
540 The Canadian Journal of Statistics
Vol. 38, No. 4, 2010, Pages 540–554

La revue canadienne de statistique

The pseudo-GEE approach to the analysis of
longitudinal surveys
Iván A. CARRILLO1*, Jiahua CHEN2 and Changbao WU3

1Statistics Canada, Social Survey Methods Division, Tunney’s Pasture, R.H. Coats Building, 15th Floor,
Ottawa, Ontario, Canada K1A 0T6
2Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
3Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1

Key words: Complex sampling design; consistency; design-based inference; generalized estimating equa-

tions; joint randomization; superpopulation model; variance estimation.

MSC 2000: Primary 62D05; secondary 62G05.

Abstract: Longitudinal surveys have emerged in recent years as an important data collection tool for popu-

lation studies where the primary interest is to examine population changes over time at the individual level.

Longitudinal data are often analyzed through the generalized estimating equations (GEE) approach. The

vast majority of existing literature on the GEEmethod; however, is developed under non-survey settings and

are inappropriate for data collected through complex sampling designs. In this paper the authors develop

a pseudo-GEE approach for the analysis of survey data. They show that survey weights must and can be

appropriately accounted in the GEE method under a joint randomization framework. The consistency of

the resulting pseudo-GEE estimators is established under the proposed framework. Linearization variance

estimators are developed for the pseudo-GEE estimators when the finite population sampling fractions are

small or negligible, a scenario often held for large-scale surveys. Finite sample performances of the proposed

estimators are investigated through an extensive simulation study using data from the National Longitudinal

Survey of Children and Youth. The results show that the pseudo-GEE estimators and the linearization vari-

ance estimators perform well under several sampling designs and for both continuous and binary responses.

The Canadian Journal of Statistics 38: 540–554; 2010 © 2010 Statistical Society of Canada

Résumé: Les enquêtes longitudinales sont apparues récemment comme un moyen important de collecte

d’observations pour les études sur les populations dont nous voulons étudier les changements dans le temps

de la population au niveau des individus. Les données longitudinales sont souvent analysées en utilisant

les équations d’estimation généralisées (GEE). Cependant, une grande partie des articles publiés sur la

méthode GEE sont développés dans un cadre non échantillonnal et ils ne sont pas appropriés pour des

données obtenues par des devis échantillonnaux complexes. Dans cet article, les auteurs développent une

approche pseudo-GEE pour l’analyse des données d’enquête. Ils démontrent que les poids d’échantillonnage

doivent et peuvent être considérés de façon adéquate dans une méthode GEE dans un contexte d’aléation

conjointe. La convergence des estimateurs pseudo-GEE ainsi obtenus est démontrée dans le cadre proposé.

Les estimateurs de la variance par linéarisation sont développés pour les estimateurs pseudo-GEE lorsque

le taux d’échantillonnage de la population fini est petit ou négligeable, scénario qui se produit souvent pour

les enquêtes de grande envergure. La performance pour de petits échantillons des estimateurs proposés

est étudiée grâce à une étude de simulation exhaustive en utilisant des données provenant de l’enquête

longitudinale nationale sur les enfants et les jeunes. Les résultats indiquent que les estimateurs pseudo-GEE

et ceux de la variance par linéarisation se comportent très bien sous plusieurs devis échantillonnaux, et

ce tant pour les réponses continues que binaires. La revue canadienne de statistique 38: 540–554; 2010
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1. INTRODUCTION

There exist two major types of statistical research designs, namely, cross-sectional studies and

longitudinal studies. Cross-sectional studies can be described as “one-time” or “one-shot” studies

where interest lies in the characteristics of a certain population or model at a particular time point.

In longitudinal studies, also called “panel studies,” variables of interest are measured on a fixed

set of units at several time points during a reference time period. One of the major advantages of

longitudinal studies is that they allow for the measurement of time-varying explanatory variables

and hence for the exploration of population changes at the individual level. Some of these time-

varying explanatory variables can be natural ones, such as age, and some could be specifically

designed, such as different treatments or population interventions before and after certain time

point. With longitudinal studies it is possible to separate age and cohort effects (Diggle et al.,

2002; Hedeker &Gibbons, 2006) or the effect of treatments and interventions from other potential

confounders. One of the major challenges of longitudinal studies is the added complexity in

data analysis, due to the lack of independence among responses measured from the same unit.

Other problems with longitudinal studies include (i) changes of population composition over time

(Duncan & Kalton, 1987); (ii) changes in measurement instruments over time (Kish, 1987); and

(iii) complexities in missing value problems.

Longitudinal data are often analyzed through the generalized estimating equations (GEE)

approach. The vast majority of existing literature on the GEE method; however, is developed

under non-survey settings. Liang & Zeger (1986) described the GEE methodology for analyzing

longitudinal data; Yuan & Jennrich (1998) and Shao (2003), among others, studied asymptotic

properties of the GEE estimators. These results are not directly applicable to complex survey data.

The use of survey weights under the estimating equation approach has been examined by several

authors, including Godambe & Thompson (1986), Binder & Patak (1994), Godambe (1995), Rao

(1998), andRoberts, Ren&Rao (2009), among others. The consistency of the resulting estimators;

however, has not been formally established in these earlier investigations.

