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The scale factor refers to an unknown size variable which affects some

or all observed variables in a multiplicative fashion. The scale effect

studied by several researchers in market-based regression analyses is

defined here as the intriguing combination of coefficient bias and

heteroscedasticity caused by the scale. Deflation is the most popular

technique used in previous market-based studies to mitigate the scale

effect. Selection of a suitable deflator, however, remains as a difficult

and challenging task due to the lack of a general statistical framework

for this type of research. In this article, we establish a general statistical

framework for deflator and model selection. We argue and show that

the existence and severity of the scale effect can be identified and

measured using the Average Absolute Values of Studentized Residuals

and the Relative Total Prediction Error for stratified firm groups.

The proposed framework consists of five major components. Results

from our simulation studies and sensitivity analyses show that if the true

scale variable is used as a deflator to produce one of the deflated

candidate models, this model can be correctly identified using the

proposed strategy, even if the working model is mildly misspecified.

In addition, our studies show that the generalized linear modelling

method can be very useful for mitigating the scale effect when the

unknown true scale variable is related to the whole set of independent

variables through the so-called mean function.

I. Introduction

In market-based regression analyses, sample data are

often cross sectional, with information from various

balance sheets and income statements of firms with

different sizes. One of the important econometrical

issues is to identify and mitigate the so-called ‘scale

effect’ which, if exists, can cause coefficient bias and

model inefficiency (Barth and Kallapur, 1996).

Deflation is the most popular method used in this

type of research to mitigate the ‘scale effect’. In the

special case where the scale factor is known, deflation

simultaneously cures coefficient bias and heterosce-
dasticity and is unambiguously the better remedy

(Barth and Kallapur, 1996). However, the scale factor

is rarely known in reality. One needs to search for a

scale proxy and uses it to deflate the original model.

Examples of deflators used in prior market-based
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studies include market value of equity, book value
of equity, earnings, cash flows, sales, total assets
and number of shares outstanding. Christie (1987)
was one of the early studies which raise the concern
that inappropriate deflator can cause spurious
inference (this concern is confirmed by results
reported in Sections III and IV of the present
study). Since then, a few studies have made efforts
to explore the best deflator among alternatives
primarily from the economic point of view. The
empirical evidence and resulting conclusions are
often controversial and mixed. Easton (1998)
suggests that closing book value is a suitable
deflator. Barth and Clinch (2001) using simulated
data suggest that Easton does not demonstrate that
deflating by book value produces superior results.
Lo and Lys (2000) argue that opening market value
is the best deflator and also that deflating by
opening market value produces a theoretically more
appealing coefficient for dividends in a regression
of market value on book value, earnings, dividends
and capital contributions. In contrast, Easton and
Sommers (2003) argue and find supportive evidence
based on the US data that the scale and then the
best deflator is end-of-period market capitalization.
They strengthen their findings by providing evi-
dence on the superiority of using market capitaliza-
tion as the deflator over using book value and
earnings. However, in the discussion of Easton and
Sommer’s work, Akbar and Stark (2003) show that
end-of-period market capitalization fails to outper-
form book value and earnings when the UK data
are used, suggesting that Easton and Sommer’s
findings may not be generalized into other coun-
tries, which, in fact, questions Easton and
Sommer’s message that end-of-period market capi-
talization is the true scale factor.

The controversial discussions and mixed evidence
call for further development of a unified theory
for deflator selection. Given the fact that the true
scale is unobservable, the key practical issue lies
in the selection of an appropriate scale proxy
(i.e. deflator) among alternatives that can best
mitigate the scale effect and reduce the likelihood
of invalid and spurious inference. In this study,
unlike previous studies which discuss individual
deflators in a one-at-a-time manner, we establish a
general statistical framework aimed at providing a
systematic and operational guidance for deflator
and model selection1 to mitigate the scale effect
under any economic situations. We define the scale
effect as the intriguing combination of coefficient

bias and heteroscedasticity caused by the unknown
scale factor. We argue that coefficient bias and
heteroscedasticity associated with a chosen model
can be effectively identified and assessed using two
model selection criteria, namely, the Average
Absolute Values of Studentized Residuals (Ak) and
the Relative Total Prediction Error (Rk) for
stratified firm groups. Our proposed deflator and
model selection process consists of five major steps:
(1) choose a working model which best reflects our
understandings of the sample data and also meets
our inference objectives of the study; (2) create a
pool of candidate models based on the working
model, including those which can be justified either
statistically or economically; (3) stratify sampled
firms into groups based on a chosen size measure
of the firms; (4) evaluate each candidate model
in the pool by computing the values of Ak and Rk

for all size groups; and (5) select the best model
from the pool by comparing Ak and Rk among
candidate models.

