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SUMMARY

Misclassification is a longstanding concern in medical research. Although there has been much
research concerning error-prone covariates, relatively little work has been directed to problems
with response variables subject to error. In this paper we focus on misclassification in clustered
or longitudinal outcomes. We propose marginal analysis methods to handle binary responses
which are subject to misclassification. The proposed methods have several appealing features,
including simultaneous inference for both marginal mean and association parameters, and they
can handle misclassified responses for a number of practical scenarios, such as the case with
a validation subsample or replicates. Furthermore, the proposed methods are robust to model
misspecification in a sense that no full distributional assumptions are required. Numerical studies
demonstrate satisfactory performance of the proposed methods under a variety of settings.
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1. INTRODUCTION

Correlated data, including longitudinal and clustered data, are common in many fields, includ-
ing epidemiological research and clinical trials. Various models have been developed for analysis
of such data, and a wide variety of estimation techniques have been proposed. In contrast to con-
ditional models such as transition models and mixed effects models, marginal models have been
widely used in analysing longitudinal or clustered data. A compelling feature of such methods lies
in their minimal model assumptions. For example, generalized estimating equations, proposed
by Liang & Zeger (1986), focus on estimation of mean parameters, with association parameters
between outcomes treated as nuisance. Extensions of this approach can be found, for instance, in
Miller et al. (1993) and Molenberghs & Lesaffre (1999), amongst others.

In many epidemiological studies, association structures among repeated outcomes are of scien-
tific interest. For example, understanding the correlation of disease status among family members
is often of primary interest in familial studies. Prentice (1988), Carey et al. (1993) and Yi & Cook
(2002) extended the generalized estimating equations approach to estimate association param-
eters for binary data, by specifying a second set of estimating equations. Those methods are
useful for simultaneous inference about the mean and association parameters. The validity of
these methods requires a critical condition: variables must be precisely measured. However, this
requirement is often violated in practice. Misclassification commonly arises with categorical
data. Neuhaus (1999, 2002) demonstrated that a naive analysis with misclassification ignored
often leads to biased results. With binomial regression models and generalized mixed models
Paulino et al. (2003, 2005) proposed Bayesian approaches to handling misclassification in binary
data. Cook et al. (2000) described a latent Markov model for longitudinal binary data, whereas
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Rosychuk & Thompson (2001, 2003) considered two-state Markov models with misclassified
responses.

Relative to a large body of methods on covariate measurement error, research on error-
contaminated outcomes, such as misclassified responses, has been quite limited (Carroll et al.,
2006), especially under the marginal analysis framework. In this article, we consider marginal
regression models for correlated binary data subject to misclassification. We propose estimating
equation methods that can correct for misclassification effects under a variety of practical set-
tings. The proposed methods have several appealing features. They accommodate simultaneous
inference for both marginal mean and association parameters, and are robust to model misspec-
ification because no full distributional assumptions are required.

2. NOTATION AND MODEL FORMULATION

2·1. The response process

Let Yi j be the binary response for the j th subject in cluster i and Xi j be the corresponding
covariate vector (i = 1, . . . , n; j = 1, . . . ,mi ), where n is the number of clusters, and mi is the
number of subjects in cluster i . Denote Yi = (Yi1, . . . , Yimi )

T and Xi = (X T
i1, . . . , X T

imi
)T. Let

μi j = E(Yi j | Xi ) be the marginal mean of the response, and write μi = (μi1, . . . , μimi )
T.

A generalized regression model is used to link μi j to the covariates, where E(Yi j | Xi )= E(Yi j |
Xi j ) is assumed (Pepe & Anderson, 1994). That is,

g(μi j )= X T
i jβ,

where β is a vector of regression parameters, and g(·) is a monotone link function. Typical choices
of g(·) include logit, probit and complementary log–log functions. The variance of the response
Yi j is specified as vi j = var(Yi j | Xi )=μi j (1 − μi j ) accordingly.

When the mean parameters are of primary interest and association parameters are treated as
nuisance, the approach of Liang & Zeger (1986) is well suited for parameter estimation. However,
to facilitate inference for association parameters that are often of interest for clustered data analy-
sis, one needs to derive a second set of estimating functions to feature association structures. Here
we assume that Yi j and Yi ′ j ′ are independent when i |= i ′, but Yi j and Yi j ′ may be correlated for
j |= j ′. Let Zi j j ′ = Yi j Yi j ′ , Zi = (Zi j j ′, j < j ′)T, μi j j ′ = E(Zi j j ′ | Xi ), and ξi = (μi j j ′, j < j ′)T.

Odds ratios are often used to facilitate association among correlated binary data (e.g., Lipsitz
et al., 1991). For j < j ′, the odds ratio for Yi j and Yi j ′ is defined as

ψi j j ′ =
pr(Yi j = 1, Yi j ′ = 1 | Xi )pr(Yi j = 0, Yi j ′ = 0 | Xi )

pr(Yi j = 1, Yi j ′ = 0 | Xi )pr(Yi j = 0, Yi j ′ = 1 | Xi )
.

It is often assumed that pr(Yi j = yi j , Yi j ′ = yi j ′ | Xi )= pr(Yi j = yi j , Yi j ′ = yi j ′ | Xi j , Xi j ′). The
odds ratios are customarily modelled as

logψi j j ′ = uT
i j j ′α,

where ui j j ′ is a set of pair-specific covariates featuring various association structures such as
autoregressive or exchangeable structure between Yi j and Yi j ′ . The relationship between μi j j ′
and ψi j j ′ is (Lipsitz et al., 1991; Yi & Cook, 2002)

μi j j ′ =
{

[ai j j ′ − {a2
i j j ′ − 4(ψi j j ′ − 1)ψi j j ′μi jμi j ′ }1/2]/{2(ψi j j ′ − 1)} (ψi j j ′ |= 1),

μi jμi j ′ (ψi j j ′ = 1),

where ai j j ′ = 1 − (1 − ψi j j ′)(μi j + μi j ′).
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2·2. The misclassification process

When the response Yi j is subject to misclassification, a surrogate version for Yi j , say, Si j , is
observed. Let Hi j = I(Si j = Yi j ) be the indicator variable for misclassification, where I(·) is the
indicator function. Let Hi = (Hi1, . . . , Himi )

T, and Si = (Si1, . . . , Simi )
T. The marginal proba-

bility of misclassifying Yi j is assumed to depend only on the j th outcome, given the covariates in
cluster i , i.e., pr(Si j = 1 | Yi , Xi )= pr(Si j = 1 | Yi j , Xi ). Let τ0i j = pr(Hi j = 1 | Yi j = 0, Xi ) and
τ1i j = pr(Hi j = 1 | Yi j = 1, Xi ). Alternatively, if we define τi j (yi j )= pr(Hi j = 1 | Yi j = yi j , Xi ),
then τi j (yi j )= (1 − yi j )τ0i j + yi jτ1i j .

