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Chapter 1

Introduction

Let X be a graph with diameter d. We define the distance graphs, Xr for r = 1, . . . d of
X by

V (Xr) = V (X), E(Xr) = {(u, v) : distX(u, v) = r}.

Note that X1 = X.

We denote by Aut(X) the automorphism group of X. We can view this as the set of
permutation matrices P that commute with A(X). Note that if P ∈ Aut(X), then
P ∈ Aut(Xr) for r = 1, . . . d.

Set Ar = A(Xr) and A0 = I. Then P ∈ Aut(X) if and only if P commutes with each
element of {A0, . . . , Ad}. It follows that P ∈ Aut(X) if and only if P commutes with each
element of the matrix algebra 〈A0, A1, . . . , Ad〉, generated by {A0, A1, . . . , Ad}. Roughly
speaking, if 〈A0, . . . , Ad〉 is large, then Aut(X) will be small. How small can the algebra
be?

Claim: dim〈A0, . . . , Ad〉 ≥ d+ 1

What if this bound is tight? Then for all i, j, AiAj ∈ span{A0, . . . , Ad}. This implies
that AiAj is symmetric and hence that AiAj = AjAi.

Definition. An association scheme A is a set of n× n 01-matrices, A0, . . . , Ad such that

(i) A0 = I

(ii)
∑

iAi = J

(iii) AiAj = AjAi for all i, j

(iv) AiAj ∈ span{A0, . . . , Ad}

(v) ATi ∈ {A0, . . . , Ad}.
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6 CHAPTER 1. INTRODUCTION

The structure is symmetric if A1, . . . , Ad are symmetric. The algebra, 〈A0, . . . , Ad〉 is
called the Bose-Mesner algebra of the scheme, and is denoted C[A]. This is a commutative
algebra of matrices.

Recall the Schur product of matrices M and N (of the same size) is given by

(M ◦N)i,j = Mi,jNi,j.

The identity for this is J .

Claim: The Bose-Mesner algebra is closed under the Schur product.

Proof. {0, A0, A1, . . . , Ad} is Schur-closed.

Exercise. Any Schur-closed subspace of Matn×n(R) has a 01-basis.

Example.

(a) d = 1: X1 = Kn, A1 = J − I

(b) d = 2: Strongly regular graphs,

• C5

• L(Kn)

(c) Johnson scheme. V is all k-subsets of {1, . . . , v}, α and β are adjacent in Xr if
|α ∩ β| = k − r

(d) Cn

(e) Hamming scheme, H(n, q).

A permutation group G on a set V is generously transitive if for pairs of points, u, v ∈ V
there is a permutation g ∈ G such that ug = v and vg = u.

Example.

(a) Aut(Cn)

(b) Cayley graphs for abelian groups of odd order. Choose a subset C of G such that
0 6∈ C and −C = C. Then X(G, C) has vertex set G and E(X) = {uv : v − u ∈ C}.

(c) Sym(v) acting on the
(
v
k

)
subset of V = {1, . . . , v} with size k. If G is a permutation

group os V , its orbitals are the orbits of acting on V ×V . We see that G is transitive
if and only if the diagonal {(u, u) : u ∈ V } is a single orbit.
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Theorem 1.1. SupposeG is a transitive permutation group on V . Then the non-diagonal
orbitals of G are graphs if and only if G is generously transitive.

Corollary 1.2. If G is generously transitive its orbitals form an association scheme.

Theorem 1.3. If Γ is a set of permutations on V , then the set of matrices that commute
with each element of Γ is a matrix algebra which is closed under Schur product.

Proof. Exercise.

M is normal if and only if M and M∗ commute.

Theorem 1.4. A matrix is normal if and only if it is unitarily diagonalizable, e.g.

M = LDL∗

where L is unitary and D is diagonal.

Note that M is normal if and only if 〈M,M∗〉 is commutative.

The Bose-Mesner algebra of an association scheme is commutative and ∗-closed. There-
fore, all matrices in C[A] are normal.

Theorem 1.5. If U ≤ Cv and U is C[A]-invariant, then so is U⊥.

Proof. If y ∈ U and x ∈ U⊥, then

0 = 〈x,Ay〉 = 〈A∗x, y〉.

Hence U⊥ is C[A]-invariant.

How do we find U? Suppose U is an eigenspace for A in C[A] with eigenvalue λ. If
BA = AB and u ∈ U , then

ABu = BAu = λBu

and so Bu ∈ ker(A− λI).

Corollary 1.6. Cv has a basis consisting of eigenvectors for C[A].

An eigenspace for C[A] is a subspace on which each matrix in C[A] acts as a scalar, and
is maximal with this property. If z is an eigenvector for C[A] then for each matrix M we
have

Mz = λMz.

The map M 7→ λM is an element of the dual space C[A]. The dimension of the dual is
d + 1. If V is a vector space and V = U1 ⊕ U2 then there is an idempotent linear map
P : V → V with image U1 and kernel U2.
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Remark. A linear map L : V → V fixes U1 and U2 if and only if L and P commute.

We aim to show that the projections onto the eigenspaces of C[A] lie in C[A].



Chapter 2

Spectral decomposition

Suppose A is normal. Then A = LDL∗ (D diagonal, L unitary). We can write D as∑
i

λiDi

where Di is diagonal, D2
i = Di,

∑
Di = I and λ1, . . . , λm are the eigenvalues of D. So

A =
d∑
i=0

λiLDiL
∗

where λ0, . . . , λd are eigenvalues of A. Set Ei = LDiL
∗. Then

A =
d∑
i=0

λiEi.

Here,

E2
i = Ei,

EiEj = 0,∑
Ei = I,

AEi = λEi.

Thus the columns of Ei are the eigenvectors for A with eigenvalue λi. If

pi(t) =
∏
j 6=i

t− λj
λi − λj

then pi(A) = Ei. Assume A = {A0, . . . , Ad} and

Ai =
∑
j

pi(j)E
(i)
j

9



10 CHAPTER 2. SPECTRAL DECOMPOSITION

is the spectral decomposition of Ai. Then

I =
d∏
i=0

(∑
j

E
(i)
j

)
. (2.1)

Note that if E and F are commutative idempotents, then EF and FE are idempotents.
So (2.1) expresses I as a sum of commuting idempotents. Also if E and F are commuting
idempotents, then

F = EF + (I − E)F

expresses F as a sum of idempotents. An idempotent F in C[A] is minimal if it can be
written as a sum F1 + F2 of non-zero idempotents from C[A]. Minimal idempotents are
orthogonal.

Let E0, . . . , Em be the set of minimal idempotents.

Claims:

(a) The idempotents span C[A],

(b) they are linearly independent (hence m = d),

(c) col(Ei) is an eigenspace for C[A],

(d) Ei ∈ C[A] for all i.

So the Bose-Mesner algebra has two bases, A0, . . . , Ad and E0, . . . , Ed.

The constant vectors are an invariant subspace for C[A], the corresponding projection is
1
v
J ; we denote this by E0.

Recall that

(i) A0 = I,

(ii)
∑

iAi = J ,

(iii) AiAj = AjAi for all i, j,

(iv) ATi ∈ A,

(v) AiAj ∈ span(A).

We also have

(i) E0 = 1
v
J ,

(ii)
∑

iEi = I,
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(iii) Ei ◦ Ej = Ej ◦ Ei for all i, j,

(iv) ET
i ∈ A,

(v) Ei ◦ Ej ∈ span(E0, . . . , Ed).

The idempotents Ei are Hermitian. There are scalars pi(j) such that

Ai =
d∑
j=0

pi(j)Ej

and scalars qj(i) such that

Ej =
1

v

∑
i

qj(i)Ai.

We call the numbers pi(j) the eigenvalues of the association scheme and the qj(i) the dual
eigenvalues of the association scheme. We also have scalars pi,j(k) such that

AiAj =
∑
k

pi,j(k)Ak

called intersection numbers and scalars qi,j(k) such that

Ei ◦ Ej =
1

v

∑
k

qi,j(k)Ek

called Krein parameters. We define the matrix of eigenvalues by

(P )r,s = (ps(r)).

Similarly we define Q by PQ = vI.

Let vi be th valency of Xi. We have vi = pi(0). Also, mi = tr(Ei) = rank(Ei). Note that

AiEj = pi(j)Ej (2.2)

Ej ◦ Ai =
1

v
qj(i)Ai (2.3)

Denote by sum(M) the sum of the entries of M . Taking the trace of (2.2) we get

pi(j)mj = tr(pi(j)Ej) = tr(AiEj) = sum(ATi ◦ Ej) = sum(Ai ◦ Ēj) = qj(i)vi.

Hence,

pi(j)

vi
=
qj(i)

mj

. (2.4)
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The set of m × n matrices over C, Matm×n(C) is an inner product space, with inner
product

〈M,N〉 = tr(M∗N).

Note that
tr(M∗N) = sum(M ◦N).

The idempotents, A0, . . . , Ad form an orthogonal basis for C[A]; similarly, E0, . . . , Ed is
an orthogonal basis. Define

∆v =

v0

. . .

vd

 and ∆m =

m0

. . .

md

.
Then we can rewrite (2.4) in matrix form:

P∆−1
v = ∆−1

m Q∗. (2.5)

Since PQ = vI, this is equivalent to

P∆−1
v P ∗ = v∆−1

m . (2.6)



Chapter 3

Strongly regular graphs

A strongly regular graph is one of the graphs in association schemes with two classes. An
association scheme with d classes is primitive if X1, . . . , Xd are connected. For strongly
regular graphs X the scheme is primitive if X and X are connected. The only imprimitive
strongly regular graphs are the graphs mKn (with m,n > 1).

Example. The following graphs are strongly regular.

(a) C5 with parameters (5, 2, 0, 1).

(b) The Petersen graph.

(c) L(Kn,n).

(d) L(Kn) with parameters

v =

(
n

2

)
, k = 2n− 4, a = n− 2 and c = 4.

(e) Moore graphs of diameter two (strongly regular with girth five).

Suppose A = {A0, A1, A2} with A = A1. Then

A2
1 = kA0 + aA1 + cA2,

so
A2 = kI + aA+ c(J − I − A)

and
A2 − (a− c)A− (k − c)I = cJ.

The eigenvalues of a strongly regular graph are k and the roots of t2 − (a− c)t− (k− c).
We denote these by θ and τ (θ > τ). The matrix of eigenvalues is

13



14 CHAPTER 3. STRONGLY REGULAR GRAPHS

A0 A1 A2

E0 1 k v − 1− k
E1 1 θ −θ − 1
E2 1 τ −τ − 1

Now use (2.6) to compute the multiplicities m0,m1,m2,

1 +mθ + (v − 1−mθ) = v, k +mθθ + (v − 1−mθ)τ = 0.

Computing Q from P

1 k l
1 θ −θ − 1
1 τ −τ − 1

→
1 1 1

1 θ/k −(θ+1)
d

1 τ/k −(τ+1)
d

→
1 1 1

1 mθθ
k

−mθ(θ+1)
l

1 m−τ
k
−mτ (τ−1)

l

→
 T

.

A scheme is formally self dual if P = Q.

Computing pi,j(k), qi,j(k)

AiAj =
∑
r

pi,j(r)Ar

Ei ◦ Ej =
1

v

∑
r

qi,j(r)Er

Here, qi,j(r) is an eigenvalue of the Hermitian matrix Ei ◦ Ej, so it is real. Since Ei < 0
and Ej < 0 their Schur product is positive semidefinite. So qi,j(r) ≥ 0 (Krein condition).
We have

AiAjEs = pi(s)pj(s)Es

and (∑
r

pi,j(r)Ar

)
Es =

(∑
r

pi,j(r)pr(s)

)
Es

so
pi(s)pj(s) =

∑
r

pi,j(r)pr(s), (s = 0, . . . , d).

AiAj =

(∑
r

pi(r)Er

)(∑
r

pj(r)Er

)

=
∑
r

pi(r)pj(r)Er

(AiAj) ◦ Ak =
∑
r

pi(r)pj(r)
1

v
qr(k).
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Matn×n(C) is an inner product space,

〈M,N〉 = tr(M∗N) = sum(M̄ ◦N).

Both A0, . . . , Ad and E0, . . . , Ed are orthogonal bases for C[A]. If M ∈ Matv×v(C), its
projection onto C[A] is

M̂ =
d∑
i=0

〈M,Ai〉
〈Ai, Ai〉

Ai =
d∑
j=0

〈M,Ej〉
〈Ej, Ej〉

Ej.

In practice, M will usually be of the form xxT , where x is the character vector of some
subset V . In this case,

〈M,Ai〉 = tr(xxTAi) = tr(xTAix) = xTAix ≥ 0

and
〈M,Ej〉 = tr(xxTEj) = xTEjx ≥ 0.