In this paper we develop a pseudo-GEE approach for the analysis of survey data. We show

that survey weights must and can be appropriately accounted in the GEE method under a joint

randomization framework. The consistency of the resulting pseudo-GEE estimators is estab-

lished under the proposed framework. Linearization variance estimators are developed for the

pseudo-GEE estimators when the finite population sampling fractions are small or negligible, a

scenario often held for large-scale surveys. We illustrate the method and examine finite sample

performances of the pseudo-GEE estimators through a simulation study using data from the Na-

tional Longitudinal Survey of Children and Youth (NLSCY). This survey is designed by Human

Resources Development Canada to study child development and well-being. Data from five bi-

ennial cycles of the survey conducted from 1994 to 2003 are now available through Statistics

Canada’s Research Data Centers. One of the main objectives of the survey is to study children’s

behavioural problems as they grow and identify influential factors. The task is well suited for the

pseudo-GEE approach. A key variable in NLSCY data sets is physical aggression score (PAS),

derived based on six to eight questions (depending on the age group) included in the survey.

Earlier studies (Thomas, 2004; Carrillo et al., 2005; Carrillo-Garcı́a, 2006) identified several

significant factors to the PAS. In this paper, we do not repeat these analyses. Instead, we use

their results to construct credible superpopulation models and generate finite populations for our

simulation study. The simulation shows that the pseudo-GEE estimators and the linearization vari-

ance estimators perform well under several sampling designs and for both continuous and binary

responses.

The rest of the paper is organized as follows. In Section 2, we develop a joint random-

ization framework as the foundation for statistical analysis of complex survey data. In Section

3 we present the pseudo-GEE estimator and establish its consistency under the joint random-
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ization framework. In Section 4 we derive linearization variance estimators for the pseudo-

GEE estimators. Results from an extensive simulation study on finite sample performances of

the pseudo-GEE estimators are reported in Section 5. Some concluding remarks are given in

Section 6.

2. THE JOINT RANDOMIZATION FRAMEWORK FOR COMPLEX SURVEYS

There are three prevailing frameworks for the statistical analysis of complex survey data. In the

pure “model-based” approach the parameters of interest are related to a statistical model, often

referred to as a superpopulationmodel. Under this setting the sampling design features are ignored

and sampled individuals are treated as independent observations. All inferences are carried out and

evaluated with respect to the model. In the conventional “design-based” approach, the parameters

of interest are finite population quantities. Values attached to variables of interest are viewed

as non-random quantities and inferential procedures are evaluated with respect to the random

mechanism induced by the probability selection of sampled units. Design-based inferences focus

on the particular finite population fromwhich the sample is taken and their validity does not depend

on any model assumptions. In recent years there has been another popular way of inference called

“model-assisted” approach. Here again, interest lies exclusively on finite population parameters

and all observed quantities are regarded as non-random. Inferential procedures are judged with

respect to the probability sampling design. However, these procedures and associated estimators

are motivated through an assumed model. Model-assisted approach is essentially design-based

but it can have increased efficiency when the finite population is well described by the assumed

model.

The two sources of randomization, namely, the probability sampling design for a finite pop-

ulation and the assumed model for a superpopulation, can be jointly considered, resulting in the

so-called “joint randomization” inference. Under this framework, the finite population is regarded

as a random sample from the superpopulation model and the survey sample is viewed as second

phase sampling from the original superpopulation (Binder & Roberts, 2003). The framework is

well suited for analytic use of survey data where, for instance, one is interested in possible causal

relationships described by the superpopulation model. A preferred inference would be based on

the whole data from the entire finite population. The actual survey sample taken from the finite

population is usually obtained through a complex sampling design involving stratification, clus-

tering and/or multi-stage unequal probability selection. The superpopulation model can therefore

be distorted in the sampled data and becomes invalid. For instance, the GEE model described in

the next section assumes that observations from different subjects are independent. This assump-

tion, however, is typically invalid for complex survey samples. Under such scenarios the survey

design features cannot be ignored and inferences for the superpopulation parameters need to be

carried out by combining both randomization processes.

Inferences under the joint randomization framework may be preferred even if all model as-

sumptions are valid for the survey sample. It provides certain protection against model failure and

inferences are valid regardless whether the design features can be ignored or not. Pure model-

based methods can be severely affected by things like excluding important variables or interaction

terms. Whereas in such situations the inclusion of the sampling design features yields “the best

fit of that model for the surveyed population, and hence also a good fit for similar populations

where ‘similar’ relates to the excluded variables” (Kalton, 1983). Another justification for a joint

randomization approach is that, even under design-based approach, certain optimality criteria

necessarily rely on models (Wu, 2003). There are other scenarios where joint randomization is

the only appropriate framework for inference because of the way in which the data are collected

(Chen, Thompson & Wu, 2004).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2010 PSEUDO-GEE FOR LONGITUDINAL SURVEYS 543

3. THE PSEUDO-GEE METHOD FOR LONGITUDINAL SURVEYS

In this section, we propose a pseudo-GEE approach to longitudinal surveys under the joint ran-

domization framework. We assume that there is a sequence of finite populations, indexed by ν.

For a given ν, the finite population is a random sample from a superpopulation model ξ with

population sizeNν. Furthermore, a sample of size nν is taken from the finite population according

to a probability sampling design. As ν → ∞, both Nν → ∞ and nν → ∞. We also assume that

the superpopulation model ξ remain the same as ν → ∞. Hence, the superpopulation parameters,

β, φ, and α given below, also remain fixed. For notational simplicity, we will drop the index ν.