Logistic models may be employed to characterize these probabilities:

logit(τ0i j )= LT
i jγ0, logit(τ1i j )= LT

i jγ1, (1)

where γ0 and γ1 are vectors of associated regression parameters, and Li j is a set of covariates
that reflects various misclassification mechanisms. Let γ = (γ T

0 , γ
T
1 )

T. Covariates Li j may be
specified as various forms to feature different misclassification processes. In some situations,
Li j is the entire covariate vector Xi j ; while in extreme cases, Li j can be constant 1, that is,
two parameters γ0 and γ1 are sufficient to describe the misclassification mechanism. The latter
scenario corresponds to a homogeneous misclassification across all observations and clusters,
with misclassification independent of covariates and the other outcomes: τ0i j = τ0 = expit(γ0),
and τ1i j = τ1 = expit(γ1), where expit(u)= exp(u)/{1 + exp(u)}.

To describe possible dependence between Hi j and Hi j ′ , we invoke the odds ratios

λi j j ′(yi j , yi j ′)=
pr(Hi j = 1, Hi j ′ = 1 | Yi = yi , Xi )

pr(Hi j = 1, Hi j ′ = 0 | Yi = yi , Xi )
× pr(Hi j = 0, Hi j ′ = 0 | Yi = yi , Xi )

pr(Hi j = 0, Hi j ′ = 1 | Yi = yi , Xi )
,

where it is assumed that pr(Hi j = hi j , Hi j ′ = hi j ′ | Yi = yi , Xi )= pr(Hi j = hi j , Hi j ′ = hi j ′ |
Yi j = yi j , Yi j ′ = yi j ′, Xi ). The odds ratio λi j j ′(yi j , yi j ′) can be modelled by

log{λi j j ′(yi j , yi j ′)} = qT
i j j ′νyi j ,yi j ′ ,

where qi j j ′ is a vector of covariates that features various types of dependence, and νyi j ,yi j ′
is a vector of regression coefficients that may vary with the values of yi j and yi j ′ . Let ν =
(νT

11, ν
T
10, ν

T
01, ν

T
00)

T, and η= (γ T, νT)T.
For j < j ′, let Ci j j ′ = Hi j Hi j ′,Ci = (Ci j j ′, j < j ′)T, ζi j j ′(yi j , yi j ′)= E(Ci j j ′ | Yi j = yi j ,

Yi j ′ = yi j ′, Xi ), and ζi = E(Ci | Yi , Xi ). Again, E(Ci j j ′ | Yi , Xi )= E(Ci j j ′ | Yi j = yi j , Yi j ′ =
yi j ′, Xi ) is assumed. The relationship between ζi j j ′(yi j , yi j ′) and λi j j ′(yi j , yi j ′) is

ζi j j ′(yi j , yi j ′)=
⎧⎨
⎩

bi j j ′(yi j , yi j ′)− gi j j ′(yi j , yi j ′)

2{λi j j ′(yi j , yi j ′)− 1} {λi j j ′(yi j , yi j ′) |= 1},
τi j (yi j )τi j ′(yi j ′) {λi j j ′(yi j , yi j ′)= 1},

where bi j j ′(yi j , yi j ′)= 1 − {1 − λi j j ′(yi j , yi j ′)}{τi j (yi j )+ τi j ′(yi j ′)}, and gi j j ′(yi j , yi j ′)=
[b2

i j j ′(yi j , yi j ′)− 4{λi j j ′(yi j , yi j ′)− 1}λi j j ′(yi j , yi j ′)τi j (yi j )τi j ′(yi j ′)]1/2.

Let μS
i j j ′ = E(Si j Si j ′ | Xi ) be the marginal mean of Si j Si j ′ given covariates. It can be shown

that μS
i j j ′ |=μi j j ′ . Even under the independence assumption such as pr(Si j = si j , Si j ′ = si j ′ |

Yi , Xi )= pr(Si j = si j | Yi , Xi )pr(Si j ′ = si j ′ | Yi , Xi ), μS
i j j ′ is not equal to μi j j ′ . As a conse-

quence, replacing Yi j with Si j in the marginal analysis often leads to biased inference.
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3. ESTIMATING EQUATIONS

3·1. Estimating equations under the true model

Let θ = (βT, αT)T be the vector of response parameters, D1i = ∂μT
i /∂β, and B1i =

diag(vi1, . . . , vimi ). When the response variable is free of misclassification, estimates of mean
parameters β can be obtained by solving first-order estimating equations (Liang & Zeger, 1986)

n∑
i=1

U1i (θ)= 0, (2)

where U1i (θ)= D1i V
−1
1i ε1i , ε1i = Yi − μi , V1i = cov(Yi )= B1/2

1i R1i (θ)B
1/2
1i , and R1i (θ) is

the correlation matrix of Yi with off-diagonal entries ρi j j ′ = (μi j j ′ − μi jμi j ′)× [{μi j

(1 − μi j )}1/2 {μi j ′(1 − μi j ′)}1/2]−1.
Let D2i = ∂ξ T

i /∂α. Then the second-order estimating equations (Prentice, 1988) for associa-
tion parameters α can be written as

n∑
i=1

U2i (θ)= 0, (3)

where U2i (θ)= D2i V
−1
2i ε2i , and ε2i = Zi − ξi . Here V2i is a working covariance matrix for

Zi which is commonly taken as an independence matrix V2i = diag{μi j j ′(1 − μi j j ′); j < j ′}.
Choosing an independence working matrix might incur some efficiency loss, but it has the appeal
of not requiring additional model assumptions for third and fourth moments of the response
variables. Moreover, this treatment still retains the unbiasedness of estimating functions U1i (θ)

and U2i (θ), which ensures a consistent estimator of θ under regularity conditions, e.g., Prentice
(1988); Yi & Cook (2002). Let Ui (θ)= {U T

1i (θ),U
T
2i (θ)}T.

3·2. Estimating equations in the presence of misclassification

When responses are subject to misclassification, the estimating functions in (2) and (3) with
Yi j replaced by the observed surrogate Si j are no longer unbiased, and the resulting analysis usu-
ally yields inconsistent estimates of β and α (Yi & Reid, 2010). To conduct valid inference, one
must correct the bias induced by misclassification. We propose modified estimating functions
U∗

1i (θ) and U∗
2i (θ) using the observed data (Si , Xi ) so that their conditional expectations recover

those in (2) and (3), i.e.,

E{U∗
1i (θ) | Yi , Xi } = U1i (θ), E{U∗

2i (θ) | Yi , Xi } = U2i (θ). (4)

Unbiasedness of U∗
si (θ) is immediate from that of Usi (θ) (s = 1, 2). As a result, by the estimating

function theory, under mild regularity conditions, solving

n∑
i=1

(
U∗

1i (θ)

U∗
2i (θ)

)
= 0

gives a consistent estimator for θ .
Now we describe a way to construct U∗

si (θ) for s = 1, 2. Recognizing that response
components appear in U1i (θ) and U2i (θ)merely through the linear term Yi j and pairwise product
Zi j j ′ = Yi j Yi j ′ , we construct unbiased surrogates for Yi j and Zi j j ′ , namely

Y ∗
i j = Si j − 1 + τ0i j

τ0i j + τ1i j − 1
, Z∗

i j j ′ =
a0 + (Si j − a1)(Si j ′ − a2)

a3
,
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where

a0 = (1 − a1)τ0i j ′ + (1 − a2)τ0i j − ζi j j ′(0, 0)− (1 − a1)(1 − a2),

a1 = {τ0i j + τ0i j ′ + τ1i j ′ − 1 − ζi j j ′(0, 1)− ζi j j ′(0, 0)}/(τ1i j ′ + τ0i j ′ − 1),

a2 = {τ0i j ′ + τ0i j + τ1i j − 1 − ζi j j ′(1, 0)− ζi j j ′(0, 0)}/(τ1i j + τ0i j − 1),

a3 = a0 + a1a2 − a1τ1i j ′ − a2τ1i j + ζi j j ′(1, 1).