Hence, if M = xxT , then M̂ ≥ 0 and M̂ < 0. If I ⊆ {1, . . . , d} then

XI =
⋃
i∈I

Xi.

An I-clique is a clique in XI ; an I-coclique is a coclique in XI . Suppose C ⊆ V . Then
C is an I-clique if xCx

T
C ◦Ai = 0 for i 6∈ I. It is an I-coclique if xCx

T
C ◦Ai = 0 for i ∈ I.

Theorem 3.1. [Clique-coclique bound]

If C is an I-clique and S is an I-coclique, then |C||S| ≤ v. If equality holds then

xTCEjxC · xTSEjxS = 0.

Proof. Set M = xCx
T
C , N = xSx

T
S . We have

M̂ =
∑
r

〈M,Ar〉
〈Ar, Ar〉

Ar =
∑
r

xTCArx
C

vvr
Ar

N̂ = · · · =
∑
j

xTSEjxS
mj

Ej.

M̂ ◦ N̂ =
|C||S|
v2

I

M̂N̂ =
∑
j

xTCEjxCx
T
SEjxS

m2
j

Ej

< (xTCE0xCxSE0xS)E0, (E0 =
1

v
J)

=
|C|2|S|2

v3
J
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Further, we have
|C||S|
v

= sum(M̂ ◦ N̂) = tr(M̂N̂) ≥ |C|
2|S|2

v2

and so |C||S| ≤ v.

Theorem 3.2. If M,N < 0 are matrices in C[A] with M ◦N = αI then

sum(M)

tr(M)
· sum(N)

tr(N)
≤ v,

and if equality holds, MN = βJ .

Proof. Exercise.

Example (Bound on α(X)). Set A = A(X), let τ be the least eigenvalue of A and set
N = A− τI. Then N < 0 and

tr(N) = v(−τ)

sum(N) = vk + v(−τ)

⇒ |S| ≤ v(−τ)

k − τ
=

v

1− k/τ
(ratio bound).

(a) Petersen graph; τ = −2, k = 3, v = 10,

|S| ≤ 10

1 + 3/2
= 4.

(b) Kneser graph Kv:k; |V (Kv:k)| =
(
v
k

)
, valency =

(
v−k
k

)
, τ = −

(
v−k−1
k−1

)
, so

|S| ≤
(
v − 1

k − 1

)
.

To do

• Starting from the matrix of eigenvalues - are we using (2.6) to compute the multi-
plicities? Why is the multiplicity of k one? Define mθ,mτ .

• Computing Q from P - formalize better.

• Computing pi,j(k), qi,j(k) - are we showing how to compute them?

• Should we divide this chapter into sections? Some things are a bit out of context.

• Proof of Theorem 3.1 is messy and confusing.



Chapter 4

Kronecker product

The Kronecker product of two matrices, A and B, is defined by

A⊗B = (AijB)i,j.

The Kronecker product has the following properties:

• tr(A⊗B) = tr(A) tr(B),

• (A⊗B)(C ⊗D) = AC ⊗BD,

• A⊗B = (A⊗ I)(I ⊗B).

We define

vec(M) =

Me1
...

Men

.
Then

vec(AMBT ) = (B ⊗ A) vec(M),

and this can be used to reduce some problems to solving a system of linear equations.
For example, a matrix M commutes with A if and only if MA− AM = 0 and, since

vec(MA− AM) = ((AT ⊗ I)− (I ⊗ A)) vec(M)

finding the matrices that commute with A is reduced to finding the kernel of

(AT ⊗ I)− (I ⊗ A)

If A and B are square, A ◦ B is a principal submatrix of A ⊗ B. This fact leads to a
proof of Schur’s theorem that the product of positive semidefinite matrices is positive
semidefinite.

17
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To do

• This chapter is awkwardly short. Can we make it longer or move it into another
chapter?



Chapter 5

A central identity

Define
µ(A⊗B) = AB, and σ(A⊗B) = A ◦B.

The maps µ and σ have adjoints µ∗ and σ∗. We have

〈C,AB〉 = 〈C, µ(A⊗B)〉 = 〈µ∗(C), A⊗B〉,
〈C,A ◦B〉 = 〈C, σ(A⊗B)〉 = 〈σ∗(C), A⊗B〉.

We will use τ to denote the transpose map on a space of matrices.

Claim. ∗ ⊗ I is self-adjoint. We have

〈µ∗(I), A∗ ⊗B〉 = 〈I, µ(A∗ ⊗B)〉
= 〈I, A∗B〉
= tr(A∗B)

= 〈A,B〉

and

〈σ∗(J), Ā⊗B〉 = 〈J, Ā ◦B〉
= sum(Ā ◦B)

= 〈A,B〉.

We conclude that (∗ ⊗ I)µ∗(I) = (− ⊗ I)σ∗(J). Let’s assume A is real and symmetric.
Then µ∗(I) = σ∗(J).

µ∗(I) =
∑
i,j

γijEi ⊗ Ej

〈µ∗(I), A⊗B〉 = 〈I, AB〉 = tr(AB)

〈µ∗(I), Ei ⊗ Ej〉 = δijmj

19



20 CHAPTER 5. A CENTRAL IDENTITY

and so

µ∗(I) =
∑
j

1

mj

Ej ⊗ Ej.

Similarly,

σ∗(J) =
∑
i

1

vvi
Ai ⊗ Ai.

We have thus proved the following identity, due to Koppinen [?].

Theorem 5.1. For any association scheme,∑
i

1

vvi
Ai ⊗ ATi =

∑
j

1

mj

Ej ⊗ Ej.

If we apply I ⊗ ∗ to this we get∑
i

1

vvi
Ai ⊗ Ai =

∑
j

1

mj

Ej ⊗ Ēj;

we can produce a number of such variants.

5.1 Clique coclique bound

Define T : C ⊗D → tr(DX)C. Then

T (Ai ⊗ Ai) = tr(Ai)Ai

T (Ej ⊗ Ej) = tr(XEj)Aj

Let C be a clique and S be a coclique with character vectors y and z respactively. Set
x = y ⊗ z. Then

xT (Ai ⊗ Ai)x = (yT ⊗ zT )(Ai ⊗ Ai)(y ⊗ z)

= yTAiy z
TAiz

= yTA0y z
TA0z

= |C||S|.

Also,

|C||S|
v

= xTσ∗(J)x

= xTµ∗(I)x

=
∑
j

1

mj

yTEjy z
TEjz

≥ |C|
2|S|2

v2
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and so |C||S| ≤ v. If equality holds, yTEjy z
TEjz = 0, for j = 1, . . . , d. Apply T to both

sides of K’s identity, ∑
i

〈X,Ai〉
vvi

Ai =
∑
j

〈X,Ej〉
mj

Ej.

1. A scheme is pseudocyclic if v1 = · · · = vd and m1 = · · · = md, e.g. prime cycles,
Paley graphs.

2. A connected, regular graph is strongly regular if and only if it has exactly three
distinct eigenvalues.

Assume A is pseudocyclic. Then

µ∗(I) =
∑
i

Ai ⊗ Ai
vvi

=
1

v
I +

1

v1

∑
i

A⊗2
i

and

σ∗(J) = E⊗2
0 +

1

m1

∑
j

Ej ⊗ Ej.

The matrices Ai ⊗ Aj form an association scheme. We conclude that
∑

iA
⊗2
i is strongly

regular.
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Quotients and subschemes

Let M be a matrix. Let ρ be a partition of the rows of M and let R be the characteristic
matrix of ρ. Let ρ∗ be the partition given by the relation ‘equals’ on the columns of
RTM . Let N be the matrix with the distinct columns of RTM as its columns. If S is a
characteristic matrix of ρ∗, then RTM = NST . We call ρ∗ the induced partition.

Theorem 6.1. If the rows of M are linearly independent, then |ρ∗| ≥ |ρ|.

Proof. If 0 = xTRTM , then xTRT = 0 and so xT = 0. Therefore the rows of NST are
linearly independent and so |ρ∗|, the number of columns of NST is at least as large as the
number of rows, which is |ρ|.

6.1 Equitable partitions

Suppose A is a linear map on V . Then U is A-invariant if and only if there is a matrix B
such that if u1, . . . , um are a basis for U , then

A
(
u1 · · · um

)
=
(
u1 · · · um

)
B.

A partition, π, of the vertices of a scheme is equitable if the space of functions constant
on the cells of π is C[A]-invariant. If P is the characteristic matrix of a partition π of
V (X), then π is equitable if and only if col(P ) is A-invariant.

Lemma 6.2. U = col(P ) for some partition if

(a) 1 ∈ U , and

(b) U is Schur-closed.

Example. Choose u ∈ V (A) and set

Cr := {x ∈ V : (Ar)ux 6= 0}.

23
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This gives us a partition. The characteristic vector of Cr is Areu. The characteristic
matrix is then

N =
(
A0eu A1eu · · · Adeu

)
and its column space is A-invariant. The non-zero vectors Ejeu form an orthogonal basis
for the column space of N .

There are matrices, B0, . . . , Bd (of order (d+ 1)× (d+ 1)) such that ArN = NBr. Note
that NTN is invertible and so

Br = (NTN)−1NTAN

(thus it is determined by Ar). The map Ar 7→ Br extends to a homomorphism from C[A]
to the algebra generated by B0, . . . , Bd.

There is a second way of getting the matrices Br: the matrices Ai act on C[A] by left
multiplication. Then Br represents Ar in this action. Now,

ArAi =
∑
j

pr,i(j)Aj

and so
(Br)i,j = pr,j(i).

(Exercise.)

6.2 More invariant subspaces

Suppose C ⊆ V (A) with characteristic vector x. We form the matrix

N =
(
A0x A1x · · · Adx

)
.

Then col(N) is A-invariant and the non-zero vectors, Ejx, form an orthogonal basis. We
view col(N) as the C[A]-module generated by x and denote it by 〈x〉d and 〈x〉.

Let A be a scheme with matrix of eigenvalues P . We define a map T on {0, . . . , d} by
AiT = (Ai)

T . Then if C ⊆ {0, . . . , d}, CT = {iT : i ∈ C}. Any subscheme determines a
partition of the idempotents A0, . . . , Ad and hence a partition π of {0, 1, . . . , d}:

(a) {0} ∈ π

(b) If Ci is a cell then either CT
i = Ci or CT

i ∩ Ci = ∅

The problem is to characterize the partitions that give us a subscheme. SetB :=
∑

j∈Ci Aj.

Then
∑
Bi = J , B0 = I and BT

i ∈ {B0, . . . , Be} for each i. The algebra generated by
B = {B0, . . . , Be} is commutative and B is an association scheme if and only if

dim(〈B〉) = e+ 1.
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Let N be the characteristic matrix of the partition π. The columns of PN give us the
eigenvalues of the matrices Bi. The dimension of 〈B〉 is the number of distinct rows of
PN . Thus the number of eigenvalues is |π∗|. It follows that B is a scheme if and only if
|π∗| = |π|. (We have |π| ≤ |π∗| because P is invertible.)

If R is the characteristic matrix of π∗ then PN = RP1 and P1 is the matrix of eigenvalues
of B.





Chapter 7

Duality

7.1 Group schemes

Let G be a group. If g ∈ G, let Pg be the permutation matrix representing G its right
regular representation. Then

Pe = I,∑
g

Pg = J,

(Pg)
T = Pg−1 ,

PgPh = Pgh.

This is a representation of the group algebra. If G is abelian we get a so called group
scheme.

Remark. We have that vi = 1 for all g ∈ G. This characterizes group schemes.

A translation scheme is a subscheme of a group scheme. Each Schur idempotent in a
translation scheme is a Cayley graph for G. The Hamming scheme and the forms schemes
are translation schemes.

Suppose A is a group scheme. Assume v = |G|. There exist matrix idempotents Ej for
j = 0, . . . , v − 1. We have

mj = rank(Ej) = 1 for all j.

Next, the Schur product of rank one matrices has rank one, so

Ei ◦ Ej = El for some l.

The matrix of eigenvalues of A is flat and is unitary. Hence Ej = xjx
∗
j where xj is flat

and has norm one. So
Ej ◦ Ēj = J.

27
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It follows that the matrix idempotents form an abelian group G∗ under Schur multiplica-
tion. It is called the character group of G.

Exercise. We have G ' G∗.

If A and B are the schemes for groups G and H respectively, then the matrices

Ar ⊗Bs, Ar ∈ A, Bs ∈ B

form the group scheme for G×H.

7.2 Subschemes

We can view G∗ as a group on the vectors x such that xx∗ is one of the matrix idempotents.
The matrix of eigenvalues for G∗ is Q. If we order things so that P is symmetric (this is
possible) then P = Q̄.

