An Orthogonality Graph

Chris Godsil

Combinatorics and Optimization University of Waterloo Waterloo, Ontario Canada N2L 3G1

1. An Orthogonality Graph

Let $\Omega(n)$ denote the graph with the 2^n (± 1)-vectors of length n as its vertices, where vectors x and y are adjacent if and only if they are orthogonal. Let $x \circ y$ denote the Schur product of two vectors of the same length. Note that $x^T y = \mathbf{1}^T (x \circ y)$.

The graph $\Omega(n)$ has a comparatively large automorphism group. If a, x and y are three vertices in it, then

$$(a \circ x)^T (a \circ y) = \mathbf{1}^T ((a \circ x) \circ (a \circ y)) = \mathbf{1}^T (x \circ y) = x^T y$$

and therefore the map

$$\tau_a: x \mapsto a \circ x, \qquad x \in V(\Omega(n))$$

is an automorphism of $\Omega(n)$. The autmorphisms τ_a form an abelian group T with exponent two that acts regularly on the vertices of $\Omega(n)$. (Hence this graph is a Cayley graph for T.) We will call T the group of translations of $\Omega(n)$. If $\sigma \in \operatorname{Sym}(n)$ and $x \in V(\Omega(n)$, define x^{σ} by

$$(x^{\sigma})_i = x_{i^{\sigma}}.$$

Then the map $x \mapsto x^{\sigma}$ is an automorphism of $\Omega(n)$ that fixes the vector **1**. If $x \in V(\Omega(n))$ then $-x \in V(\Omega(n))$ and these two vectors have the same neighbourhood. The neighbourhood of **1** consists of the vectors y such that $\mathbf{1}^T y = 0$. It follows that if n is odd then $\Omega(n)$ is the empty graph on 2^n vertices.

Our aim now is to study the chromatic number of $\Omega(n)$. We begin by eliminating two easy cases. Suppose $n \cong 2$ (modulo 4). We say that a vertex of $\Omega(n)$ is even if the number of negative entries is even, otherwise we call it odd. If x is an even vertex then $\mathbf{1}^T x \neq 0$. If x and y are both even or both odd then $x \circ y$ is even, from which we see that the neighbours of an even vertex must all be odd. We conclude that, if $n \cong 2$ (modulo 4), then $\Omega(n)$ is bipartite.

Henceforth we assume that n is divisible by four. A clique in $\Omega(n)$ is an orthogonal set of vectors, and therefore is linearly independent. This implies that $\omega(\Omega(n)) \leq n$. It is immediate that cliques of size n correspond to $n \times n$ (± 1)-matrices H such that

$$H^TH = nI;$$

(± 1)-matrices satisfying this condition are known as *Hadamard matrices*. From what we have already seen, such matrices can only exist if n=2 or if four divides n. The smallest example is

$$S = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

If H and K are Hadamard matrices then so is their Kronecker product $H \otimes K$. Therefore Hadamard matrices exist whenever n is a power of two.

1.1 Lemma. If K_n is a retract of $\Omega(n)$ then n is a power of two.

Proof. If K_n is a retract of $\Omega(n)$ the K_n must be the core of $\Omega(n)$. Since $\Omega(n)$ is vertex transitive, this implies that n divides $|V(\Omega(n))|$.

It is believed that that there exist Hadamard matrices of order n whenever is a multiple of four and, as Jones and Sunder remark, the smallest value n for which existence is unknown is "fairly large".

In a deep and important paper, Frankl and Rŏdl have proved that whenever n is a sufficiently large power of two, $\chi(\Omega(n)) > n$. People working in quantum computing wish to know the precise meaning of "sufficiently large". It is easy to verify that $\chi(\Omega(4)) = 4$ and Gordon Royle has verified that $\chi(\Omega(8)) = 8$.

2. Eigenvalues

If X is regular, there is a bound on $\alpha(X)$ in terms of the eigenvalues of X. This bound does not settle our quantum computational problem, but could conceivably still be useful. So we will determine the eigenvalues of $\Omega(n)$.

This involves some group theory. Let A be an abelian group. A character of A is a homomorphism φ from A to the non-zero complex numbers. Thus, if g and h belong to A then $\varphi(gh) = \varphi(g)\varphi(h)$. It follows that $\varphi(e) = 1$ and $\varphi(g^{-1}) = \varphi(g)^{-1}$. If A is finite, which is the only case of interest to us, then each element of A has finite order. If $g \in A$ and $g^k = e$ then $\varphi(g)^k = 1$, whence the image of φ consists of roots of unity. Further, $\varphi(g^{-1}) = \overline{\varphi(g)}$. The function that takes each element of A to 1 is called the trivial character of A. If φ and ρ are characters of A then their product $\varphi \rho$ is again a character. (Here $\varphi \rho$ maps g in S to $\varphi(g)\rho(g)$.) If φ and ρ are characters of A we define

$$\langle \varphi, \rho \rangle := \sum_{g \in A} \overline{\varphi(g)} \rho(g).$$

This is an inner product. It will often be convenient to view a character on A as a vector indexed by the elements of A.

