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Abstract 

The International Tobacco Control (ITC) Policy Evaluation Survey of China uses a multi-stage unequal probability 

sampling design with upper level clusters selected by the randomized systematic PPS sampling method. A difficulty arises 

in the execution of the survey: several selected upper level clusters refuse to participate in the survey and have to be 

replaced by substitute units, selected from units not included in the initial sample and once again using the randomized 

systematic PPS sampling method. Under such a scenario the first order inclusion probabilities of the final selected units are 

very difficult to calculate and the second order inclusion probabilities become virtually intractable. In this paper we develop 

a simulation-based approach for computing the first and the second order inclusion probabilities when direct calculation is 

prohibitive or impossible. The efficiency and feasibility of the proposed approach are demonstrated through both theoretical 

considerations and numerical examples. Several R/S-PLUS functions and codes for the proposed procedure are included. 

The approach can be extended to handle more complex refusal/substitution scenarios one may encounter in practice. 
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1. Introduction 
 

Construction of survey weights is the first critical step in 

analyzing complex survey data. It starts with the calculation 

of the first order inclusion probabilities, which is often 

straightforward if the original sampling design is well 

executed without any alterations and/or modifications. For 

instance, if the sample units are selected with inclusion 

probability ( )π  proportional to size (PPS or psπ ), then the 

inclusion probabilities are readily available from a simple 

re-scaling of the size variable. Among existing unequal 

probability without replacement PPS sampling procedures 

which are applicable for arbitrary fixed sample sizes, the 

randomized systematic PPS sampling method is the 

simplest one to implement. The procedure was first 

described in Goodman and Kish (1950) as a controlled 

selection method, and was refined by Hartley and Rao 

(1962) who studied the important and yet difficult problem 

of how to compute the second order inclusion probabilities. 

Let , 1, 2, ,ix i N= …  be the values of the known size 

variable, where N is the total number of units in the 

population. Let /i iz x X=  where 1
N
i iX x=∑=  and assume 

1inz <  for all i. The randomized systematic PPS sampling 

procedure is as follows: Arrange the N population units in a 

random order and let 0 0A =  and 1 ( )j
ij iA nz=∑=  be the 

cumulative totals of inz  in that order so that 

0 10 .NA A A n= < < < =…  Let u be a uniform random 

number over [0, 1]. The n units to be included in the sample 

are those with indices j satisfying 1j jA u k A− ≤ + <  for 

0,1, , 1.k n= −…  Let s be the set of n sampled units and 

( )i P i sπ = ∈  be the first order inclusion probabilities. The 

randomized systematic PPS sampling procedure satisfies the 

condition  

, 1, 2, , .i inz i Nπ = = …  (1.1) 

Several other without replacement sampling procedures 

which satisfy (1.1) for an arbitrary fixed sample size n were 

also proposed in the literature, including the well-known 

Rao-Sampford unequal probability sampling method (Rao 

1965; Sampford 1967) and those of Chao (1982), Chen, 

Dempster and Liu (1994), Tillé (1996) and Deville and Tillé 

(1998), among others.  

The extensive research work on PPS sampling methods 

was largely stimulated by the Horvitz-Thompson (HT) 

estimator ˆ /i s i iT y∈∑= π  for the population total 

1
N
i iT y=∑=  of a study variable y. The HT estimator is 

extremely efficient when y is highly correlated with the size 

variable x and the sampling procedure satisfies (1.1). It is 

the unique design unbiased estimator among the class of 

linear estimators i s i iw y∈∑  for T if the weights iw  depend 

only on i. 

While a PPS sampling procedure can be desirable from a 

theoretical point of view, it is often difficult and/or 

sometimes impossible to execute due to practical constraints 

and limitations. Certain modifications and compromises will 

have to be made. The modified design, however, will no 

longer satisfy condition (1.1). Direct calculation of the final 

inclusion probabilities often becomes difficult or even 

impossible. Among common problems arising from survey 

practice which require alteration of the original sampling 
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design, units refusal and substitution of units are the most 

frequently encountered ones. The scenario is well illustrated 

by the following example.  

The International Tobacco Control (ITC) Policy 

Evaluation Survey of China (ITC China Survey) uses a 

multi-stage unequal probability sampling design for the 

selection of adult smokers and nonsmokers from seven 

cities. Each city has a natural hierarchical administrative 

structure   
City → Street District→ Residential Block→ Household → Individual  
which was conveniently integrated into the sampling design. 

At the upper levels, the randomized systematic PPS 

sampling method is used to select ten street districts from 

each city, with probability proportional to the population 

size of the district, and then two residential blocks are 

selected within each selected district, again using the 

randomized systematic PPS sampling method, with proba-

bility proportional to the population size of the block. 