It is readily shown that E(Y ∗
i j | Yi , Xi )= Yi j , and E(Z∗

i j j ′ | Yi , Xi )= Zi j j ′ for j |= j ′. Let Y ∗
i =

(Y ∗
i1, . . . , Y ∗

imi
)T, and Z∗

i = (Z∗
i j j ′, j < j ′)T. Define

(
U∗

1i (θ)

U∗
2i (θ)

)
=
(

D1i V
−1
1i ε

∗
1i

D2i V
−1
2i ε

∗
2i

)
, (5)

where ε∗1i = Y ∗
i − μi and ε∗2i = Z∗

i − ξi . It is immediate that U∗
1i (θ) and U∗

2i (θ) satisfy (4)
because, given Yi and Xi , the conditional expectation of Y ∗

i and Z∗
i equals Yi and Zi , respectively.

We note that parameter η for the misclassification process comes into play in constructing Y ∗
i

and Z∗
i . Now we explicitly indicate this by writing U∗

i (θ, η)= {U∗T
1i (θ, η),U

∗T
2i (θ, η)}T. If η is

known to be η0, say, then under regularity conditions, solving the estimating equations

n∑
i=1

U∗
i (θ, η0)= 0

leads to a consistent estimator, say θ̂ , for θ . Under suitable regularity conditions, n1/2(θ̂ − θ)

has an asymptotic normal distribution with mean 0 and covariance matrix �∗−1
0 �∗

0 (�
∗−1
0 )T,

where �∗
0(θ, η0)= E{∂U∗

i (θ, η0)/∂θ
T}, and �∗

0(θ, η0)= E{U∗
i (θ, η0)U∗T

i (θ, η0)}. The proof is
sketched in Appendix 1.

4. INFERENCE METHOD WITH A VALIDATION SUBSAMPLE AVAILABLE

In order to use (5) to perform inference about θ , it is critical that parameter η associated with
misclassification is known. In practice, however, η is often unknown and must be estimated from
an additional source of data. It is then important to accommodate induced variation in inferential
procedures for θ . In this and next sections, we develop modified estimation algorithms to cover
two practical situations, either a validation subsample or replicates of surrogates are available for
estimation of η.

One may use the validation subsample to estimate the parameter η as well as to improve
the efficiency of estimating θ for the mean and association parameters, as opposed to using
surrogate observations for every subject. If the values of all misclassification indicators Hi j s
were observed, estimates of η could be obtained as the solution to estimating equations (e.g.,
Lipsitz et al., 1991; Yi & Cook, 2002)

n∑
i=1

(
G1i W

−1
1i e1i

G2i W
−1
2i e2i

)
= 0,

where G1i = ∂τ T
i /∂γ,G2i = ∂ζ T

i /∂ν, e1i = Hi − τi , e2i = Ci − ζi , W1i = B1/2
η1i Rη1i B1/2

η1i ,
Bη1i = diag[τi1(yi1){1 − τi1(yi1)}, . . . , τimi (yimi ){1 − τimi (yimi )}] and Rη1i is the correlation
matrix of Hi . Analogous to V2i in (3), matrix W2i is often assumed to be the independence
working matrix to avoid specification of higher order moments.
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However, we do not observe the values of Hi j s unless subject j is in the validation subsample.
Let δi j = 1 if the j th subject in cluster i belongs to the validation subsample and δi j = 0
otherwise. Here we assume that selection for a subject to be included in the validation sub-
sample is noninformative. Let δi = (δi1, . . . , δimi )

T. Then estimating functions for η can be
constructed from the measurements in the validation subsample. We now add a superscript
δ to each vector and matrix to indicate the components corresponding to the validation sub-
sample with δi j = 1. To be specific, let Q1i (η)= Gδ

1i (W
δ
1i )

−1eδ1i , Q2i (η)= Gδ
2i (W

δ
2i )

−1eδ2i , and
Qi (η)= {QT

1i (η), QT
2i (η)}T, then unbiased estimating equations for the η parameter are

n∑
i=1

Qi (η)= 0. (6)

In constructing valid estimating functions of θ , one can incorporate the available true response
measurements in the validation subsample to improve efficiency, as opposed to using (5). To this
end, we define Ỹi j = (1 − δi j )Y ∗

i j + δi j Yi j , and Z̃i j j ′ ={1− (1− δi j )(1− δi j ′)}Ỹi j Ỹi j ′ + (1− δi j )

(1− δi j ′)Z∗
i j j ′ . Thus, Ỹi j =Yi j if the j th subject in cluster i is in the validation subsample,

Ỹi j =Y ∗
i j otherwise; Z̃i j j ′ = Ỹi j Ỹi j ′ if either Yi j or Yi j ′ or both are available, and Z̃i j j ′ =

Z∗
i j j ′ otherwise. Denote Ỹi = (Ỹi1, . . . , Ỹimi )

T and Z̃i =(Z̃i j j ′, j< j ′)T. Define Ũ1i (θ, η)= D1i

V −1
1i ε̃1i , and Ũ2i (θ, η)= D2i V

−1
2i ε̃2i , where ε̃1i = Ỹi − μi and ε̃2i = Z̃i − ξi . Let Ũi (θ, η)=

{Ũ T
1i (θ, η), Ũ

T
2i (θ, η)}T, then the augmented estimating equations for θ are

n∑
i=1

Ũi (θ, η)= 0. (7)

Consistent estimators for η and θ can be obtained by jointly solving (6) and (7). Details are
given in Appendix 2, where we also account for variation induced by the estimation of η.

