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ABSTRACT

These notes provide an introduction to some of the basic theory
of Moore graphs.

1. The Moore Graphs of Diameter Two

A Moore graph is a k-regular graph of diameter d with girth 2d + 1. It
has been proved (by Damerell, and independently by Bannai and Ito) that
a Moore graph has diameter at most two. The Moore graphs of diameter
one are the complete graphs, about which no more need be said. A Moore
graph of diameter two can be characterised as a graph with diameter two,
maximum valency k and k% + 1 vertices. (The latter is the maximum
possible number of vertices for a graph with the first two properties.)

Following Hoffman and Singleton, we determine the possible valencies
for a Moore graph of diameter two. Such a graph must have girth five, and
any two non-adjacent vertices have a unique common neighbour. Let A be
the adjacency matrix of such a graph . Then we have:

A4 A= (k—-1)I4J

Since G is regular the vector j is an eigenvector of A with eigenvalue k.
Since A is symmetric, all other eigenvectors of A can be assumed to be
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Moore Graphs

orthogonal to j. If z is an eigenvector and Jz = 0 then
(A2 4+ A)z = (k=14 J)z=(k—1)z.

Consequently any eigenvalue of A belonging to an eigenvector orthogonal
to j must be a zero of the polynomial 2 + 2 — (k — 1). Hence A can have
at most two such eigenvalues.

If there is only one such eigenvalue then it follows that any vector
orthogonal to j is an eigenvector for A. In particular, if e; is the i-th
standard basis vector then e, —e; is an eigenvector for A. From this i
is not too difficult to verify that G must be complete. Since complete
graphs do not have diameter two, we may thus assume that both zeros of
22+ — (k — 1) are eigenvalues of A. Denote them by 6 and 7. As their
product is equal to 1 — k, one is positive and one is negative. We assume
that 6 > 7. Consider the multiplicities of # and 7, which we denote by a
and b respectively. Since A has k% + 1 eigenvalues, and since their sum is
tr(A), which is zero, we have

a+b+1=Fk +1, af +br +k=0.

Thus we find that

k*r +k b_k29+k
T—0 "’ -7

(1)

We must distinguish two cases. If the quadratic 2% + 2 — (k—1) is
irreducible over the rationals then 8 and 7 are algebraically conjugate, and
hence the same holds for @ and b. Since a and b must be integers, this
implies that ¢ = b. From (1) we now deduce that k20 +k = —k21 — k.
Therefore k2(9 + 1)+ 2k = 0. But 6+ 7 is the coefficient of the linear term
in 22 + 2 — (k — 1), and so is equal to —1. We deduce finally that k = 2.

We now suppose that 22 + x — (k — 1) factors over the rationals. The
zeros § and 7 are then integers. Since § + 7 = —1, from (1) we find that

RO+ T)+2k kP -2k

b—a= 9_ 1 Y I (2)

Now

16(k* — 2k) = 4k(4k — 8)
= (467 + 40 + 4)(46% + 46 — 4)
=(20(20+1) + (20 4+ 1) +3))(26(20 + 1) + (26 + 1) — 5))
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Hence, if b — a is an integer then 20 4+ 1 must divide 15. This implies that
6 € {1,2,7} and thus k € {3,7,57}.

Thus we have shown that if a Moore graph of valency k exists then
k€ {2,3,7,57}. The first three cases are realised uniquely and respectively
by the pentagon, Petersen’s graph and the Hoffman-Singleton graph. It is
is not known whether there is a Moore graph of diameter two and valency
57. Following G. Higman we will show that, if this graph exists, it cannot
be vertex transitive.

2. A Feasibility Condition for Automorphisms

Let G be a graph with adjacency matrix A. Since A is symmetric, there
is an orthogonal matrix L and a diagonal matrix D such that A = LDL7.

Hence we have
A=Y LI,L" (1)
[

where 6 runs over the distinct eigenvalues of A and I, is a diagonal matrix
with all non-zero entries equal to 1. (Thus D = 3, 60I,.) Assume E, :=
LI,LT. Then

(a) E2 = E, and El = E,,
(b) E,E_=0is # and 7 distinct,

(c) Zt hE, =1,
(d) AE, = 0E,.

Note that (a) implies that each matrix is an orthogonal projection, and
from (d) it follows that it is the orthogonal projection onto the eigenspace

of A associated to 6. The trace of E, is the multiplicity of the eigenvalue
6.

From (1) we find that
A=Y 0E,
[

which is the so-called spectral decomposition of the symmetric matrix A.
If p(x) is a polynomial then it follows that

whence it follows that E, is a polynomial in A. We recall that the automor-
phism group of X can be identified with group of permutation matrices P
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such that PA = AP. If P € Aut(X), then P must commute with each pro-
jection E, and this implies in turn that P leaves invariant the eigenspace
associated to 6.

