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This article presents a pseudo–empirical likelihood approach to inference for multiple-frame surveys. We establish a unified framework
for point and interval estimation of finite population parameters, and show that inferences on the parameters of interest making effec-
tive use of different types of auxiliary population information can be conveniently carried out through the constrained maximization of
the pseudo–empirical likelihood function. Confidence intervals are constructed using either the asymptotic χ2 distribution of an adjusted
pseudo–empirical likelihood ratio statistic or a bootstrap calibration method. Simulation results based on Statistics Canada’s Family Ex-
penditure Survey data show that the proposed methods perform well in finite samples for both point and interval estimation. In particular,
a multiplicity-based pseudo–empirical likelihood method is proposed. This method is easily used for multiple-frame surveys with more
than two frames and does not require complete frame membership information. The proposed pseudo–empirical likelihood ratio confidence
intervals have a clear advantage over the conventional normal approximation–based intervals in estimating population proportions of rare
items, a scenario that often motivates the use of multiple-frame surveys. All related computational problems can be handled using existing
algorithms for pseudo–empirical likelihood methods with single-frame surveys.
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1. INTRODUCTION

Multiple-frame surveys are widely used by large statistical
agencies and business organizations to decrease sampling costs
or to reduce frame undercoverage errors that could occur with
the use of only a single sampling frame. The Canadian Commu-
nity Health Survey (CCHS), a cross-sectional survey that col-
lects information related to health status, health system utiliza-
tion, and health determinants for the Canadian population, uses
a three-frame sampling design. The primary sampling frame is
the area frame initially designed for the Canadian Labour Force
Survey (LFS). A Random Digit Dialing sampling frame and a
list frame of residential telephone numbers are also used to in-
crease the frame coverage of the target population. In multiple-
frame surveys, two or more population frames are available,
each of which can be incomplete, but together they are assumed
to cover the entire target population. Independent probability
samples, one from each frame, are taken, and the goal is to make
inference on the overall population parameters of interest using
the combined sample data. When the sample data are collected
using two frames, the problem is referred to as a dual-frame
survey.

Multiple-frame surveys have been studied by several authors,
with primary focus on point estimation (see Hartley 1962, 1974;
Fuller and Burmeister 1972; Bankier 1986; Kalton and Ander-
son 1986; Skinner 1991; Skinner and Rao 1996). Lohr and Rao
(2000) studied variance estimation for dual-frame surveys us-
ing the jackknife method and examined the performance of
the associated normal approximation–based confidence inter-
vals through simulation. Lohr and Rao (2006) derived optimal
linear estimators and pseudo–maximum likelihood estimators
for the population total when samples were taken independently
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from multiple frames (more than two) using probability sam-
pling designs. They also provided a short discussion on variance
estimation and showed that the asymptotic variance of their pro-
posed estimators has a very complex form. Confidence intervals
under multiple-frame surveys have not yet been studied in de-
tail, however. Moreover, the systematic use of known auxiliary
population information has not been investigated.

Empirical likelihood method was first introduced by Owen
(1988) as a nonparametric inference tool for independent and
identically distributed observations. For single-frame com-
plex survey data, Chen and Sitter (1999) proposed a pseudo–
empirical likelihood approach and discussed point estimation in
the context of using auxiliary population information. Pseudo–
empirical likelihood ratio confidence intervals for single-frame
surveys were studied by Wu and Rao (2006). In this article we
present a pseudo–empirical likelihood (PEL) approach to in-
ference from multiple-frame surveys. Our proposed approach
addresses both point estimation and confidence intervals, and
known auxiliary population information can be conveniently
incorporated into inferences through constrained maximization
of the PEL function. Confidence intervals for the population
mean or the finite population distribution function can be con-
structed using either a χ2 approximation to the adjusted PEL
ratio statistics or a bootstrap calibration method. The χ2 ap-
proximation requires calculation of design effects, which in-
volves variance estimation. The bootstrap method, on the other
hand, bypasses the need for variance estimation and is valid for
single-stage sampling designs with small sampling fractions.
Simulation studies show that the bootstrap method performs
well even when the sampling fractions are not very small. Our
proposed multiplicity-based PEL approach is particularly ap-
pealing because it does not require complete frame membership
information and is very easy to use for multiple- (i.e., more than
two) frame surveys. It also provides superior results on both
point and interval estimation. Our proposed PEL ratio confi-
dence intervals have a clear advantage over the conventional
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normal approximation–based intervals in estimating population
proportions of rare items, a scenario that often motivates the
use of multiple-frame surveys. All required computational pro-
cedures for the proposed methods on multiple-frame surveys
can be handled using existing procedures for single-frame sur-
veys after suitable reformulation of the involved maximization
problem.

In Section 2 we present PEL methods for dual-frame surveys
based on poststratified samples. Generalization of this approach
to multiple-frame surveys is possible, but is heavy and cumber-
some in notation. The approach also requires complete frame
membership information and correct partitioning of samples
into domains defined by the multiple frames. In Section 3 we
present a multiplicity-based PEL approach, which not only re-
quires less detailed frame membership information, but also in-
volves no additional difficulty or notational complexity in deal-
ing with general multiple-frame surveys. We present a bootstrap
calibration method for confidence intervals in Section 4. In Sec-
tion 5 we report results from an extensive simulation study,
using data from Statistics Canada’s Family Expenditure Sur-
vey, on the finite-sample performances of our proposed meth-
ods compared with existing approaches. We provide some con-
cluding remarks in Section 6. Proofs and regularity conditions
are given in the Appendix.

2. PSEUDO–EMPIRICAL LIKELIHOOD INFERENCE
FOR DUAL–FRAME SURVEYS

In this section we present PEL methods for dual-frame sur-
veys based on poststratified samples. We first describe the basic
setting for dual-frame surveys, following the classical works of
Hartley (1962, 1974; see also Skinner and Rao 1996 and Lohr
and Rao 2000, 2006). Let A and B denote two sampling frames.
Both frames can be incomplete, but it is assumed that together
they cover the entire finite population, U . Let A be the set of
population units in frame A and B be the set of population units
in frame B. The population of interest, U , may be divided into
three mutually exclusive domains, a = A ∩ Bc, b = Ac ∩ B, and
ab = A ∩ B, such that U = A ∪ B = a∪b∪ab. Note that Ac and
Bc denote complement sets of A and B. Let N, NA, NB, Na, Nb,
and Nab be the number of population units in U , A, B, a, b, and
ab, respectively. It follows that NA = Na +Nab, NB = Nb +Nab,
and N = Na +Nb +Nab = NA +NB −Nab. Let Ȳ , Ȳa, Ȳb, and Ȳab
denote the population or domain means of the response variable
y for U , a, b, and ab, respectively. It follows that

Ȳ = Na

N
Ȳa + Nb

N
Ȳb + Nab

N
Ȳab. (2.1)

The main objective is to make inference about Ȳ using dual-
frame samples as well as any available auxiliary population in-
formation. This problem depends crucially on what is known
about NA, NB, and Nab, however.

We consider three special cases:

1. NA, NB, and Nab are all known
2. NA and NB are known but Nab is unknown
3. NA, NB, and Nab are all unknown.

Skinner and Rao (1996) addressed practical situations in which
these three cases may arise. We focus on the first case and pro-
vide brief discussions on how to extend the proposed method to
the second and third cases.