Let {1, 2, . . . , N} be the set of labels for the N subjects in the finite population. Let

(Yij;Xij1, . . . , Xijp)
′ be values of the response variable Y and the vector of p covariates

(X1, . . . , Xp)
′ for the ith subject at the time of the jth cycle of the survey, j = 1, . . . , Ti. TheTi can

bedifferent for different subjects but inmany studiesTi = T is common for all subjects. This is typ-

ically the case for large-scale surveys. Let Xij = (1, Xij1, . . . , Xijp)
′ and Xi = (X′

i1, . . . , X
′
iTi
)′.

We assume that the superpopulation model ξ can be characterized by the following three compo-

nents:

(1) The conditional mean response µij = E(Yij | Xij) is related to the linear predictor ηij =
X′

ijβ through a monotone link function g(·): µij = g−1(ηij) = g−1(X′
ijβ), where β =

(β0, β1, . . . , βp)
′.

(2) The conditional variance of Yij given Xij is given by Var(Yij | Xij) = φυ(µij), where υ(·) is
the variance function with known form and φ > 0 is called a dispersion parameter.

(3) The conditional covariance matrix of Yi = (Yi1, . . . , YiTi )
′ is given by Cov(Yi | Xi) =

A
1/2
i Ri(α)A

1/2
i , whereAi = diag{φυ(µi1), . . . , φυ(µiTi )} andRi(α) is the correlation matrix

with a specified structure involving parameter α.

Note that the assumption that thefinite population is a randomsample from the superpopulation

also implies that

(4) The response vectors Yk and Yl given Xk and Xl are independent for k �= l.

Among the four components described above, items 1, 2, and 4 are similar to those for the

generalized linear models (GLM). However, there are two important and unique features in the

GEE model specifications for longitudinal data which are not part of GLM. Firstly, it is possible

to include time-dependent covariates in ξ to explore changes over time. Such variables can be as

simple as age or variables by specific design features of the study. This allows the examination

of the effectiveness of, say, population interventions before and after certain time point while

controlling other factors in the study. Secondly, “it is the (third) component, the incorporation

of the within-subject association among the repeated responses from the same individual, that

represents the main extension of GLM to longitudinal data” (Fitzmaurice, Laird & Ware, 2004).

For estimation procedures described below,we use�i = Cov(Yi | Xi) to denote the true variance–

covariance matrix but use Vi to represent the so-called working variance–covariance matrix. In

other words, Vi = A
1/2
i Ri(α)A

1/2
i whenRi(α) is a chosen working correlation matrix which does

not necessarily coincide with the true one.

Following the GEE methodology as described in Liang & Zeger (1986), we can define the

so-called “census GEE estimator” of β, denoted by βN , as the solution to the following set of

estimating equations:

N∑
i=1

∂µ′
i

∂β
V−1

i (yi − µi) = 0. (1)
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Here yi denotes the observed value of Yi and µi = (µi1, . . . , µiTi )
′. The census estimator βN has

no practical value but serves as an important reference point for theoretical development on the

pseudo-GEE estimator defined below.

Let s be the set of n units selected from the finite population by a complex sampling design;

let wi = 1/P(i ∈ s) be the basic design weights; let {(Yij;Xij1, . . . , Xijp), j = 1, . . . , Ti, i ∈ s}
be the data set from the longitudinal survey. If we treat the left-hand side of Equation (1) as a

finite population total, we can estimate it based on the survey sample s using the well-known

Horvitz–Thompson estimator (Horvitz & Thompson, 1952). Our proposed sample-based pseudo-

GEE estimator of β, denoted by β̂n, is defined as the solution to the following set of estimating

equations:

∑
i∈s

wi

∂µ′
i

∂β
V−1

i (yi − µi) = 0. (2)

The solution β̂n to (2) can be computed through the following iterative steps from a Newton–

Raphson type procedure:

β(l+1) = β(l) +
[∑

i∈s

wi

∂µ′
i

∂β(l)

V−1
i(l)

∂µi

∂β(l)

]−1 [∑
i∈s

wi

∂µ′
i

∂β(l)

V−1
i(l) (yi − µi(l))

]
.

The dispersion parameter φ can be estimated by

φ̂ =
∑

i∈s wi

∑Ti

j=1 e2ij

(
∑

i∈s wiTi) − p
=

∑
i∈s wi

∑Ti

j=1(yij − µ̂ij)
2/υ(µ̂ij)

(
∑

i∈s wiTi) − p
. (3)

If the within-subject correlation structure is unspecified but is assumed to be constant across

subjects, we can estimate the correlation matrix R = (αjk) by

α̂jk =
∑

i∈s wieijeik

[(
∑

i∈s wi) − p]φ̂
=

∑
i∈s wi(yij − µ̂ij)(yik − µ̂ik)/{υ(µ̂ij)υ(µ̂ik)}1/2

[(
∑

i∈s wi) − p]φ̂
, (4)

where the standardized residuals are given by eij = (yij − µ̂ij)/{υ(µ̂ij)}1/2.
Note that N̂ = ∑

i∈s wi and
∑

i∈s wiTi are used in these formulas as opposed to n and
∑n

i=1 Ti

one would use from expressions for non-survey data. Because of this, the usual GEE software

procedures like gee in R or genmod in SAS are not recommended for calculating the pseudo

GEE estimators for survey data. Even if one specifies the weight variable as the survey weights

wi, these procedures do not always carry out the appropriate modification of φ̂ and α̂.