2.1 Lemma. If φ is a non-trivial character on the finite abelian group A, then $\langle \mathbf{1}, \varphi \rangle = 0$.

Proof. Suppose φ is non-trivial and that $\varphi(g) \neq 1$. Assume that g has order k. If $\varphi(g) = z$ then z is a non-trivial complex k-th root of 1. So

$$\sum_{r=0}^{k-1} z^r = 0.$$

Consequently, if $a \in A$, then

$$\sum_{r=0}^{k-1} \varphi(ag^r) = \sum_{r=0}^{k-1} \varphi(a)\varphi(g^r) = \varphi(a)\sum_{r=0}^{k-1} z^r = 0.$$

Therefore the sum of φ over a coset of the cyclic subgroup generated by g is zero, and the lemma follows.

If T is the group of the last section and $S \subseteq \{1, ..., n\}$, the map ψ_S defined by

$$\psi_S(a) = \prod_{i \in S} a_i$$

is easily shown to be a character of T, taking values in $\{-1,1\}$. This gives us a set of 2^n characters of T. If Δ denotes the symmetric difference of subsets, then

$$\psi_R \psi_S = \psi_{R\Delta S}$$
.

Therefore $R \neq S$, the characters ψ_R and ψ_S are pairwise orthogonal. Thus we have a set of 2^n pairwise orthogonal characters. (In fact, a finite abelian group G always has |G| distinct characters, but we do not stop to prove this.)

2.2 Theorem. Suppose X is a Cayley graph for the abelian group G and C is the connection set of X. If φ is a character of G then it is an eigenvector of A(X), with eigenvalue $\sum_{g \in C} \varphi(g)$.

Proof. Let A denote the adjacency matrix of X. If $g \in V(X) = G$ then

$$\sum_{h \sim g} \varphi(h) = \sum_{c \in C} \varphi(cg) \sum_{c \in C} \varphi(c) \varphi(g) = \varphi(g) \sum_{c \in C} \varphi(c). \quad \Box$$

If $C \subseteq G$, it is convenient to denote $\sum_{g \in C} \varphi(g)$ by $\varphi(C)$. Thus we can paraphrase the theorem by stating that a character φ of G is an eigenvector for X with eigenvalue $\varphi(C)$. Note the eigenvectors corresponding to distinct characters are orthogonal (with respect to the Hermitian inner product).

3. Eigenvalues of $\Omega(n)$

The graph $\Omega(n)$ is a Cayley graph relative to the group T of translations. The identity element of T is the vector $\mathbf{1}$, and the connection set C is the set of (± 1) -vectors orthogonal to $\mathbf{1}$. If $S \subseteq \{1, \ldots, n\}$ then

$$\psi_S(C) = \sum_{A \subseteq \{1, \dots, n\}, \ |A| = n/2} (-1)^{|S \cap A|}.$$

Assume n = 2m. If $S = \emptyset$ then ψ_S has eigenvalue $\binom{2m}{m}$, as expected.

Now suppose that |S| = 1. Then we can partition the above sum into the sets A that contain S, and those that do not. In this case the eigenvalue of $\psi(S)$ is

$$\binom{2m-1}{m} - \binom{2m-1}{m-1} = 0.$$

Continuing in this vein, we find that if |S| = r then the eigenvalue of ψ_S is

$$\sum_{i=0}^{r} (-1)^i \binom{r}{i} \binom{2m-r}{m-i}.$$

It is not hard to verify that this is zero if r is odd. The following is true though:

3.1 Theorem. Suppose n = 2m. If $i \in \{1, ..., n\}$ then

$$\frac{2^m}{m!}(i-1)(i-3)\cdots(i-2m+1)$$

is an eigenvalue of $\Omega(n)$.

Denote the value of the eigenvalue associated with i by λ_i . We can also give the multiplicities of the eigenvalues. Observe that if i is odd, then $\lambda_i = 0$. The multiplicity of zero is 2^{n-1} .

If $n \cong 2 \pmod{4}$ then λ_i takes distinct values on distinct even integers, and the multiplicity of λ_i is $\binom{n}{i}$. (We have $\lambda_{n-2j} = (-1)^j \lambda_{2j}$.)

If n is divisible by 4, then $\lambda_{n-2j} = \lambda_{2j}$. If 2j < n/2 then λ_{2j} has multiplicity $2\binom{n}{2j}$, while $\lambda_{n/2}$ has multiplicity $\binom{n}{n/2}$.

We recall the following.

3.2 Lemma. Let X be a regular graph on n vertices with valency k and least eigenvalue τ . Then

$$\alpha(X) \le \frac{n(-\tau)}{k-\tau}.$$

In terms of Theorem 3.1, the valency k of $\Omega(n)$ is λ_0 , and its least eigenvalue τ is λ_2 . We have

$$\frac{k}{-\tau} = -\frac{1 \cdots 3 \cdot 2m - 1}{(-1)1 \cdot 3 \dots 2m - 3} = 2m - 1.$$

Therefore if n is divisible by 4, then

$$\alpha(\Omega(n)) \le \frac{2^n}{n}$$

and consequently

$$\chi(\Omega(n)) \ge n.$$

If equality holds then n must divide 2^n , as we have already seen.