Case 1: NA, NB, and Nab All Known

We first consider scenarios in which none of the two frames
is complete and hence Na > 0 and Nb > 0. The sample of size
nA taken from frame A is denoted by SA, and the first-order
inclusion probabilities are denoted by πAi = P(i ∈ SA); SB, πBi,
and nB are defined similarly for the sample from frame B. The
two samples SA and SB are independent. Frame A sample SA
can be poststratified as SA = Sa ∪ Sab over the two domains
a and ab, where Sa = a ∩ SA and Sab = SA ∩ (ab). Similarly,
frame B sample SB can be poststratified as SB = Sb ∪ Sba over
the two domains b and ab, where Sb = b ∩ SB and Sba = SB ∩
(ab). Note that both Sab and Sba are from the common domain
ab, but Sab is part of the frame A sample and Sba is part of the
frame B sample. This notation differs from the notation S ′

ab and
S ′′

ab used by Hartley (1962) and others.
If no auxiliary information is involved at the estimation stage

and if the goal is to obtain a point estimator of Ȳ , then the prob-
lem essentially reduces to estimating the domain mean Ȳab us-
ing two independent samples Sab and Sba, plus an estimator of
Ȳa using Sa and an estimator of Ȳb using Sb. The final estima-
tor of Ȳ can then be obtained using (2.1). The PEL approach
that we propose here will simultaneously achieve three major
goals: (1) obtain a point estimator of Ȳ , (2) incorporate auxil-
iary population information, (3) construct confidence intervals
on Ȳ .

Although Sab and Sba should be viewed as two independent
samples from the same domain ab, it is strategically more con-
venient to create a duplicate domain ba = B ∩ A, which is iden-
tical to ab = A ∩ B, and to view Sab as a sample from ab and
Sba as a sample from ba. We can then rewrite Ȳ as an overall
population mean over four strata, i.e.,

Ȳ = WaȲa + Wab(η)Ȳab + Wba(η)Ȳba + WbȲb,

where Wa = Na/N, Wab(η) = ηNab/N, Wba(η) = (1 − η)Nab/

N, Wb = Nb/N, Ȳba = Ȳab, and η ∈ (0,1) is a fixed con-
stant to be specified. Note that Wab(η)Ȳab + Wba(η)Ȳba =
(Nab/N)Ȳab for any η. The dual-frame samples SA and SB
can be simply combined into a single “poststratified sample”
(Sa, Sab, Sba, Sb), with “poststratum” sample sizes (na,nab,

nba,nb). Note that nA = na + nab and nB = nb + nba.
Following the stratified formulation of the PEL approach de-

scribed by Wu and Rao (2006), we define the PEL function for
dual-frame samples as

lD(pa,pab,pba,pb)

= nD

{
Wa

∑
i∈Sa

d̃ai(Sa) log(pai)

+ Wab(η)
∑

i∈Sab

d̃abi(Sab) log(pabi)

+ Wba(η)
∑

i∈Sba

d̃bai(Sba) log(pbai)

+ Wb

∑
i∈Sb

d̃bi(Sb) log(pbi)

}
, (2.2)

where nD = nA + nB, d̃ai(Sa) = dAi/
∑

i∈Sa
dAi, d̃abi(Sab) =

dAi/
∑

i∈Sab
dAi, dAi = 1/πAi; d̃bi(Sb) and d̃bai(Sba) are de-

fined similarly. The four sets of probability measures, pa =
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(pa1, . . . ,pana)
′, pab = (pab1, . . . ,pabnab)

′, pba = (pba1, . . . ,

pbanba)
′, and pb = (pb1, . . . ,pbnb)

′, correspond to poststratified
samples Sa, Sab, Sba, and Sb, respectively.

The set of normalization constraints under the current formu-
lation is specified as∑

i∈Sa

pai = 1,
∑

i∈Sab

pabi = 1,

(2.3)∑
i∈Sba

pbai = 1, and
∑
i∈Sb

pbi = 1.

The constraint induced by the common domain mean Ȳba = Ȳab

is given by ∑
i∈Sab

pabiyi =
∑

j∈Sba

pbajyj. (2.4)

The maximum PEL estimator of Ȳ based on this poststratified
formulation is computed as

ˆ̄YP = Wa
ˆ̄Ya + Wab(η) ˆ̄Yab + Wba(η) ˆ̄Yba + Wb

ˆ̄Yb, (2.5)

where ˆ̄Ya = ∑
i∈Sa

p̂aiyi, ˆ̄Yab = ∑
i∈Sab

p̂abiyi, ˆ̄Yba =∑
i∈Sba

p̂baiyi = ˆ̄Yab due to constraint (2.4), and ˆ̄Yb =∑
i∈Sb

p̂biyi, with p̂ai, p̂abi, p̂bai, and p̂bi maximizing lD(pa,pab,

pba,pb) subject to constraints (2.3) and (2.4). Note that ˆ̄YP also

can be written as ˆ̄YP = Wa
ˆ̄Ya + (Nab/N) ˆ̄Yab + Wb

ˆ̄Yb, and the

choice of η only affects the estimator ˆ̄Yab for the population
mean of the overlapping domain, Ȳab.

Proposition 1. Under regularity conditions C1–C3 specified
in Section A.1 and assuming that nab → ∞, nba → ∞ and
nab/(nab + nba) → c0 ∈ (0,1) as nA → ∞ and nB → ∞, we

have ˆ̄Yab = η ˆ̄YabH + (1 − η) ˆ̄YbaH + op(m−1/2), where ˆ̄YabH =∑
i∈Sab

d̃abi(Sab)yi and ˆ̄YbaH = ∑
i∈Sba

d̃bai(Sba)yi are the “Há-
jek estimators” of Ȳab and m = max{nab,nba}.

An optimal choice of η that minimizes the asymptotic vari-

ance of ˆ̄Yab is given by

ηo = VB( ˆ̄YbaH)/{VA( ˆ̄YabH) + VB( ˆ̄YbaH)}, (2.6)

where VA and VB denote variances under frame A and frame B
sampling designs, respectively. A consistent estimator η̂o can be
obtained by substituting in (2.6) consistent variance estimators

vA( ˆ̄YabH) and vB( ˆ̄YbaH). Under regularity condition C2 speci-

fied in Section A.1, we have ˆ̄YabH = Ȳab + N−1
ab

∑
i∈SA

dAizAi +
op(n

−1/2
A ), where zAi = yi − Ȳab if i ∈ Sab and zAi = 0 if i ∈ Sa,

and a linearization variance estimator vA( ˆ̄YabH) is readily ob-

tained. Similar procedures can be applied to obtain vB( ˆ̄YbaH).
The asymptotic optimality remains valid when ηo is replaced

by η̂o, because {η̂o
ˆ̄YabH + (1 − η̂o)

ˆ̄YbaH} = {ηo
ˆ̄YabH + (1 −

ηo)
ˆ̄YbaH} + op(m−1/2). Noting that ˆ̄Ya = ˆ̄YaH and ˆ̄Yb = ˆ̄YbH

are both Hájek estimators, we have

V( ˆ̄YP)
.= VA{Wa

ˆ̄YaH + Wab(ηo)
ˆ̄YabH}

+ VB{Wb
ˆ̄YbH + Wba(ηo)

ˆ̄YbaH}. (2.7)

A linearization variance estimator, v( ˆ̄YP), can be derived along
the lines of calculating the design effect presented in Sec-
tion A.3.