Choosing an appropriate working model has
never been an easy task for real world applications.
It requires careful preliminary exploration of the
data; it may also involve variable selection and/or
other formal statistical procedures. The creation of
the pool of candidate models is central to our
proposed strategy. The pool needs to be large
enough such that the best model identified from
the pool is nearly free of the scale effect. The
unknown scale factor can be viewed as a size variable
which affects some or all other variables in a
multiplicative way. We consider three types of
candidate models for the pool including (i) deflated
models with one of the observed independent
variables as the deflator; (ii) deflated models with
deflators depending on a single independent variable
in a nonlinear fashion; and (iii) generalized linear
models with model variances depending on the
whole set of independent variables included in the
working model. Without causing any confusion, we
use GLM as abbreviation for ‘Generalized Linear
Modelling method’ or ‘Generalized Linear Model’,
depending on the circumstance.

Our study shows that the GLM methodology can
be a valuable inference tool for market-based
regression analyses. While deflation is potentially
powerful in dealing with the ‘scale effect’ for cases
where the underlying true scale factor is only related
to a single independent variable, we argue that it is
not suitable for cases where the scale factor depends
on a set of independent variables. Deflation which

1Our proposed strategy includes the use of Generalized Linear Models (GLMs) and consequently involves model selections
among the pool of candidate models.
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may mitigate the scale effect for the former may
cause spurious inference for the latter. Our simula-
tion results reported in Sections III and IV indicate
that the GLM can be an effective tool for
mitigating the scale effect especially when the
variance structure of the model is directly related
to the mean value of the response variable. The use
of GLM methodology as a tool for market-based
regression analyses is briefly introduced in the next
section. More details and computational notes are
provided in the Appendix.

Our proposed approach does not contradict
but rather complement prior studies on this topic.
The ‘best’ deflated regression model can depend on
several factors including the set of independent
variables used in the model, the country or the
region where the data are collected and the time
period as well. Our view is consistent with Akbar
and Stark (2003) in the sense that there is no
universally ‘best’ deflator. What really important is
that certain systematic treatments are followed and
some unified criteria are used in identifying a model
that exhibits the least ‘scale effect’. Deflators used
and models identified by prior studies can be
naturally assessed and compared against each
other using our proposed general statistical
framework.

This study extends the existing literature in three
main ways. First, we establish an objective,
systematic, standardized and statistically meaningful
way to identify an appropriate model which is least
affected by the scale among alternative candidate
models. Early studies (e.g. Christie, 1987) already
documented the importance of this research prob-
lem and called for more appealing solutions. Our
study answers the call and provides a general
framework to address this important issue.
Second, we argue and show that the average
absolute values of studentized residuals and the
relative total prediction error for firm size groups
are valid criteria for identifying the existence of the
scale effect and further measuring the severity of
the effect. Third, we consider the complicated but
practically important scenario where the scale
factor is associated with more than one independent
variable, and introduce the GLM methodology as
an alternative ‘scale effect’ control mechanism
under such situations.

We present the proposed general statistical frame-
work for deflator and model selection in Section II,
followed by an illustration of the proposed strategy in
Section III through a simulation study using datasets
which mimic the real data collected from
COMPUSTAT. However, our simulation study is
designed in such a way that the true model which

generates the original scale-free variables and the true
scale factor which leads to the ‘actual’ scale-affected
observations are known under the simulation setting.
Issues such as misspecified working models and
different stratification schemes for the sampled
firms are investigated in Section IV through a
sensitivity analysis. Discussions and additional
remarks are given in Section V. Some detailed
description and computational notes on the GLM
estimation theory are presented in the Appendix.