If A is a translation scheme for a group G corresponding to a partition π of G (i.e. of
{0, 1, . . . , v − 1}), the induced partition π∗ gives a partition of G∗. If π is a “good”
partition of G, then it determines a subscheme if and only if |π| = |π∗|. Since P is
invertible, (π∗)∗ = π (Exercise).

It follows that π∗ gives us an association scheme on G∗ thus translation schemes come in
dual pairs.

Example. Consider the cyclic group, G = 〈g : g6 = 1〉 ' Z6. Let π = {C0, C1, C2, C3}
be the following partition of G:

C0 = {1}, C1 = {g2}, C2 = {g4}, C3 = {g, g3, g5},

(so C−1
1 = C2 and C−1

3 = C3) and let A = {A0, A1, A2, A3} be the corresponding transla-
tion scheme, i.e.

A0 = I, A1 = AT2 =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

 and A3 =


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

.

Let ζ := e
2πi
6 and note that ζ3 = −1. The character table of G is

1 g g2 g3 g4 g5

1G∗ 1 1 1 1 1 1
χ1 1 ζ ζ2 −1 −ζ −ζ2

χ2 1 ζ2 −ζ 1 ζ2 −ζ
χ3 1 −1 1 −1 1 −1
χ4 1 −ζ ζ2 1 −ζ ζ2

χ5 1 −ζ2 −ζ −1 ζ2 ζ
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Denote the character table by M and let R be the characteristic matrix for the partition
π, thus

M =


1 1 1 1 1 1
1 ζ ζ2 −1 −ζ −ζ2

1 ζ2 −ζ 1 ζ2 −ζ
1 −1 1 −1 1 −1
1 −ζ ζ2 1 −ζ ζ2

1 −ζ2 −ζ −1 ζ2 ζ

 and R =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1

.

Now since ζ − ζ2 = 1, we get

RTM =


1 1 1 1 1 1
1 ζ2 −ζ 1 ζ2 −ζ
1 −ζ ζ2 1 −ζ ζ2

3 0 0 −3 0 0


The first four columns of RTM are all distinct, column five is the same as column two,
and column six is the same as column three, thus, the dual partition, π∗ of G∗ is

D0 = {1G∗}, D1 = {χ1, χ4}, D2 = {χ2, χ5}, D3 = {χ3}.

Note that for all x ∈ G we have

χ1(x)−1 = χ5(x), χ2(x)−1 = χ4(x) and χ3(x)−1 = χ3(x),

i.e. D−1
1 = D2 and D−1

3 = D3. Clearly, this partition defines a translation scheme that is
not isomorphic to A, thus A is not self-dual.

7.3 Duality

First, an example on Zd2. The maps

ψa : x 7→ (−1)〈a,x〉

are eigenvectors of the group scheme. Then

P =
(
(−1)〈a,b〉

)
a,b

and Ea =
1

v
ψaψ

∗
a.

The duality, Θ, is defined by

Θ(Au) =
∑
j

pu(j)Aj.

This maps C[A] to itself. It is linear and represented by P . Since pi(j) = qi(j), (P = Q̄),
we have

Θ(Au) = vĒu

Θ(I) = J

Θ(J) = vI
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Also

Θ(Au) ◦Θ(Av) = Θ(AuAv).

In general, if A is a scheme and P = Q̄ we define

Θ(Ai) = vĒi.

Then Θ(I) = J and Θ(J) = vI. We have

Θ(Ai)Θ(Aj) = v2ĒiĒj = vΘ(Ai ◦ Aj).

By linearity,

Θ(M)Θ(N) = vΘ(M ◦N).

Also

Θ(vĒi) = Θ

(∑
j

qi(j)Aj

)
= v

∑
j

qi(j̄)Ēj

= v
∑
j,r

qi(j)qj(r)Ar

= vAT .

Corollary 7.1. Θ2(M) = vMT .

Let A be an association scheme with P = Q̄. We have

Θ : C[A]→ C[A], Θ(Ai) = vEi,

then Θ(I) = J and Θ(J) = vI. Further,

Θ(M ◦N) =
1

v
Θ(M)Θ(N)

Θ(vĒi) = vATi .

Hence Θ2(M) = vMT for M ∈ C[A] and in consequence,

Θ(MN) = Θ(M) ◦Θ(N).

In general Θ4(M) = v2I. Define

Θ̂(M) =
1√
v

Θ(M).
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Then Θ̂T (M) = MT . We see that the symmetric matrices in C[A] are an eigenspace for
Θ̂2 with eigenvalue 1, the skew symmetric matrices are an eigenspace with eigenvalue −1.
So if M = M̄ then (Θ̂2 − I)(M) = 0 and thus

(Θ̂− I)(Θ̂ + I)(M) = 0.

Hence (Θ̂ + I)(M) is an eigenvector for Θ̂ with eigenvalue 1 and similarly, (Θ̂− I)(M) is
an eigenvector with eigenvalue −1.

Similarly if MT = −M then (Θ̂2 + I)(M) = 0 and the eigenvectors are of the form
Θ̂(M)± iM with eigenvalues ±i.

Questions and remarks

1. How do we know if a scheme is a translation scheme?

2. If A is a translation scheme, then the matrices M + MT for M ∈ C[A] form the
Bose-Mesner algebra of a symmetric scheme.

3. If A and B are schemes, then we have the product scheme A⊗B. If PB = Q̄A then
A⊗ B is a self dual scheme. (It is true that PA⊗B = PA ⊗ PB.)

To do

• Add example of non-selfdual translation scheme.

• Duality section could be better organized.
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Type-II matrices

If W is a matrix with all entries non-zero, then we denote by W (−) the Schur inverse of
W . We say that W is a type-II matrix if W is v × v and WW (−)T = vI.

Example.

1. Hadamard matrices.

2. The matrix of eigenvalues of a group scheme (character table of an abelian group).

3. 
1 1 1 1
1 1 −1 −1
1 −1 t −t
1 −1 −t t

, t 6= 0.

Note that examples 1. and 2. are flat, but 3. is not. If W1 and W2 are type-II, so is
W1 ⊗W2. The following operations take type-II to type-II:

(a) Transpose.

(b) Rescaling rows and/or columns.

(c) Permuting rows and/or columns.

We say that two type-II matrices are equivalent if one can be obtained from the other
using any of the above operations.

Theorem 8.1. Any two of the following imply the third:

(a) W is type-II,

33
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(b) W is flat,

(c) W is unitary.

Unitary matrices M and N are unbiased if M∗N is flat.

Example (Potts model). If W = (t− 1)I + J , then W (−) = (t−1 − 1)I + J and

WW (−) = (2− t− t−1)I + (t+ t−1 − 2 + v)J.

Then W is type-II if t+ (v − 2) + t−1 = 0.

8.1 Nomura algebras

Let W be a Schur-invertible matrix. Define

Wa/b = (Wea) ◦ (Web)
(−).

The Nomura algebra, NW of all W is

{M : Wa/b is an eigenvector for all a, b}.

Then NW is a matrix algebra.

Lemma 8.2. If W is square and W (−) exists then J ∈ NW if and only if W is type-II.

If W is invertible, the vectors Wa/b span Cv and NW is diagonalizable and commutative.
If W1 and W2 are equivalent, then NW1 ' NW2 . If W is the character table of an abelian
group G, then NW is C[G] (the group ring of G).

If M ∈ NW , let Θ(M) be the v × v matrix such that Θ(M)a,b is the eigenvalue of M on
Wa/b. Clearly,

Θ(I) = J.

Also,
Θ(J) = vI.

The set Θ(NW ) is Schur-closed (because Θ(MN) = Θ(M) ◦Θ(N) and contains J). The
goal now is to prove that NW is Schur-closed. Choose a vertex a and define

Fi =
1

v
Wa/i(Wi/a)

T .

This is a rank one matrix. We have

FiFj =
1

v2
Wa/i(Wi/a)

TWa/j(Wj/a)
T .
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Here,

(Wi/a)
TWa/j =

(
Wei ◦We(−)

a

)T (
Wea ◦We

(−)
j

)
= D−1

Wa
(Wei)

T (Wej)
(−)DWa

= vδi,j.

It follows that FiFj = δi,jFi. Since tr(Fi) = 1, we have tr (
∑
Fi) = n, and so(∑

Fi

)2

=
∑

Fi.

Hence ∑
i

Fi = I.

Lemma 8.3. If M ∈ NW then

M =
∑
i

Θ(M)a,iFi.

Lemma 8.4 (Nomura). We have

ΘW (M)(W T )r/s = vMs,r(W
T )r/s.

This implies that ΘW (M) ∈ NWT and ΘW (ΘWT (M)) = vMT .
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Dual bases

If x1, . . . , x2 ∈ Cd and y1, . . . , yd ∈ Cd and

〈yi, xi〉 = δi,j

then {yj} is a dual basis for {xi}. In this case the xiy
∗
j are idempotents and the sum to

the identity. Also distinct idempotents are orthogonal.

Example. A Schur invertible matrix W is type-II if and only if the columns of W (−) are
a dual basis to the columns of W .

Suppose W is type-II of order v × v. We define rank-1 matrices

Fi,j =
1

v
Wi/j(Wj/i)

T .

Then Fi,i = 1
v
J . These matrices are idempotents and

Fi,rFi,s = 0, Fr,iFs,j = 0.

Also ∑
r

Fi,r = I =
∑
s

Fs,j.

Note that

FTi,j = Fj,i
F (−)
i,j = v2Fj,i

Theorem 9.1 (Nomura). If M ∈ NW then ΘWT (ΘW (M)) = vMT .

Proof. Assume M ∈ N . Then

MFi,j = Θ(M)i,jFi,j
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and, summing this over j we have

M =
∑
j

Θ(M)i,jFi,j.

Then

Mr,s =
1

v

∑
j

Θ(M)i,j
Wr,i

Wr,j

Ws,j

Ws,i

=
Wr,i

Ws,i

∑
j

Θ(M)i,j
Ws,j

Wr,j

vMr,s
Ws,i

Wr,i

=
∑
j

Θ(M)i,j
Ws,j

Wr, j
.

Consequences

• ΘW and ΘWT are invertible.

• NW is closed under transpose.

• Since im(ΘWT ) is Schur closed, it follows that NW is Schur closed. Hence NW is
the Bose-Mesner algebra of a scheme, and so is NWT .

To do

• The last equations are disturbing to look at. Try to write them more neatly.
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Magic unitary matrices

A magic unitary matrix is a n × n matrix whose entries are d × d projections such that
each row and column sums to Id. The projections in a row or column are orthogonal.

Example. Any permutation matrix.

Lemma 10.1. If P is a magic unitary matrix, it is unitary.

Proof. Exercise.

We will also be concerned with the case where we use idempotents in place of projections.
Graphs X and Y with V (X) = V (Y ) = v are quantum isomorphic if there is a magic
unitary P such that

(A(X)⊗ I)P = P (A(Y )⊗ I).

Since P is invertible, A(X)⊗ I and A(Y )⊗ I are similar and so X and Y are cospectral.

Lemma 10.2. If P is a magic unitary with index d, then P commutes with J ⊗ Id.

Proof. Exercise.

Corollary 10.3. If X and Y are quantum isomorphic, they are cospectral with cospectral
complements.

Lemma 10.4. If M ⊗ I anf N ⊗ I commute with P then so does M ◦N .

Proof. The (i, j)-block of (M ⊗ I)P is∑
r

Mi,rPr,j
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and by hypothesis this is equal to the (i, j)-block of P (M ⊗ I):∑
s

Ms,jPi,s.

We have corresponding expressions for N ⊗ I and∑
r

Mi,rPr,j
∑
s

Ni,sPs,j =
∑
r

(M)i,rMi,r)Pr,j.

Similarly ∑
r

Mr,jPi,r
∑
r

Nr,jPi,r =
∑

Mr,jNr,jPj,r.

A coherent algebra is an algebra of matrices that is closed under transpose, contains J
and is Schur-closed.

Example. The commutant of a set of permutation matrices.

A coherent algebra has a unique basis of 01-matrices. If I is an element of this basis,
the algebra is homogeneous. Any matrix generates a coherent algebra. If X and Y are
quantum isomorphic, the coherent algebras they generate are isomorphic.
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Type-II matrices and magic unitaries

The v2× v2 matrix F with (i, j)-entries equal to Fi,j is the matrix of idempotents. Since
FTi,j = Fj,i we see that F is symmetric. If τ is partial transpose, then

F τ =
1

v2
F (−).

Let S act on V ⊗ V by S(u⊗ v) = v ⊗ u. Then FWT = SFWS. (Exercise.)

Theorem 11.1. If W is type-II, then FW is type-II. If in addition, W is flat, then F is
flat and is a magic unitary.

Proof. Exercise.

For matrices A and B let [A,B] := AB −BA. Note that [A,B] = 0 if and only if A and
B commute.