5. JOINT ESTIMATION AND INFERENCE WITH REPLICATES

In this section we describe an inferential procedure for the case with replicates. Here
we use notation slightly different from that in the previous sections. Let Si jr be the r th
replicate measure for Yi j , r = 1, . . . , di j , where di j is the number of replicates for subject j in
cluster i, j = 1, . . . ,mi , i = 1, . . . , n. Let Si j = (Si j1, . . . , Si jdi j )

T, and Hi jr = I(Si jr = Yi j ) be
the misclassification indicator variable. For ( j, r) |=( j ′, r ′), conditional independence between
Hi jr and Hi j ′r ′ is assumed, given Yi and Xi . For r |= r ′, Hi jr and Hi jr ′ are assumed to have
the same conditional distribution, given Yi and Xi . Also it is assumed that pr(Hi jr = hi jr |
Yi , Xi )= pr(Hi jr = hi jr | Yi j , Xi ). Let τ1i jr = pr(Hi jr = 1 | Yi j = 1, Xi ) and τ0i jr = pr(Hi jr =
1 | Yi j = 0, Xi ). Suppose that τ1i jr and τ0i jr are modelled by (1).

Define Y∗
i jr = (Si jr − 1 + τ0i jr )/(τ0i jr + τ1i jr − 1). Then the average version Y∗

i j =∑di j
r=1 Y∗

i jr/di j is unbiased for Yi j , i.e., E(Y∗
i j | Yi , Xi )= Yi j . Let Y∗

i = (Y∗
i1, . . . ,Y∗

imi
)T,

and Z∗
i = (Y∗

i jY∗
i j ′, j < j ′)T. Define U1i (θ, γ )= D1i V

−1
1i ε1i , and U2i (θ, γ )= D2i V

−1
2i ε2i ,

where ε1i =Y∗
i − μi and ε2i =Z∗

i − ξi are residual vectors. It is readily seen that
E{U1i (θ, γ ) | Yi , Xi } = U1i (θ, γ ) and E{U2i (θ, γ ) | Yi , Xi } = U2i (θ, γ ). If Ui (θ, γ )=
{UT

1i (θ, γ ),UT
2i (θ, γ )}T, then a consistent estimator of θ can be obtained by solving

n∑
i=1

Ui (θ, γ )= 0,

provided γ is given.
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However, γ is unknown here, and must be estimated. In the case with replicates Si jr ,
estimation of γ and θ typically interacts, and a joint estimation procedure is required to
simultaneously estimate γ and θ . We generalize the discussion in White et al. (2001), who con-
sidered univariate logistic regression models with a misclassified binary covariate. Let Ai jk = 1

if
∑di j

r=1 Si jr = k and Ai jk = 0 otherwise, k = 1, . . . , di j , j = 1, . . . ,mi , i = 1, . . . , n. Define
Ai j = (Ai j1, . . . , Ai jdi j )

T, and Ai = (AT
i1, . . . , AT

imi
)T. Let πi jk = E(Ai jk | Xi ) be the marginal

mean of Ai jk . Let πi j = (πi j1, . . . , πi jdi j )
T, and πi = (πT

i1, . . . , π
T
imi
)T.

Now we describe estimating functions for γ . For ease of exposition, we consider the case with
di j = 2. The method can be easily extended to cases with di j � 3. Noting that

pr(Ai j1 = 1 | Yi , Xi )= {(1 − τ1i j1)τ1i j2 + (1 − τ1i j2)τ1i j1}Yi j

+ {(1 − τ0i j1)τ0i j2 + (1 − τ0i j2)τ0i j1}(1 − Yi j ),

pr(Ai j2 = 1 | Yi , Xi )= τ1i j1τ1i j2Yi j + (1 − τ0i j1)(1 − τ0i j2)(1 − Yi j ),

we write the marginal means of Ai j1 and Ai j2 as

πi j1 = {(1 − τ1i j1)τ1i j2 + (1 − τ1i j2)τ1i j1}μi j

+ {(1 − τ0i j1)τ0i j2 + (1 − τ0i j2)τ0i j1}(1 − μi j ),

πi j2 = τ1i j1τ1i j2μi j + (1 − τ0i j1)(1 − τ0i j2)(1 − μi j ),

respectively. Define Qi (θ, γ )= GiW−1
i (Ai − πi ), where Gi = ∂πT

i /∂γ , and Wi = cov(Ai | Xi ).
Let �∗

i (θ, γ )= {QT
i (θ, γ ),UT

i (θ, γ )}T. Now we solve

n∑
i=1

�∗
i (θ, γ )= 0

for γ and θ using an iterative procedure. Details are given in Appendix 3, where we also establish
asymptotic properties.

6. NUMERICAL ASSESSMENT OF THE PROPOSED METHODS

6·1. Design of simulation studies

We conduct simulation studies to assess the performance of the proposed methods in contrast
to the naive method which ignores misclassification. We consider a longitudinal study with mi =
m = 3 for i = 1, . . . , n. The mean response model is given by

logit(μi j )= β0 + β1 Xi j1 + β2 Xi j2 + β3 Xi j3,

where Xi j1 = Xi1 is 1 if the i th subject is randomized to the treatment group and 0 otherwise,
and Xi j2 = I( j = 2) and Xi j3 = I( j = 3) describe temporal effects. An exchangeable structure,

logψi j j ′ = α, (8)

is considered for second-order association. The regression parameters are specified as exp(β0)=
2, exp(β1)= 1/2, exp(β2)= 2/3, and exp(β3)= 1/3, and the association parameter is specified
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as α = log(3). We generate binary response vectors from the joint distribution

pr(Yi1 = yi1, Yi2 = yi2, Yi3 = yi3)

=
3∏

j=1

μ
yi j
i j (1 − μi j )

1−yi j

⎡
⎣1 +

∑
1� j< j ′�3

ρi j j ′
(yi j − μi j )(yi j ′ − μi j ′)

{μi j (1 − μi j )}1/2{μi j ′(1 − μi j ′)}1/2

⎤
⎦ ,

where ρi j j ′ is the correlation coefficient between Yi j and Yi j ′ . This is a special case of the Bahadur
representation (Bahadur, 1961), where only the marginal means and the second-order correlations
are involved, and higher order correlations are constrained to be zero.

We consider both independent and correlated misclassification processes. For the indepen-
dent case, we use a simple misclassification model that depends only on two parameters. The
indicators Hi j s are generated under model

logit(τi j )=
{
γ0 (Yi j = 0),

γ1 (Yi j = 1).
(9)

Surrogate responses Si j are then recorded as Yi j if Hi j = 1 and 1 − Yi j if Hi j = 0. Three settings
for γ are considered:

(i) γ0 = logit(0·95) and γ1 = logit(0·95);
(ii) γ0 = logit(0·9) and γ1 = logit(0·9); and

(iii) γ0 = logit(0·8) and γ1 = logit(0·8),
which represent different levels of misclassification rates.

The performance of the proposed methods is assessed under three scenarios. For the first
scenario where γ is known, each simulated sample contains n = 200 subjects. For the second
scenario where γ is not known but an internal validation subsample is available, we take n = 400,
and randomly select 30% of the subjects to be in the validation sample. For low misclassification
rates as in setting (i), large sample size is usually necessary to obtain a valid estimate of γ . For
the third scenario where γ is not known but replicates are available, the sample size is set to be
n = 200 and two replicate surrogates are used for each Yi j .