The estimator η̂o depends on the variable y except in the case
of simple random sampling from both frames. Skinner and Rao
(1996) suggested replacing ηo by

ηP = NaNBVB(N̂ba)/{NbNAVA(N̂ab) + NaNBVB(N̂ba)}, (2.8)

where N̂ab = ∑
i∈Sab

dAi and N̂ba = ∑
i∈Sba

dBi (see also Lohr

and Rao 2000, eq. 3). Noting that N̂ab = ∑
i∈SA

dAizAi, where

zAi = 1 if i ∈ Sab and zAi = 0 otherwise, an estimator vA(N̂ab)

of VA(N̂ab) can be obtained using a standard variance formula.
Similarly, an estimator vB(N̂ba) of VB(N̂ba) can be obtained,
leading to a consistent estimator η̂P of ηP. A linearization vari-

ance estimator of the resulting estimator, ˆ̄YP, can be obtained
along the lines of (2.7) by substituting η̂P for ηo.

We now consider the PEL ratio confidence intervals on Ȳ ,
treating η = ηo as fixed. Let p̃a(θ), p̃ab(θ), p̃ba(θ), and p̃b(θ)

be the maximizer of lD(pa,pab,pba,pb) under the constrains
(2.3), (2.4) and the following additional constraint induced by
the parameter of interest, Ȳ :

Wa

∑
i∈Sa

paiyi + Wab(ηo)
∑

i∈Sab

pabiyi

+ Wba(ηo)
∑

i∈Sba

pbaiyi + Wb

∑
i∈Sb

pbiyi = θ (2.9)

for a fixed θ . The PEL ratio statistic is given by

rD(θ) = −2
{
lD(p̃a(θ), p̃ab(θ), p̃ba(θ), p̃b(θ))

− lD(p̂a, p̂ab, p̂ba, p̂b)
}
. (2.10)

Let deffP be the estimated design effect. We then have the fol-
lowing result concerning the asymptotic distribution of rD(θ).

Theorem 1. Under regularity conditions C1–C3 specified
in Section A.1, the adjusted PEL ratio statistic r[a]

D (θ) =
rD(θ)/deffP converges in distribution to a χ2 random variable
with 1 degree of freedom when θ = Ȳ .

A sketch of proof of Theorem 1 and details on how to calcu-
late deffP are given in Section A.3. A (1 − α)-level confidence
interval on Ȳ can be constructed as Ca = {θ |r[a]

D (θ) < χ2
1 (α)},

where χ2
1 (α) is the (1 − α)th quantile of the χ2 distribution

with 1 degree of freedom.
One major advantage of the PEL approach is that known

auxiliary population information can be incorporated into in-
ference through additional constraints. Suppose that X̄A is the
vector of known frame A population means of auxiliary vari-
ables xA. This frame-specific information can be incorporated
through the constraint

Na

NA

∑
i∈Sa

paixAi + Nab

NA

∑
j∈Sab

pabjxAj = X̄A. (2.11)

If X̄B specific to frame B is also available, then a set of con-
straints similar to (2.11) can be included as well. A key tech-
nical argument used here for both asymptotic development and
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computational procedures is to reformulate all involved con-
straints using the formulation for stratified sampling. For this
purpose, we rewrite (2.11) as

Wa

∑
i∈Sa

paixAi + Wab(ηo)
∑

i∈Sab

pabi
xAi

ηo

+ Wba(ηo)
∑

i∈Sba

pbai · 0 + Wb

∑
i∈Sb

pbi · 0 = XA

N
, (2.12)

where XA = NAX̄A is the frame A population total. Suppose
that, in addition to frame-specific information, the overall pop-
ulation mean X̄ of x is also known and the xi are observed on
both samples SA and SB. This information can be used through
the constraints

Wa

∑
i∈Sa

paixi + Wab(ηo)
∑

i∈Sab

pabixi

+ Wba(ηo)
∑

i∈Sba

pbaixi + Wb

∑
i∈Sb

pbixi = X̄ (2.13)

and ∑
i∈Sab

pabixi =
∑

i∈Sba

pbaixi. (2.14)

Note that constraint (2.14) also can be rewritten as

Wa

∑
i∈Sa

pai · 0 + Wab(ηo)
∑

i∈Sab

pabi
xi

ηo

+ Wba(ηo)
∑

i∈Sba

pbai
−xi

1 − ηo
+ Wb

∑
i∈Sb

pbi · 0 = 0. (2.15)

For point estimation or computation of the unadjusted PEL
ratio function rD(θ), we simply include (2.12), (2.13), and
(2.15) as part of the maximization process. For PEL ratio
confidence intervals where the design effect deffP is needed,
we augment the zi variable defined in Section A.3 to include
variables appearing on the left side of those equations and
augment Z̄ to include variables appearing on the right side
of those equations. For instance, if constraint (2.12) is in-
cluded, then Z̄ = (Wa,Wab(ηo),Wba(ηo),0, (XA/N)′)′ and zi =
(z1i, z2i, z3i, z4i, z′

5i)
′, where zhi, h = 1,2,3,4, are as defined in

Section A.3 and z5i = xAi if i ∈ Sa, z5i = xAi/ηo if i ∈ Sab, and
z5i = 0 if i ∈ Sba or i ∈ Sb.

A practically important application of Case 1 occurs when
frame A is complete, frame B is incomplete, and both NA and
NB are known. In this case Nab = NB, Na = NA − NB, and
Nb = 0. Consequently, Wb = 0, Sba = SB, and Sb = ∅. All
terms involving Sb disappear from previous formulas, includ-
ing the definition of the PEL function lD(pa,pab,pba,pb).

Case 2: NA and NB Known but Nab Unknown

The unknown Nab can be estimated by N̂ab,P = φ̂N̂ab +
(1 − φ̂)N̂ba, where N̂ab = ∑

i∈Sab
dAi, N̂ba = ∑

i∈Sba
dBi, and

φ̂ = vB(N̂ba)/{vA(N̂ab) + vB(N̂ba)} (see Lohr and Rao 2000,
eq. 4). For asymptotic development, φ̂ can be replaced by
φ = VB(N̂ba)/{VA(N̂ab)+ VB(N̂ba)}; that is, φ̂ can be viewed as
fixed. Under the current case, the PEL function lD(pa,pab,pba,

pb) as well as constraints involved must be modified from

Case 1 by making the following changes: Replace Wa, Wab(ηo),
Wba(ηo), and Wb by Ŵa = N̂a,P/N̂P, Ŵab(ηo) = ηoN̂ab,P/N̂P,
Ŵba(ηo) = (1 −ηo)N̂ab,P/N̂P, and Ŵb = N̂b,P/N̂P, respectively,
where N̂P = NA + NB − N̂ab,P, N̂a,P = NA − N̂ab,P, and N̂b,P =
NB − N̂ab,P.

It can be seen that all technical arguments under the cur-
rent setting parallel those of Case 1, with the only major dif-
ference involving variance estimation and calculation of the de-
sign effect, deffP. The maximum PEL estimator of Ȳ is given by
ˆ̄YP = ŶP/N̂P, where ŶP = (NA − N̂ab,P) ˆ̄Ya + N̂ab,P

ˆ̄Yab + (NB −
N̂ab,P) ˆ̄Yb. A tedious but straightforward linearization procedure
leads to

V( ˆ̄YP)
.= N−2

{
VA

(∑
i∈SA

dAizAi

)
+ VB

(∑
i∈SB

dBizBi

)}
, (2.16)

where zAi = yi − Ȳa if i ∈ Sa, zAi = ηo(yi − Ȳab)+φk if i ∈ Sab,
zBi = yi − Ȳb if i ∈ Sb, zBi = (1 − ηo)(yi − Ȳab) + (1 − φ)k if
i ∈ Sba, and k = Ȳ − Ȳa − Ȳb + Ȳab. The final variance estimator,

v( ˆ̄YP), then can be derived based on (2.16).
The variance part involved in calculating the design effect

deffP for Case 2 (outlined in Section A.3 for Case 1) is now
given by V(

∑4
h=1 Ŵh

∑
i∈Sh

d̃hiri)
.= N−2{VA(

∑
i∈SA

dAizAi) +
VB(

∑
i∈SB

dBizBi)}, where zAi and zBi are defined similarly as in
(2.16), with yi replaced by ri and Ȳ , Ȳa, Ȳb, and Ȳab replaced by
the corresponding population means for the r-variable.