Theorem 11.2. Assume W is type-II with matrix of idempotents F . Then the set of
matrices M such that [I ⊗ M,FW ] = 0 is NW and the set of matrices N such that
[N ⊗ I,FW ] = 0 is NWT .

Proof. The (i, j)-block of (I ⊗ M)F is MFi,j; the (i, j)-block of F(I ⊗ M) is Fi,jM .
So I ⊗ M and F commute if and only if M commutes with all idempotents Fi,j. So
[(I ⊗M),F ] = 0 if and only if M ∈ NW .

We have Fi,j = Wi/j(Wj/i)
T and F = (Fi,j). We denote by δi(M) the diagonal matrix

fromed from the i-th column of M . Then Wi/j = δi(W )We
(−)
j and

Fi,j = δi(W )We
(−)
j (Wej)

T δi(W )−1.

Remark. (Fi,j)r,s = (Fr,s)i,j

41
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Remarks and Questions

1. What is the commutant of FW ? It contains NW ⊗NWT . Could it be equal to this?

2. Could we have FW = S(W ⊗W T )?

3. Characterize the magic unitaries equal to FW for some flat type-II W .

4. Is there a nice relation between FW and FWT ?

5. How does Θ play with FW ? Can we prove Nomura’s identity,

(ΘWT (ΘW (M))) = vMT ?

6. If W is a real Hadamard, then FW is a Hadamard matrix of Bush type.

7. If Fi,j ∈ NW then Θ(Fi,j) is a permutation matrix, so they are dual permutations.
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Spin models

12.1 Knots and braids

We will not give a formal definition of a braid, but define them by illustations. Figure
12.1 shows a braid on eight strands.

Figure 12.1: A braid on eight strands

There is only one braid on one strand but infinitely many on two (or more) strands (see
Figure 12.2).

Figure 12.2: Four distinct braids on two strands
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The set of braids on n strands forms an infinite group, Bn. The identity of this group is
obvious, and it is not too hard to see what the multiplication looks like. To see that every
element has an inverse, we note that the braid group, Bn is generated by n− 1 elements,
σ1, . . . , σn−1, shown in Figure 12.3. Their inverses are depeicted in Figure 12.4

In Figure 12.2, we have the identity of B2 to the far left, then σ1, σ2
1 and σ3

1 respectively.
Note that σ1 has infinite degree.

The generators for a general braid group is depicted in Figure 12.3.

Figure 12.3: σ1, σ2, . . . , σn−1

Now it is not too hard to see what the inverses of these elements are (see Figure 12.4).

Figure 12.4: σ−1
1 , σ−1

2 . . . , σ−1
n

Given an arbitrary braid, β, the corresponding link is shown in Figure 12.5

ββ

Figure 12.5: Link of a braid
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Question. When do two braids give the same link?

Let β be an arbitrary braid. The following two operations preserve its link (here, γ is any
arbitrary braid):

γ

β

γ−1

β

Figure 12.6: Link-preserving operations

Theorem 12.1 (Markov). Two braids have the same closure if and only if they are
related by a sequence of these operation.

If we have a finite dimensional matrix representation, Φ, of Bn then the map

β 7→ tr(Φ(β))

will give a link invariant if it behaves nicely under the second Markov move.

12.2 Braid relations

There are two sets of relations on the generators of Bn:

(1) σiσj = σjσi if |i− j| > 1.

(2) σiσi+1σi = σi+1σiσi+1.

We call this second identity the braid relation.

If aba = bab then

(aba)2 = abaaba = ababab = (ab)3.

If we have ϕ(a) = (12) and ϕ(b) = 23, then

(12)(23)(12) = (23)(12)(23).
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12.3 A generalization of the Nomura algebra

Let A and B be two n× n matrices. Then

NA,B = {M : Aei ◦ (Bej)
(−) is an eigenvector for all i, j}

(so if A(−) exists, then NA = NA,A(−)). If M ∈ NA,B then ΘA,B(M) is the matrix of
eigenvalues of M . We have

ΘA,B(MN) = ΘA,B(M) ◦ΘA,B(N).

Again, NA,B is a matrix algebra and ΘA,B(NA,B) is Schur-closed. As before, ΘA,B(I) = J .

Lemma 12.2. If A−1 and B(−) exist then NA,B is a commutative matrix algebra.

Proof. Exercise.

Lemma 12.3. W is type-II if and only if J ∈ NW,W (−) .

12.4 Braid relation

Let A,B,C by n× n matrices and define linear maps on Matn×n(C) by

XA(M) = AM, ∆B(M) = B ◦M, YC(M) = MCT .

Using the isomorphism Matn×n(C)→ Cn ⊗ Cn we see that

XA = I ⊗ A
YC = C ⊗ I
∆B - diagonal operator.

If A ∈ NA,B, A−1 exists, ΘA,B(A) = B and

XA∆BXA = ∆BXA∆B,

then the map

σ1 7→ XA, σ2 7→ ∆B

is a braid representation.

Lemma 12.4. Suppose A,B ∈ Matn×n(C). Then R ∈ NA,B and S = ΘA,B(R) if and
only if

XR∆BXA = ∆BXA∆S.
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Proof. Apply each side to ei ⊗ ej (note that ∆M(ei ⊗ ej) = Mi,j(ei ⊗ ej)). Then

XAeie
T
j = Aeie

T
j

∆BXAeie
T
j = B ◦ (Aeie

T
j )

= (Bej ◦ Aei)eTj
XR∆BXAeie

T
j = R(Bej ◦ Aei)eTj . (12.1)

On the other hand,

∆Seie
T
j = Si,jeie

T
j

XA∆Seie
T
j = Si,jAeie

T
j

∆BXA∆Seie
T
j = Si,j(Bej ◦ Aei)eTj . (12.2)

Comparing (12.1) and (12.2), yields the result.

Relative to the trace inner product,

(XA)T = XAT , (∆B)T = ∆B

Theorem 12.5 (Exchange relation). Let A,B,C,Q,R, S be v × v matrices. Then

XA∆BXC = ∆QXR∆S

if and only if
XA∆CXB = ∆RXQ∆ST .

Proof. Apply each expression to eie
T
j .

Theorem 12.6. Let A be a v × v type-II matrix. THen ΘA is a bijection from NA to
NAT and if R ∈ NA then ΘAT (QA(R)) = vRT .

Proof. Suppose R ∈ NA and ΘA(R) = S. Then

XR∆A(−)XA = ∆A(−)XA∆S

and the transpose of this is

XAT∆A(−)XRT = ∆SXAT∆A(−) .

If we apply the exchange identity to this, we get

XAT∆RTXA(−) = ∆ATXS∆A(−)T

Multiply this on the left by ∆A(−)T and on the right by XA(−)−1 to get

XS∆A(−)TXA(−)−1 = ∆A(−)TAAT∆RT .

As A(−)−1 = 1
v
AT , this yields

XS∆A(−)TXAT = ∆A(−)TXAT∆vRT .

Hence S ∈ NA(−)TAT = NAT and ΘAT (S) = vRT .
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12.5 Duality

We say that W is a spin model if W ∈ NW . If W ∈ NW then W T ∈ NW and ΘW (W T ) =
W (−)T . Hence

XWT∆W (−)XW = ∆W (−)XW∆W (−)T .

Denote either side of this by Λ

Theorem 12.7. If R ∈ NW and S = ΘW (R) then

Λ−1XRΛ = ∆S, and Λ−1∆STΛ = XR.

Remark. If XA∆BXA = ∆BXA∆B then

(XA∆B)3 = XA∆BXA∆BXA∆B = (XA∆BXA)2

from which it follows that (XA∆BXA)2 commutes with XA∆BXA and XA∆B, and hence
it commutes with XA and ∆B.

Proof. Since R and W T commute,

Λ−1XRΛ = XW−1∆WXW−TXRXWT∆W (−)XW

= XW−1∆WXR∆W (−)XW

= ∆S.

Similarly, Λ−1∆STΛ = XR.

If Λ−1XRΛ = ∆S and Λ−1∆STΛ = XS then

Λ−2∆STΛ2 = ∆S.

Similarly, Λ−2XRΛ2 = XRT . In consequence, Λ4 commutes with XR and ∆S.

If Λ−1XRΛ = ∆S then
S = ∆S(J) = Λ−1XRΛ(J)

and here
Λ(J) = ∆W (−)XW∆W (−)T (J).

Since W ∈ NW , its diagonal is constant and so

∆W (−)XW∆W (−)T (J) = ∆W (−)XW (W (−)T )

= ∆W (−)(WW (−)T )

= v∆W (−)(I)

= vδI

for some δ. Therefore S = Λ−1(R).
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To do

• Try to illustrate links.

• Define links (maybe pictures are enough).

• There are two sections with the name Braid relation.





Chapter 13

Galois theory

13.1 Bose-Mesner automorphisms

A linear map ψ : C[A]→ C[A] is a Bose-Mesner automorphism if

(a) (MN)ψ = MψNψ

(b) (M ◦N)ψ = Mψ ◦Nψ.

It follows that

(c) ψ is invertible.

Since J ◦ J = J , we have
Jψ ◦ Jψ = Jψ

and so Jψ is a 01-matrix. As J2 = vJ,

vJψ = (Jψ)2

and thus Jψ = J .

Next, (Ar)
ψ is a 01-matrix and as J =

∑
Ar,

Jψ =
∑
r

Aψr

and therefore ψ must permute the minimal Schur idempotents. This means that ψ maps
a basis to basis, whence it is invertible (so (c) holds).

Claim: (AiAj) ◦ I 6= 0 if and only if Aj = A∗i . (Exercise)

It follows that
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(d) (M∗)ψ = (Mψ)∗ for all M ∈ C[A].

Example. The transpose map.

Let A be an association scheme, let L be the splitting field generated by the eigenvalues
and let K be the field generated by the Krein parameters. We define Γ := Gal(L/Q) and
H := Gal(L/K). Then H ≤ Γ.

If σ ∈ Γ and M,N ∈ L[A] then (MN)σ = MσNσ and (M ◦N)σ = Mσ ◦Nσ but σ is not
a Bose-Mesner automorphism - it is not linear.

If τ ∈ Γ, define a map τ̂ on L[A] as follows: if

M =
∑

µiEi

then
M τ̂ =

∑
µiE

τ
i .

This is linear over L.

Example. If τ is complex conjugation, then τ̂ is the transpose.

Theorem 13.1. Let A be an association scheme with splitting field L. If τ ∈ Gal(L/Q)
then τ̂ is an algebra automorphism if and only if τ fixes K (i.e. τ ∈ H).

Proof. There are a number of steps.

(1) If M ∈ L[A] and M =
∑
µjEj then since E∗j = Ej we have

(M∗)τ =
∑
j

µ∗jE
τ
j = (M τ̂ )∗

(2) As noted above,

(MN)σ = MσNσ,

(M ◦N)σ = Mσ ◦Nσ

Since (Ei)
τ (Ej)

τ = (EiEj)
τ , we have

(MN)τ̂ = M τ̂N τ̂ .

(3) We show that τ̂ commutes with Schur multiplication if and only if τ ∈ H. On one
hand,

(Ei ◦ Ej)τ̂ =
1

v

∑
r

qi,j(r)E
τ̂
r

=
1

v

∑
r

qi,j(r)E
τ
r
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while on the other hand,

E τ̂
i ◦ E τ̂

j = Eτ
i ◦ Eτ

j

= (Ei ◦ Ej)τ

=
1

v

∑
r

qi,j(r)
τEτ

r .

So τ̂ commutes with Shur multiplication if and only if qi,j(r)
τ = qi,j for all i, j, r.

Lemma 13.2. H ≤ Z(Γ).

Proof. Assume σ ∈ Γ and τ ∈ H. Then

Eστ̂
j = Eτσ

j =
1

v

∑
i

qj(i)
στAi

and similarly,

E τ̂σ
j = Eτσ

j =
1

v

∑
i

qj(i)
τσAi.

Next, (∑
i

qj(i)Ai

)στ̂

=
∑
i

qj(i)
σAτ̂i

=

(∑
i

qj(i)Ai

)τ̂σ

.

Here the first term is Eστ̂
j and the second is E τ̂σ

j hence qj(i)
στ = qj(i)

τσ for all i, j.

Theorem 13.3. Let A be an association scheme with splitting field L and let H =
Gal(L/K). Let F be a subfield of L that contains K Then the matrices in L[A] with
eigenvalues and entries in F are the subscheme fixed by elements of Gal(L/F ).

Proof. Let F be the set of matrices in L[A] with eigenvalues and entries in F . If M ∈ L[A]
and M =

∑
µiEi then

M τ̂ τ−1

=
∑
i

µτ
−1

i Ei.

It follows that τ̂ fixes M if and only if τ fixes the eigenvalues of M .
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Distance regular graphs

A graph with diameter d is distance regular if its distance matrices form an association
scheme.