Households and individuals within households are further 

selected, using a modified simple random sampling method. 

The original plan was to select 40 adult smokers and 10 

adult nonsmokers from each of the 20 residential blocks, 

making the final sample with 800 smokers and 200 non-

smokers for each city.  

A difficulty, however, arises in the execution of the 

survey: several selected upper level clusters (first Street 

Districts and then Residential Blocks) have refused to 

participate in the survey, due to time conflict with other 

activities or unavailability of human resources. These 

refusing clusters have to be replaced by substitute units, 

selected from units not included in the initial sample; one 

possibility is to use once again the randomized systematic 

PPS sampling method, to achieve the targeted overall 

sample size.  

Under multi-stage sampling designs such as the one used 

for the ITC China survey, first order inclusion probabilities 

for individuals selected in the final sample can be calculated 

by multiplying the inclusion probabilities of units at 

different stages. When the randomized systematic PPS 

sampling method is modified due to substitution of units at a 

certain stage, the condition (1.1) no longer holds for the 

final sample at that stage. The first order inclusion probabi-

lities under such a scenario are very difficult to calculate and 

the second order inclusion probabilities become virtually 

intractable. In Appendix A, we provide a method of direct 

calculation (5.2) for the iπ  when both the initial and the 

substitute samples are selected using the randomized 

systematic PPS sampling, assuming random refusal from 

the initial sample and no refusal from the substitute sample. 

The expression is valid conditional on the number of 

refusals and the population order used (after randomization) 

for the selection of the initial sample. It is apparent that even 

under such restrictive conditions and assumptions, the 

expression itself becomes computationally unfriendly with a 

not-so-large sample size.  

In this paper we demonstrate, through both theory and 

numerical examples, that the first and the second order 

inclusion probabilities can be accurately estimated through 

Monte Carlo simulations when complete design information 

is available. Our numerical examples are motivated by the 

ITC China survey for which the randomized systematic PPS 

sampling serves as a baseline method but our theoretical 

results and the general methodology apply to other unequal 

probability without replacement sampling procedures as 

well. Section 2 presents results on the accuracy of simu-

lation based methods. Numerical examples and comparisons 

are given in Section 3. Several R/S-PLUS functions and 

codes for the proposed procedure, originally developed for 

the ITC China survey, are included in Appendix C. Some 

additional remarks are given in Section 4.  

 
2. Properties of simulation-based methods 

 
When calculation of exact inclusion probabilities is 

impossible or prohibitive but complete design information is 

available, Monte Carlo simulation methods can easily be 

used to obtain estimates of the inclusion probabilities. 

Denote the completely specified probability sampling 

design by p. The simulation-based method is straight-

forward: select K independent samples, all following the 

same sampling design p; let iM  be the number of samples 

which include unit i. Then the first order inclusion proba-

bility ( )i P i sπ = ∈  can be estimated by * / .i iM Kπ =  For a 

particular i, the iM  follows a binomial distribution and the 
*

iπ  satisfies *( )i iE π = π  and * 1Var( ) (4 ) .i K −π ≤  Suppose 

for instance that we can afford to take K as big as 625 10 ,×  

then *(| | 0.001) 0.99i iP π − π < ≥  for any given .iπ  

A more relevant measure of the accuracy of simulation-

based methods is the performance of the Horvitz-Thompson 

estimator using the simulated inclusion probabilities. Let 
ˆ /i s i iT y∈∑= π  and */ .i s i iT y∈∑= πɶ  For a given sample, 

the relative bias of using Tɶ  in place of T̂  is defined as 
ˆ ˆ( ) / .T T T− ɶ  Without loss of generality, we assume 0iy ≥  

for all i. It is shown in Appendix B that for any > 0ε  and 

the given sample s,  

2

2

ˆ| | 2(1 ) 1
1 .

ˆ
i s i

T T
P n

KT ∈

 − + ε  ≤ ε ≥ − −   πε   
∑

ɶ

 (2.1) 

Note that (1/ )i s i∈∑ π  is the Horvitz-Thompson 

estimator of the population size N, a practical lower bound 

for ˆ ˆ(| | / )P T T T− ≤ εɶ  with a small ε  is given by  
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2

2( )
1 .

N n

K

−
∆ = −

ε
 (2.2) 

If one requires that 0.01ε =  and 0.98,∆ =  then for 

100N n− =  the (theoretical) number of independent 

samples required for the simulation is 810 .K =  Since the 

lower bound given by (2.1) is conservative, and valid for 

any response variable, one would expect that a smaller K 

with values around 710  or even 610  should work well for 

most practical scenarios where 100.N n− ≤  This is 

supported by numerical examples presented in Section 3.  