Case 3: NA, NB, and Nab All Unknown

The unknown frame population sizes NA and NB can be es-
timated by N̂A = ∑

i∈SA
dAi and N̂B = ∑

i∈SB
dBi, Nab is esti-

mated by N̂ab,P as in Case 2, and N is estimated by N̂P = N̂A +
N̂B − N̂ab,P. The maximum PEL estimator of Ȳ is now given

by ˆ̄YP = ŶP/N̂P, where ŶP = (N̂A − N̂ab,P) ˆ̄Ya + N̂ab,P
ˆ̄Yab +

(N̂B − N̂ab,P) ˆ̄Yb. A linearization variance estimator can be de-
rived based on (2.16), where zAi = yi − Ȳ if i ∈ Sa, zAi = ηo(yi −
Ȳab)+ (1 −φ)(Ȳa − Ȳ)+φ(Ȳab − Ȳb) if i ∈ Sab, zBi = yi − Ȳ if
i ∈ Sb, zBi = (1−ηo)(yi − Ȳab)+φ(Ȳb − Ȳ)+ (1−φ)(Ȳab − Ȳa)

if i ∈ Sba. The estimated design effect deffP can be computed
similarly.

3. A SINGLE–FRAME MULTIPLICITY–BASED
APPROACH TO MULTIPLE–FRAME SURVEYS

In this section we present a single-frame multiplicity-based
PEL approach to inferences from multiple-frame surveys. The
method requires less information on frame membership details
and is generally applicable to Q-frame (Q ≥ 2) survey samples.

Suppose that there are Q frames, denoted by A1, . . . ,AQ,
Q ≥ 2. These frames make a partition of the overall population
into possibly 2Q − 1 nonoverlapping domains. All existing ap-
proaches, including the PEL method presented in Section 2, re-
quire that the domain membership be correctly identified for all
sampled units. This information is not always available, how-
ever. A partial membership information, termed multiplicity,
which is the number of frames to which a particular unit be-
longs, often can be obtained with some minor effort during the
data collection process (Mecatti 2007).

Let S1, . . . , SQ be Q independent samples drawn from the
Q frames. Let {(yqi,xqi), i ∈ Sq}, q = 1, . . . ,Q be the Q-frame
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survey samples, where yqi is the common response variable
attached to unit i on frame Aq and xqi is a vector of auxil-
iary variables that are not necessarily common across differ-
ent frames. Let dqi = 1/πqi be the design weights associated
with frame Aq, where πqi = P(i ∈ Sq) are the first-order inclu-
sion probabilities for the frame Aq sampling design. Let Aq be
the set of all units in frame Aq and U = {1,2, . . . ,N} be the
complete set of units for the overall finite population of size
N. Any frame-specific unit (qi) corresponds to a unique j ∈ U .
The key concept here is the so-called multiplicity, mqi, defined
as the number of frames to which unit i in frame Aq belongs.
For dual-frame surveys, mqi = 1 if i ∈ a or i ∈ b and mqi = 2
if i ∈ ab. For Q > 2, this information is less demanding than
the specific domain membership and may be possible to ob-
tain without much difficulty. It is straightforward to show that∑Q

q=1

∑
i∈Aq

yqi/mqi = ∑N
j=1 yj = Y . A design-unbiased esti-

mator of the population total Y is given by

ŶM =
Q∑

q=1

∑
i∈Sq

dqi
yqi

mqi
. (3.1)

The foregoing approach is equivalent to pooling together the Q
frames into a single frame that keeps all duplicated units and
replacing yqi by yqi/mqi. This amounts to letting the value of
response variable yqi be shared by the mqi frames to which unit
qi belongs. The idea of variable sharing was first used by Rao
(1968) to handle a single frame with an unknown amount of
duplication. An unbiased estimator of the overall population
size N is given by N̂M = ∑Q

q=1

∑
i∈Sq

dqi/mqi, and the Hájek

estimator of the population mean is given by ˆ̄YH = ŶM/N̂M .
The single-frame variable sharing estimator ŶM , given in (3.1),
also can be viewed from a different angle. If we rewrite the
estimator as ŶM = ∑Q

q=1

∑
i∈Sq

(dqi/mqi)yqi, then it is the so-
called weight sharing estimator (Lavallee 2007). The basic de-
sign weight dqi attached to unit i in frame Aq is shared by the
same unit on all mqi different frames.

We define the single-frame multiplicity-based PEL function
for the Q-frame survey samples as

lM(p1, . . . ,pQ) = nM

N̂M

Q∑
q=1

∑
i∈Sq

dqi

mqi
log(pqi), (3.2)

where nM = ∑Q
q=1 nq, and nq is the size of sample Sq from

frame Aq, pq = (pq1, . . . ,pqnq)
′ is the set of probability mea-

sures attached to sample Sq, q = 1, . . . ,Q. Ignoring the mul-
tiplying constant nM/N̂M , lM(p1, . . . ,pQ) is a design-unbiased
estimator of the census log-likelihood,

∑N
i=1 log(pi). In the ab-

sence of auxiliary population information, maximizing lM(p1,

. . . ,pQ) subject to

Q∑
q=1

∑
i∈Sq

pqi = 1 (3.3)

gives p̂qi = (dqi/mqi)/N̂M . The maximum PEL estimator of Ȳ ,

computed as ˆ̄YM = ∑Q
q=1

∑
i∈Sq

p̂qiyqi, is identical to the Hájek

estimator ˆ̄YH = ŶM/N̂M . For dual-frame surveys, the estimator
ˆ̄YM is asymptotically equivalent to the poststratified maximum

PEL estimator ˆ̄YP for the case of NA, NB, and Nab all unknown
and the choice of η = φ = 1/2. Thus the multiplicity-based esti-
mator is not necessarily optimal under dual-frame surveys. The
major advantage of the approach is its simplicity in handling
general Q-frame surveys.

Let the p̃qi(θ) be the maximizers of lM(p1, . . . ,pQ) under the
constraint (3.3) and

Q∑
q=1

∑
i∈Sq

pqiyqi = θ (3.4)

for a fixed θ . The multiplicity-based PEL ratio function for the
population mean Ȳ is defined as

rM(θ) = −2
{
lM(p̃1(θ), . . . , p̃Q(θ)) − lM(p̂1, . . . , p̂Q)

}
. (3.5)

Let deffM be the design effect associated with ˆ̄YH ; see Sec-
tion A.4 for details. Let C1∗ and C2∗ be regularity conditions
similar to C1 and C2 given in Section A.1 but extended from
dual frames to multiple frames. We then have the following re-
sult concerning the asymptotic distribution of rM(θ).

Theorem 2. Under regularity conditions C1∗ and C2∗, the
adjusted PEL ratio statistic r[a]

M (θ) = rM(θ)/deffM converges in
distribution to a χ2 random variable with 1 degree of freedom
when θ = Ȳ .