Example.

• Strongly regular graphs.

• Cycles.

• Johnson graph, J(v, k).

• Hamming schemes, H(n, q).

• Bilinear forms.

• Grassmann

Lemma 14.1. If A is an association scheme with d classes and Y is a graph in the
scheme, then diam(Y ) ≤ d. If equality holds, then Y is distance regular.

A scheme with d classes is metric (P -polynomial) if some graph has diameter d.

14.1 Three-term recurrence

Assume A is metric relative to X1. Then there are polynomials, p0, . . . , pd such that

Ar = pr(A1)

and deg(pr) = r. The product, A1Ar is a linear combination of Ar−1, Ar and Ar+1. Define
scalars, ai, bi, ci such that

A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1,
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or equivalently,

Ai+1 =
1

ci+1

((A1 − aiI)Ai − bi−1Ai−1) .

14.2 Distance partitions

There is a module isomorphism from C[A]→ Cd+1 given by

M 7→Meu u ∈ V (A).

(Think of u as the first vertex, so Meu is the first column of M .)

The vectors Aieu for i = 0, . . . , d are linearly independent. Set

N = [A0eu, . . . , Adeu].

(Delsarte called this the “outer distribution matrix”.) The column space of N is A1-
invariant, hence A-invariant. But N is a characteristic matrix of the distance partition
relative to u. Thus this partition is equitable. If ∂u denotes this partition, then

(a) ∂u is equitable for each u ∈ V .

(b) The quotient X/∂u is independent of u. (V (X/∂u) = {0, 1, . . . , d}.)

Claim: If (a) and (b) hold for some graph, then X is distance regular. Since ∂u is a
distance partition, X/∂u is a weighted path.

Since ∂u is equitable, there are (d+ 1)× (d+ 1) matrices

B0, . . . , Bd

such that
AiN = NBi.

This is a homomorphism from C[A] to Mat(d+1)×(d+1)(C); in fact an isomorphism.

We calculate

A1Aie0 = (bi−1Ai−1 + aiAi + ci+1Ai+1)e0

= bi−1Ai−1e0 + aiAie0 + ci+1Ai+1e0

which implies

B1 =


0 b1 0 · · ·
1 a1 b2 · · ·
0 c2 a2

. . .
...

...
. . . . . .

 = A(X/∂u).



14.3. COMPLETELY REGULAR SUBSETS 57

Lemma 14.2. Let X be distance regular with diameter d. Then

(a) b0 ≥ b1 ≥ · · · ≥ bd−1

(b) c1 ≤ c2 ≤ · · · ≤ cd

(c) The sequence v0, . . . , vd is unimodal.

Proof. Exercise.

14.3 Completely regular subsets

Suppose A is a scheme and C ⊆ V (A) with characteristic vector x. Let Ci denote the
set of vertices of A that are i-related to a vertex in C (so C0 = C). We say that C is a
completely regular subset of V (A) if the partition {C0, . . . , Cd} is A-equitable.

Example.

1. C is a vertex in a distance regular graph.

2. X is distance regular and C is the set of vertices at distance d from u.

3. C is a coclique in a strongly regular graph X and |C| meets the ration bound, then
C is completely regular.

To do

• We use ∂ for the distance partition. I think I used δ for the same later. Find it and
change it.

• We haven’t defined i-related.

• In the definition of a completely regular subset, is {C0, . . . , Cd} necessarily a parti-
tion? Should Ci be the set of vertices at distance i from C?





Chapter 15

Imprimitivity

An association scheme is primitive if X1, . . . , Xd are connected, otherwise it is imprimitive.
(Our main interest will be metric schemes.)

Example. If A is metric and X is bipartite, then A is imprimitive.

Suppose A is a scheme and Xr is not connected (r 6= 0).

Lemma 15.1. A connected graph X is regular if and only if there is a polynomial, p
such that p(A) = J .

Given this, there is a polynomial, q such that q(Ar) is block diagonal with each block equal
to J . Since q(Ar) and J commute, it follows that all components of Xr have the same
size. An immediate consequence is that the partition by Xr-components is A-equitable.
Let K = q(Ar) be the block-diagonal matrix of J ’s.

Claim: The matrices Ai such that Ai ◦ K 6= 0 sum to K, and generate a Schur-closed
subalgebra of C[A]. (Exercise.)

The components of Xr are completely regular subsets.

15.1 Imprimitivity in distance regular graphs

Theorem 15.2. If X is distance regular, imprimitive and not a cycle, then either X is
bipartite or antipodal.

Remark. In the second case Xd is not connected, it is a disjoint union of complete graphs.

Proof. If X2 is not connected, then either X is bipartite or complete multipartite (exer-
cise). Now assume X is imprimitive, X1 and X2 are connected and let r be the smallest
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number such that Xr is not connected. We show that if r = d then X is a cycle. We say
X1 has (i, j, k) triangle if pi,j(k) > 0.

We consider three cases:

(a) ar = 0. Suppose not. Then there is a (1, r, r) triangle and so pr,r(1) 6= 0. Let u be a
vertex and let C be the component of Xr containing u. We can assume u is adjacent
to v in X1. It follows that each neighbour of u in X1 lies in C. Since X1 is connected,
this is impossible.

(b) br−1 = 1. If br−1 > 1 then there is a (2, r, r) triangle in X1. Since X2 is connected
this is impossible.

(c) cr+1 = 1. If cr+1 > 1, there is a (2, r, r) triangle and again this is impossible.

Now,
1 = cr+1 ≥ cr, 1 = br−1 ≥ br

and so
br = cr = 1, ar = 0

and therefore the valency of X is 2.

Suppose Xd is not connected, and d ≥ 3. Then each vertex is adjacent to at most one
vertex in any Xd-component that does not contain it. If u is adjacent to v in a second
component, then it is at distance d− 1 from the remaining vertices in that component.

Assume u ∼ v and x is in the Xd-component of X1 that contains u. Then we have a
(d, 1, d− 1) triangle. Hence there must be a triangle

x v

1 d

d− 1

and so if two components are joined by an edge, they are joined by a matching.

We will refer to the components of Xd, d ≥ 3 as fibres.

Lemma 15.3. Each fibre is completely regular - the distance partition relative to a fibre
is equitable.

If C ⊆ V (X) for some X then the covering radius of C is

min{dist(x,C) : x ∈ V (X)}.
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The packing radius is the maximum value of r such that balls of radius about distinct
vertices in C are disjoint. A code is perfect if its packing radius is equal to its covering
radius.

Claim. A fibre in an antipodal distance regular graph is a perfect code (Exercise).

To do

• Should the definitions of covering / packing radius and perfect code be moved to
chapter 19 - Codes? (We haven’t defined codes yet.)
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Orthogonal polynomials

A distance regular graph can be viewed as a combinatorial realization of a family of
orthogonal polynomials. We use inner products on the vector space of real polynomials.

Example.

1. 〈p, q〉 =

∫ ∞
0

p(t)g(t)e−t dt

2. 〈p, q〉 =
∑
i

wip(θi)q(θi), where wi ≥ 0,
∑
wi = 1

3. 〈p, q〉 = tr(p(A)q(A)), for a symmetric matrix, A.

4. 〈p, q〉 = tr(p(A)q(A)M), for a symmetric matrix, A and a positive semidefinite
matrix, M .

The inner product must satisfy

(a) 〈tp, q〉 = 〈p, tq〉

(b) If f ≥ 0 then 〈1, f〉 ≥ 0 and if equality holds, f = 0.

Note that (a) says that multiplication by t is self-adjoint. Given an inner product we can
apply Gram-Schmidt to the polynomials 1, t, t2, . . . and obtain a sequence of orthogonal
polynomials p0, p1, . . .. We can normalize the latter sequence; three typical ways are

1. 〈pn, pn〉 = 1

2. pn(a) = 1 for some specified a.

3. pn is monic for all n.
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16.1 Real simple

Suppose (pr)r≥0 is a sequence of orthogonal polynomials. Then for each n the zeros of pn
are real and simple.

Lemma 16.1. Let (pr)r≥0 be a sequence of orthogonal polynomials. If f(t) | pn(t) and
f(t) ≥ 0 then f is constant.

Proof. Note that 〈pn, tm〉 = 0 if m < n by construction. Suppose pn = fq. If deg(q) < n,
then

0 = 〈pn, q〉 = 〈fq, q〉 = 〈1, fq2〉.

But fq2 ≥ 0, hence fq2 = 0.

16.2 Three-term recurrence

Assume (pn)n≥0 is a sequence of monic polynomials. Then

tpn = a0pn+1 + a1pn + · · ·+ an+1p0.

Since pn and pn+1 are monic, a0 = 1. Next,

〈tpn, pm〉 = 〈pn, tpm〉

and hence 〈tpn, pm〉 = 0 if m ≤ n− 2. So one expression for tpn can be written as

tpn = pn+1 + anpn + bnpn−1.

Equivalently,
pn+1 = (t− an)pn − bnpn−1.

The matrix representing multiplication by t is
a0 1 0 0 · · ·
b1 a1 1 0 · · ·
0 b2 a2 1 · · ·
0 0 b3 a2

. . .
...

...
...

. . . . . .


We can express an and bn in terms of 〈pn, pn〉 and 〈tpn, pn〉. Assume (pn)n≥0 satisfies

pn+1 = (t− an)pn − bnpn−1.

Taking inner products with pn yields

〈tpn, pn〉 − an〈pn, pn〉 = 0
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whence an = 〈tpn, pn〉/〈pn, pn〉. Next, take the inner product with pn−1,

0 = 〈tpn, pn−1〉 − bn〈pn−1, pn−1.

Here

〈tpn, pn−1〉 = 〈pn, tpn−1〉 = 〈pn, pn〉,

and so

bn =
〈pn, pn〉
〈pn−1, pn−1〉

.

16.3 Tridiagonal matrices

If T is given and qr is the characteristic polynomial of the leading r × r submatrix of T
then

qr+1 = (t− ar)qr − brqr−1

and hence qr = pr.

Lemma 16.2. Suppose D is diagonal with positive diagonal entries and S = D−1TD.
Then

Si+1,i Si,i+1 = Ti+1,i Ti,i+1 and Si,i = Ti,i.

This implies that tridiagonal matrices give sequences of polynomials satisfying a 3-term
recurrence. If X is distance regular, u ∈ V (X) and δu is the distance partition relative to
u, then X/δu is a weighted path and A(X/δu) is tridiagonal.

It is always possible to choose D so that D−1TD is symmetric. In fact, if B0,0 = 1, and

Br,r =
r∏
j=1

bj

then

B−1/2TB1/2 =


a0

√
b1 0 0 · · ·√

b1 a1

√
b2 0 · · ·

0
√
b2 a2

√
b3 · · ·

0 0
√
b3 a3

. . .
...

...
...

. . . . . .


One consequence of this is that the zeros of pn−1 interlace the zeros of pn and that
gcd(pn−1, pn) = 1.
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16.4 Eigenvectors

We have the equation

T

 p0
...

pn−1

 = t

 p0
...

pd−1

− pd(t)


0
...
0
1


and thus if pd(θ) = 0, then  p0(θ)

...
pn−1(θ)


is an eigenvector for T with eigenvalue θ. Let T̂ be the symmetric form of T ; assume

T̂ = B−1/2TB1/2;

so if Tz = λz then
T̂B−1/2z = B−1/2z.

Set

q̃ :=

 q0(t)
...

qn−1(t)

 = B−1/2

 p0(t)
...

pn−1(t)

,
If θ, τ are distinct eigenvalues for T then the vectors q̃(θ) and q̃(τ) are orthogonal. It
follows that ∑

r

pr(θ)pr(τ)

Br,r

= 0.

In other words, the matrix,
(
q̃(θ1) · · · q̃(θn)

)
is orthogonal, hence its rows are orthogo-

nal, i.e. ∑
θ

pr(θ)qs(θ) = 0, (r 6= s).

This translates to an orthogonality relation on the polynomials pr,∑
θ

wθpr(θ)ps(θ) = 0, (r 6= s).
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Locally distance regular graphs

A graph X is locally distance regular if the distance partition δu relative to the vertex u
is equitable for all u.

Theorem 17.1. Let T be an n×n tridiagonal matrix with polynomial sequence p0, . . . , pn
(so pn = det(tI − T )). Then these polynomials are orthogonal relative to

〈p, q〉 = tr
(
p(T )q(T )e0e

T
0

)
.

Proof. Exercise.

If we have an inner product on then we call

〈1, tn〉, n ≥ 0

the moment sequence. Note that if

〈p, g〉 =

∫
p(t)q(t)w(t) dt

then 〈1, tn〉 =
∫
tnw(t) dt. The moment sequence determines the polynomials. Now

suppose X is a graph, u ∈ V (X) and the distance partition is equitable. Let T = A(X/δu).
Then T is tridiagonal.