II. A Statistical Framework for Deflator
and Model Selection

In this section, we first provide a brief discussion
on ‘scale’ and ‘scale-effect’ and their impact on
market-based regression analyses. Our main focus is
to establish a general statistical framework for
deflator and model selection. Major components
of our proposed strategy include the choice of a
working model, the creation of a pool of candidate
models, criteria for the assessment of
candidate models and the identification and selection
of a model which is least affected by the scale effect.

Scale and scale effect

It is critical to our study to clarify ‘scale’ and ‘scale-
effect’. The two terms do not seem to have universally
accepted definitions. Barth and Kallapur (1996)
define ‘scale’ as an unobserved size variable S which
has a multiplicative effect on all observed economical
variables. More formally, let Y �i ,X

�
1i, . . . ,X �pi, be the

variables of interest associated with the unknown
scale variable Si for the i-th firm. What researchers
actually observe are the scale affected variables
Yi ¼ SiY

�
i ,X1i ¼ SiX

�
1i, . . . ,Xpi ¼ SiX

�
pi. Suppose that

the relation between the true but unobserved
variables is given by

Y�i ¼ �
�
0 þ �

�
1X
�
1i þ � � � þ �

�
pX
�
pi þ e�i ð1Þ

where the error terms e�i have zero mean and constant
variance. The working regression model based on
observed variables is specified as

Yi ¼ �0 þ �1X1i þ � � � þ �pXpi þ ei ð2Þ

By multiplying Si on both sides of (1) we obtain

Yi ¼ �
�
0Si þ �

�
1X1i þ � � � þ �

�
pXpi þ Sie

�
i ð3Þ

The two models (1) and (3) are mathematically
equivalent but models (2) and (3) are not, since the
unknown scale variable Si is generally not available
for inclusion in the working model (2).

Deflator selection in market-based regression analyses 1741
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There are two major implications for regression

analysis in the presence of the scale variable:
Heteroscedasticity and Coefficient Bias. Suppose
that the true model (1) has a homogeneous variance

structure for the error term, i.e. Var ðe�i Þ ¼ �
2, then

the variance structure for the working model (2)
becomes Var ðeiÞ ¼ S2

i �
2, which is nonhomogeneous

due to the unequal size measure Si. In addition,
estimators of �j ð j ¼ 0, 1, . . . , pÞ obtained from the
working model (2) are typically biased for the true

regression coefficients ��j . In the case of single
independent variable X*, the magnitude of the bias
depends on the coefficient of variation related to

X* and S (Barth and Kallapur, 1996). In this
article, we refer to the intriguing combination
of heteroscedasticity and coefficient bias as the

‘scale-effect’.
While heteroscedasticity is inherent to the scale

and the scale effect, the concept of coefficient bias
is quite different. Its existence and severity depend
on whether the true model with all relevant

variables is used for analysis or not. Statistical
methods which are capable of handling heterosce-
dasticity do not necessarily correct for coefficient

bias. For instance, in the case of known scale
variable Si and Var ðeiÞ ¼ S2

i �
2, heteroscedasticity

can easily be handled by using the Weighted Least

Square (WLS) method, with S2
i being the weights.

This is equivalent to fitting the following model

Yi

Si
¼ �0

1

Si

� �
þ �1

X1i

Si

� �
þ � � � þ �p

Xpi

Si

� �
þ ei ð4Þ

using the Ordinary Least Square (OLS) method.
The coefficient bias problem may still persist since
model (4) does not match (1) for the first term.

White (1980) and MacKinnon and White (1985)
propose several direct methods for dealing with
heteroscedasticity even if the variance structure of

the model is unknown. These methods, however,
are not very useful to entirely mitigate the scale effect
since they usually do not correct for coefficient bias.

Barth and Kallapur (1996) suggest two remedies

for problems induced by the scale effect: deflate the
original model by a selected scale proxy and/or
include the scale proxy as an independent variable

in the deflated model. It is apparent that including
additional independent variables into the working
model does not change the variance structure of the

error terms, but it may help to remove coefficient
bias. If the scale variable Si is among the variables
being observed in the sample data, then Si itself

should be free from scale affection. In other words,
what we observe is still Si, not Si�Si. If Si is
included in the working model as an independent