The proof of Theorem 2 is similar to that of theorem 1 of Wu
and Rao (2006) for single-frame surveys and is omitted here.
Note that Theorem 2 holds even if some of the frames involved
are complete, because whether a frame is complete or incom-
plete has no direct consequences on conditions C1∗ and C2∗. If
the vector of the overall population mean X̄ of common auxil-
iary variables x is known and xqi is observed in all samples Sq,
q = 1, . . . ,Q, then this information can be conveniently used
through the constraint

Q∑
q=1

∑
i∈Sq

pqixqi = X̄. (3.6)

A result similar to Theorem 2 can be established when con-
straint (3.6) is included in calculating both p̂qi and p̃qi(θ). The
design effect in this case is denoted as deffGR(M) and is related
to a generalized regression estimator of Ȳ .

4. BOOTSTRAP CALIBRATED PEL RATIO
CONFIDENCE INTERVALS

Construction of PEL ratio confidence intervals based on The-
orems 1 and 2 requires consistent estimation of the design ef-
fects deffP and deffM , which involves variance estimation, as
detailed in Sections A.3 and A.4. This problem can be alleviated
through a bootstrap calibration method. Wu and Rao (2010)
described bootstrap procedures for the PEL method involving
single-frame surveys. Their proposed procedure for stratified
sampling is directly applicable to dual-frame surveys under the
poststratified formulation for the case of NA, NB, and Nab all
known. Simulation results seem to indicate that the procedure
works for the case of unknown Nab as well.

For the single-frame multiplicity-based PEL approach to
multiple-frame surveys, the bootstrap procedure of Wu and Rao
(2010) for nonstratified sampling designs can be applied with
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some minor modifications. First, both the design weights dqi

and the multiplicity mqi need to be treated as part of the qth
frame sample data. Bootstrap samples selected from the qth
frame sample are in the form of {(d∗

qi,m∗
qi, y∗

qi,x∗
qi), i ∈ S ∗

q },
where S ∗

q is a set of nq units selected from Sq using simple ran-
dom sampling with replacement. Second, the bootstrap version
of the PEL function specified in (3.2) is given by

l∗M(p1, . . . ,pQ) = nM

N̂∗
M

Q∑
q=1

∑
i∈S ∗

q

d∗
qi

m∗
qi

log(pqi), (4.1)

where N̂∗
M = ∑Q

q=1

∑
i∈S ∗

q
d∗

qi/m∗
qi. Bootstrap versions of the

constraints (3.4) and (3.6) can be defined similarly as

Q∑
q=1

∑
i∈S ∗

q

pqiy
∗
qi = ˆ̄YM (4.2)

and

Q∑
q=1

∑
i∈S ∗

q

pqix∗
qi = X̄. (4.3)

A bootstrap calibrated PEL ratio confidence interval on Ȳ is
constructed as C∗

u = {θ |rM(θ) < b∗
α}, where b∗

α is the (1 − α)th
quantile of the unadjusted PEL ratio statistic rM(θ) at θ = Ȳ
and can be approximated by the (1 − α)th sample quantile of
(r[1]

M (Ȳ), . . . , r[K]
M (Ȳ)) obtained from K independent bootstrap

samples.
The foregoing bootstrap calibration method bypasses the

need for calculating the design effects and hence avoids vari-
ance estimation. The method is valid for single-stage unequal-
probability sampling designs for all frames with small sampling
fractions. When a multistage clustering sampling design is used
for any of the sampling frames, bootstrap procedures are not
readily available, and further research is needed.

5. SIMULATION STUDIES

We conducted an extensive simulation study to examine the
finite-sample performances of the proposed PEL methods for
two- and three-frame surveys. Both point estimators and con-
fidence intervals were considered. In particular, we considered
single-stage unequal probability sampling designs and included
the bootstrap-calibrated PEL ratio confidence intervals as part
of the study. Our simulations were programmed in R using al-
gorithms developed by Chen, Sitter, and Wu (2002) and Wu
(2004, 2005).

We first considered dual-frame surveys using a synthetic fi-
nite population created from Statistics Canada’s 2000 Family
Expenditure Survey in the province of Ontario. The original
data set contains 2396 sampled households with measures on
y: total expenditure, x1: total income, x2: number of people in
the household, x3: number of children (under 15 years old), and
several other variables. We created frame A population by in-
cluding all households with at least one child. This frame may
be viewed as the list of households on government’s child tax
benefit program. Frame B population consisted of households
with no more than three people. The resulting population sizes

for the two frames are NA = 1007 and NB = 1724, and the over-
all population size is N = 2248. The three domain sizes are
Na = 524, Nb = 1241, and Nab = 483.

Samples from frame A were selected by the Rao–Sampford
PPS sampling method (Rao 1965; Sampford 1967), with inclu-
sion probabilities proportional to the household’s total income
(x1). Samples from frame B were taken by simple random sam-
pling without replacement. Our focus is on estimating the pop-
ulation mean, Ȳ = N−1 ∑N

i=1 yi, of household’s total expendi-
ture, y. The population correlation coefficient between the re-
sponse variable y, and the design variable x1 is 0.8. The PPS
sampling design used here is highly efficient in estimating Ȳ ,
and the design effect over simple random sampling is larger
than 3. This is a common scenario for dual-frame surveys where
the two sampling designs are often very different.

Among existing estimators for dual-frame surveys, the opti-

mal pseudo–maximum likelihood (PML) estimator ˆ̄YPML, pro-
posed by Skinner and Rao (1996), is the most competitive one.
It is applicable to surveys with complex designs. We included
this estimator in the simulation for the purpose of comparison.

For each simulated dual-frame sample (SA, SB) of size (nA,

nB), we computed five point estimators of Ȳ : (1) PML(Nab):
the optimal PML estimator, assuming the domain population
size Nab is known, (2) PML(N̂ab): the optimal PML estima-
tor, using the estimated domain size N̂ab given by Skinner
and Rao (1996), (3) PEL(Nab): the maximum PEL estimator
based on the poststratified formulation, assuming Nab is known,
(4) PEL(N̂ab): the maximum PEL estimator with Nab estimated
by N̂ab,P, (5) PEL(M): the maximum PEL estimator under the
multiplicity-based formulation. For the two poststratified PEL
estimators PEL(Nab) and PEL(N̂ab), the asymptotically optimal
estimator η̂o is used. Note that Nab is not required for PEL(M).

Frame A sample sizes were chosen as nA = 50 and 100,
corresponding to frame A sampling fractions of 5% and 10%.
Frame B sample sizes were chosen at three levels as nB = 50,
100, and 150, corresponding to sampling fractions 3%, 6%,
and 9%. Simulated relative bias (RB%) and mean squared er-
ror (MSE) for the five estimators and five combinations of the
sample sizes (nA,nB) are presented in Table 1, based on 1000
simulation runs. Table 1 shows that all five estimators are vir-
tually unbiased, with the largest absolute relative bias equal to
0.7%. For a given sample size (nA,nB), MSE’s of the five esti-
mators are also very close to one another.