We now establish the consistency of the pseudo-GEE estimator β̂n under the joint random-

ization of the model ξ and the sampling design π. All expectations and variances, whether with

respect to the model or the design, are conditional on the given covariates. For notational simplic-

ity, we drop these conditions in following discussions. For instance, Eξ[h
2
i (Yi)] is a short form

for Eξ[h
2
i (Yi) | Xi]. The following theorem is stated in terms of a more general ψi(Yi, β) than the

specific form (∂µ′
i/∂β)V

−1
i (yi − µi) in the definition of β̂n.

Theorem 1. Let sn(β) = ∑
i∈s wiψi(Yi, β), where β ∈ � ⊂ Rp andψi(Yi, β) is a function from

R
Ti × � to Rp; let β0 ∈ � be such that Eξπ[sn(β0)] = 0; let hi(Yi) = supβ∈� ‖ψi(Yi, β)‖, i =

1, 2, . . ., where ‖ · ‖ is the usual L1 norm. Suppose that

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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(1) supi Eξ[h
2
i (Yi)] < ∞ and supi Eξ‖Yi‖ < ∞;

(2) For any c > 0 and sequence {yi} satisfying ‖yi‖ ≤ c, the sequence of functions {gi(β) =
ψi(yi, β)} is equicontinuous on any open subset of �;

(3) The functionN (β) = Eξπ[N
−1sn(β)] has the property that, for any ε > 0, there exists δε > 0

such that inf |β−β0|>ε |N (β)| > δε;
(4) There exists a β̂n ∈ �which is a solution to sn(β) = 0, that is, β̂n is the pseudo-GEE estimator

of β such that sn(β̂n) = 0;
(5) β̂n = Op(1);
(6) The design weightswi satisfyN−1

∑
i∈s wiZi − N−1

∑N
i=1 Zi = Op(1/

√
n) for any variable

Z such that N−1
∑N

i=1 Z2
i = O(1);

then β̂n

p→ β0, where “p” denotes in probability with respect to both themodel ξ and the sampling
design π.

Condition 5 is weaker than assuming the parameter space is compact, which is what Robins,

Rotnitzky & Zhao (1995) assumed for their results. Here the “p” in Op(1) means in probability

with respect to the joint ξπ distribution. In condition 6 the “p” in Op(1/
√

n) means under the

distribution induced by the design π. This condition is weaker than assuming N−1
∑

i∈s wiZi is

asymptotically normally distributed. That is, if ẐHT = N−1
∑

i∈s wiZi∼̇N(Z̄, σ2/n), then con-

dition 6 is satisfied. Hájek (1960, 1964) established the asymptotic normality of ẐHT under simple

random sampling and rejective sampling with unequal selection probabilities. Vı́šek (1979) es-

tablished the asymptotic normality of ẐHT for the well-known Rao–Sampford method of unequal

probability sampling without replacement.

The following lemma, adapted from Lemma 5.3 of Shao (2003), plays a key role in proving

Theorem 1. The proof of the lemma can be found in Carrillo-Garcı́a (2008) and is omitted here.

Lemma 1. Suppose that � is a compact subset of Rp and conditions 1, 2, and 6 specified in
Theorem 1 hold. Then, as n → ∞,

sup
β∈�

∥∥∥∥ 1

N
sn(β) − N (β)

∥∥∥∥ p→ 0,

where sn(β) = ∑
i∈s wiψi(Yi, β) and N (β) = Eξπ[N

−1sn(β)] = N−1
∑N

i=1 Eξ[ψi(Yi, β)].

Proof of Theorem 1. We carry out the proof in two cases.

Case 1: � is a compact subset of Rp.

The following inequality holds:

∣∣∣∣ 1N sn(β)

∣∣∣∣ =
∣∣∣∣N (β) + 1

N
sn(β) − N (β)

∣∣∣∣
≥ |N (β)| −

∣∣∣∣ 1N sn(β) − N (β)

∣∣∣∣ .
By Lemma 1, for any ε > 0, we have
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inf
|β−β0|>ε

∣∣∣∣ 1N sn(β)

∣∣∣∣ ≥ inf
|β−β0|>ε

{
|N (β)| −

∣∣∣∣ 1N sn(β) − N (β)

∣∣∣∣}
≥ inf

|β−β0|>ε
|N (β)| − sup

|β−β0|>ε

∣∣∣∣ 1N sn(β) − N (β)

∣∣∣∣
≥ inf

|β−β0|>ε
|N (β)| − sup

β∈�

∣∣∣∣ 1N sn(β) − N (β)

∣∣∣∣
= inf

|β−β0|>ε
|N (β)| + op(1). (5)

It follows from condition 3 stated in the theorem that, for any ε > 0, there exists δε > 0 such that

Pξπ

(
inf

|β−β0|>ε

∣∣∣∣ 1N sn(β)

∣∣∣∣ > δε

)
→ 1

as n → ∞. Noting that sn(β̂n) = 0 by condition 4, the above limit implies that, for any ε > 0,

Pξπ(|β̂n − β0| ≤ ε) → 1 as n → ∞. This completes the proof that β̂n

p→ β0.