Estimation of the second order inclusion probabilities 

( , )ij P i j sπ = ∈  imposes no additional difficulty except 

that the total number of simulated samples, K, required to 

achieve the same level of relative accuracy as for the first 

order case is bigger. Let ijM  be the number of simulated 

samples among the K independent samples which include 

both i and j. Let * /ij ijM Kπ =  be the estimate for .ijπ  

Suppose the goal is to estimate a quadratic population 

quantity  

1 1

( , ).
N N

i j
i j

Q q y y
= =

=∑ ∑  

The Horvitz-Thompson type estimators of Q using ijπ  or 
*
ijπ  are respectively given by  

*

( , ) ( , )
ˆ and .

i j i j

i s j s i s j sij ij

q y y q y y
Q Q

∈ ∈ ∈ ∈

= =
π π

∑∑ ∑∑ɶ  

Following the same argument as that which leads to (2.1), 

we can show that  

2
2

2

ˆ| | 2(1 ) 1
1 .

ˆ
i s j s ij

Q Q
P n

KQ ∈ ∈

 − + ε  ≤ ε ≥ − −   πε   
∑∑

ɶ

 (2.3) 

Note that (1/ )i s j s ij∈ ∈∑ ∑ π  is a design-unbiased estimator 

of 2 ,N  a practical lower bound for ˆ ˆ(| | /Q )P Q Q− ≤ εɶ  is 

given by 21 2( )( ) /( ).N n N n K− + − ε  Comparing this with 

∆  given by (2.2), it is apparent that we need a much bigger 

K to achieve the same lower bound, although in both cases 

the lower bounds are conservative, and the actual K required 

can be smaller. On the other hand, second order inclusion 

probabilities are used for the estimation of second order 

parameters such as the population variance or the variance 

of a linear estimator. The desired estimation accuracy is less 

critical than that for first order parameters such as the 

population total or mean, and therefore a number in between 
610  and 710  for K should be acceptable for many practical 

situations.  

The most critical issue for simulation-based methods is 

obviously the feasibility of computational implementation. 

Among other things, it depends largely on the chosen value 

of K, the complexity of the sampling design, and the 

computational power available. If 610K =  and one would 

like to have the simulation-based results within ten hours, 

then it is necessary to take 28 simulated samples for every 

single second. The randomized systematic PPS sampling is 

the most efficient unequal probability without replacement 

sampling procedure in terms of computational implementa-

tion. It only involves a simple random ordering and 

selecting a random starting point. Most other competing 

procedures involve either rejective methods or complicated 

sequential selections. It takes much longer to select simu-

lated samples with these methods. A comparison of CPU 

times for computing the simulated iπ  between the random-

ized systematic PPS sampling and the Rao-Sampford un-

equal probability sampling design is given in Section 4.  

 
3. Numerical examples 

 
The design information used in this section is adapted 

from the ITC China survey. The number of Street Districts 

(top level clusters) in each of the seven cities involved in the 

survey ranges from 20N =  to 120.N =  Within each city 

10n =  districts are selected using the randomized 

systematic PPS sampling method. In the case of refusals, 

substitute districts are selected from the ones not included in 

the initial sample, again using the randomized systematic 

PPS sampling method. For the purpose of illustration we use 

the design information from the smallest city (i.e., 20N = ). 

Additional comments on cases where N is large are given in 

Section 4.   
3.1 First order inclusion probabilities  

We first demonstrate the accuracy of the simulated iπ  

when the exact values of iπ  are known. We then investigate 

the impact of substitution of units on the final iπ  and the 

performance of the Horvitz-Thompson estimator for a 

population total using the simulated .iπ  The simulated 

inclusion probabilities under substitution of units are 

compared to those assuming the modified design is still PPS 

sampling.  
 
Example 1. Simulation-based *

iπ  when there is no refusal. 