If a matrix P leaves a subspace U of R" invariant, then it determines a
linear mapping from U. We call the trace of this linear mapping the trace
of P restricted to U, and denote it by try;(P). We note that tr;; is a sum
of eigenvalues of P.

2.1 Lemma. Let X beagraph, let P be a permutation matrix in Aut(X)
and let U be an eigenspace of X. If E is the orthogonal projection on U
then try;(P) = tr(PE) is an algebraic integer.

Proof. As Aut(X) is finite, there is a least positive integer m such that
P™ = ]. Therefore the eigenvalues of P are zeros of the monic polynomial
@™ — 1 and try;(P) is an algebraic integer.

Let wy,...,u, be an orthonormal basis for R” such that u,,..., u,, is

an orthonormal basis for U. Then

m m m

try (P) = Z<“ivP“i> = Z(Eui,PEui> = Z(ui,EPEui>

=1 =1 =1
Next, Eu; =0 if j > m and so the last sum is equal to

n

> (u;, EPEu,).

=1
This equals the trace of EPE. Since E* = E we have
tr(EPE) = tr(PEE) = tr(PE),

whence the lemma follows. O

In general it is not at all convenient to compute try;(P). For strongly
regular graphs it is easier though.

2.2 Lemma. Let X be a strongly regular graph with valency k on v
vertices. Let A be an eigenvalue of X distinct from k with multiplicity m.

Then \ N1
m + —
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2.3 Corollary. If P € Aut(X) then

% (tr(P) + %tr(PA) — vil;—lk tr(PZ))

is an algebraic integer. O

By way of example, consider the Petersen graph. Suppose P maps
each vertex to one of its neighbours. Then

tr(P) = tr(PA) =0, tr(PA) = 10.

Now 1 is an eigenvalue of the Petersen graph with multiplicity five, so the
corollary asserts that

is an algebraic integer, which is false. Therefore no such automorphism
exists. If P mapped each vertex to a distinct non-adjacent vertex then

2210270
106 3

would have to be an algebraic integer. It follows that the Petersen graph
is not a circulant.

We now apply this theory to a possible Moore graph of valency 57.
This is a (3250,57;0,1) strongly regular graph, with eigenvalues —8, 7,
and 57. We calculate that the multiplicity of 7 is 1729, whence for any
element P of Aut(X) the trace of P on this eigenspace is

;;% (tr(P) + 517tr(PA) - 31892 tr(PZ)) (2)

must be an integer.
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3. The Moore Graphs of Valency 57

Let G be the Moore graph of diameter two and valency 57 and let v be an
automorphism of it, with order two. Let P be the corresponding permu-
tation matrix. Our aim is to prove that ~ has exactly 56 fixed points, i.e.,
that tr(P) = 56.

If v fixes two points at distance two in G then it must also fix their
unique common neighbour. Consider the subgraph F' induced by fix(y). If
there is a vertex in F' adjacent to all the other vertices, we will call F' a
star. If F'is not a star then it must be a connected graph of diameter two
and girth five; hence it is a Moore graph with 5, 10 or 50 vertices. As a
star in G has at most 58 vertices, it follows that |fix(vy)| < 58.

Suppose now that there is an edge uv in G with its ends swapped by
~. Then v must swap the 56 neighours of u distinct from v with the 56
neighbours of v distinct from u. This gives us a set of 56 paths of length
three, each fixed by 7. Each path of length three lies in a unique 5-cycle,
and thus determines a unique vertex at distance two from both u and wv.
Hence we have a set S of 56 vertices fixed by ~. Any vertex at distance
two from u and v and not in S determines a path of length three on uv not
fixed by ~. Therefore v has exactly 56 fixed points, as required.

Assume then that there is no pair of adjacent vertices swapped by
~. (Thus tr(PA) = 0.) If 2y # @, then v must fix the unique common
neighbour, z say, of # and z~. For each fixed point z there at most 56 such
points x. Thus we have

tr(PA) < 56 tr(P).
As tr(PA) = 0, we also have
tr(P) + tr(PZ) = 3250.

Together these two equations imply that tr(P) > 58, and accordingly
tr(P) = 58 and tr(PA) = 3192. From Equation (2) in the previous section
we find now that the trace of P on the eigenspace with eigenvalue 7 is

1729 1729 133
g250 00 8= T
This is certainly not an integer, whence we conclude that any involution

must swap the vertices in some edge, and hence have exactly 56 fixed points.

We can now show that Aut(G) is not transitive. Note first that any
involution has exactly 3194/2 = 1597 2-cycles, and hence is an odd permu-
tation. This implies that |[Aut(G)| is not divisible by four. For suppose that
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this is not true, and let P be a Sylow 2-subgroup of G. Then Z(P) is not
the identity, hence we can find two involutions o and 8 in P. Then af is
again an involution. Now « and (8 are both odd, and therefore their prod-
uct is even. Thus we are forced to conclude that |Aut(G)| is not divisible
by four.

