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1. An Orthogonality Graph

Let ©(n) denote the graph with the 2" (£1)-vectors of length n as its ver-
tices, where vectors x and y are adjacent if and only if they are orthogonal.
Let @ o y denote the Schur product of two vectors of the same length. Note
that 2Ty =17 (z o y).

The graph ©(n) has a comparatively large automorphism group. If a,
x and y are three vertices in it, then

(aoz)(aoy)=1"((aoz)o(aoy) =1"(zoy) =2"y
and therefore the map

T,:T—aoux, x €V (Q(n))
is an automorphism of Q(n). The autmorphisms 7, form an abelian group
T with exponent two that acts regularly on the vertices of Q(n). (Hence
this graph is a Cayley graph for T.) We will call T the group of translations
of Q(n). If ¢ € Sym(n) and x € V(Q(n), define 27 by
(27); = 240
Then the map @ — 27 is an automorphism of Q(n) that fixes the vector 1.
If 2 € V(Q(n)) then —z € V(Q(n)) and these two vectors have the
same neighbourhood. The neighbourhood of 1 consists of the vectors y

such that 1Ty = 0. It follows that if n is odd then Q(n) is the empty graph
on 2" vertices.



Our aim now is to study the chromatic number of Q(n). We begin
by eliminating two easy cases. Suppose n = 2 (modulo 4). We say that a
vertex of (n) is even if the number of negative entries is even, otherwise
we call it odd. If z is an even vertex then 172 # 0. If # and y are both
even or both odd then z oy is even, from which we see that the neighbours
of an even vertex must all be odd. We conclude that, if n = 2 (modulo 4),
then Q(n) is bipartite.

Henceforth we assume that n is divisible by four. A clique in Q(n) is
an orthogonal set of vectors, and therefore is linearly independent. This
implies that w(Q(n)) < n. It is immediate that cliques of size n correspond
to n X n (£1)-matrices H such that

HTH = nI;

(+1)-matrices satisfying this condition are known as Hadamard matrices.
From what we have already seen, such matrices can only exist if n = 2 or
if four divides n. The smallest example is

1 1
5= (1 _1> |
If H and K are Hadamard matrices then so is their Kronecker product
H @ K. Therefore Hadamard matrices exist whenever n is a power of two.

1.1 Lemma. If K, is a retract of Q(n) then n is a power of two.

Proof. If K, is a retract of Q(n) the K, must be the core of (n). Since
Q(n) is vertex transitive, this implies that n divides |V (Q(n))|. 0

It is believed that that there exist Hadamard matrices of order n when-
ever is a multiple of four and, as Jones and Sunder remark, the smallest
value n for which existence is unknown is “fairly large”.

In a deep and important paper, Frankl and Rodl have proved that
whenever n is a sufficiently large power of two, y(£2(n)) > n. People work-
ing in quantum computing wish to know the precise meaning of “sufficiently
large”. It is easy to verify that x(€(4)) = 4 and Gordon Royle has verified
that y(£2(8)) = 8.



2. Eigenvalues

If X is regular, there is a bound on a(X) in terms of the eigenvalues of
X. This bound does not settle our quantum computational problem, but
could conceivably still be useful. So we will determine the eigenvalues of

This involves some group theory. Let A be an abelian group. A
character of A is a homomorphism ¢ from A to the non-zero complex
numbers. Thus, if g and h belong to A then ¢(gh) = ¢(g)e(h). It follows
that p(e) = 1 and p(g7"') = ¢(g)~"'. If A is finite, which is the only case
of interest to us, then each element of A has finite order. If ¢ € A and
g¥ = e then ¢(g)* = 1, whence the image of ¢ consists of roots of unity.
Further, (¢™') = ¢(g). The function that takes each element of A to 1 is
called the trivial character of A. If ¢ and p are characters of A then their
product ¢p is again a character. (Here pp maps g in S to p(g)p(g).) If ¢
and p are characters of A we define

(p.p) == ¢lg)r(g).
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This is an inner product. It will often be convenient to view a character
on A as a vector indexed by the elements of A.