In this case the exact values of iπ  are given by .i inzπ =  
 
(i) Exact values of :iπ   
0.5840 0.5547 0.6702 0.5331 0.3085 0.2652 0.3930 0.4180 0.6952 0.3471 

0.5993 0.5393 0.8240 0.6868 0.4469 0.2191 0.4237 0.4180 0.7567 0.3163  
(ii) Simulated * 5, 10 :i Kπ =   
0.5828 0.5545 0.6656 0.5339 0.3071 0.2656 0.3929 0.4205 0.6969 0.3474 

0.6009 0.5429 0.8227 0.6865 0.4446 0.2186 0.4215 0.4179 0.7569 0.3194  
(iii) Simulated * 6, 10 :i Kπ =   
0.5836 0.5558 0.6701 0.5336 0.3081 0.2654 0.3931 0.4180 0.6950 0.3469 

0.5994 0.5394 0.8242 0.6864 0.4469 0.2186 0.4237 0.4172 0.7569 0.3166 
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The simulated *

iπ  matches iπ  to the second decimal 

point for 510K =  and to the third for 610K =  for most 

cases.  
Example 2. To assess the performance of the Horvitz-

Thompson (HT) estimator for a population total using the 

true iπ  and the simulated *

iπ  from Example 1, we 

generated the response variable from the model 0iy = β +  

1 , 1, , ,i ix i Nβ + ε = …  where ix  is the size variable and iε  

are independent and identically normally distributed with 

mean 0 and variance 2 .σ  We considered three populations 

(three values of 2σ ) where the population correlation 

coefficients between x and y are respectively 0.3, 0.5 and 

0.8. For each of the three populations, 2,000B =  repeated 

samples of size 10n =  were selected using the randomized 

systematic PPS sampling, and for each sample three HT 

estimators were computed using the true ,iπ  the simulated 
*

iπ  with 510K =  and the *

iπ  with 610 ,K =  respectively. 

The results, not reported here to save space, showed that all 

three HT estimators have relative bias less than 0.04% and 

almost identical mean squared errors.   
Example 3. When there are refusals in the initial PPS sample 

and substitute units are selected from units not included in 

the initial sample using the same PPS sampling procedure, 

there are two questions of interest: (1) how to compute the 

inclusion probabilities iπ  for the final sample; and (2) to 

what extent the substitution procedure has altered the 

original PPS sampling design. We can compute the 

simulated *

iπ  and compare them with iπɶ  obtained by 

assuming a PPS sampling after the refusing units are 

removed from the sampling frame. In simulating the *,iπ  we 

assume for simplicity that there is no possible refusal from 

any unit outside the initial sample, and hence there is no 

refusal among the substitute units. The number of replica-

tions K is chosen as 610  for the simulation. We consider 

two scenarios where there are three refusing units in the 

population, and all are among the initial sample of size 

10.n =   
 
(i) Three large units refuse: Simulated *

iπ  (first two rows) 

versus iπɶ  (last two rows) assuming PPS.  
 

0.7231 0.6981 0.7947 0.6773 0.4354 0.3811 0.5339 0.5619 0.0000 0.4815 

0.7363 0.6826 0.0000 0.8070 0.5919 0.3210 0.5678 0.5615 0.0000 0.4441 
 

0.7560 0.7182 0.8677 0.6901 0.3994 0.3434 0.5088 0.5412 0.0000 0.4494 

0.7759 0.6983 0.0000 0.8892 0.5786 0.2837 0.5486 0.5412 0.0000 0.4096  
(ii) Three small units refuse: Simulated *

iπ  (first two 

rows) versus iπɶ  (last two rows) assuming PPS.   
0.6326 0.6049 0.7167 0.5829 0.0000 0.0000 0.4415 0.4668 0.7406 0.3937 

0.6482 0.5901 0.8558 0.7330 0.4965 0.0000 0.4728 0.4664 0.7976 0.3590 
 

0.6343 0.6025 0.7280 0.5790 0.0000 0.0000 0.4268 0.4540 0.7550 0.3770 

0.6510 0.5858 0.8949 0.7459 0.4854 0.0000 0.4602 0.4540 0.8218 0.3436  
It is apparent that the sizes of the refusing units have 

dramatic impact on the distribution of the final inclusion 

probabilities. If one ignores the alteration of the sampling 

design due to substitution of units and treats the design as if 

it is still a PPS sampling, then the inclusion probabilities for 

large units are inflated and the role of small units is down-

played. This trend is more pronounced when there are large 

units among the refusals, i.e., case (i) where *

14 0.8070π =  

compared to 14 0.8897π =ɶ  and *

16 0.3210π =  to 16π =ɶ  

0.2837.   
3.2 Second order inclusion probabilities  

There have been considerable research activities on the 

randomized systematic PPS sampling, mainly for obtaining 

second order inclusion probabilities ijπ  and variance 

estimators. Hartley and Rao (1962) derived exact formulas 

for the ijπ  when 2n =  and 3N =  or 4;N =  Connor 

(1966) extended the results and derived the exact formula 

for general n and N, and the related computational 

procedure was later implemented in the Fortran language by 

Hidiroglou and Gray (1980). The procedure is quite heavy 

as evidenced by the 165 lines of Fortran code.  