variable, this same variable should also be included

in the deflated model, i.e., Si should not be deflated

by Si, otherwise the variable Si will be removed

from the model. If the working model (2) includes

all the independent variables involved in the true

model (1) and if the scale variable S is known, then

deflation simultaneously cures coefficient bias and

heteroscedasticity and is the best remedy for

problems induced by the scale effect.
The article by Easton and Sommers (2003) deserves

some special comments and discussion. They seem to

take a different view when considering the scale and

the scale effect. They argue from an economic point

of view that the ‘true’ scale is market capitalization,

and define the scale effect as the overwhelming

influence of large firms on regression estimation

(Easton and Sommers, 2003, pp. 26, 41 and 51)

due to large firms being large in both market

capitalization and various accounting and economic

variables. They identify the so-defined ‘scale-effect’

through studentized residuals obtained by fitting the

following model (Easton and Sommers, 2003, p. 33,

Equation 1)

MCj ¼ �0 þ �1BVj þ �2NIj þ "i ð5Þ

where MCj is the market capitalization, BVj is the

book value of common equity and NIj is the net

income for the j-th firm. They use the WLS method to

estimate the model parameters with weights being the

square of market capitalization. This is equivalent to

fitting the following model

1 ¼ �0
1

MCj
þ �1

BVj

MCj
þ �2

NIj
MCj
þ ej ð6Þ

using the OLS method. From the computational

point of view this approach is easy to implement, but

the interpretation of results from fitting the model (6)

is not straightforward under the traditional frame-

work of regression analyses.
Easton and Sommers’ (2003) approach, however,

does raise an important research question: what is

the appropriate strategy in regression analysis when

the scale variable is closely related to the response

variable? Note that EðYiÞ ¼ �0 þ �1Xi þ � � � þ �pXpi

under model (2), the question can be reiterated as:

what is the appropriate approach when the scale

variable is related to a linear combination of several

independent variables? We argue in the section

‘Candidate models’ that the GLM method provides

a possible solution to this scenario. Further

investigation on the usefulness and effectiveness of

the GLM methodology for market-based regression

analyses is clearly needed.
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Candidate models

We start with the working model (2) and term it as
the baseline model. The choice of the response
variable Y and the inclusion of independent
variables for the baseline model depend on the
economic background and inference objectives of a
particular study. This is the crucial initial step for
our proposed statistical framework but will not be
addressed further in the current article. Our
primary goal in this study is to search for an
appropriate scale proxy such that the corresponding
deflated model based on (2) is least affected by the
scale assuming that the baseline model (2) is
suitably chosen. To achieve this, we first create a
pool of candidate models based on the chosen
working model and then identify and select the best
model from the pool using appropriate criteria. The
pool should include models which are economically
and/or statistically plausible and meaningful.
Economic considerations often justify the inclusion
or exclusion of certain variables as potential
deflator candidates. Without having such an eco-
nomic background, we consider models which are
compatible with models (1) and (2).

The assumed models (1) and (2) imply that
VarðYijXi,SiÞ ¼ Vi�

2 with Vi ¼ S2
i . This provides an

effective way of choosing deflator candidates based
on the variance structure. There are two commonly
encountered variance structures of the error term in
practice:

(i) Vi can be approximated by jXjij
r for some

j and r>0, where Xji is the j-th independent
variable associated with the i-th firm. In other
words, Vi depends only on a single indepen-
dent variable.

(ii) Vi is related to a certain combination of
several independent variables.

For scenario (i), the most sensible choice of r is
either 1 or 2, i.e. Vi ¼ jXjij or Vi ¼ X2

ji. This leads
to deflating the baseline regression model by

ffiffiffiffiffiffiffiffi
jXjj

p
when r is 1 or by Xj when r is 2. Most prior
market-based studies consider scenario (i) and
assume r¼ 2 (see, for instance, Barth
and Kallapur, 1996; Lo and Lys, 2000; Akbar
and Stark, 2003; Easton and Sommers, 2003,
among others). In this article we consider both
r¼ 1 and r¼ 2 but other choices of r are also
possible. It is important to note that the scale
variable Si, although unobserved, can be viewed as
a size measure of the firms. Observed independent
variables which might be interpreted as a size
measure, such as the book value of common equity,

the net income, sales, the number of shares
outstanding or even the market capitalization,
should be considered as potential deflator candi-
dates and the corresponding deflated models should
be included in the pool.