We now see that if u € V(G) then G, contains a Sylow 2-subgroup of
G (this is true even if Aut(G) has odd order) and thus that |G : G| is odd.
Since |V(G)| is even, Aut(G) cannot be transitive.

Remark: The exposition in the last three sections is loosely based
on the relevant part of the article by Peter Cameron in Selected Topics in

Graph Theory 2, eds. Beineke and Wilson, Academic Press, London, 1983.

4. The Hoffman-Singleton Graph

There are at least three distinct constructions of the Hoffman-Singleton
graph. One is based on the existence of a distance-regular 5-fold cover of
K 5, which we will not mention again. A second is based on the existence
of a distance-regular 6-fold cover of K.; an advantage of this approach is
that it also provides a uniqueness proof. This approach is due to Graham
Higman, and is presented in Chapter 8 of Graphs, Codes and Designs by
Cameron and Van Lint, London Math. Soc. Lecture Notes 43. The third
approach is based on the assumption that the Hoffman-Singleton graph
contains an independent set of size 15. For this, see Chapter 5 of Algebraic

Graph Theory by Godsil and Royle.

5. The Moore Graphs of Diameter Greater Than Two

6. Why the Last Section is Empty

A Moore graph, we may recall, is a regular graph of girth ¢ and diameter
d such that ¢ = 2d + 1. Suppose that G is a Moore graph with valency
k and diameter d. Then G is distance-regular, and the quotient matrix of
the distance partition with respect to any vertex is
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We assume henceforth that k& > 3 and d > 2. Our goal will be to determine
the multiplicities of the eigenvalues of A(G) from B, ;. The formulas we
derive for these will be valid whenever both k& > 3 and d > 2.

Define polynomials p, for i = —1,0,... by setting

p_i(2) =po(x) =1

and, if m > 1, taking p,,(2) to be the characteristic polynomial of the
matrix formed by the entries in the last m rows and columns of B, ;.
(Since d can be arbitrarily large, p,, is defined for all m.) Let ¢, () be
the characteristic polynomial of B, ;. If 6 is a zero of B;, then it is a
zero of A(G) with multiplicity

n Pd(e)
‘Pfi+1(9) '

(1)

We intend to prove that if d > 2 then the expression in (1) cannot be an
integer.

Our first step will be to determine the polynomials p,,. For all non-
negative m,

Pm+1(x) = xp,(z) — (k= 1)p,,_, (2) (2)

and
cde(x) = xpy(x) — kpy_y(z)

= Pd+1(x) —pg_i(2).
Let P(x,t) be the generating function

Z P, ()t

m>0

(3)

Then
P(at) 1= pyyq ()"

m>0

= Z (2P (2) — (b = 1)py_q (2))t™

= 2tP(x,t) — (k — D)t*(P(x,t) +t71)
which yields

1—(k—1)t
Pz, t) = .
A e [ Y
We have
Z W—+mtm = (1—2tcosa+t2)_1. (4)
— sin o
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(To prove this, multiply both sides by 1 — zt + (k — 1)t* and then compare
coefficients.) If we set § =k —1,t=s/8 and = 2f cosa then

1— s

1 —2scosa + s2°

P(2B cosa,s) =

Comparing this with (4), we finally obtain

Pm(2B cosa)  sin(m +1)a — Fsinma

gm sin v
which, taken with (2) implies
. 6d_1 2 . 3 . . .
©q41(28 cos a) = ——[B” sin(d+2)a— " sin(d+1)a—sin da+ sin(d—1)a].

S o«

Now
[62 sin(d + 2)a — 63 sin(d + 1)a — sinda + S sin(d — 1)a]
= —62(6 sin(d + 1)a + sinda) + (ﬂz(sin da + sin(d + 2)a)
+ B(sin(d — 1)a + sin(d + 1)a) — (B sin(d + 1)a + sin da)
= —(62 + 1)(B sin(d + 1)a + sin da)
+ 262 sin(d + 1)a cos a — 23 sin da cos «
=—(1—-28cosa+ 62)(6 sin(d 4+ 1)a + sin da)

whence we get

B sin(d + 1)a + sin da

sin «

99d+1(26 cos o) = —ﬂd_l(l — 2 cosa + 62)

(6)

6.1 Lemma. Let G be a Moore graph of diameter d and valency k.

Suppose that 3 = vk —1. Then 8 = 2 cosa is an eigenvalue of A(G)
distinct from k if and only if

psin(d + 1)a + sinda = 0.
Proof. We have
(1 —23cosa + )=k — 2B cosa
and so, from (6), any zero of ¢, distinct from k must be a zero of
(Bsin(d 4 1)a + sinda)/ sin a,

viewed as a polynomial in cos a. 0O
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6.2 Theorem. Let G be a Moore graph on n vertices with diameter d
and valency k. Suppose that g is the girth of G and that § = 2§ cosa
is a zero of ¢, ,(x) distinct from k. Then the multiplicity of 6 as an
eigenvalue of A(G) is

nk 4k —1)—6?