The most intriguing result is probably the asymptotic 

approximation to ijπ  derived by Hartley and Rao (1962). In 

a recent paper Kott (2005) showed that the variance 

estimator of a Horvitz-Thompson estimator based on the 

Hartley-Rao approximation not only performs well under 

the design-based framework but also has good model-based 

properties. The Hartley-Rao approximation was initially 

derived based on the assumption that n is fixed and N is 

large and is correct to the order of 4( )O N −  (Hartley and 

Rao 1962: Equation (5.15) on page 369). In a private 

conversation with J.N.K. Rao during the 23
rd
 International 

Methodological Symposium of Statistics Canada, he 

pointed out that the approximation is still valid even if n is 

large, as long as /n N  is small. For cases where N is not 

large and/or /n N  is not small, such as the ITC China 

survey example considered here, the goodness of the 

Hartley-Rao approximation has not been documented.  

When the randomized systematic PPS sampling 

procedure is altered due to substitution of units, it is virtually 

impossible to derive the second order inclusion probabilities 

or some sort of approximations. With the simulation-based 

approach, however, it remains straightforward to obtain very 

reliable estimates of the ijπ  through a large number of 

simulated samples, given that the altered sampling 

procedure is completely specified. In what follows we 

examine the performance of variance estimators using the 

simulated *
ijπ  when there is no alteration to the randomized 

systematic PPS sampling procedure. In this case i inzπ =  

and the Hartley-Rao approximation ijπɶ  to ijπ  can also take 

part in the comparison.  
Example 4. We first compare *

ijπ  to ijπɶ  for each of the 

individual entries. To save space, we only present the results 

for 1, , 5i = …  and 1, ,10,j = …  which are sufficient to 
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show the general picture. The Hartley-Rao approximation 

ijπɶ  is very close to the simulated * ,ijπ  matching to the 

second decimal point for the majority of the entries. This is 

clearly an interesting observation given that 20N =  and 

10.n =   
 
(i) Simulated * 6, 10 :ij Kπ =  
 

0.0000 0.3121 0.3821 0.2975 0.1669 0.1442 0.2116 0.2249 0.3975 0.1873 

0.3121 0.0000 0.3623 0.2816 0.1590 0.1372 0.2025 0.2141 0.3766 0.1784 

0.3821 0.3623 0.0000 0.3469 0.1899 0.1640 0.2483 0.2659 0.4586 0.2153 

0.2975 0.2816 0.3469 0.0000 0.1523 0.1312 0.1938 0.2061 0.3606 0.1717 

0.1669 0.1590 0.1899 0.1523 0.0000 0.0742 0.1124 0.1197 0.1968 0.0988 
 

(ii) Hartley-Rao approximation :ijπɶ  
 

0.0000 0.3079 0.3769 0.2952 0.1668 0.1427 0.2143 0.2286 0.3921 0.1884 

0.3079 0.0000 0.3569 0.2795 0.1579 0.1351 0.2029 0.2164 0.3712 0.1784 

0.3769 0.3569 0.0000 0.3421 0.1932 0.1654 0.2484 0.2649 0.4544 0.2183 

0.2952 0.2795 0.3421 0.0000 0.1514 0.1296 0.1946 0.2075 0.3559 0.1710 

0.1668 0.1579 0.1932 0.1514 0.0000 0.0732 0.1099 0.1172 0.2010 0.0966  
Example 5. For second order inclusion probabilities the 

main focus is on variance estimation. With fixed sample 

size, an unbiased variance estimator for the Horvitz-

Thompson estimator HT
ˆ /i s i iY y∈∑= π  is given by the well-

known Yates-Grundy format,  

2
1

HT
1 1

ˆ( ) .
n n

i j ij ji

i j i ij i j

yy
v Y

−

= = +

π π − π  
= −  π π π 
∑ ∑  (3.1) 

We consider the three synthetic populations described in 

Example 2. The true variance HT
ˆVar( )V Y=  is obtained 

through simulation using 510B =  simulated samples and is 

computed as 1 2
1

ˆ( ) ,B
b bB Y Y−
=∑ −  where Y is the true 

population total and ˆbY  is the Horvitz-Thompson estimator 

of Y computed from the b
th
 simulated sample. Three 

variance estimators in the form of (3.1), denoted 

respectively by 1 2,v v  and 3,v  are examined, with the ijπ  in 

(3.1) being respectively replaced by the Hartley-Rao 

approximation ,ijπɶ  the simulated *
ijπ  for 510K =  and the 

*
ijπ  for 610 .K =  The performance of these estimators is 

measured through the simulated relative bias 
1 ( )

1RB ( ) /bB
bB v V V−
=∑= −  and the simulated instability 
1 ( ) 2 1/ 2

1INST { ( ) } / ,bB
bB v V V−
=∑= −  where ( )bv  is the 

variance estimate computed from the b
th
 sample, using 

another set of 510B =  independent samples. The results are 

summarized in Table 1 below. The three populations are 

indicated by the correlation coefficient ρ  between y and x.  
 