Lemma 17.2. Wu,u(X, t) = Wu,u(X/δu, t).

“Proof”. [Tikz]

Note that the number of closed walks at u of length m in X/δu is

eTuT
meu = tr(Tmeue

T
u ).

So the coefficients of Wu,u are moments.
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Theorem 17.3. If X is locally distance regular then either

(a) X is distance regular, or

(b) X is bipartite and semiregular and its halved graphs are distance regular.

Denote by ku the degree of u.

Lemma 17.4. Suppose X has diameter d, u ∈ V (X) such that δu is equitable and v ∼ u.
Then

〈ev, Areu〉 =
1

ku
〈eu, Ar+1eu〉.

Proof. Let U be the cyclic module generated by eu — i.e., the span of the vector Areu,
r ≥ 0. Let zi be the characteristic vector of the i-th cell of δu. Then the vectors zi are an
orthogonal basis for U . If u ∈ Rn, the projection of w onto U is

ŵ =
∑
i

〈w, zi〉
〈zi, zi〉

zi.

If v ∈ V (X) and dist(u, v) = j then

êv =
〈ev, zj〉
〈zj, zj〉

zj =
1

〈zj, zj
zj

and if v ∼ u then

êv =
1

ku
Aeu.

Hence

〈ev, Areu〉 = 〈êv, Areu〉 =
1

ku
〈Aeu, Areu〉 =

〈eu, Ar+1eu〉
ku

If δv is equitable, it follows that

〈eu, Ar+1eu〉
ku

=
〈ev, Ar+1ev〉

kv
, r ≥ 0.

If u and v have the same valency then

〈eu, Areu〉 = 〈ev, Arev〉

for all r ≥ 0. This implies that if X is locally distance regular and regular then the
quotients X/δu (u ∈ V (X)) are equal. Hence X is distance regular.

Suppose v, w ∼ u and u and v have exactly a neighbours in common [Tikz]. Since the
neighbourhood of u is regular, w has exactly a neighbours in common with u, and as δu is
equitable, w has kv−1−a neighbours at distance two from u. Therefore, deg(w) = deg(v)
and so the vertices at distance two have the same valency (X2 is regular).
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Spectral excess

This theory is based on work by a bunch of people, centered on Fiol and Garriga []. Sup-
pose X has n vertices and eigenvalues θ0, . . . , θd. Then there are orthogonal polynomials
pr relative to the inner product

〈p, q〉 = tr(p(A)q(A)).

It will be convenient sometimes to view p and q as polynomials on {θ0, . . . , θd}. We scale
our orthogonal polynomials so that

tr
(
pi(A)2

)
= npi(θ0).

For this to work, we need

pi(θ0) 6= 0 for i = 0, 1, . . . , d

but if pi(θ0) = 0 then (θ0 − t) is a non-negative factor of the orthogonal polynomial pi.
Hence, pi(θ0) is not zero. We note that p0 and p1 are multiples of 1 and t. Further, if
j > i then pi(A) ◦ Aj = 0. Hence Aj = A(Xj); we are not assuming that X is distance
regular.

Lemma 18.1. If X is distance regular, then pi(A1) = Ai.

Lemma 18.2. If X is regular and has girth g, and 2i < g, then pi(A) = Ai.

Proof. Exercise.

Theorem 18.3. Assume X has and exactly d + 1 distinct eigenvalues. If the spectral
idempotents are E0, . . . Ed then

d∑
i=0

pi(A) = nE0.

69
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Proof. Let mj be the multiplicity of θj. Then pi(A)Ej = pi(θj)Ej which implies that
tr(pi(A)Ej) = mjpi(θj). Consequently,

Ej =
d∑
i=0

〈Ej, pi(A)〉
〈pi(A), pi(A)〉

pi(A) =
∑
i

mjpi(θj)

npi(θ0)
pi(A).

In particular, m0 = 1, thus

E0 =
1

n

∑
i

pi(A).

If i < d we have Ad ◦ pi(A) = 0, so this implies that

Ad ◦ E0 =
1

n
Ad ◦ pd(A).

Assume X is regular, then
∑
pi(A) = J. Now assume that the number of distinct eigen-

values D is equal to the diameter, d. Then

pi(A) ◦ Aj = 0, if j > i.

It follows that Ad ◦ pd(A) = Ad, hence we can write

pd(A) = Ad + S

where Ad ◦ S = 0.

Theorem 18.4 (Fiol & Garriga). Suppose X is k-regular, has diameter d and d + 1
distinct eigenvalues. Then pd(k) ≥ 1

n
sum(Ad) and if equality holds then pd(A) = Ad.

Proof. Let k̂d = 1
n

sum(Ad). Recall that 〈pi(A), pi(A)〉 = npi(k). Then

npd(k) = 〈pd(A), pd(A)〉
= 〈Ad + S,Ad + S〉
= sum((Ad + S) ◦ (Ad + S))

= sum(A◦2d + Ad ◦ S + S ◦ Ad + S◦2)

= sum(Ad) + sum(S◦2).

Corollary 18.5. If X is k-regular with diameter d and pd(k) = k̂d, then X is distance
regular.
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Proof. The polynomials, p0, . . . , pd satisfy a three-term recurrence. There are polynomi-
als, p∗0, . . . , p

∗
d such that

pd−s(A) = p∗s(A)pd(A) = p∗s(A)(Ad).

If r < d− s, then
〈Ar, pd−s(A)〉 = 0.

Also, if r > d− s, then 〈Ar, pd−s(A)〉 = 0. Therefore

Ad−s = p∗s(A)Ad = pd−s(A).

Lemma 18.6. Suppose X is connected, k-regular with D + 1 distinct eigenvalues and
girth g. If g ≥ 2D − 1 then X is distance regular.

Proof. If r < D, then pr(D) = Ar (induction). Also, there is a polynomial q of degree D
such that q(A) = J . It follows that Ad is a polynomial in A1 of degree at most d.

18.1 Twisted Grassmann graphs

The Grassmann graph Jq(d, e) has the e-dimensional subspaces of V (d, q) as its vertices
and two subspaces are adjacent if their intersection has dimension e− 1. In particular,

Jq(d, 1) = K[d], where [d] =
qd − 1

q − 1
.

The Grassmann graphs are distance transitive. They are q-analogs of the Johnson graphs
J(d, e). We define

[n] =
qn − 1

q − 1
; [0] = 1

[n]! = [n][n− 1]! n ≥ 1[
n

k

]
=

[n]!

[k]![n− k]!
.

The last is the q-binomial coefficient and [n]! is the q-factorial. The number of k-
dimensional subspaces of V (n, q) is

[
n
k

]
.

Remark.

(a)
[
n
1

]
= [n]; this is the number of 1-dimensional subspaces of V (n, q).
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(b)
[
n
k

]
=
[

n
n−k

]
.

(c)
[
n
k

]
=
[
n−1
k

]
+ qn−k

[
n−1
n−k

]
and

[
n
k

]
= qk

[
n−1
k

]
+
[
n−1
n−k

]
. check!

From these recurrences, we can prove the claims about subspaces.

We define a graph related to Jq(2e+1, e). Let V = V (2e+1, q) and let H be a hyperplane
in V . Then vertices of our new graph are

• the (e+ 1)-dimensional subspaces of V not in H, and

• the (e− 1)-dimensional subspaces of H.

The edges are as follows,

• If α, β are not in H then α ∼ β is dim(α ∩ β) = e.

• If α is not in H and β ≤ H, then α ∼ β if β ≤ α.

• If α, β ≤ H then α ∼ β if dim(α ∩ β) = e− 2.

We call this the twisted Grassmann graph and denote it by G̃.

Theorem 18.7 (Koolen, Van Dam). The twisted Grassmann graph is distance regular
with the same parameters as Jq(2e+ 1, e+ 1).

We have

|V (G̃)| =
[
d− 1

e− 1

]
+

[
d

e+ 1

]
−
[
d− 1

e+ 1

]
, (d = 2e+ 1).

Here, [
d

e+ 1

]
−
[
d− 1

e+ 1

]
= qd−e−1

[
d− 1

e

]
by the first recurrence. Now,[

d− 1

e− 1

]
+ qd−e−1

[
d− 1

e

]
=

[
d

e

]
.

We construct a partial linear space. Let V and H be as above. The points are the
e-dimensional subspaces of V . There are two sorts of lines,

(a) the (e+ 1)-dimensional subspaces not in H,

(b) the (e− 1)-dimensional subspaces in H.
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The lines in (a) are incident with with their own subspaces and the lines in (b) are incident
with the e-dimensional subspaces of H that contain them. Note that the number of points
is equal to the number of lines.

Claim. If α and β are points, they are collinear if and only if dim(α ∩ β) = e − 1. (So
the distance-two graph on the points is Jq(d, e).)

Claim. The distance-two graph on the lines is G̃.

We have Jq(d, e) ' Jq(d, d − e). We can use a non-degenerate bilinear form to produce
an explicit isomorphism.

To do

• Citation missing





Chapter 19

Codes

A code is perfect if its packing radius is equal to its covering radius. An e-code is a code
with packing radius e. If the code C has a packing radius e, then the minimum distance
δ of C is at least 2e+ 1.

By way of example, a perfect 1-code in a k-regular graph is a subset of C of the vertices
such that any two vertices in C are at distance at least 3, and the “balls” of radius partition
the vertices of the graph.

Example. A fibre in a drackn.

If C is a perfect 1-code, then the partition (C, V (X)\C) is equitable with quotient(
0 k
1 k − 1

)
.

Here, −1 is an eigenvalue.

Lemma 19.1. If X is regular and contains a perfect 1-code, then −1 is an eigenvalue. If
the valency of X is k, the size of the code is |V (X)|

k+1

Delsarte’s temptation: there are no perfect 1-codes in J(v, k). (True if v ≤ 2250.)

The Hamming graphs contain perfect 1-codes in some cases. Assume X = H(n, 2) (binary
codes), and suppose there is a perfect 1-code. Then

(a) −1 is an eigenvalue of H(n, 2) if and only if n is odd.

(b) If a perfect 1-code exists, then n+ 1 | 2n.

If (b) holds, a perfect 1-code exists, in fact a linear code. Let G be the n × (2n − 1)
matrix with distinct non-zero binary vectors as its columns. Let C = ker(G). Note that
rank(G) = n and so |C| = 22n−1 − n.
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Claim. The minimum distance of G is three.

We have equality in the sphere-packing bound, so C is perfect. There are (many) perfect
1-codes that are not linear. If C is a perfect 1-code, then the words of weight three in C
are the characteristic vectors of the blocks of a Steiner triple system.

19.1 Completely regular codes

A code in a distance regular graph is completely regular if its distance partition is equi-
table. Perfect codes are completely regular.

Theorem 19.2. Suppose C is a completely regular linear code in H(n, q). Then if the
minimum distance is at least three, the quotient of H(n, q) over the cosets is a distance
regular graph.

Proof. The key is that each vertex in the quotient is completely regular. Since the quotient
is regular, it is distance regular.

19.2 Outer distribution matrix

Let C be a subset of V (X) with characteristic vector xC . Assume we have an association
scheme with d classes on V (X). The outer distribution matrix N is(

A0xC · · · AdxC
)
.

The column space of N is A-invariant — it is the cyclic module generated by xC .

The vectors EjxC , (j = 1, . . . , d) that are non-zero form an orthogonal basis for col(N).
The dual degree s∗ of C is rank(N)− 1. (If C is linear, s∗ is the degree of the dual code,
C⊥.)

Lemma 19.3. Let C be a code in a distance regular graph with covering radius t and
outer distribution matrix N . Then N has at least t+ 1 distinct rows, and equality holds
if and only if C is completely regular.

Proof. The supports of the vectors (A1 + I)rx for r = 0, 1, . . . , t are a strictly increasing
sequence of subsets of V . Thus N has at least t + 1 distinct rows, and these rows are
linearly independent. Therefore t+ 1 ≤ s∗ + 1, and so t ≤ s∗.

If the distance partition of C is equitable, relative to X1 then it is an equitable partition
of Xr for r = 1, . . . , d. Because the scheme is metric relative to X1, it follows that the
vector

(Sj(n) ∩ C0)dj=0

is determined by dist(u,C0). But the vector is the u-row of N . Hence if C is completely
regular then t = s∗ and N has exactly t+ 1 distinct rows.
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Lemma 19.4. The column space of N is spanned by the first s∗ + 1 columns or by the
first s∗ columns and 1.

Proof. If i ≤ d with Aix ∈ span{x,A1x, . . . , Ai−1x}, then rank(N) = i so i = s∗ + 1. For
the second part, suppose

j∑
i=0

αiAix = 1.