Case 2: � is any subset of Rp.

By condition 5 in the theorem, for any ε > 0, there is anM > 0 such thatPξπ(‖β̂n‖ ≤ M) > 1 − ε

for all n. The result follows from Case 1 by considering the closure of � ∩ {β : ‖β‖ ≤ M} as the
parameter space. Let �∗ be the closure of � ∩ {β : ‖β‖ ≤ M}. Then, for any δ > 0,

Pξπ(‖β̂n − β0‖ > δ) = Pξπ(‖β̂n − β0‖ > δ, ‖β̂n‖ ≤ M) + Pξπ(‖β̂n − β0‖ > δ, ‖β̂n‖ > M)

≤ Pξπ(‖β̂n − β0‖ > δ, ‖β̂n‖ ≤ M) + Pξπ(‖β̂n‖ > M)

< Pξπ(‖β̂n − β0‖ > δ, ‖β̂n‖ ≤ M) + ε

≤ Pξπ(‖β̂n − β0‖ > δ, β̂n ∈ �∗) + ε

= Pξπ(β̂n ∈ �∗)Pξπ(‖β̂n − β0‖ > δ | β̂n ∈ �∗) + ε

≤ Pξπ(‖β̂n − β0‖ > δ | β̂n ∈ �∗) + ε

≤ 2ε,

where the last line is due to the fact that �∗ is compact and therefore Case 1 applies. It follows

that β̂n

p→ β0.

�

4. VARIANCE ESTIMATION

The variance of β̂n under the joint ξπ randomization is given by

Varξπ(β̂n) = Varξ[Eπ(β̂n)] + Eξ[Varπ(β̂n)]. (6)

The first component in (6), Varξ[Eπ(β̂n)], is called the “model variance component” and rep-

resents the variance in a census fit to the model, using data from the entire finite population.

The second component, Eξ[Varπ(β̂n)], is called the “design variance component” or “sampling

variance component” and represents the additional variance contributed by sampling from the

finite population. It comes from the fact that a sample of n elements is observed rather than the

entire finite population of N elements (Särndal, Swensson & Wretman, 1992).
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Let B = Eπ(β̂n); that is, B is the conceptual finite population quantity which is unbiasedly

estimated by β̂n. If Varξ(B) has the usual order of 1/N and suppose that the sampling fraction

n/N is small or negligible, which is practically the case for most large-scale surveys, then the

leading term in the joint variance is Eξ[Varπ(β̂n)]. Note that the B defined above is usually not

identical to the census estimator βN . Therefore, we can write

Varξπ(β̂n)=̇Eξ[Varπ(β̂n)], (7)

and estimate the joint variance of β̂n by V̂arξπ(β̂n) = V̂arπ(β̂n), where V̂arπ(β̂n) is an approx-

imately unbiased estimator of the design-based variance of β̂n. The estimator V̂arξπ(β̂n) is also

approximately unbiased under the joint randomization since Eξπ[V̂arπ(β̂n)]=̇Eξ[Varπ(β̂n)].

We now develop a linearization estimator for Varπ(β̂n). Let

Un(β) =
∑
i∈s

wi

∂µ′
i

∂β
V−1

i (yi − µi) and UN (β) =
N∑

i=1

∂µ′
i

∂β
V−1

i (yi − µi).

It follows that Un(β̂n) = 0 and UN (βN ) = 0. Let

H(β) =
N∑

i=1

∂µ′
i

∂β
V−1

i

∂µi

∂β
and Ĥ(β) =

∑
i∈s

wi

∂µ′
i

∂β
V−1

i

∂µi

∂β
.

Applying a first order Taylor series expansion to Un(β) at β = βN and noting that Un(β̂n) = 0
and Un(βN ) = UN (βN ) + Op(N/

√
n) = Op(N/

√
n), we have

β̂n − βN = [Ĥ(βN )]
−1Un(βN ) + op

(
1√
n

)
= [H(βN )]

−1Un(βN ) + op

(
1√
n

)
.

This further leads to

Varπ(β̂n)=̇[H(βN )]
−1

 N∑
i=1

N∑
j=1

ij

πiπj

ziz
′
j

 [H(βN )]
−1,

where zi = (∂µ′
i/∂β)V

−1
i (yi − µi) with β = βN , ij = πij − πiπj , πi and πij are the first- and

second-order inclusion probabilities under the sampling design. An approximately design unbi-

ased variance estimator is given by

V̂arπ(β̂n) = [Ĥ(β̂n)]
−1

∑
i∈s

∑
j∈s

ij

πiπjπij

ẑiẑ
′
j

 [Ĥ(β̂n)]
−1,

where ẑi is similarly defined as zi with βN replaced by β̂n. However, this estimator requires the

knowledge of the joint inclusion probabilities πij . Under the assumption that sampling fractions

are small or negligible, the with-replacement variance formula can be used to avoid πij , resulting

in the following variance estimator:

V̂arπ(β̂n) = [Ĥ(β̂n)]
−1

 1

n − 1

n
∑
i∈s

w2
i ẑiẑ

′
i −

(∑
i∈s

wiẑi

)⊗2

 [Ĥ(β̂n)]

−1,

where A⊗2 = AA′.
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5. SIMULATION STUDIES

In this section we present results from a comprehensive simulation study. Our simulation models

and finite populations were built based on a synthetic data file from the first four cycles of

NLSCY which was briefly described in Section 1. We consider several sampling designs and

both continuous and binary responses and include several important covariates as identified by

previous studies.