Table 1  Relative bias and instability of variance estimators 
 

  RB(%)  INST 

Population  1v  2v  3v   1v  2v  3v  

0.30ρ =   6.1% 1.4% -0.3% 0.66 0.65 0.65

0.50ρ =   4.3% 2.5% -1.1% 0.42 0.44 0.42

0.80ρ =   2.6% 1.2% -0.2% 0.61 0.60 0.60

 
In terms of relative bias, all three variance estimators are 

acceptable, with the one 1( )v  based on the Hartley-Rao 

approximation ijπɶ  having the largest bias. For variance 

estimators using the simulated * ,ijπ  increasing the value of 

K from 510  (i.e., 2v ) to 610  (i.e., 3v ) makes the bias to be 

negligible, although the one with 510K =  is clearly 

acceptable in practice. All three versions of the variance 

estimator have similar measures in terms of instability.  

 
4. Some additional remarks  

 
In theory, the simulation-based method for computing 

inclusion probabilities is applicable to any sampling design, 

as long as the complete design information is available. It is 

an effective approach to handling more complex substitu-

tion scenarios or other types of modifications to the original 

design. In the ITC China survey, one of the refusing units 

has to be substituted by a unit from a particular region of the 

city due to workload constraints and field work restrictions. 

In a Canadian national survey of youth, there were second 

and third round refusing units (schools) and hence substitute 

units before achieving the targeted sample size. As pointed 

out by an Associate Editor, a similar situation was also 

reported in the 57
th
 Round of the National Sample Survey 

Organization, Government of India (www.mospi.gov.in) 

where a modification was made to the circular systematic 

sampling with probability proportional to size in order to 

select two distinct sub-samples. Gray (1973) described a 

method on increasing the sample size (number of psu’s) 

when the initial sample was selected by the randomized 

systematic PPS method. Calculation of second order 

inclusion probabilities under the proposed procedure is 

difficult even for a very small sample size. In all these cases 

analytic solutions to the inclusion probabilities are either 

difficult to use or not available but the simulation-based 

approach can be applied without any extra difficulty.  

The recent paper by Fattorini (2006) discussed the use of 

the simulation-based method for spatial sampling where the 

units are selected sequentially. When a PPS sampling design 

is altered due to one or more rounds of substitution of units, 

the modified design can also be viewed as sequential. Our 

theoretical results on the accuracy of simulation-based 

methods, however, are different from those of Fattorini. We 

have used a conditional argument and proposed to assess the 

performance of the estimator using the simulated inclusion 

probabilities for a given sample, which is of interest for 

practical applications.  

The central issue related to simulation-based methods is 

the feasibility of computational implementation. The 

randomized systematic PPS sampling has a major advantage 

in computational efficiency. The Rao-Sampford unequal 

probability sampling method (Rao 1965; Sampford 1967), 

for instance, is another popular PPS sampling procedure. It 

has several desirable features such as closed form 

expressions for the second order inclusion probabilities and 
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is more efficient than the randomized systematic PPS 

sampling (Asok and Sukhatme 1976). The following is a 

comparison of CPU times between the randomized 

systematic PPS sampling and the Rao-Sampford PPS 

sampling for simulating the first order inclusion probabi-

lities. The sample size is fixed at 10n =  and the number of 

simulated samples is 610 .K =  The results are obtained 

using R on a dual-processor unix machine. 
 
N Systematic PPS Rao-Sampford PPS   
200 4.7 hours  7.5 hours  

100 2.5 hours 5.0 hours  

50 1.6 hours 4.4 hours  

20 1.2 hours 8.9 hours 

 
It is interesting to note that, although in general the Rao-

Sampford procedure takes longer time to obtain the results, 

it takes much longer for the case of 20.N =  This is because 

the Rao-Sampford method uses a rejective procedure and it 

usually takes many rejections to arrive at a final sample 

when the sampling fraction /n N  is large. The randomized 

systematic PPS sampling, on the other hand, is not affected 

by this and the simulation-based method can provide results 

with desired accuracy in a timely fashion for 400N =  or 

even bigger. Several R/S-PLUS functions and major codes 

for the proposed approach are included in Appendix C and 

are applicable to other substitution scenarios after minor 

modifications.  