For cases where misclassifications within the same subject are correlated, the mean model is
(9), and the association model is

log{λi j j ′(yi j , yi j ′)} = ν1I(yi j = yi j ′)+ ν2I(yi j |= yi j ′) (1 � j < j ′ � 3; i = 1, . . . , n).

We set ν1 = log(2) and ν2 = log(1·5). Misclassification vector Hi is then generated from the
joint model given by the Bahadur representation in the same manner as that for the response
vector. Again, we consider two scenarios. In the first scenario we assume that η is given, and set
the sample size to be n = 200. In the second scenario, η is treated as unknown and estimated.
The sample size is set as n = 400 in this case, and 30% of subjects are randomly selected to
be included in the validation subsample. For each specific combination of parameter values, we
evaluate the performances of the approaches based on 2000 simulation replicates.

6·2. Simulation results

Table 1 shows the simulation results for the first and second scenarios for cases where the
misclassification process is independent. The column under each approach represents the rel-
ative percentage bias, empirical variance, average of model-based variance, and coverage rate
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Table 1. Simulation results for the independent misclassification process

Naive method (n = 200) Proposed method with known γ Proposed method with unknown γ
(n = 200) (n = 400)

Bias%† EV AMV CP% Bias% EV AMV CP% Bias% EV AMV CP%

(i) γ0 = logit(0·95), γ1 = logit(0·95)

β0 −10·8 3·0 3·2 93·5 0·3 3·8 4·1 96·2 0·6 2·1 2·1 95·5
β1 −9·6 3·8 4·0 93·8 2·0 4·9 5·1 95·2 0·4 2·4 2·5 95·5
β2 −11·9 3·2 3·3 94·5 −1·2 4·0 4·2 95·7 −1·0 1·8 1·9 95·2
β3 −10·6 3·5 3·6 90·3 0·8 4·6 4·7 95·6 0·7 2·1 2·2 95·8
α −23·3 4·5 4·4 75·0 0·1 8·2 8·1 95·4 0·4 3·5 3·8 95·7

(ii) γ0 = logit(0·9), γ1 = logit(0 · 9)

β0 −21·1 2·9 3·1 86·6 1·0 5·0 5·2 95·7 0·2 2·7 2·7 95·6
β1 −20·4 3·6 3·7 89·1 2·4 6·2 6·2 94·8 0·5 2·9 2·9 95·0
β2 −21·9 3·5 3·5 92·3 −0·4 5·7 5·7 95·0 −1·6 2·3 2·5 96·5
β3 −21·2 3·6 3·7 76·0 1·4 6·2 6·5 95·8 0·4 2·9 2·9 95·3
α −41·8 4·1 4·0 36·6 0·9 14·0 13·8 95·4 1·0 6·1 6·1 95·5

(iii) γ0 = logit(0·8), γ1 = logit(0·8)
β0 −41·5 2·9 2·9 59·1 2·3 9·5 9·5 96·0 1·4 5·0 5·1 95·9
β1 −41·3 3·2 3·2 63·6 3·5 10·4 10·4 95·3 1·2 4·5 4·5 95·8
β2 −41·1 3·7 3·7 85·5 2·0 11·4 11·4 95·6 0·1 4·2 4·5 96·3
β3 −41·6 3·9 3·9 36·5 3·1 13·1 13·3 95·8 1·9 5·3 5·6 96·1
α −69·3 3·3 3·4 2·4 4·1 46·9 53·9 96·6 2·5 17·9 19·6 95·7
† Bias%, relative percentage bias, i.e., 100× (average estimate − true value)/true value; EV, empirical variance
multiplied by 100; AMV, average of model-based variances multiplied by 100; CP%, coverage rate (%) of 95%
confidence interval.

of 95% confidence intervals. We first look at the results under known γ . One can see that the
naive analysis leads to downward biased estimates of response parameters even under a small
proportion of misclassifications. Under setting (i) where the misclassification proportion is 5%,
for example, both the mean parameters and the association parameter are attenuated by a non-
ignorable amount. As the misclassification proportion increases, attenuation becomes more sub-
stantial. When the misclassification proportion is increased to 20% in setting (iii), coverage rates
for the naive estimates of the mean parameters and association parameter are far below the nom-
inal value 95%. In contrast, the proposed method performs reasonably well for all parameter
configurations. For settings (i) and (ii) with small and moderate misclassification rates, the rela-
tive biases associated with the estimates of the mean parameters are fairly small. Relative biases
increase slightly as the misclassification rate becomes higher. The coverage rate for α is slightly
over the nominal 95%. The variance estimates of the estimators are larger than those of the naive
estimators and increase as the misclassification rate increases, but they agree reasonably well
with the empirical ones. For the case of estimated γ , similar patterns are observed.

Simulation results for the case with replicates are shown in Table 2. The relative biases and
coverage rates for the naive estimators are similar to those in Table 1. The proposed method
performs well. The relative biases of the estimates are small for the first two settings where
misclassification rates are low and moderate, and the coverage rates are close to the nominal
95%. For setting (iii) with the highest misclassification rate, the relative biases in both the mean
parameters and the association parameter are the largest. The coverage rate is slightly over the
nominal 95% for the association parameter.

The results for correlated misclassifications are reported in Table 3. It is seen that ignoring
misclassification leads to seriously biased estimates and considerably low coverage rates. The
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Table 2. Simulation results for the case with replicates where the misclassification process
is independent

Naive method using the 1st Naive method using the 2st Proposed method (n = 200)
replicates (n = 200) replicates (n = 200)

Bias%† EV AMV CP% Bias% EV AMV CP% Bias% EV AMV CP%
(i) γ0 = logit(0·95), γ1 = logit(0·95)

β0 −9·9 3·2 3·2 92·6 −9·9 3·1 3·2 92·8 1·6 4·7 4·9 95·2
β1 −10·0 4·0 4·0 92·9 −10·3 4·0 4·0 93·3 1·7 4·8 4·8 94·5
β2 −10·5 3·4 3·3 94·1 −10·5 3·3 3·3 94·4 0·8 3·7 3·7 95·1
β3 −10·6 3·6 3·6 90·7 −10·2 3·6 3·6 90·8 1·1 4·1 4·1 95·9
α −22·4 4·3 4·4 76·5 −21·9 4·6 4·4 76·5 1·3 6·3 6·4 95·3

(ii) γ0 = logit(0·9), γ1 = logit(0·9)
β0 −20·7 3·2 3·1 86·0 −21·1 3·0 3·1 86·6 2·6 7·7 7·8 94·9
β1 −21·0 3·8 3·7 87·1 −20·9 3·8 3·7 88·0 2·0 5·4 5·3 94·9
β2 −21·0 3·7 3·5 91·2 −21·1 3·4 3·5 92·5 0·7 4·5 4·5 95·2
β3 −21·7 4·0 3·7 74·3 −21·5 3·6 3·7 76·2 0·9 5·0 4·9 95·0
α −41·5 3·9 4·0 36·6 −41·3 4·3 4·0 37·5 1·3 8·7 8·8 94·8

(iii) γ0 = logit(0·8), γ1 = logit(0·8)
β0 −40·9 2·9 2·9 60·8 −41·8 2·8 2·9 60·0 5·1 22·2 23·5 95·9
β1 −41·5 3·3 3·2 63·3 −42·6 3·3 3·2 61·8 3·7 7·7 7·6 94·7
β2 −41·7 3·7 3·7 85·4 −41·1 3·7 3·7 85·9 2·8 7·5 7·6 95·5
β3 −42·3 4·1 3·9 35·1 −41·6 3·8 3·9 36·5 3·5 8·8 8·7 95·5
α −69·3 3·7 3·4 2·6 −68·6 3·5 3·4 2·8 6·8 24·2 24·8 96·6
† Bias%, relative percentage bias, i.e., 100× (average estimate − true value)/true value; EV, empirical variance
multiplied by 100; AMV, average of model-based variances multiplied by 100; CP%, coverage rate (%) of 95%
confidence interval.