We now turn to the construction of confidence intervals on
Ȳ . For each simulated dual-frame sample of size (nA,nB), we
computed five confidence intervals: (1) PML(N̂ab), NA: the in-
terval based on normal approximations (NA) using the PML
estimator and its estimated variance (Skinner and Rao 1996,
sec. 6), (2) PEL(N̂ab), χ2: the PEL ratio confidence interval
based on the asymptotic χ2 distribution of the adjusted PEL ra-
tio function under the poststratified formulation (Theorem 1 of
Section 2), (3) PEL(N̂ab), BT: the PEL ratio confidence interval
based on bootstrap (BT) calibration to the unadjusted PEL ratio
function under the poststratified formulation, (4) PEL(M), χ2:
the multiplicity-based PEL ratio confidence interval using the
asymptotic χ2 distribution of the adjusted PEL ratio function
(Theorem 2 of Section 3), (5) PEL(M), BT: the multiplicity-
based PEL ratio confidence interval using bootstrap calibration
to the unadjusted PEL ratio function. The estimated domain
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Table 1. Simulated RB% and MSE of dual-frame estimators

nA nB PML(Nab) PML(N̂ab) PEL(Nab) PEL(N̂ab) PEL(M)

50 50 RB% −0.7 −0.4 −0.6 −0.4 0.0
MSE 10.1 9.9 10.6 10.3 10.1

100 50 RB% −0.6 −0.4 −0.4 −0.3 −0.4
MSE 9.0 8.9 9.2 9.0 9.3

50 100 RB% −0.5 −0.3 −0.7 −0.5 −0.1
MSE 6.6 6.6 7.0 6.8 6.7

100 100 RB% −0.4 −0.3 −0.4 −0.3 −0.1
MSE 4.9 4.8 5.0 4.9 4.6

100 150 RB% −0.3 −0.2 −0.4 −0.3 0.0
MSE 3.8 3.7 3.9 3.8 3.4

population size N̂ab is used for the first three intervals and η̂o
is used for the second and third intervals.

Table 2 reports the simulated coverage probability (CP), left
(L) and right (R) tail error rates, and average length (AL) of
the 95% confidence intervals on Ȳ based on 1000 simulation
runs. Standard errors (SE) for the estimated average length
are also included (in parentheses). For the bootstrap calibra-
tion method, 1000 bootstrap samples were used for each sim-
ulated dual-frame sample. Table 2 shows that all five intervals
have coverage probabilities close to the nominal value, but the
multiplicity-based PEL ratio confidence intervals are generally
shorter and in some cases are much shorter. In addition, the

Table 2. Simulated 95% confidence intervals on Ȳ for
dual-frame surveys

PML(N̂ab) PEL(N̂ab) PEL(N̂ab) PEL(M) PEL(M)

nA nB (NA) (χ2) (BT) (χ2) (BT)

50 50 L 1.5 3.3 2.0 1.9 2.0
CP 95.9 94.8 95.7 94.4 95.2
U 2.6 1.9 2.3 3.7 2.8
AL 13.1 13.1 13.2 12.0 12.3
(SE) (0.09) (0.11) (0.13) (0.13) (0.11)

100 50 L 1.1 2.5 1.7 2.7 2.2
CP 96.5 95.1 94.8 93.7 94.9
U 2.4 2.4 3.5 3.6 2.9
AL 12.2 11.7 11.6 11.5 11.5
(SE) (0.09) (0.11) (0.12) (0.10) (0.10)

50 100 L 1.8 4.6 2.8 2.4 2.4
CP 96.4 93.5 95.4 95.2 94.8
U 1.8 1.9 1.8 2.4 2.8
AL 10.6 10.8 10.7 9.4 9.8
(SE) (0.05) (0.08) (0.07) (0.11) (0.09)

100 100 L 1.0 2.8 2.2 2.6 1.4
CP 97.6 95.4 95.4 95.0 95.9
U 1.4 1.8 2.4 2.4 2.7
AL 9.5 9.3 9.1 8.5 8.7
(SE) (0.05) (0.06) (0.06) (0.05) (0.07)

100 150 L 2.0 3.3 3.5 3.4 2.5
CP 95.9 95.1 94.5 93.4 94.6
U 2.1 1.6 2.0 3.2 2.9
AL 8.2 8.2 8.1 7.2 7.6
(SE) (0.03) (0.05) (0.05) (0.03) (0.07)

bootstrap calibration method works very well for all scenar-
ios, including cases where one or both sampling fractions are
around 10%.

The two PEL ratio confidence intervals PEL(N̂ab) and
PEL(M) for the finite population distribution function FN(t) =
N−1 ∑N

i=1 I(yi ≤ t), where I(·) is the indicator function per-
form quite differently under dual-frame sampling designs, how-
ever. The multiplicity-based PEL interval performs uniformly
better than the interval based on normal approximation, espe-
cially when t is in the tail region of the population quantiles.
Simulation results (not included here to save space) are sim-
ilar to those reported in Table 4 under three-frame designs.
The PEL interval based on the poststratified sample, on the
other hand, is not computable when either {I(yi ≤ t), i ∈ Sab}
or {I(yi ≤ t), i ∈ Sba} are all 0’s or all 1’s. There is a nontrivial
probability that this could happen when t is in the tail region
and sample sizes are not large.

We now report simulation results based on a three-frame
sampling design for the same synthetic population. In addi-
tion to the two frames A and B, a third frame C was taken
as the complete list of all N = 2248 households in the popu-
lation. Stratified simple random sampling was used for frame
C, where the population was stratified into low (x1 ≤ 30,000),
middle (30,000 < x1 < 60,000) and high (x1 ≥ 60,000) income
households. To limit the number of combinations of the three
frame sample sizes, equal sample size allocation was used for
frame C stratified sampling design. The sampling designs for
frames A and B remained the same as in the previous study.

In the first part of the simulation study on three frame de-
signs, we examined two multiplicity-based PEL estimators of
the population mean Ȳ : the Hájek estimator ˆ̄YH = ŶM/N̂M ,
where ŶM is given by (3.1) without using any auxiliary pop-
ulation information and the estimator under the constraint (3.6)
over household’s total income x1, assuming the population
mean X̄1 is known. Simulated relative biases of the two esti-
mators, not included here, are less than 0.1% for all cases con-
sidered.

For each simulated three-frame sample of size (nA,nB,nC),
we computed five 95% confidence intervals on Ȳ : (1) M1(NA):
the normal approximation interval based on ˆ̄YH and its esti-
mated variance; (2) M1(χ

2): the PEL ratio interval based on
Theorem 2 without using any auxiliary population information;
(3) M1(BT): the interval similar to M1(χ

2) but using the boot-
strap calibration method; (4) M2(χ

2): the PEL ratio interval
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Table 3. Simulated 95% confidence intervals on Ȳ for
three-frame surveys

(nA,nB,nC) M1(NA) M1(χ2) M1(BT) M2(χ2) M2(BT)

(50,50,60) L 1.1 1.6 1.3 1.5 1.4
CP 95.1 95.2 95.2 94.7 95.1
U 3.8 3.2 3.5 3.8 3.5
AL 7.8 7.9 7.9 4.8 5.1

(50,100,60) L 2.7 3.2 2.8 2.1 1.7
CP 95.0 95.1 95.2 94.6 95.5
U 2.3 1.7 2.0 3.3 2.8
AL 6.6 6.7 6.7 4.4 4.6

(100,100,60) L 2.3 2.5 2.4 1.9 1.5
CP 95.0 94.9 95.1 95.3 95.8
U 2.7 2.6 2.5 2.8 2.7
AL 6.2 6.3 6.4 4.2 4.4

(50,50,120) L 1.7 2.9 2.7 1.3 1.2
CP 94.1 93.7 93.8 95.7 95.7
U 4.2 3.4 3.5 3.0 3.1
AL 7.2 7.3 7.3 4.3 4.6

(50,100,120) L 2.3 2.6 2.0 2.1 1.8
CP 94.7 95.1 95.9 93.9 94.8
U 3.0 2.3 2.1 4.0 3.4
AL 5.8 5.8 6.0 3.6 3.8

(100,100,120) L 1.5 2.0 1.8 1.9 1.6
CP 94.8 95.1 95.4 94.9 95.6
U 3.7 2.9 2.8 3.2 2.8
AL 5.4 5.5 5.6 3.5 3.6

under the additional constraint (3.6) over x1; (5) M2(BT): the
bootstrap version of M2(χ

2). Results based on 1000 simulation
runs are reported in Table 3. All five intervals have coverage
probabilities close to the nominal value, and the PEL intervals
using auxiliary population information are significantly shorter
than the intervals without the additional constraint. Bootstrap
calibrated PEL ratio confidence intervals have average length
and coverage probability comparable to the intervals based on
χ2 approximations but have the advantage of not involving vari-
ance estimation under single-stage unequal probability sam-
pling designs.