5.1. Simulation Settings for Continuous Response
The response variable is the PAS of a child. By design, PAS is an ordinal variable taking values

between 0 and 12 or 16 depending on the age group. We treat PAS as a continuous variable in the

simulation. Previous studies using data from NLSCY, including Carrillo et al. (2005), Carrillo-

Garcı́a (2006), and Carrillo, Kovacevic &Wu (2006), found that factors which are significant for

PAS include the age of the child (AGE), the square of the age (AGE2), the depression score of the

person most knowledgeable about the child (DeprePMK), the punitive/aversive parenting score

(Punitive), and the child’s gender (GENDER). In the simulation we generated finite populations

from the following simpler model:

Yij = β0 + β1xij1 + β2x
2
ij1 + β3xij2 + β4xi3 + εij, (8)

where Yij is the PAS of subject i at jth cycle, xij1 is age of subject i at jth cycle, xij2 is depression

score of the PMK of subject i at jth cycle, xi3 is gender of subject i, εi = (εi1, εi2, εi3, εi4) ∼
(0, σ2R), and R is the 4 × 4 correlation matrix. The pseudo-GEE method is then applied to the

synthetic NLSCY data set which contains complete observations for 458 children, using model

(8) and unspecified correlation structure estimated by the method of moments as in Liang & Zeger

(1986). The estimated regression coefficients areβ0 = 5.6225,β1 = −1.0982,β2 = 0.0656,β3 =
0.0609, and β4 = −0.2900, with correlation matrix

R =


1 0.4123 0.3919 0.3353

0.4123 1 0.4798 0.3172

0.3919 0.4798 1 0.4370

0.3353 0.3172 0.4370 1


and dispersion parameter φ = σ2 = 3.66842.We set the parameters in our superpopulationmodel

to these values. The finite population used for our repeated simulations was generated as follows.

First, the data set of 458 children was duplicated 40 times, resulting in N = 18, 320 children with

complete information on AGE, DeprePMK, and GENDER. Values of the response variable, Yi =
(Yi1, Yi2, Yi3, Yi4), were then generated based onµi = (µi1, µi2, µi3, µi4),R and σ2 using multi-

variate normal distributions, where µij = Eξ(Yij|xij) = β0 + β1xij1 + β2x
2
ij1 + β3xij2 + β4xi3

and xij = (xij1, x
2
ij1, xij2, xi3).

We considered three sampling schemes: (i) simple random sampling (SRS) without replace-

ment; (ii) stratified simple random sampling (STSI); and (iii) cluster sampling with clusters se-

lected by simple random sampling (SIC). For stratified sampling, two strata were formulated

based on AGE at first cycle, with first stratum having N1 = 9, 000 units and the second stratum

having N2 = 9, 320 units. The stratum sample sizes were allocated as n1 = n/3 and n2 = 2n/3.

For cluster sampling, the population units were artificially grouped into clusters of sizes 5 or 10,

and the cluster effect was created by using µijc = β0 + β1xij1 + β2x
2
ij1 + β3xij2 + β4xi3 + bcj

with bcj ∼ N(0, 1). Since φ = σ2 = 3.66842, this produces a correlation coefficient of 0.2142

between any two subjects in the same cluster and cycle. The overall sample size for a particular

sampling scheme ranges from n = 120 to n = 1, 200, and sampling fractions n/N are in between
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0.65% and 6.5%. For cluster sampling, the sample sizes are random. The above numbers are

expected sample sizes.

With regard to the estimation procedure, sincewedealwith a continuous response, the point es-

timator of Section 3 is obtained as follows.We start with the initial value β(0) = (
∑

i∈s wiXiX
′
i)

−1∑
i∈s wiXiyi. Let e

(0)
it = yit − x′

itβ
(0) and R(0) = (α̂

(0)
tt′ ), where

α̂
(0)
tt′ = ĉorr(yit, yit′ ) =

∑
i∈s wie

(0)
it e

(0)
it′

φ(0)(
∑

i∈s wi − p)
and φ(0) =

∑
i∈s

∑4
t=1 wi(e

(0)
it )2∑

i∈s

∑4
t=1 wi − p

for t �= t′ and α̂
(0)
tt = 1 for t = 1, 2, 3, and 4. The (l + 1)th iteration on β is given by

β(l+1) =
(∑

s

wiXi[R(l)]−1X′
i

)−1 ∑
s

wiXi[R(l)]−1yi .

Finally, e
(l+1)
it , φ(l+1), and R(l+1) are computed at β = β(l+1).

5.2. Simulation Settings for Binary Response
In this part of the simulation the PAS was recoded as “low” (Yij = 0) if the original PAS is 1.5 or

less and recoded as “high” (Yij = 1) if the original PAS is bigger than 1.5.

For multivariate binary response, the correlation structure is better described by the odds

ratio parametrization rather than Pearson correlation. Song (2007) pointed out that “to measure

dependence between non-normal variables, there are some better tools than Pearson correlation.