Table 3. Simulation results for the correlated misclassification process

Naive method (n = 200) Proposed method with known η Proposed method with unknown η
(n = 200) (n = 400)

Bias%† EV AMV CP% Bias% EV AMV CP% Bias% EV AMV CP%
(i) γ0 = logit(0 · 95), γ1 = logit(0·95)

β0 −10·4 3·0 3·2 93·2 0·8 3·5 3·7 95·4 0·1 1·9 1·9 95·2
β1 −10·9 3·8 4·0 94·1 0·4 4·5 4·7 95·7 0·1 2·3 2·4 95·2
β2 −10·0 3·2 3·3 94·4 1·1 3·6 3·7 95·1 0·2 1·8 1·8 94·5
β3 −10·2 3·6 3·6 90·5 1·0 4·2 4·1 94·8 0·3 2·0 2·1 95·7
α −22·2 4·3 4·4 76·6 −1·0 9·9 9·8 95·2 0·6 3·3 3·4 95·4

(ii) γ0 = logit(0·9), γ1 = logit(0·9)
β0 −21·5 1·5 1·5 77·3 0·2 2·1 2·1 95·4 0·2 2·2 2·3 95·4
β1 −21·7 1·9 1·9 80·1 0·4 2·7 2·7 94·4 0·4 2·7 2·7 94·2
β2 −21·9 1·7 1·7 89·4 −0·8 2·1 2·2 95·2 −0·8 2·1 2·2 95·3
β3 −21·6 1·8 1·8 57·5 0·4 2·4 2·4 95·0 0·4 2·4 2·5 95·4
α −36·5 2·1 2·0 20·4 0·8 8·9 8·5 94·9 1·1 5·4 5·3 94·2

(iii) γ0 = logit(0·8), γ1 = logit(0·8)
β0 −42·2 1·5 1·5 33·4 0·1 3·1 3·2 95·4 −0·1 3·5 3·6 95·9
β1 −42·5 1·7 1·7 38·4 0·6 3·7 3·8 94·7 0·6 3·8 3·8 95·0
β2 −42·6 1·8 1·8 74·2 −1·3 3·5 3·4 95·0 −1·2 3·5 3·5 95·4
β3 −42·3 1·9 1·9 7·6 0·5 4·0 4·0 95·0 0·6 4·2 4·2 95·0
α −57·0 1·7 1·8 0·3 0·7 24·6 25·1 96·4 0·8 16·9 17·1 95·9
†Bias%, relative percentage bias, i.e., 100× (average estimate − true value)/true value; EV, empirical variance
multiplied by 100; AMV, average of model-based variances multiplied by 100; CP%, coverage rate of 95% con-
fidence interval in percent.
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proposed approach yields quite satisfactory estimates of the mean and association parameters,
regardless whether parameter η is taken as known or estimated.

In summary, the simulation studies demonstrate that the proposed method works well in var-
ious situations, and it produces reliable point estimates as well as standard errors for both mean
and association parameters governing the response process. Finally, we comment on a numeri-
cal issue related to estimation of association parameters ν for the misclassification process. If
the size of a validation subsample is small, then estimation of ν could be unstable, which in turn
influences estimation of the response parameters. In this case, we may ignore possible correlation
between misclassification indicators but just model the marginal misclassification probabilities.
Our numerical experience shows that this approach can help overcome instability of estimation
of the response parameters.

7. APPLICATION

We apply the proposed method to a dataset arising from the Canadian Community Health
Survey cycle 3·1 conducted in 2005. This is a large-scale on-going survey targeting individuals
aged 12 and older in the Canadian population. The design of the survey is fairly complex, with
three sampling frames being used to sample households: an area frame, a list frame of telephone
numbers, and a random digit dialing sampling frame. For each sampled household, an individual
aged 12 and older was randomly chosen for interview.

The objective of our study is to explore the relationship between obesity and some risk factors.
We consider a sample of 2699 respondents aged 18 and older in the Toronto health region. These
respondents were from 435 clusters based on postal codes with size varying from 2 to 15. Among
them, 150 were included by randomization as a validation subsample for which body mass index
was directly measured, and the resultant obesity status was regarded as the true response value
for each subject in this subsample (Shields et al., 2008). For other individuals, the obesity status
was determined by the self-reported information, and therefore was subject to error. Covariates
include age, sex, and physical activity index. There are three levels of physical activity index:
active, moderate, which is treated as a reference category, and inactive. Let Yi j denote the binary
obesity status for subject j in cluster i . We assume that Yi j follows the logistic model

logitμi j = β0 + β1 Xi j1 + β2 Xi j2 + β3 Xi j3 + β4 Xi j4,

where Xi j1 is the subject’s age, Xi j2 is 1 if the subject is male and 0 otherwise, Xi j3 is 1 if physical
activity index is active and 0 otherwise, and Xi j4 is 1 if the physical activity index is inactive and
0 otherwise. The association between Yi j and Yi j ′ , measured by odds ratio ψi j j ′ , is modelled
by (8). Because the surrogate responses are obtained from self-reporting, misclassifications in
obesity are typically independent for different individuals and clusters.

We conducted analyses under two different assumptions for the misclassification process, the
first assuming that misclassification is independant of covariates, and the second assuming age-
dependent misclassification. Table 4 shows the results for the first analysis. We also report results
from a naive analysis ignoring misclassification. The estimated coefficient of age is 0·016, indi-
cating that older subjects have higher probability of developing obesity. The probability of devel-
oping obesity is not significantly different between males and females at the 5% level. There
is some evidence that active subjects have a smaller chance of developing obesity compared
to moderately active subjects. In contrast, the subjects in the inactive group are more likely to
develop obesity compared the those in the other groups. The association parameter α is esti-
mated to be 0·106, which corresponds to an odds ratio of 1·11 between obesities of two subjects
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Table 4. Analysis with misclassification independent of covariates

Naive method Proposed method
Est. SE p-value Est. SE p-value

Response models

Intercept −2·798 0·225 <0·001 −2·652 0·372 <0·001
Age 0·014 0·003 <0·001 0·016 0·005 <0·001
Sex male 0·006 0·124 0·958 0·003 0·152 0·982
Activity active −0·421 0·191 0·027 −0·550 0·265 0·038

inactive 0·345 0·153 0·025 0·427 0·189 0·024
Association: (α) 0·073 0·114 0·521 0·106 0·170 0·532
Misclassification models
pr(S = 0 | Y = 0) 0·984 0·712 0·076
pr(S = 1 | Y = 1) 0·667 0·408 <0·001

Est., estimate; SE, standard error.