In the second part of the simulation study on the three frames
design, we examined confidence intervals on the population dis-
tribution function FN(t) = N−1 ∑N

i=1 I(yi ≤ t). Note that pro-
portions of population units with certain characteristics of in-
terest are special cases of the distribution function. Calcula-
tion of point estimators and confidence intervals on FN(t) at
fixed t amounts to replacing yi by I(yi ≤ t) and then follow-
ing the methods for the population mean. We compared the
performances of three confidence intervals on FN(t): (1) in-
terval based on normal approximation (NA) to the Hájek es-
timator; (2) PEL ratio interval based on the χ2 approximation
[PEL(χ2)]; (3) PEL ratio interval using the bootstrap method
[PEL(BT)]. No auxiliary population information is involved.
Table 4 reports simulated results on the three confidence in-
tervals on FN(t) with the value of t fixed at five population
quantiles. In addition to coverage probabilities (CP), lower (L)
and upper (U) tail error rates, and average length (AL), Ta-
ble 4 also includes average lower bound (LB) and average upper

Table 4. 95% confidence intervals on FN(t) at t = tα for
three-frame surveys

t0.05 t0.10 t0.25 t0.50 t0.75 t0.90 t0.95

NA L 0.9 1.5 2.5 3.1 3.8 4.6 7.2
CP 92.8 92.9 94.6 93.7 94.7 93.9 92.4
U 6.3 5.6 2.9 3.2 1.5 1.5 0.4
AL 0.076 0.101 0.129 0.142 0.114 0.073 0.053
LB 0.014 0.051 0.185 0.430 0.692 0.864 0.924
UB 0.089 0.152 0.314 0.572 0.807 0.937 0.977

PEL(χ2) L 2.8 2.8 2.8 3.1 3.0 2.8 3.8
CP 95.4 94.3 95.1 93.8 95.4 95.1 93.8
U 1.8 2.9 2.1 3.1 1.6 2.1 2.4
AL 0.076 0.101 0.129 0.142 0.114 0.072 0.053
LB 0.023 0.059 0.189 0.431 0.690 0.860 0.919
UB 0.099 0.160 0.318 0.572 0.804 0.933 0.972

PEL(BT) L 3.1 2.7 3.1 3.3 3.3 2.8 3.7
CP 91.3 94.2 94.6 93.7 95.2 95.0 94.0
U 5.6 3.1 2.3 3.0 1.5 2.2 2.3
AL 0.075 0.101 0.128 0.141 0.113 0.072 0.053
LB 0.023 0.058 0.189 0.431 0.690 0.860 0.919
UB 0.098 0.159 0.318 0.572 0.803 0.933 0.972

bound (UB) of the intervals. Sample sizes are taken as nA = 50,
nB = 50, and nC = 60, with the same sampling designs used for
Table 3.

There are two striking observations from Table 4. First, when
the values of t are in the middle range of the population quan-
tiles (i.e., t = t0.25, t0.50 and t0.75), all three confidence intervals
perform similarly and perform well. This is similar to the obser-
vation from Table 3 for the population mean. Second, when t is
in the tail region of the population quantiles (i.e., t = t0.05 and
t0.95), PEL ratio intervals clearly outperform normal approx-
imation intervals in terms of coverage probabilities and bal-
anced tail error rates with almost identical average length. For
instance, the interval PEL(χ2) for FN(t) at t = t0.05 has cov-
erage probability of 95.4% compared with 92.8% from the NA
interval. The upper and lower tail error rates for the PEL(χ2) in-
terval are 1.8% and 2.8%, compared with 6.3% and 0.9% from
the NA interval. PEL intervals also have larger average lower
confidence bounds on FN(t) when t is a small population quan-
tile and smaller average upper confidence bound when t is a
large population quantile. PEL intervals and NA intervals have
virtually identical average length. The bootstrap calibrated PEL
intervals perform well except for t = t0.05, where the coverage
probability is low.

6. CONCLUDING REMARKS

Multiple-frame surveys pose several challenges for statistical
analysis. Obtaining accurate information on domain member-
ship is the first challenge in practice. Estimating the unknown
domain population sizes under complex sampling designs is an-
other problem. Incorporating various auxiliary population in-
formation into inferential procedures is also difficult. Variance
estimation and confidence intervals are even harder to handle
with multiple-frame surveys under general unequal probability
sampling designs.

The proposed PEL approach to multiple-frame surveys un-
der a poststratified formulation follows the traditional route in
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this area. This approach is easy to implement for dual-frame
surveys but difficult to extend to three or more frames due to
the requirement on domain membership as well as notational
complexities. Our proposed multiplicity-based PEL approach,
on the other hand, is extremely promising. It is very easy to im-
plement for surveys involving three or more frames, does not
require full frame membership information, and yet is flexible
in using available auxiliary population information. Multiple-
frame surveys are often used to obtain more reliable estimates
for population total counts or proportions of rare items, such
as people with certain rare disease or illegal status. In this sce-
nario, our proposed PEL ratio confidence intervals have a clear
advantage over the customary normal approximation–based in-
tervals, as demonstrated in the simulation study on estimating
the population distribution function FN(t) with t in the tail re-
gion of the population quantiles. The PEL approach also has
the potential to deal with other types of inferential problems,
such as testing of statistical hypothesis or regression analysis
using survey data. The required information on multiplicity mqi

is also insensitive to domain misclassifications, as shown in the
simulation results reported by Mecatti (2007).

The bootstrap-calibrated PEL ratio confidence intervals
given in Section 4 are applicable for single-stage unequal prob-
ability sampling designs with small sampling fractions. Antal
and Tillé (2009) have recently proposed new bootstrap meth-
ods for single-frame surveys that work well when sampling
fractions are not small. We plan to study PEL intervals for the
case of large sampling fractions by adapting their methods to
multiple-frame surveys.

The PEL approach to inference for complex surveys is draw-
ing increased attention from survey researchers. An overview
of the major theoretical developments as well as computational
algorithms for single-frame surveys has been provided by Rao
and Wu (2009). The PEL methods presented in this paper for
multiple-frame surveys will add a new dimension to the exist-
ing literature on the subject.

APPENDIX

A.1 Regularity Conditions for Dual-Frame Surveys

We assume that there is a sequence of dual-frame finite populations,
indexed by ν, such that the two frame population sizes, NA(ν) and
NB(ν), and the two sample sizes, nA(ν) and nB(ν), all tend to infinity
as ν → ∞. If a frame is incomplete, then it remains incomplete as ν →
∞. The index ν is suppressed for notational simplicity. All limiting
processes are understood as ν → ∞.

C1. Sampling designs for frame A and frame B and the study

variable y satisfy maxi∈SA
yi = op(n1/2

A ) and maxi∈SB yi =
op(n1/2

B ), where the stochastic order op(·) is with respect to
the sampling design.

C2. The two Horvitz–Thompson estimators θ̂A(z) = N−1
A ×∑

i∈SA
dAizi and θ̂B(z) = N−1

B
∑

i∈SB
dBizi are asymptotically

normally distributed for any variable zi such that maxi∈SA
zi =

op(n1/2
A ) and maxi∈SB

zi = op(n1/2
B ).