One of the reasons for the use of the randomized 

systematic PPS sampling in selecting upper level clusters in 

the ITC China survey is that the final design is self-

weighting. An interesting question arises when there are 

refusals: how to select the substitute units such that the final 

altered sampling design is still (approximately) self-

weighting? In some other circumstances such as rotating 

samples, this is achievable; see, for instance, Fellegi (1963). 

How to accomplish this goal with the ITC China survey 

design is currently under investigation.  
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Appendix A  
A direct calculation under random refusal 

 
Under the randomized systematic PPS sampling design 

and assuming random refusal, it is possible in principle to 

calculate the inclusion probabilities under a substitution rule 

directly. The starting point is to enumerate all possible initial 

samples and their probabilities based on the particular 

population order used to select the initial sample.  

Recall that 10 0, ( )j
ij iA A nz=∑= =  and .NA n=  For a 

chosen uniform starting value [0,1],u∈  unit j is to be 

selected if 

1j jA u k A− ≤ + <  (5.1) 

for some 0,1, , 1.k n= −…  Let jk  be the largest integer 

less than ,jA  and let the remainder je  be given by 

.j j je A k= −  Let (1) (2) ( )0 Ne e e< ≤ ≤ ≤…  be the order 

statistics of the remainders, and let (1) ( ), , Nk k…  be the 

corresponding jk ’s. Note that ( ) 1.Ne =  We could then 

generate N possible samples 1, , Ns s…  with respective 

probabilities  

(1) (2) (1) ( ) ( 1), , , ,N Ne e e e e −− −…  

some of which may be 0. We begin by generating 1.s  From 

each 1, , ,j N= …  put j in 1s  if 1j jA k A− ≤ <  for some 

0,1, , 1,k n= −…  i.e., 1s  is selected using 0u =  in (5.1). 

As we move u from 0 to 1, different possible samples can be 

identified sequentially. Now given 1, , ,ms s…  let 1ms +  be 

the same as ms  except that the th
( )( 1)mk +  element is 

advanced by 1. For example, suppose 4n =  and ms =  
{1, 3, 6, 9},  and suppose ( ) 0,mk =  then 1 {2, 3, 6, 9}.ms + =  

On the other hand, if ( ) 2,mk =  then 1 {1, 3, 7, 9}.ms + =  The 

sample 1ms +  will have probability ( 1) ( ) .m me e+ −  

By construction, i inzπ =  for 1, , .i N= …  If only first 

and second order inclusion probabilities are desired, a 

similar but simpler algorithm can be used to calculate the 

second order inclusion probabilities directly, conditional on 

the initial order. However, for applications where the proba-

bilities of all samples are needed, the sample generation 

algorithm can be carried out. For example, for small popu-

lations, it is then also possible to calculate the first order 

inclusion probabilities when there is refusal and substitution. 

Suppose we first select a sample of size n with randomized 

systematic PPS sampling. Suppose 1n  of these agree to 

respond and an additional 2 1n n n= −  are selected, again 

using randomized systematic PPS sampling, from those 

units not sampled the first time. Assume for simplicity that 

refusal in the first sample occurs at random, and that there is 

no refusal in the second substitute sample. Note that this is a 

different assumption from the one used in Example 3, where 

the set of refusals is considered to be non-random. The 
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inclusion probability for unit i, conditional on the assumed 

initial population order, is  

1 2
1

: :

( ) .
m

m

i
i m

m i s jj j s

n n z
nz p s

n z∉ ∉

× + ∑ ∑
 (5.2) 

The outer sum is taken over all samples ms  of size n, 

generated according to the procedure described above but 

without having unit i, with probabilities 1( )mp s =  

( ) ( 1) .m me e −−  The inner sum involved in the denominator is 

taken over all j not included in ms  from the outer sum. The 

unconditional inclusion probability can be obtained by 

appropriate averaging over all population orders which give 

distinct values. Clearly this is feasible only when the popu-

lation is small, or when z takes a small number of values.  

