B equal tr(A) and so the left side here is
equal to tr(A)I . As A is Schur invertible it follows that BB (−)T is diagonal. However
the diagonal entries of BB (−)T are all equal and so it is a scalar matrix. We conclude
that B is type II and invertible.

8.5 Gauge Equivalence

If D is an invertible diagonal matrix we say that D−1 JD is a dual permutation ma-
trix . The Schur inverse of a dual permutation matrix is a dual permutation matrix.

8.5.1 Lemma. If A, C and M are Schur invertible and X A∆M =∆M XC , then C (−) ◦ A
is a dual permutation matrix. If B , C and M are invertible and∆B XM = XM∆C , then
C B−1 is a permutation matrix.

8.5.2 Corollary. If (A,B) and (C ,B) are one-sided Jones pairs, then C = D−1 AD
where D is invertible and diagonal.

8.5.3 Corollary. If (A,B) and (A,C ) are one-sided Jones pairs, then C = BP where P
is a permutation matrix.

8.6 Nomura Algebras of Type-II matrices

A type-II matrix W is called a spin model if (W,W (−)) is a Jones pair. If W ∈ NW ,
then (W,W (−)) need not be a Jones pair, because the columns of W (−) might not
sum to tr(A). If σ denotes the sum of a column of W (−) and we choose γ so that

γ2 tr(W ) =σ
then γW is a spin model.

8.6.1 Theorem. Let A be a v × v type-II matrix. Then ΘA is a bijection from NA to
NAT andΘAT is a bijection from NAT to NA . If R ∈NA thenΘAT (ΘA(R)) = vRT .

Proof. Suppose R ∈NA andΘA(R) = S. Then

XR∆A(−) X A =∆A(−) X A∆S

and the transpose of this is

X AT∆A(−) XRT =∆S X AT∆A(−)

and applying the exchange identity to this yields

X AT∆RT X A(−) =∆AT XS∆A(−)T .
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If we multiply both sides of this on the left by ∆A(−)T and on the right by X A(−)−1 we
get

XS∆A(−)T X A(−)−1 =∆A(−)T X AT∆RT .

Since A(−)−1 = 1
v AT , this yields

XS∆A(−)T X AT =∆A(−)T X AT∆vRT

whence S ∈NAT andΘAT (S) = vRT .
AsΘAT (ΘA(R)) = vRT , we see thatΘA andΘAT are bijections.

This proof shows that the composite map

1

v
ΘATΘA

is the transpose map on NA . Hence 1
vΘAΘAT is the transpose map on NAT . In fact

ΘA andΘAT commute with the transpose.

8.6.2 Corollary. If A is a type-II matrix and R ∈ NA , then RT ∈ NA and ΘA(RT ) =
ΘA(R)T .

Proof. If R ∈NA then vRT =ΘAT (ΘA(R) ∈NA and

ΘA(vRT ) =ΘA(ΘAT (ΘA(R))) = vΘA(R)T .

8.6.3 Corollary. If A is a v × v type-II matrix and M , N ∈NA , then

ΘA(M ◦N ) = 1

v
ΘA(M)Θ(N ).

8.6.4 Corollary. If A is a type-II matrix then its Nomura algebra is closed under ma-
trix multiplication, Schur multiplication, transpose and complex conjugation.

Proof. We know that NA is closed under matrix multiplication and that

ΘA(M N ) =ΘA(M)◦ΘA(N ),

from which it follows that the image ofΘA is Schur-closed. Therefore NAT is Schur-
closed. Swapping A and AT , we deduce that NA is Schur-closed.

We saw above that NA is closed under transpose. Since it is Schur-closed it has
a basis consisting of 01-matrices, and the complex span of these matrices is closed
under complex conjugation.

This corollary asserts that NA is the Bose-Mesner algebra of an association scheme.

8.7 Spin Models

By definition, W is a spin model if (W,W (−)) is a one-sided Jones pair.

8.7.1 Lemma. If A is a type-II matrix and (A, A(−)) is a one-sided Jones pair, then it
is a Jones pair.
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Proof. Since (A, A(−)) is a one-sided Jones pair, we have

X A∆A(−) X A =∆A(−) X A∆A(−)

and taking the transpose of this yields

X AT∆A(−) X AT =∆A(−) X AT∆A(−) .

Using the exchange identity we obtain

X AT∆AT X A(−) =∆AT X A(−)∆A(−)T

and inverting both sides yields

X A(−)−1∆A(−)T X A−T =∆AT X A(−)−1∆A(−)T .

If we multiply on the left by ∆A(−)T and on the right by X AT , the result is

∆A(−)T X A(−)−1∆A(−)T = X A(−)−1∆A(−)T X AT .

We observe that A(−)−1 = 1
v AT , whence the last equation yields

∆A(−)T X AT∆A(−)T = X AT∆A(−)T X AT

and therefore (AT , A(−)T ) is a one-sided Jones pair. From the transpose of this we
see that (A, A(−)T ) is one-sided Jones pair, and thus it follows that (A, A(−)) is a Jones
pair.

8.7.2 Theorem. If A is spin model, then NA =NAT andΘA =ΘAT .

Proof. We use gauge equivalence. If (A, A(−)) and A, A(−)T are one-sided Jones pairs,
there is a permutation matrix P such that A(−)T = A(−)P , and consequently

NA,A(−)T =NA,A(−)P =NA,A(−)

Now A ∈NA if and only if

AT ∈NAT ,A(−) =NAT ,A(−)T .

Since NA is closed under transposes, the result holds.
Suppose R ∈NA andΘA(R) = S then

XR∆A(−) X A =∆A(−) X A∆S

and if R ∈NAT andΘAT = T then

XR∆A(−)T X AT =∆A(−)T X AT∆T .

Consequently

(∆A(−)T X AT∆T )−1∆A(−) X A∆S = X A−T∆AT ◦A(−) X A .
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The left side here equals

∆T (−) X A−T∆AT∆A(−) X A∆S =∆T (−) (X A−T∆AT ◦A(−) X A)∆S

If we define
Ξ := X A−T∆AT ◦A(−) X A

then
Ξ∆S =∆TΞ. (8.7.1)

We compute Ξ(M), for any v × v matrix M . Note that

Ξ(M) = A−T (AT ◦ A−1 ◦ (AM))

Since (A, A(−)) and (AT , A(−)T ) are both one-sided Jones pairs, there is an invertible
diagonal matrix C such that AT =C−1 AC . Therefore

AT ◦ A−1 = (C−1 AC )◦ A−1 =C−1 JC

and so
AT ◦ A−1 ◦ (AM) = (C−1 JC )◦ (AM) =C−1 AMC = AT C−1MC

and consequently

Ξ(M) = A−T (AT ◦ A−1 ◦ (AM)) =C−1MC .

Now apply each side of (8.7.1) to M ; we get

T ◦ (C−1MC ) =C−1(S ◦M)C = S◦)C−1MC ).

We conclude that S = T .
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