Table 5. Analysis with age-dependent misclassification

Naive method Proposed method
Est. SE p-value Est. SE p-value

Response models
Intercept −2·798 0·225 <0·001 −4·356 1·113 <0·001
Age 0·014 0·003 <0·001 0·048 0·022 0·028
Sex male 0·006 0·124 0·958 −0·057 0·197 0·771
Activity active −0·421 0·191 0·027 −0·211 0·397 0·596

inactive 0·345 0·153 0·025 0·731 0·351 0·038
Association: (α) 0·073 0·114 0·521 0·124 0·228 0·585
Misclassification models
pr(S = 0 | Y = 0)

Intercept 3·885 2·063 0·060
Age 0·005 0·046 0·912

pr(S = 1 | Y = 1)
Intercept 5·904 2·324 0·011

Age −0·094 0·039 0·017

Est., estimate; SE, standard error.

in the same cluster. However, there is no strong evidence for this association. Compared with the
proposed method, the naive approach generally produced attenuated estimates of the regression
parameters. Table 5 shows the results for the second analysis. There is no evidence that age is
associated with misclassification from non-obesity to obesity. However, age is significantly asso-
ciated with misclassification from obesity to non-obesity at the 5% level. Older people who are
obese tend to underestimate their body mass index, leading to false self-reported non-obesity.
The probability of developing obesity is not significantly different between active subjects and
moderately active subjects, while conclusions for the other covariates remain the same. Com-
paring Table 5 with Table 4 we observe some inflation of standard errors associated with the
estimated regression parameters in the response model, perhaps because the validation subsam-
ple is relatively small. This phenomenon has been a long concern in correction for misclassifi-
cation in binary responses, e.g., Luan et al. (2005). When the validation subsample contains a
very small number of misclassifications, it may be preferred not to fit a complex misclassifi-
cation model involving covariates, because parameter estimates are usually unstable under such
scenarios.
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8. DISCUSSION

Misclassification arises commonly with binary or categorial data. Ignoring it often results in
biased inference. In this paper we propose a method to correct for bias induced by misclassified
binary responses with a complex association structure. We focus on modelling both marginal
mean and association structures for the response process, and develop a marginal analysis method
based on unbiased estimating functions that are expressed in terms of surrogate responses along
with other observed measurements. The proposed method in terms of surrogate responses along
with other observed measurements. The proposed method is motivated by the unique feature of
the generalized estimating functions U1i and U2i under the situation that no misclassification
is present. Recognizing that response components appear in U1i and U2i solely via linear and
cross-product terms, Yi j and Zi j j ′ , we construct unbiased surrogates Y ∗

i j and Z∗
i j j ′ and use them to

respectively replace Yi j and Zi j j ′ in U1i and U2i . Yi’s and Wu’s replacement differs from the naive
method that directly substitutes the Yi j with Si j . This approach can not only make the resulting
estimating functions computable but also preserve their unbiasedness. The proposed method is
attractive in that it is conceptually simple and easy to implement. Furthermore, it makes the best
use of the model setup without requiring additional distributional assumptions.

Since misclassification parameters are often unknown, additional information such as
validation data or replicated measures is often needed to obtain estimates of these parameters.
A validation subsample may be available in two-stage designs for which cost- and time-efficiency
would be a primary concern. In those studies, the (S, X) are measured for al subjects at the first
stage of the study, and in the second stage, Y is also measured for a subset of the study partici-
pants. In other situations such as the survey context, validation data can be collected by assigning
more experienced interviewers to a subset of randomly selected individuals, while other individu-
als’ measurements are obtained based on self-reported questionnaires. In circumstances where no
validation data nor replicates are available, one may conduct sensitivity analyses to evaluate the
impact of misclassification on inference about the response parameters. The method discussed
in § 3·2 can be applied for this purpose.
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APPENDIX 1

Consistency and asymptotic distribution of θ̂

Because U ∗
i (θ, η0) satisfies E{U ∗

i (θ, η0) | Xi } = 0 at the true value of θ , by Theorem 3.4 of
Newey & McFadden (1993) and under the regularity conditions specified there, we have that with proba-
bility approaching 1, there is a unique solution, denoted by θ̂ , to

∑n
i=1 U ∗

i (θ, η0)= 0 that satisfies

0 = n−1/2
n∑

i=1

U ∗
i (θ, η0)+ n−1

n∑
i=1

∂U ∗
i (θ, η0)/∂θ

Tn1/2(θ̂ − θ)+ op(1).
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This is equivalent to

n1/2(θ̂ − θ)= −[E{∂U ∗
i (θ, η0)/∂θ

T}]−1n−1/2
n∑

i=1

U ∗
i (θ, η0)+ op(1) (A1)

as under regularity conditions, E{∂U ∗
i (θ, η0)/∂θ

T} exists and is invertible and var{U ∗
i (θ, η0)} is finite and

positive definite. The law of large numbers leads to that n−1
∑n

i=1 U ∗
i (θ, η0) converges to E{U ∗

i (θ, η0)} =
0 in probability as n goes to infinity, and the consistency of θ̂ is immediate by Slutzky’s lemma. By applying
the central limit theorem to (A1), the asymptotic distribution of n1/2(θ̂ − θ) can be established.

APPENDIX 2

Consistency and asymptotic distribution of θ̂v
Define �i (θ, η)= {QT

i (η), Ũ
T
i (θ, η)}T. Then solving

n∑
i=1

�i (θ, η)= 0 (A2)

using the Fisher scoring algorithm yields consistent estimators for η and θ . To be specific, let

Ji (η)= E

{
∂QT

i (η)

∂η

}
=
(

J1i (η) 0
J21i (η) J2i (η)

)
, Mi (θ)= E

{
∂Ũ T

i (θ, η)

∂θ

}
=
(

M1i (θ) 0
M21i (θ) M2i (θ)

)
,

where J1i (η)= −Gδ
1i (W

δ
1i )

−1
(
Gδ

1i

)T
, J21i (η)= −Gδ

2i (W
δ
2i )

−1(∂ζ δi /∂γ
T), J2i (η)= −Gδ

2i (W
δ
2i )

−1(Gδ
2i )

T,
M1i (θ)= −D1i V

−1
1i DT

1i , M21i (θ)= −D2i V
−1

2i (∂ξi/∂β
T), and M2i (θ)= −D2i V

−1
2i DT

2i . Estimates of η and
θ can be obtained via an iterative equation(

η(t+1)

θ (t+1)

)
=
(
η(t)

θ (t)