Then q(A1)x = 1, where deg(q) ≤ j and if l 6= 0,

0 = El1 = q(θl)Elx.

There are s∗ + 1 values of l such that Elx 6= 0. Here, q vanishes on s∗ + 1 eigenvalues so
deg(q) ≥ s∗ + 1.

Theorem 19.5. Let C be a code in a distance regular graph with minimum distance δ
and dual degree s∗. If δ ≥ 2s∗ − 1, then C is completely regular.

Remark. (a) Since r ≤ s∗, we have δ ≤ 2s∗ + 1

(b) If δ = 2s∗ + 1, then C is perfect.

Proof. We first prove that s∗ = r. We have 2r + 1 ≥ δ ≥ 2s∗ − 1 and so s∗ ≥ r ≥ s∗ − 1.
But if r = s∗ − 1, then 2s∗ − 1 = δ = 2r + 1 and so C is perfect, implying r = s∗, a
contradiction. Thus r = s∗.

Now, since the δ ≥ 2r − 1, the balls of radius r − 1 about the vertices in C are pairwise
disjoint. If i ≤ r − 1 and u, v ∈ C, it follows that eTuN = eTvN .

If dist(x, C) > r − 1 then dist(x, C) = r, so Nxi = 0 for i = 0, . . . , r − 1. It follows that
N has exactly r+1 distinct rows. Consequently, C is completely regular.

19.3 Perfect codes in H(n, 2)

If there is a perfect code in H(n, 2), then

1. |C| | 2n,

2. ϕ(X/∂(C), t) | ϕ(X, t)

Assume that e = 2.

1. |C| ·
(
1 + n+

(
n
2

))
= 2n
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2. (add tikz?)

A(X/∂) =

0 n 0
1 0 n− 1
0 2 n− 2


 t −n 0
−1 t −(n− 1)
0 −2 t− (n− 2)

 ∼
t− n −n 0
t− n t −(n− 1)
t− n −2 t− (n− 2)


det

(
t+ n −(n− 1)
n− 2 t− (n− 2)

)
The zeros of this are 1

2
(−2±

√
4n− 4) = −1±

√
n− 1. Since these must be the eigenvalues

of H(n, 2), we deduce that n− 1 is a perfect square.

The sphere-packing condition gives n2 + n+ 2 | 2n+1

n n2 + n+ 2
1 4
2 8
3 14
4 22
5 32
6 44
7 58

19.4 Linear Codes

If C is linear, H(n, 2) is a distance regular graph with diameter e. For e = 2 we have a
strongly regular graph.

If n = 5 we get the Clebsch graph. If n = 10 then v = 56. This is the Gewirtz graph.
(But there is no perfect code.)

To do

• Define packing and covering radius.

• We are using both r and t as covering radius – maybe don’t.

• Everything from Theorem 19.5, go over again.

• I don’t know if I’m confusing δ and ∂ in some places.



Chapter 20

Representations

Let X be a graph with an eigenvalue θ and spectral idempotent E. Let U be the n × k
matrix with columns forming an orthonormal basis of col(E) = ker(A− θI), so UTU = I
and

AU = θU, E = UUT .

Let uθ(i) = eTi U . The map on V (X), defined by

i 7→ uθ(i)

is a representation of X. Notice that

θu(i) =
∑
j∼i

u(j)

and

〈u(i), u(j)〉 = 〈eTi U, eTj U〉 = eTi UU
T ej = Ei,j.

We define

wr =
〈uθ(i), uθ(j)〉
〈uθ(i), uθ(i)〉

where r = dist(i, j), and call w0, . . . , wd the sequence of cosines belonging to θ.

Remark. w0 = 1.

The vector Uu1(θ) is an eigenvector for A with eigenvalue θ which is constant on the cells
of the distance partition relative to the vertex 1. If P is the characteristic matrix of this
partition and

w =

w0
...
wd
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then Uu1(θ) = Pw and so
θPw = APw = PBw

whence Bw = θw, i.e w is an eigenvector of B,

B =


0 b1 0 0 · · ·
1 a1 b2 0 · · ·
0 c2 a2 b3 · · ·
0 0 c3 a3

. . .
...

...
...

. . . . . .


Theorem 20.1. Let w0, . . . wd be the sequence of cosines for the eigenvalue θ of the
distance regular graph, X. If θ is the i-th largest eigenvalue of A, then the sequence has
exactly i sign changes; if i ≥ 2 then the sequence of differences,(

wr − wr+1

)d−1

r=0

has exactly i− 2 sign changes.

Remark. The proof of this theorem includes Sturm sequences.

This implies that the sequence
w0(θ1), . . . , wd(θ1)

is non-increasing.

20.1 Johnson graphs

Define incidence matrices, Wi,j(v) indexed by i-subsets and j-subsets of {1, . . . , v}, by

(Wi,j)α,β =

{
1 if α ⊆ β

0 otherwise.

Define
(
v
k

)
×
(
v
k

)
matrices Cr by

Cr = W T
r,kWr,k, (r = 0, . . . , k).

As a test case, C0 = J . We need some properties of the matrices Wi,j.

1. We have

Wi,jWj,k =

(
v − i
k − i

)
Wi,k.

One consequence of this is that row(Wi, k) ≤ row(Wj, k).
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2. We have

Ws,kW
T
t,k =

∑
i

(
v − s− t
v − i− k

)
W T
i,sWi,t.

Proof of 2. First,

(Ws,kW
T
t,k)α,β =

(
v − |α ∪ β|
k − |α ∪ β|

)
.

One the other hand,

(W T
i,sWi,t)α,β =

(
|α ∩ β|

i

)
.

Now, ∑(
v − s− t
v − i− k

)(
|α ∩ β|

i

)
=
∑(

v − s− k + |α ∩ β|
v − k

)
and

|α ∩ β| = |α|+ |β| − |α ∪ β| = s+ t− |α ∪ β|
and the result follows.

A consequence of this is that

Wt,kW
T
t,k =

∑(
v − 2t

v − k − i

)
W T
i,tWi,t.

Note that Wt,t = I and the right hand side is positive definite. Therefore vk(Wt,k) =
(
v
t

)
.

We have

(Cr)α,β = (W T
r,kWr,k)α,β =

(
|α ∩ β|
r

)
,

hence

Ci =
∑
j≥i

(
j

i

)
Ak−j

and thus C0, . . . , Ck lie in the Bose-Mesner algebra of J(v, k). Since the change of basis
matrix is backward triangular, we see that we can express A0, . . . , Ak in terms of C0, . . . Ck.
Therefore C0, . . . , Ck is a basis for the Bose-Mesner algebra. In fact,

Ak−r =
∑
j

(−1)j−r
(
j

r

)
Cj.

We can prove this using generating functions∑
i

tiCi =
∑
i,j:j≥i

ti
(
j

i

)
Ak−j

=
∑
j

(1 + t)jAk−j.

From this, it is straightforward.
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Theorem 20.2.

CiCj =

i∧j∑
r=0

(
v − i− j
v − k − r

)(
k − r
i− r

)(
k − r
j − r

)
Cr.

Proof. We have

CiCj = W T
i,kWi,kW

T
j,kWj,k

=
∑
r

W T
i,k

(
v − i− j
v − k − r

)
W T
r,iWr,jWj,k.

Since

Wr,jWj,k =

(
k − r
j − r

)
Wr,k

and

Wr,i =

(
k − r
i− r

)
Wr,k

we get the stated result.

We have a chain of subspaces, col(W T
i,k); these are invariant under R[A]. The subspaces

col(W T
i−1,k)

⊥ ∩ col(W T
i,k)

form an orthogonal decomposition of R(vk).

It follows from Theorem 20.2 that the matrix representing the action of Ci (by multiplica-
tion) on R[A] = span{Cr} is lower triangular. We can read off the eigenvalues of Ci from
this and thus we can get the eigenvalues of A0, A1, . . . , Ak. We derive these in another
way.

Let Ej be the orthogonal projection onto

col(W T
j−1,k)

⊥ ∩ col(W T
j,k).

Note that EjWi,k = 0 if i < j and so EjCi = 0 if i < j. If we multiply both sides of
Theorem 20.2 by Ej, we thus get

CiCjEj =

(
v − i− j
v − k − j

)(
k − j
i− j

)
CjEj.

Therefore the columns of

CjEj = W T
j,kWj,kEj

are eigenvectors for Ej.
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20.2 t-designs

Let x be the characteristic vector of a set, D of k-subsets of {1, . . . , v}. Then D is a
t-design if and only if

Wt,kx = λ1

for some positive integer, λ. Also,

Wt,k1 =

(
v − t
k − t

)
1

and so x is the characteristic vector of a t-design if and only if

Wt,k

(
λ−1x−

(
v − t
k − t

)−1

1

)
= 0

and therefore, x is a t-design if and only if

Ct

(
λ−1x−

(
v − t
k − t

)−1

1

)
= 0.

Corollary 20.3. D is a t-design if and only if

Ei

(
λ−1x−

(
v − t
k − t

)−1

1

)
= 0

for i = 1, . . . , t.

(No proof yet). So D is a t-design in J(v, k) if and only if the eigenvalue support of D
does not contain θ1, . . . θt.

20.3 Eigenspaces

The eigenspace for θ0 in the Johnson graph J(v, k) is spanned by 1. The column space of
W T

1,k is a sum of the eigenspaces for θ0 and θ1. The θ1-eigenspace is 1T ∩ col(W T
1,k). Hence

the columns of

W T
1,k −

k

v
J

span the θ1-eigenspace. We can view the rows of the above matrix as providing a repre-
sentation of J(v, k). If the columns of the matrix M are linearly independent, define

E = M(MTM)−1MT .

Then E = ET and E2 = E and col(E) = col(M), i.e. E represents an orthogonal
projection onto col(M). So

Fj = Wj,k(W
T
j,kWj,k)

−1W T
j,k
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represents an orthogonal projection onto col(W T
j,k). Consequently,

Ej = Fj − Fj−1,

where Ej is a projection on the j-th eigenspace.

20.4 Representations

Suppose i 7→ uθ(i) is a representation of a graph X on an eigenspace with eigenvalue θ.
Then

θu(i) =
∑
j∼i

u(j)

and the inner products are given by entries of the idempotent E = Eθ.

Lemma 20.4. X is walk-regular if and only if for each spectral idempotent E we have
E ◦ I = γI (for some γ).

Definition. X is 1-walk-regular if it is walk regular and for each idempotent, there are
constants γθ such that E ◦ A = γθA.

Clearly any graph in an association scheme is 1-walk-regular, as is any arc-transitive
graph.

In a 1-walk-regular graph we have

θ〈uθ(1), uθ(1)〉 =
∑
i∼1

〈uθ(i), uθ, (1)〉

= k〈uθ(i), uθ(1)〉, i ∼ 1.

Therefore w1 = θ/k.

Suppose C is a clique in X and let τ be an eigenvalue of X. Then the submatrix of Ei
with rows and columns indexed by vertices in C is a scalar multiple of

1 w1 · · · w1

w1 1 w1
...

. . .
...

w1 w1 · · · 1

 = (1− w1)I + w1J < 0.

Therefore the row sums of this matrix are non-negative;

1 + (|C| − 1)
τ

k
≥ 0.

Assume τ < 0. Then

1 ≥ (|C| − 1)
−τ
k
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and so

|C| ≤ 1− k

τ
(ratio bound).

We can prove that

w2 =
1

kb1

(θ2 − a1θ − k),

from which it follows that

w1 − w2 =
(k − θ)(θ + 1)

kb1

Theorem 20.5. Let θ be an eigenvalue of the distance regular graph X. The correspond-
ing representation is not injective if and only if one of the following holds:

(a) θ = θ0

(b) θ = θd and X is bipartite

(c) θ = θr, r is even and X is antipodal.

Corollary 20.6. If θ 6= θ0, θd, then the representation is locally injective — images of
vertices at distance two are distinct.

20.5 Spherical designs

Let Ω be the unit sphere in Rd. A subset, Φ of Ω is a spherical t-design if, for any
polynomial f of degree at most t,

1

|Φ|
∑
x∈Φ

f(x) =

∫
Ω

f dµ

(average values of f over Ω).

The maximum value of t for which this works is the strength of the design. We will use
〈1, f〉Φ to denote the left hand side and 〈1, f〉 to denote the right hand side. Thus Φ is a
1-design if and only if ∑

x∈Φ

x = 0.

Lemma 20.7. A subset Φ is a 2-design if and only if∑
x∈Φ

xxT =
|Φ|
d
Id.

If U is n× d and UTU = I then

UTU =
∑

uiu
T
i , ui = (Uei)

T .
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Corollary 20.8. The image of an injective representation of a distance regular graph is
a spherical design.

