Map Graphs

Chris Godsil

Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario

Canada N2L 3G1

Let X and F be graphs. We say that a map f from V(X) to V(F)
is comical if, for each vertex u in X there is a vertex v in F such that
f(Nx(u)) € Np(v). A conical map f from X to F is locally onto if for
each vertex u in X there is a vertex v in F such that f(Nx(u)) = Np(v).
We will only consider locally-onto maps when F' is reduced, in which case
the vertex v is unique.

We note that any homomorphism from X to F' is conical. Any au-
tomorphism of F' is locally onto. If X is uniquely n-colourable, then any
homomorphism f : X — K, is locally onto. The graphs X x K, and
Y x K, are isomorphic if and only if there is a locally-onto bijection from

V(X) to V(Y).

1.1 Lemma. Let X and F be graphs. The neighbourhood of a vertex
f in FX is non-empty if and only if f is conical. O

1.2 Lemma. Let X and F be graphs. If F is reduced and the vertex f
in FX is conical and locally onto, it has a unique neighbour in FX . 0O

Consider Kg(‘*, and identify the vertices of this graph with the ternary
sequences of length four. Then 1122 is conical and locally onto. Its unique
neighbour is the constant map 0000.

Let f be a homomorphism from C,, to C,,. Suppose that V(C,, ) =
{0,1,...,m—1} and ¢ is adjacent to i —1 and i+ 1 (mod n), for each vertex
i. We say that f folds C,, at i if f(i +1) = f(i —1). (Thus f has no folds
if and only if it locally onto.)



1.3 Lemma. Suppose m and r are odd and m > r > 3. Any homomor-
phism from C,,, to C, has an even number of folds. O

Now, when m is odd, C,,, = K, x C,,. Hence each homomorphism
f:C,, — C, determines an arc (f,, f,) in CS¢. Here f, and f, are the
restrictions of ¢ to the two colour classes of C,,, . Define the parity of f;
(1 = 0,1) to be the parity of the number of vertices in its colour class not
folded by ¢. Since the sum of the parities is even, f, and f,; must have the
same parity.

On the other hand, any conical map f from V(X) to V(F) lies in an
edge of FX. Consequently it has a well-defined parity, which is constant
on the component of FX that contains f. The constant maps have even
parity. We will see that homomorphisms have odd parity.

Suppose X, Y and F are graphs and ¢ is a homomorphism from X x YV
to F. If # € V(X) then ¢ determines a map, which we denote for now by
¥(x,7?), that sends y in V(Y') to ¢(z,y) in F. Note that ¢(x,?) € FY, and
that if 2’ in V(X) is adjacent to @, then ¢(2',7) is adjacent to ¢ (x,?) (in
FY). Similarly, if y € V(X), then ¢(?,y) € FX and adjacent vertices in
Y determine adjacent elements of FX. If we view ¢ as a matrix with rows
indexed by V(X) and columns indexed by V(Y), and with vertices of F
as entries. Then the rows of this matrix describe vertices of FY and the
columns vertices of FX.

1.4 Lemma. Suppose m, n and r are odd. If ¢ is a homomorphism
from C,, x C,, to C,, then the maps determined the rows of ¢ have the
opposite parity to the maps determined by the columns.

Proof. For now this is an exercise. O

To determine the parity of homomorphisms from C,, to C,. (when m
and r are odd, let ¥ be a homomorphism from C,, to C,. Then the map
¥ that sends (i,7) in V(C,, x C,,) to ¥(j) is a homomorphism into C,..

Here each row of W is equal to ¢, while each column is a constant map.
Since constant maps have even parity, the lemma implies that ¢» must have
odd parity.

1.5 Lemma. Let X be a graph that is not 3-colourable. If f € V(K;)
and f is not isolated, there is an odd circuit C' in X such that the restriction
of f to C is even.

Proof. We remark that if C'is a circuit in X then C' — X and so K3* — K¢
The restriction of f to C' is the image of f under this homomorphism.
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Let Z(f) denote the set of vertices x in X such that there is y in V(X))
adjacent to X and f(x) = f(y). Let g be a vertex in K; adjacent to f.
If Z(f) does not contain an odd circuit, then it is bipartite, and we can
partition its vertices into two sets Z, and Z,. Define a map h from V(X)

to K by
h(u) _ {f(u)v u g Zy;

g(u), otherwise.

It is easy to verify that h is homomorphism, and so X is 3-colourable.
Since X is not 3-colourable, we deduce that Z(f) is not bipartite.
Therefore it contains an odd circuit, C' say.

If + € V(C) then there is y in V(X) adjacent to x such that f(y) =
f(2). Since g ~ f and @ ~ y, we that g(x) # f(y). Therefore g(x) # f(x),
for any vertex x in C. It is an exercise to that this implies that f is even
on C. O

1.6 Theorem. If X xY is 3-colourable, then X or Y is 3-colourable.

Proof. We prove this by contradiction. We may assume there are connected
graphs X and Y, neither 3-colourable, such that there is a homomorphism
v X xY = K,;. If y € V(V) then, since Y is connected, ¥(?,y) is a
vertex of FX with positive valency. Hence there is an odd cycle C' in X on
which ¢(?,y) is even. Choose a vertex x in C. Then similarly, there is a
cycle D in FY on which (2, ?) is even.

Since Y is connected and ¢(?,y) is even on C, each column of the
induced homomorphism from C'xY to K is even. Likewise, each row of the
induced homomorphism from X x D to K is even, and this forces us to the
conclusion that both the rows and columns of the induced homomorphism
from C' x D to K, are even.



Let h(X,Y") denote the number of homomorphisms from X to Y.

1.7 Lemma. F* x K, ~Fx Fx K,.

Proof. (Here F? denotes F x F and, later, 27 denotes the disjoint union
Z U Z.) We have

h(Z,F%2 x K,) = h(Z,F*2)h(Z, K,)

and

h(Z,F? x K,) = h(Z,F)* h(Z,K,).

If Z is not bipartite, the right side of each of these expressions is zero. If
Z 1s bipartite then Z x K, = 27 and

h(Z,F’2) = h(Z x K,,F) = h(2Z,F) = h(Z,F)*.
It follows that, for all graphs Z,

h(Z,F*2 x K,) = h(Z,F? x K,). 0