C3. Suppose that Na > 0 and Nb > 0. The asymptotic framework
satisfies the conditions nA/(nA +nB) → c1 ∈ (0,1), Na/NA →
c2 ∈ (0,1), and Nb/NB → c3 ∈ (0,1) as nA → ∞ and nB →
∞.

Condition C1 holds for any sampling designs if nA/NA → fA �= 0,
nB/NB → fB �= 0 and the finite population values {y1, . . . , yN} is a ran-
dom sample from a superpopulation with finite variance. Condition C2
is the central limit theorem for a Horvitz–Thompson estimator (see Wu
and Rao 2006, p. 364 for further discussion). Condition C3 does not
apply to cases where one of the frames (say frame A) is complete and
the other frame (B) is incomplete. In those cases, Nb = 0, and the con-
dition Nb/NB → c3 ∈ (0,1) must be dropped.

A.2 Proof of Proposition 1

The estimator ˆ̄Yab = ∑
i∈Sab

p̂abiyi = ∑
i∈Sba

p̂baiyi = ˆ̄Yba is
obtained by maximizing the PEL function (2.2) subject to con-
straints (2.3) and (2.4). It also can be obtained by first replacing (2.4)
by

∑
i∈Sab

pabiyi = ∑
i∈Sba

pbaiyi = θ for a fixed θ and then max-
imizing the resulting PEL function with respect to θ . Suppose that
ˆ̄YabH ≤ ˆ̄YbaH for the given sample. Let p̂ai(θ), p̂abi(θ), p̂bai(θ), and
p̂bi(θ) be the maximizers of lD(pa,pab,pba,pb) under constraints
(2.3) and

∑
i∈Sab

pabiyi = ∑
i∈Sba

pbaiyi = θ . If we let lD(θ) =
lD(p̂a(θ), p̂ab(θ), p̂ba(θ), p̂b(θ)), then θ̂ = ˆ̄Yab is the maximizer of
lD(θ). To complete the proof, we first show that ˆ̄YabH ≤ θ̂ ≤ ˆ̄YbaH ,
which implies that θ̂ = Ȳab + Op(m−1/2). The desired result on θ̂ fol-
lows from solving ∂lD(θ)/∂θ = 0 under standard expansions involving
the Lagrange multiplier. Details are omitted.

A.3 Proof of Theorem 1

For notational brevity, we denote (a) Wa, Wab(ηo), Wba(ηo), and
Wb by Wh for h = 1,2,3,4; (b) Sa, Sab, Sba, and Sb by Sh for h =
1,2,3,4; and (c) d̃ai(Sa), d̃abi(Sab), d̃bai(Sba), and d̃bi(Sb) by d̃hi for
h = 1,2,3,4. Let (z1i, z2i, z3i)

′ be the vector of indicator variables for
Sa, Sab, and Sba. For instance, z1i = 1 if i ∈ Sa and z1i = 0 other-
wise. In addition, if we denote pai, pabi, pbai, and pbi as phi for h =
1,2,3,4, we can rewrite constraint (2.4) as

∑4
h=1 Wh

∑
i∈Sh

phiz4i =
0, where z4i = 0 if i ∈ S1 or i ∈ S4, z4i = yi/ηo if i ∈ S2, and
z4i = −yi/(1 − ηo) if i ∈ S3. Let zi = (z1i, z2i, z3i, z4i)

′ and Z̄ =
(Wa,Wab(ηo),Wba(ηo),0)′. Following along the lines of the proof of
theorem 4 of Wu and Rao (2006) and letting θ = Ȳ , it can be shown
that

rD(θ) = nD

( 4∑
h=1

Wh
∑
i∈Sh

d̃hiri − R̄

)2

/{ 4∑
h=1

Wh
∑
i∈Sh

d̃hi(ri − R̄)2

}
+ op(1),

where ri = yi − B′zi, R̄ = Ȳ − B′Z̄, and B is the vector of “population
regression coefficients” estimated by

B̂ =
{ 4∑

h=1

Wh
∑
i∈Sh

d̃hi(zi − Z̄)(zi − Z̄)′
}−1

×
4∑

h=1

Wh
∑
i∈Sh

d̃hi(zi − Z̄)(yi − ˆ̄YP).

Under condition C2,
∑4

h=1 Wh
∑

i∈Sh
d̃hiri is asymptotically nor-

mally distributed with mean R̄, Theorem 1 is then proved if we define

deffP = v

( 4∑
h=1

Wh
∑
i∈Sh

d̃hiri

)/{
n−1

D

4∑
h=1

Wh
∑
i∈Sh

d̃hi(ri − r̄)2

}
,

where r̄ = ˆ̄YP − B̂′Z̄, v(
∑4

h=1 Wh
∑

i∈Sh
d̃hiri) is an estimator of

V

( 4∑
h=1

Wh
∑
i∈Sh

d̃hiri

)
= VA{A(r)} + VB{B(r)},
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with

A(r) = Wa
∑
i∈Sa

d̃ai(Sa)ri + Wab(ηo)
∑

i∈Sab

d̃abi(Sab)ri

and

B(r) = Wba(ηo)
∑

i∈Sba

d̃bai(Sab)ri + Wb
∑
i∈Sb

d̃bi(Sb)ri.

Under condition C2, a standard linearization procedure can be applied
to the Hájek estimators

∑
i∈Sa

d̃ai(Sa)ri and
∑

i∈Sab
d̃abi(Sab)ri,

which leads to

A(r) = WaR̄a + Wab(ηo)R̄ab + 1

N

∑
i∈SA

dAir̃i + op
(
n−1/2

A

)
,

where R̄a and R̄ab are the domain population means for the vari-
able r, r̃i = ri − R̄a if i ∈ Sa and r̃i = ηo(ri − R̄ab) if i ∈ Sab.
This gives VA{A(r)} .= N−2VA(

∑
i∈SA

dAir̃i). A linearization vari-
ance estimator vA{A(r)} can then be derived. Similarly, VB{B(r)} .=
N−2VB(

∑
i∈SB

dBir̃i), where r̃i = ri − R̄b if i ∈ Sb and r̃i = (1 −
ηo)(ri − R̄ba) if i ∈ Sba.

A.4 Design Effect for the Single-Frame
Multiplicity-Based Approach

Here the calculation of design effect involves variance estima-

tion for ˆ̄YH = ŶM/N̂M , where ŶM = ∑Q
q=1

∑
i∈Sq

(dqi/mqi)yqi and

N̂M = ∑Q
q=1

∑
i∈Sq

dqi/mqi. The design effect without involving any

auxiliary variable is given by deffM = V( ˆ̄YH)/(S2
y/nM), where S2

y is
the overall population variance for the y variable. An approximately
unbiased estimator for S2

y is given by

Ŝ2
y = 1

N̂M

Q∑
q=1

∑
i∈Sq

dqi

mqi
(yqi − ˆ̄YH)2.

The variance estimator for ˆ̄YH is derived as follows:

V( ˆ̄YH)
.= V

{
1

N

Q∑
q=1

∑
i∈Sq

dqi

mqi
(yqi − Ȳ)

}
= 1

N2

Q∑
q=1

V

(∑
i∈Sq

dqiỹqi

)
,

where ỹqi = (yqi − Ȳ)/mqi. Standard variance estimators for the
Horvitz–Thompson estimator can be applied to the shared variable ỹqi,
with Ȳ replaced by ˆ̄YH and N replaced by N̂M at the final step.

[Received September 2009. Revised April 2010.]
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