If {x1, . . . , xm} is a 2-design, then {±x1, . . . ,±xm} is a 3-design. The degree of a finite
subset Φ of Ω is

|{〈x, y〉 : x, y ∈ Ω;x 6= y}|.

20.6 s-distance sets

We want to get a good upper bound on the size of a subset Φ of Ω with degree s. For
this we need information about polynomial functions on Ω. Let Pol(Ω) denote the space
of polynomial functions on Ω and let Pol(Ω, d) be the space of such functions with degree
at most d.

Theorem 20.9. If Φ is a subset of Ω with degree s, then

|Φ| ≤ dim(Pol(Ω, s)).

Proof. Let γ1, . . . , γs be the inner products of distinct elements of Φ. Define

f(t) =
s∏
i=1

t− γi
1− γi

.

Also, if a ∈ Ω, define fa by
fa(x) = f(〈a, x〉).

Then {fa : a ∈ Φ} is a linearly independent subset of Pol(Ω, s). If a, b ∈ Φ then

fa(b) = δa,b.

We need to compute dim(Pol(Ω, s)).

1. The monomials of degree k (in d variables) are linearly independent on Rd and there
are

(
d+k−1
k

)
of them.

2. The restrictions of these monomials to the unit are linearly independent.

3. If f is a polynomial, deg(f(x2
1 + · · ·+ x2

d)) = deg(f) + 2.

Theorem 20.10 (Absolute bound). We have

dim(Pol(Ω, s)) =

(
d+ s− 1

s

)
+

(
d+ s− 2

s− 1

)
.
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For s = 1, we get (
d

1

)
+

(
d− 1

0

)
= d+ 1,

and for s = 2, the bound is (
d+ 1

2

)
+ d =

d(d+ 3)

2
.

The image of a strongly regular graph under a representation is a sperical 2-design with
degree two. So if the eigenvalue has multiplicity m, then

|V (X)| ≤ m(m+ 3)

2
.

There is a lower bound on the size of a t-design. Suppose Φ is a sperical t-design, de-
fine m = b t

2
c and let {g1, . . . , gm} be an orthonormal basis for Pol(Ω,m). Note that

deg(gigj) ≤ t. Then

δi,j = 〈gi, gj〉
= 〈1, gigj〉
= 〈1, gigj〉Φ
= 〈gi, gj〉Φ,

so the restrictions gi|Φ are pairwise orthogonal and therefore form a linearly independent
subset, RΦ. Thus m ≤ |Φ|.

Theorem 20.11. If Φ is a spherical t-design, then

|Φ| ≥ dim Pol

(
Ω,

⌊
t

2

⌋)
.

Remark. If Φ has degree s and strength t then t ≤ 2s. (Exercise.)

Theorem 20.12. If a representation of a strongly regular graph X is a 3-design, the
neighbourhoods of a vertex in X are strongly regular graphs.

Remark. The image is a 3-design if and only if ai,i(i) = 0. [Tikz?] Suppose deg(f) = 2.
Consider the average of ga on Φ, where

g(t) = (t− γ2)f,

and use this to show that the neighbourhoods are 2-designs.

Theorem 20.13. Let X be a distance regular graph with diameter d and eigenvalue θ
with multiplicity m > 1. If d ≥ 3m− 3, then X is a cycle.

Corollary 20.14. There are only finitely many distance regular graphs that are not
cycles with an eigenvalue of multiplicity m.
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Remark.

1. If θ is an eigenvalue of X and θ = ±k, then the θ-representation is locally injetive
— the images of vertices at distance two are distinct.

2. The dodehedron is distance regular with d = 5 and mult(θ1) = 3. It follows that
the bound in the theorem is tight.

Proof of Theorem 20.13. Assume d ≥ 3m− 3. Let u0, u1, . . . ud be a geodesic path in X.

Claim: bm−1 = 1 (for proof, see [?]).

Recall that if i + j ≤ d then cj ≤ bj (ref: exercise). Also, the sequence b0, . . . , bd−1 is
non-increasing and c1, . . . , cd is non-decreasing. If d ≥ 3m− 3, then c2m−2 = 1.

Claim: If bi = ci+r = 1 then X has no odd cycle of length 2r + 1. If i = r = m− 1, then
we get am−1 = 0. Hence

k = am−1 + bm−1 + cm−1 = 2.

To do

• Define walk-regular
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Cometric schemes

If A is an association scheme with d classes and X is a graph in the scheme, then
diam(X) ≤ d. If equality holds, X is distance regular and we say that A is metric
(P -polynomial).

The diameter of X is the least integer r such that all entries of (A+ I)r are non-zero, i.e.
it is the least integer r such that (A+ I)r is Schur invertible.

If p(t) = p0t
m + · · ·+ pm, then

p0(E) = p0E
◦m + · · ·+ pmJ.

The Schur diameter of a matrix M is the least integer r such that there is a polynomial
p of degree r and p0(M) is invertible.

If M ∈ R[A] and the Schur diameter of M is r, then A has at least r classes. If A has d
classes and E in R[A] has Schur diameter d then we say that A is cometric (Q-polynomial)
relative to E.

21.1 Degree of functions

Each eigenvector of a graph is a function on its vertices. We can multiply functions, the
corresponding operation will be Schur product. The θi-eigenspace is col(Ei). We have

Ei ◦ Ej =
1

v

∑
k

qi,j(k)Ek.

Consider the Schur powers (E1+E0)◦r. If (E1+E0)◦s is invertible, then (E1+E0)◦s ·Ej 6= 0
for j = 0, . . . , d. The Schur diameter of Ej is finite if and only if the θj-representation
is injective. If A is cometric relative to θ1, then there are polynomials q0, q1, . . . , qd such
that

Ej = qj ◦ (E1), j = 0, 1, . . . , d.

89
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(This is the usual definition of cometric.)

Equivalently, the eigenvectors in the θj-eigenspace are polynomials in θ1-eigenvectors with
degree j.

Example.

(a) Cycles,

(b) metric translation schemes,

(c) J(v, k), H(n, q) — most metric schemes with names,

(d) any strongly regular graph,

(e) a drackn is cometric if and only if r = 2.

How de we prove that J(v, k) is cometric?

The column space of W T
i,k is the sum of the first i+1 eigenspaces of J(v, k). Let Fi denote

the orthogonal projection onto W T
i,k — thus

Fi = W T
i,k(Wi,kW

T
i,k)
−1Wi,k.

Claim: Fi is a Schur polynomial in F1 of degree i.

Finally, Ei = Fi − Fi−1 and hence Ei is a Schur polynomial of degree i in E1.

If the scheme A (on d classes) is cometric with respect to E1, then there are polynomials
p0, . . . , pd such that deg(pj) = j and Ej = pj ◦ E1. Relative to the inner product,

〈f, g〉 = 〈f ◦ E1, g ◦ E1〉

these polynomials are orthogonal. If a scheme is metric anre cometric, it has two associ-
ated families of orthogonal polynomials. Leonard proved that the parameters of a scheme
that is metric and cometric is determined by a set of only six parameters. Reference?
- Leonard 485 - 1992 section 8.1 BCN The corresponding polynomials are members
of the Askey-Wilson family.

If A is cometric and S ⊆ V (A) with characteristic vector x, then we say that S is a
t-design if

Ejx = 0, j = 1, . . . , t.

(For J(v, k) and the unit sphere, this is equivalent to the usual definition.)
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Eigenvalues of the Johnson graph

Note that J(v, 1) = Kv, with eigenvalues

v − 1(1), −1(v−1).

The valency of J(v, k) is k(v−k). To get the eigenvalues in general, we use two equations:

Wk,k+1W
T
k,k+1 = (v − k)I + A1(k)

W T
k,k+1Wk,k+1 = (k + 1)I + A1(k + 1),

where A1(i) is the adjacency matrix of J(v, i). Since the matrices on the left have the
same non-zero eigenvalues with the same multiplicities, we can compute the eigenvalues
of J(v, k + 1) from those of J(v, k).

k 1 v − 1
(
v
2

)
−
(
v
1

) (
v
3

)
−
(
v
2

)
· · ·

1 v − 1 −1 · · ·
2 2v − 4 v − 4 −2 · · ·
3 3v − 9 2v − 9 v − 7 −3 · · ·

22.1 Delsarte cliques

We say that if X is 1-walk regular with valency k and least eigenvalue τ , then

w(X) ≤ 1− k

τ
.

We investigate the case of equality in distance regular graphs. Assume A is a metric
scheme with d classes and let C be a clique in X1. Then the image of C under a repre-
sentation gives a submatrix of Ej of the form αI + βJ . Here,

α + β =
m(θj)

v

91
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and
β

α
= w1 =

θj
k
.

Since this |C| × |C| matrix is a Gram matrix, it is positive semidefinite. Its row sum is
an eigenvalue, whence 1 + w1(|C| − 1) ≥ 0. (This is useless if θj ≥ 0.) So

(−w1)(|C| − 1) ≤ 1

|C| − 1 ≤ −
k
θj

⇒ |C| ≤ 1− k

θj
.

It follows that w(X1) ≤ 1 − k/θd (ratio bound for cliques). A clique of size 1 − k
θd

is a
Delsarte clique.

Lemma 22.1. A Delsarte clique in a distance regular graph is a completely regular
subset.

Recall that the covering radius r of a subset is bounded above by the number of distinct
rows of its outer distribution matrix,

N =
(
A0x A1x · · · Adx

)
.

If equality holds in the ratio bound the image of a Delsarte clique under the θd– repre-
sentation is a regular simplex centered at zero. In particular, the images of the vertices
sum to zero.

Claim: If y is at distance r from the Delsarte clique, C, and there are exactly αr vertices
in C at distance r from y then

βrwr + (|C| − βr))wr+1 = 0.

This implies that the sequence β0, . . . , βd is determined by the cosine sequence, and con-
versely.

To complete the proof, we must first show that the covering radius of C is d− 1.

22.2 Width and dual width

Let X be a distance regular graph. The width of a subset C of V (X) is the maximum
distance between two vertices in C. If x is the characteristic vector of C, then the degree
is

|{xTArx : r = 1, . . . , d}|.
We denote the width by w and the degree by s. (Note that w(C) is the maximum value
of r such that xTArx 6= 0.)
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Some of the motivation comes from the EKR problem: bound the size of t-intersecting
family of k-subsets of a v-set and characterize the sets that achieve the bound. A t-
intersecting family is a subset of vertices of the Johnson graph with width k − t.

There are dual concepts s∗ and w∗ to s and w. The dual degree, s∗, is

|{j : 1 ≤ j ≤ d, xTEjx 6= 0}|.

The dual width, w∗, is the maximum value of j such that xTEjx 6= 0.

Remark. Let S be the set of k-subsets of {1, . . . , v} that contain {1, . . . , t} with charac-
teristic vector x. Then the projection of xxT onto the Bose-Mesner algebra is(

v

t

)−1

W T
t,kWt,k.

(Exercise.) It follows that s∗ = w∗ = t.

Theorem 22.2. Let A be a metric scheme with d classes. Let C be a subset of its
vertices with width w and dual degree s∗. Then

w + s∗ ≥ d.

Remark. Our canonical t-intersecting family S satisfies this with equality.

Proof. Let x be the characteristic vector of C. Then the projection of xxT onto the
Bose-Mesner algebra is

d∑
i=0

xTAix

vvi
Ai =

d∑
j=0

xTEjx

mj

Ej.

Here, the left hand side is a polynomial in A1, say f(A1) where deg(f) = w. Since the
eigenvalues of f(A1) are f(θ0), . . . , f(θd), we have

f(θr) =
xTErx

mr

and as deg(f) = w, at most w of the values f(θr)can be zero. The numbers of non-zero
terms on the right hand side is s∗ + 1, hence w + s∗ ≥ d.

The dual of this theorem

Theorem 22.3. Let A be a cometric scheme with d classes. If C ⊆ V (A) with degree s
and dual width w∗, then

w∗ + s ≥ d.

Proof. Exercise.
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Since we have the inequalities

s ≤ w, s∗ ≤ w∗,

it follows that
w + w∗ ≥ d

and if equality holds, w = s and w∗ = s∗. If w+w∗ = d we say that C is a narrow subset.

Example. A Delsarte clique is narrow. So is the canonical intersecting family.

22.3 Equality in the width bound

Theorem 22.4. Suppose A is metric and C ⊆ V (A) with width w and dual degree s∗.
If w = d− s∗ then C is completely regular.

Proof. Let B be the outer distribution matrix of C. If u ∈ V (A) with dist(u,C) = l and
y ∈ C, then

l ≤ dist(u, y) ≤ l + w.

Since w + s∗ = d, we have r = s∗. (THINK!)

. . .
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packing radius, 61
perfect, 61, 75
primitive, 13, 59
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quantum isomorphic, 39
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type-ii matrix, 33

unbiased, 34

width, 92
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