For example, odds ratio (OR) is a measure of association for categorical variates.” Lipsitz, Laird

&Harrington (1991), Liang, Zeger &Qaqish (1992), and Carey, Zeger &Diggle (1993) used odds

ratios tomeasure the association amongbinary andother categorical data. For binary responses, the

odds ratio has some desirable properties and is easier to interpret than the correlation coefficient.

Let pij = P(Yij = 1 | xij). We consider the following logistic regression model to generate

binary responses for the finite population:

logit(pij) = β0 + β1xij1 + β2x
2
ij1 + β3xij2 + β4xi3. (9)

The true values of the model parameters β0, β1, β2, β3, and β4 as well as the odds ratios ORst

between responses at times s and t were obtained by fitting the logistic regression model (9)

to the complete NLSCY data set. They are given by β0 = 2.7181, β1 = −0.8959, β2 = 0.0530,

β3 = 0.0701, β4 = −0.2811, OR12 = 4.7669, OR13 = 3.9257, OR14 = 3.0930, OR23 = 5.8401,

OR24 = 4.4069 and OR34 = 6.6430. The dispersion parameter for this case is φ = 1. Values of

pij for given covariates were obtained from model (9) and binary responses Yij were generated

based on pij and the odds ratios ORst . This was done based on the Gaussian copula method as

described in Song (2000).

Once again, the three sampling schemes described in Section 5.1 were used for taking simu-

lation samples, with overall sample sizes ranging from n = 120 to n = 1, 200. For cluster sam-

pling, the clustering effect was created through pijc = {1 + exp(β0 + β1xij1 + β2x
2
ij1 + β3xij2 +

β4xi3 + bcj)}−1, with bcj ∼ N(0, 0.2).

Estimation procedures for binary response proceed as follows. Our initial value for β̂n is

β(0) = (
β
(0)
0 , 0, 0, 0, 0

)′
, where β

(0)
0 = log

{(∑
i∈s

∑4
t=1 wiyit

)
/
(∑

i∈s

∑4
t=1 wi(1 − yit)

)}
. In

other words, β
(0)
0 is the estimate of the log odds of high PAS, collapsing all four cycles of responses

and ignoring all covariates.
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We estimate the six odds ratios as

ÔRst =
∑

i∈s wiyityis · ∑i∈s wi(1 − yit)(1 − yis)∑
i∈s wiyit(1 − yis) · ∑i∈s wi(1 − yit)yis

, (10)

where st = 12, 13, 14, 23, 24, and 34.

At the lth iteration with given β(l), we let R(l)
i = (α̂ist) where

α̂ist = ĉorr(Yis, Yit) = p̂ist − µ̂isµ̂it√
µ̂is(1 − µ̂is)µ̂it(1 − µ̂it)

,

µ̂it = (1 + exp(X′
itβ

(l)))−1 and p̂ist , an estimate of Eξ(YisYit) = P(Yis = 1, Yit = 1), given for

example in Liang et al. (1992) or Lipsitz et al. (1991), has the form

p̂ist =


fist−{f 2
ist

−4ÔRst (ÔRst−1)µ̂isµ̂it}1/2
2(ÔRst−1)

if ÔRst �= 1

µ̂isµ̂it if ÔRst = 1,

with fist = 1 − (1 − ÔRst)(µ̂is + µ̂it). The updated β(l+1) is computed as

β(l) +
(∑

i∈s

wi

∂µ̂′
i

∂β(l)

[
Â
1/2
i R̂(l)

i Â
1/2
i

]−1 ∂µ̂i

∂β(l)

)−1 ∑
i∈s

wi

∂µ̂′
i

∂β(l)

[
Â
1/2
i R̂(l)

i Â
1/2
i

]−1
(yi − µ̂i),

where ∂µ̂it/∂β
(l) = µ̂it(1 − µ̂it)Xit and Âi = diag[µ̂i1(1 − µ̂i1), . . . , µ̂i4(1 − µ̂i4)].

5.3. Results
We report results for small, medium, and large sample sizes (n = 240, 720, and 1, 200) here.

More results can be found in Carrillo-Garcı́a (2008). Our simulations were programmed in the

R software package, as documented in R Development Core Team (2008), and run on a UNIX

machine with 24 CPUs. All results are based on 1,000 simulation runs.

The relative bias of the estimator β̂n is calculated as RB(β̂n) = 1, 000−1
∑1,000

k=1 (β̂
(k)
n − β)/β,

where β̂
(k)
n is the estimate of β from the kth simulated sample. The simulated relative biases of

β̂n for continuous response are summarized in Table 1 and the relative biases for binary response

are reported in Table 2.

For all three sampling schemes considered and for either continuous or binary responses, the

largest relative bias (in absolute value) is about 6%, which occurs with the smallest sample size

n = 120 (not shown here). For all other cases the largest relative bias is about 3%. For sample

sizes of 720 or bigger, the maximum relative bias is bounded by around 2%. A general trend is

that, as sample sizes increase, relative biases tend to decrease, although the pattern is not strictly

monotone.

To evaluate the performance of our proposed variance estimator, we need to find the true

variance–covariance matrix Varξπ(β̂n) for each simulation model and sampling design. We ap-

proximated this variance matrix through 1,000 independently simulated samples based on the

following formula:

Varξπ(β̂n)=̇
1

1, 000

1,000∑
k=1

(β̂
(k)
n − β)(β̂

(k)
n − β)′,
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Table 1: Relative bias of β̂n (in %) for continuous response.