g (k—9)<k+’“g;2+9>'

Proof. Suppose 6§ = 28 cosa. Differentiating (6) with respect to a and
then choosing a so that 6 is a zero of ¢, yields

2Bsina

d+1)cos(d+ 1)a + dcos da
e i (6) = (1 — TR on(Ct Yok deonds,

sin «

(7)

We also find that

sin da
— d—1> %

Pd(e) ;
sin o
and therefore
pq(0) B _Qkﬂ sin o sin do )
Phi(0) k—6 p(d+1)cos(d+1)a+ dcosda

Since Bsin(d + 1)a + sinda = 0,
B(sinda cos a + cosdasin ) + sinda =0

and consequently

tan da = —M. (9)
1+ Bcosa
Further
cos(d 4+ 1)a = cos da cos a — sin da sin a,
whence
d+1 in’
cosld+1)a s — tandasina = cosa + —DSL O
cos da 1+ Bcosa
B B + cos a
14+ B cos a
and so

cos(d + 1)a B cos(d 4+ 1)a cos da B B+ cosa

sin da cosda  sinda B sin a

(10)
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Using (9) and (10) to simplify 77, we thus obtain

pa(0)  2kp? sin? o
‘Pfi—i—l(e) k—46

[d(ﬂ2 + 2B cosa+ 1) —I—ﬂz —I—ﬂcosa]_l.

Now \
2 9

=1 —
@ Ak —4

sin
and

0
d(ﬂz—I—Qﬂcosa—l—l)—l—ﬂz—I—ﬂcosa:dk—l—de—l—k—l—l—5

k—2
2d+1

=(2d+1) <k+ +9> /2.

The theorem follows easily from this. O

We now show that there are no Moore graphs of diameter greater
than two. First we need some information about the location of the zeros
of pgyi(x). All zeros distinct from k are of the form 24 cos a, where a
satisfies

sin(d + 1)« N sin do

sin av sin «

= 0.

Let the solutions of this equation be ay,...,a,, in decreasing order, and
set 6, equal to 273 cosa;. (Note that 0 is not a solution.)

6.3 Lemma. If G has diameter d and d > 3 then 8,4+ 6,,, ; <0 and

Proof. We see that sin(d+ 1)a/ sin o has zeros at 7i/(d+ 1) fori =1,...d,
and sin da/ sin @ has d — 1 solutions 7wi/d for i = 1,...,d — 1. Tt follows
that a, must lie in the open interval

m'ﬂ'_i
d+1"d )’

This implies that «; cannot be 7/2, and so the eigenvalues 6, are all non-
zero. Since cos « is a strictly decreasing function on [0, 7], we have

n(d+1—1)

T —|— _0
d+1 cos d+1 -

cosa; +cosayyq_; < COS
To complete the proof we observe that tr B, | = k—1. As k is an eigenvalue
of By,q, it follows that .6, = —1. As none of the 6, are zero, we deduce
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The previous lemma implies that ¢, (2) has non-integer zeros when
d > 2. We derive a contradiction to this. Define R(6) by

4k — 4 — 62
MO =G —ar+e )

Thus nkR(6)/g is the multiplicity of 6, and so R(#) is rational. Suppose 6
is irrational. From (11),

(R(6) — 1)8% + R(O)(f — k)0 + (4k — 4 — R(A)fk) = 0.

The polynomial on the left side here must be divisible by the minimal
polynomial of 6, which is a monic polynomial. It follows that

R(6)(f — F)
— 7 12
R(6) -1 (12)
is the linear term in the minimal polynomial of 8, and it is therefore an

integer. But
RO)Ff—k)  4k—4-6°

RO -1 00— (k+g(k—2)
Since 6 < k this implies

‘R(G)(f—k)‘< k-4

R(O) -1 |~ g(k=2)

provided that both ¢ > 9 and k& > 3. Hence (12) must be zero, whence
R(6) = 0 and 6 has multiplicity zero!
It only remains to dispose of the case when g = 7. We calculate that

pa(e) = (x = k)(a® + 27 = 2(k = Dz — (k - 1))
whence, for any zero 6 # k

_?(0+1)

E—1= 1
20 +1 (13)

If 8 is an integer then 26 + 1 must have non-trivial factors in common with
6 or 8 + 1, which is impossible. So all roots of (13) must be irrational, and
therefore they must all have the same multiplicity. On the other hand, the
equation R(#) = p has at most two solutions and so there cannot be three
distinct eigenvalues with the same multiplicity.
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