 
Appendix B  

Derivation of (2.1) 
 

In this appendix we show that for any > 0ε  and a given 

sample s,  

2

2

ˆ| | 2(1 ) 1
1 ,

ˆ
i s i

T T
P n

KT ∈

 − + ε  ≤ ε ≥ − −   πε   
∑

ɶ

 

where *ˆ / , / ,i s i si i i iT y T y∈ ∈∑ ∑= π = πɶ  and *

iπ  are the 

simulated first order inclusion probabilities based on K 

independent samples. Noting that *( )i iE π = π  and 
*Var( ) (1 ) / ,i i i Kπ = π − π  by Chebyshev’s inequality we 

have * 2(| |> ) (1 ) /( )i i i iP c Kcπ − π ≤ π − π  for any > 0.c  It 

follows that  

*

*

* * * *

* *

* *

2 2

2 2 2 2

2

2

| |
>

( > ) ( )

( > /(1 )) ( /(1 ))

(| |> /(1 )) (| |> /(1 ))

(1 ) (1 ) (1 ) (1 )

2(1 ) 1
1

i i

i

i i i i i i

i i i i i i

i i i i i i

i i i i

i i

i

P

P P

P P

P P

K K

K

 π − π
ε 

π 

= π − π π ε + π − π < −π ε

= π − π επ − ε + π − π < −επ + ε

≤ π − π επ − ε + π − π επ + ε

− ε π − π + ε π − π
≤ +

ε π ε π

+ ε  = − πε  
.

 

If 0iy ≥  for all i, then 

* *

i i

* *

| | | |ˆ ˆ| | max .i i i

i s
i s i i i

y
T T T

∈∈

 π − π π − π 
− ≤ ≤  

π π π  
∑ɶ  

For any > 0ε  and the given sample s,  

*

*

*

*

2

2

ˆ | || |
max

ˆ

| |
1 >

2(1 ) 1
1 .

i i

i s
i

i i

i s i

i s i

T T
P P

T

P

n
K

∈

∈

∈

    π − π−  
≤ ε ≥ ≤ ε     π     

 π − π
≥ − ε 

π 

+ ε  ≥ − − πε  

∑

∑

ɶ

 

 
Appendix C  

R/S-PLUS Implementation  
C1. An R function for randomized systematic PPS 

sampling.  

The input variables of the function are x: the population 

vector of size variable and n: the sample size. The function 

syspps returns the set of n selected units.   
syspps<-function(x,n){ 

N<-length(x) 

U<-sample(N,N) 

xx<-x[U] 

z<-rep(0,N) 

for(i in 1:N) z[i]<-n*sum(xx[1:i])/sum(x) 

r<-runif(1) 

s<-numeric() 

for(i in 1:N){ 

if(z[i]>=r){ 

s<-c(s,U[i])  

r<-r+1 

 } } 

return(s[order(s)]) 

}  
C2. An R function for simulating the second order inclusion 

probabilities. 

The input variables of the function are x: the population 

vector of size variable and s: the set of labels of units in the 

sample. The default sampling procedure is the randomized 

systematic PPS sampling method and the number of 

repeated samples is 610 .K =  The function piij returns an 

n n×  matrix with the th( )ij  entry being the simulated 
* , , .ij i j sπ ∈   

piij<-function(x,s){ 

N<-length(x) 

n<-length(s) 

p<-matrix(0,n,n) 

for(k in 1:1000000){ 

ss<-syspps(x,n) 

for(i in 1:(n-1)){ 

for(j in (i+1):n){ 

if(min(abs(ss-s[i]))+min(abs(ss-s[j]))==0)  

    p[i,j]<-p[i,j]+1 

  } } } 

p<-(p+t(p))/1000000 

return(p) 

} 
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C3. An R function for PPS sampling under substitution of 

units.  
 
sysppssub<-function(x,n,refus){ 

s<-syspps(x,n) 

sub<-numeric() 

for (i in 1:n){ 

if(min(abs(s[i]-refus))==0) sub<-c(sub,i) 

} 

m<-length(sub) 

if(m>0){ 

s<-s[-sub] 

U1<-(1:length(x))[-c(refus,s)] 

x1<-x[-c(refus,s)] 

s1<-syspps(x1,m) 

s<-c(s,U1[s1]) 

} 

return(s[order(s)]) 

} 

 
The default procedure for the selection of the initial 

sample and the substitute sample is the randomized 

systematic PPS sampling. The following R function 

sysppssub is used for simulating the inclusion probabi-

lities under substitution of units. The input variables are x: 

the population vector of size variable, n: the sample size, 

and refus: the set of refusing units from the initial sample. 

The function returns a set of units for the final sample.  
C4. R codes for simulating the iπ  under substitution of 

units.   
pi<-rep(0,N)  

for(i in 1:1000000){ 

s<-sysppssub(x,n,refus) 

for(j in 1:N){ 

if(min(abs(s-j))==0) pi[j]<-pi[j]+1 

 } } 

pi<-pi/1000000 
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