Design n β0 β1 β2 β3 β4

SRS 240 −0.16 −0.12 −0.08 −0.15 −3.50

720 0.19 0.15 0.07 −0.71 0.09

1,200 0.01 −0.03 0.02 −0.56 −0.06

STSI 240 0.32 0.39 0.46 0.01 1.72

720 −0.05 −0.28 −0.37 0.34 1.42

1,200 0.06 0.14 0.22 0.52 0.67

SIC 240 −0.19 −0.12 −0.04 0.14 1.96

720 0.03 0.00 −0.03 −0.17 0.42

1,200 0.05 −0.15 −0.39 0.71 0.02

Table 2: Relative bias of β̂n (in %) for binary response.

Design n β0 β1 β2 β3 β4

SRS 240 0.47 0.17 −0.17 −1.29 −0.47

720 −0.15 −0.10 −0.12 −0.62 −0.19

1,200 0.03 0.05 0.01 −0.07 −0.74

STSI 240 1.38 1.06 1.15 0.14 3.24

720 0.24 0.24 0.13 −0.56 −1.19

1,200 −0.21 −0.18 −0.20 −0.18 0.77

SIC 240 0.84 0.90 0.97 −0.04 −1.16

720 0.25 0.25 0.21 −0.12 −1.05

1,200 0.11 −0.01 −0.09 −1.22 −1.23

where β̂
(k)
n is the estimate of β computed from the kth simulated sample. To simplify notation,

we use V = (Vlm) to denote the 5 × 5 variance matrix Varξπ(β̂n) and use V̂ = (V̂lm) to denote

the estimated variance matrix. Relative biases of the variance estimator were calculated through

another 1,000 simulated samples using the following formula:

RB(V̂lm) = 1

1, 000

1,000∑
k=1

(V̂
(k)
lm − Vlm)/(VllVmm)

1/2.

where V̂
(k)
lm is calculated from the kth simulated sample. Results on the simulated relative biases

of the variance estimator for n = 240 are reported in Table 3. Results for other sample sizes can

be found in Carrillo-Garcı́a (2008).

For the model with continuous response, the vast majority of relative biases under simple

random sampling and stratified simple random sampling is below 5%, with a few exceptions

around 7–10%. Under cluster sampling, the relative biases are generally a bit bigger, with about

one quarter of the entries around 8–11%. The observed negative or positive biases do not seem

to have a clear pattern in terms of the magnitude of the sample sizes.
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Table 3: Relative biases (in %) of variance estimators for n = 240.

Design Continuous Response Binary Response

β0 β1 β2 β3 β4 β0 β1 β2 β3 β4

SRS −8 −1

5 −2 1 −2

−3 1 −1 −1 2 −3

3 −3 3 −8 −3 2 −3 −1

5 −4 4 6 −10 0 2 −3 −2 −4

STSI −1 −1

1 −2 1 −2

0 1 −1 0 1 −1

0 4 −4 −5 0 4 −4 −5

−4 5 −5 −7 0 −4 5 −5 −7 0

SIC −8 0

8 −8 −1 2

−8 9 −9 −1 0 −1

−3 2 −2 −10 4 −5 7 −1

2 −1 1 7 −4 4 −2 3 −4 −9

For binary responses, relative biases are all smaller than 10%. However, the magnitude of

biases does not seem to be closely related to the overall sample sizes or a particular sampling

design. It is more related to the actual values of the true variance. For instance, some of the largest

relative biases are observed for simple random sampling with n = 1, 200, where the actual values

of the true variances are extremely small.

6. CONCLUDING REMARKS

The GEE methodology has been widely used in analyzing longitudinal survey data in recent

years. The use of survey weights in this type of analysis; however, is left open and is usually

at the discretion of the data analyst. In this paper we argue that a joint randomization approach

is generally appropriate for analyzing complex longitudinal survey data using the GEE method.

We have rigorously established the consistency of the proposed pseudo-GEE estimators under

the joint randomization framework. Rubin-Bleuer & Schiopu Kratina (2005) presented a simi-

lar framework for joint model and design-based inference under a more mathematical treatment

using a product probability space. We take a more pragmatic approach in this paper through a

conditional argument, conditioning on a particular order of the randomizations involved. We also

developed linearization variance estimators for general unequal probability sampling designs as-

suming that the finite population sampling fractions are small. This later development also echoes

the arguments in Binder & Roberts (2003) that design-based inference is usually appropriate even

if the goal is to make inference on superpopulation parameters.

Our extensive simulation studies showed that the pseudo-GEE estimator has excellent finite

sample performance. The proposed linearization variance estimator performs reasonably well for

most cases but the message on scenarios where relative biases are larger than (say) 8% is not clear.
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Variance estimation using replication weights has been a popular topic among survey researchers,

especially those from Statistics Canada and other large organizations.We are currently examining

re-sampling variance estimation techniques for the pseudo-GEE estimator.

The pseudo-GEE method can be extended to handle cases where there are missing values for

the response variable. This can be done either by re-weighting the estimating equations using the

response probabilities or through imputation. These results will be reported elsewhere.
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