2.1 Lemma. If ¢ is a non-trivial character on the finite abelian group

A, then (1,¢) = 0.

Proof. Suppose ¢ is non-trivial and that ¢(g) # 1. Assume that g has
order k. If ¢(g) = z then z is a non-trivial complex k-th root of 1. So

k—1
2" =0
r=0
Consequently, if @ € A, then
k—1 k—1 k—1
D lagh) = ela)elg") =pla) Y 2" =0
r=0 r=0 r=0

Therefore the sum of ¢ over a coset of the cyclic subgroup generated by ¢
is zero, and the lemma follows. O



If T is the group of the last section and S C {1,...,n}, the map ¥«
defined by

€S
is easily shown to be a character of T, taking values in {—1,1}. This gives

us a set of 2" characters of T. If A denotes the symmetric difference of
subsets, then

lei/)s = 1/)RAS-

Therefore R # S, the characters )5 and v ¢ are pairwise orthogonal. Thus
we have a set of 2" pairwise orthogonal characters. (In fact, a finite abelian
group G always has |G| distinct characters, but we do not stop to prove

this.)

2.2 Theorem. Suppose X is a Cayley graph for the abelian group G
and C' is the connection set of X. If ¢ is a character of G then it is an
eigenvector of A(X), with eigenvalue 3 . ¢(g)-

Proof. Let A denote the adjacency matrix of X. If g € V(X) = G then

D eh) = leg)> wl)plg) = v(g) Y #lo). O

h~g ceC ceC ceC

If C C G, it is convenient to denote EgEC ©(g) by ¢(C). Thus we can
paraphrase the theorem by stating that a character ¢ of GG is an eigenvector
for X with eigenvalue ¢(C'). Note the eigenvectors corresponding to distinct
characters are orthogonal (with respect to the Hermitian inner product).

3. Eigenvalues of Q(n)

The graph Q(n) is a Cayley graph relative to the group T of translations.
The identity element of T is the vector 1, and the connection set C' is the
set of (£1)-vectors orthogonal to 1. If S C{1,...,n} then

¥s(C) = > (—1)lnal,

AC{1,..m}, |Al=n/2

Assume n = 2m. If S = ) then ¢ ¢ has eigenvalue (2721)7 as expected.
Now suppose that |S| = 1. Then we can partition the above sum into
the sets A that contain S, and those that do not. In this case the eigenvalue

of (5) is om — 1 2m — 1
( - )_(m_1>:0.



Continuing in this vein, we find that if |S| = r then the eigenvalue of ¥ ¢ is

. AT\ [2m—r
2o () =)
1=0
It is not hard to verify that this is zero if r is odd. The following is true
though:

3.1 Theorem. Supposen =2m. If i € {1,...,n} then

=) —3) (i —2m £ 1)

m!

is an eigenvalue of Q(n). O

Denote the value of the eigenvalue associated with ¢ by A,. We can
also give the multiplicities of the eigenvalues. Observe that if 7 is odd, then
A; = 0. The multiplicity of zero is 2"~ 1.

If n = 2 (mod 4) then A, takes distinct values on distinct even integers,
and the multiplicity of A, is (’Z) (We have A, _,; = (—l)j/\zj.)

If n is divisible by 4, then A, _,. = A,;. If 2j < n/2 then A,; has
multiplicity 2(2’;), while A, , has multiplicity (n72>

We recall the following.

3.2 Lemma. Let X be a regular graph on n vertices with valency k and
least eigenvalue 7. Then

n(=1)
al(X) < o

In terms of Theorem 3.1, the valency k of Q(n) is Ay, and its least
eigenvalue 7 1s X,. We have
k 1---3-2m —1
-7 (=1)1-3...2m -3

and consequently

x(Q(n)) > n.

If equality holds then n must divide 27, as we have already seen.
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