)
+
( −∑n

i=1 Ji (η
(t)) 0

−∑n
i=1 E{∂Ũi (θ, η)/∂η

T} |(θ(t),η(t)) −∑n
i=1 Mi (θ

(t))

)−1

×
n∑

i=1

�i (θ
(t), η(t)) (t = 0, 1, . . .),

until convergence. Let (η̂v, θ̂v) denote the resulting limit.
Let �̃i (θ, η)= Ũi (θ, η)− E{∂Ũi (θ, η)/∂η

T}[E{∂Qi (η)/∂η
T}]−1 Qi (η), and �̃(θ, η)= E{∂Ũi (θ, η)

/∂θ T}. Following arguments similar to those in Chen et al. (2010), because E{�i (θ, η)} = 0 when the
response and misclassification models are correctly specified, under standard regularity conditions there
is a unique solution, (η̂v, θ̂v) to (A2), with probability approaching one. By the first-order Taylor series
approximation, we have

n1/2

(
η̂v − η

θ̂v − θ

)
= −

(
E{∂Qi (η)/∂η

T} 0
E{∂Ũi (θ, η)/∂η

T} E{∂Ũi (θ, η)/∂θ
T}
)−1

× n−1/2
n∑

i=1

�i (θ, η)+ op(1).

It follows that n1/2(θ̂v − θ) equals

− n−1/2[E{∂Ũi (θ, η)/∂θ
T}]−1

{
n∑

i=1

Ũi (θ, η)− E{∂Ũi (θ, η)/∂η
T}

×[E{∂Qi (η)/∂η
T}]−1

n∑
i=1

Qi (η)

}
+ op(1)= −n−1/2�̃−1(θ, η)

n∑
i=1

�̃i (θ, η)+ op(1).
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Then applying the central limit theorem, one can show that n1/2(θ̂v − θ) is asymptotically nor-
mally distributed with mean 0 and asymptotic covariance matrix given by �̃−1�̃(�̃−1)T, where �̃ =
E{�̃i (θ, η)�̃

T
i (θ, η)}.

Define �̃i (θ, η)= [{D1i V
−1

1i (∂Ỹi/∂η
T)}T, {D2i V

−1
2i (∂ Z̃i/∂η

T)}T]T. As n goes to infinity,
E{∂Ũi (θ, η)/∂η

T} and E{∂Qi (η)/∂η
T} can be consistently estimated by �̃(θ̂v, η̂v)= n−1

∑n
i=1 �̃i (θ̂v, η̂v)

and J (η̂v)= n−1
∑n

i=1 Ji (η̂v), respectively. The matrices �̃ and �̃ can be consistently esti-
mated by �̂ = n−1

∑n
i=1 �̃i (θ̂v, η̂v)�̃

T
i (θ̂v, η̂v) and �̂ = n−1

∑n
i=1 Mi (θ̂v), respectively, where

�̃i (θ̂v, η̂v)= Ũi (θ̂v, η̂v)− �̃(θ̂v, η̂v)J−1(η̂v)Qi (η̂v). Therefore, the empirical version n−1�̂−1�̂(�̂−1)T is
a consistent estimator for the asymptotic covariance matrix of θ̂ .

APPENDIX 3

Consistency and asymptotic distribution of θ̂r

Let Ji (θ, γ )= −GiW−1
i GT

i , �i (θ, γ )= −GiW−1
i (∂πi/∂θ

T), and �∗
i (θ, η)= [{D1i V

−1
1i

(∂Y∗
i /∂η

T)}T, {D2i V
−1

2i (∂Z∗
i /∂η

T)}T]T. Given initial estimates θ(0) and γ (0), we update the estimates
via(
γ (t+1)

θ (t+1)

)
=
(
γ (t)

θ (t)

)
−
(∑n

i=1 J1i (θ
(t), γ (t))

∑n
i=1�i (θ

(t), γ (t))∑n
i=1�i (θ

(t), γ (t))
∑n

i=1 Mi (θ
(t))

)−1 n∑
i=1

�∗
i (θ

(t), γ (t)), t = 0, 1, . . . ,

until convergence. Let (γ̂r , θ̂r ) denote the resulting limit.
Note that E{�∗

i (θ, γ )} = 0 when both the response and misclassification models are correctly specified,
since E(Ai )= πi . Therefore (γ̂r , θ̂r ) are consistent estimators for (γ, θ), and the asymptotic distribution
of θ̂r can be established in a similar manner to that in § 4·2. However, there is an important difference
arising from the interplay of θ and γ in both Ui (θ, γ ) and Qi (θ, γ ). Specifically, applying the Taylor
series expansion, we obtain

n1/2

(
γ̂r − γ

θ̂r − θ

)
= −

(
E{∂Qi (θ, γ )/∂γ

T} E{∂Qi (θ, γ )/∂θ
T}

E{∂Ui (θ, γ )/∂γ
T} E{∂Ui (θ, γ )/∂θ

T}
)−1

n−1/2
n∑

i=1

�∗
i (θ, γ )+ op(1).

It follows that n1/2(θ̂r − θ) equals

n−1/2(E{∂Ui (θ, γ )/∂θ
T} − E{∂Ui (θ, γ )/∂γ

T}[E{∂Qi (θ, γ )/∂γ
T}]−1 E{∂Qi (θ, γ )/∂θ

T})−1

×
(

n∑
i=1

Ui (θ, γ )− E{∂Ui (θ, γ )/∂γ
T}[E{∂Qi (θ, γ )/∂γ

T}]−1
n∑

i=1

Qi (θ, γ )

)
+ op(1)

= n−1/2�∗−1(θ, γ )

n∑
i=1

�∗
i (θ, γ )+ op(1),

where �∗
i (θ, γ ) = Ui (θ, γ ) − E{∂Ui (θ, γ )/∂γ

T}[E{∂Qi (θ, γ )/∂γ
T}]−1Qi (θ, γ ), and �∗(θ, γ ) =

E{∂Ui (θ, γ )/∂θ
T} − E{∂Ui (θ, γ )/∂γ

T}[E{∂Qi (θ, γ )/∂γ
T}]−1 E{∂Qi (θ, γ )/∂θ

T}. Thus, the Central
Limit Theorem yields that n1/2(θ̂r − θ) is asymptotically normally distributed with mean 0 and covariance
matrix �∗−1�∗(�∗−1)T, where �∗ = E{�∗

i (θ, γ )�
∗T
i (θ, γ )}.

As n goes to infinity, �∗ and �∗ can be consistently estimated by their empirical counterparts
�̂∗ = n−1

∑n
i=1[Mi (θ̂r )−�∗

i (θ̂r , γ̂r ){Ji (θ̂r , γ̂r )}−1�∗
i (θ̂r , γ̂r )] and �̂∗ = n−1

∑n
i=1�

∗
i (θ̂r , γ̂r )�

∗
i (θ̂r , γ̂r )

T,
respectively. A consistent estimator for the asymptotic covariance matrix of θ̂r is given by �̂∗−1�̂∗(�̂∗−1)T.
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