Situations under scenario (ii) are somewhat
complicated. The conventional deflation method
using a single independent variable as deflator is
not appropriate under this scenario and can some-
times cause even more severe coefficient bias,
resulting in invalid and spurious inference. This
situation should be dealt with the GLM method as
discussed below.

Let �i ¼ EðYijXiÞ ¼ �0 þ �1X1i þ � � � þ �pXpi be
the mean function under the linear regression
model (2.2) and VarðYijXiÞ ¼ Vi�

2 be the variance
structure, where Xi ¼ ðX1i, . . . ,XpiÞ. In theory, Vi

may depend on the whole set of independent
variables Xi ¼ ðX1i, . . . ,XpiÞ. A good approximation
for many statistical applications is that the Vi

relates to Xi only through the mean function �i.
This is true for many business applications where
firms with larger mean values will also exhibit
larger variations. Scatter plots of the
COMPUSTAT data used for our simulation studies
display a clear trend of this feature. One possible
way to specify this type of relationship is to use a
power function Vi ¼ �

r
i for some r>0.

One of the major statistical advances in the past
15 years is the development of the GLM theory.
The method is more general than the traditional
OLS or WLS approach, and is extremely powerful
in dealing with cases where Vi depends on Xi only
through �i. We therefore propose to use the GLM
method under scenario (ii) assuming Vi ¼ �

r
i . It

should be noted that GLM is not deflation. It is
most effective in handling heteroscedasticity under
the current situation but its effectiveness in dealing
with the coefficient bias problem requires further
investigation. In Sections III and IV, we show
through simulation studies that the GLM method
can be effective for both, and is potentially a very
useful inference tool for market-based regression
analyses. Some technical as well as computational
details about the GLM method under the current
context are presented in the appendix.

In our simulation studies, the pool of candidate
models includes (i) deflated regression models with
deflators chosen from the set of independent
variables; (ii) deflated regression models using
square roots of the variables used in (i) as deflators;
and (iii) two GLMs with Vi ¼ j�ij or Vi ¼ �

2
i where

�i ¼ �0 þ �1X1i þ � � � þ �pXpi. Those two variance
structures are also popular choices for the GLM
method in other areas of applications. We assess

Deflator selection in market-based regression analyses 1743
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each model using our proposed criteria, i.e.
Goodness-of-Fit and Prediction Power discussed in

the next section, for different size groups.

Goodness-of-fit and prediction power

The best model to be selected from the pool of

candidate models should be the one which is least
affected by the scale. Ideally, one should assess these
models by conducting formal tests to see whether
heteroscedasticity and/or coefficient bias are removed
or mitigated for a particular candidate model. Such

formal tests, however, are either undesirable or
unavailable under current situations. First, there
exist a large number of plausible candidate models,
including those obtained through deflation, which

can be justified by either economical arguments or
statistical considerations. It is very likely that more
than one candidate model can survive for a test on the
homogeneity of the error terms, but the problem of

selecting the ‘best’ model remains unsolved. Second,
the issue of coefficient bias is very subtle. The true
coefficient bias is directly related to whether the
candidate model is identical or very similar to the true

model, which is not testable for any practical
situations. The two major aspects of the scale effect,
namely heteroscedasticity and coefficient bias,
however, can be examined in an indirect way through

the goodness-of-fit of the data to the chosen model
and the prediction power of the model for different
firm size groups. We elaborate the three involved
components below.

(1) Why stratify firms by a size variable?
Sample data collected from balance sheets and

income statements differ significantly by order of
magnitude, depending on the size of the firm. On the
other hand, the so-called scale variable, neither
explicitly defined nor precisely observed, must be

positively correlated to other firm size variables.
If we group firms by a size variable and evaluate
the performance of each candidate model across all
firm size groups, the scale effect, if exists, will show

up through the ‘nonuniform’ model behaviour
across groups of different sizes. In our proposed
deflator and model selection strategies, we divide
sample firms into groups based on a chosen size

measure, and assess the model behaviour and
performance within each of these groups and
compare them across the groups. A model which
is free from the scale effect will show uniform

performance in terms of the average absolute values
of studentized residuals and the relative total
prediction error (to be defined in the sequel) across
all size groups.

There are two other issues related to grouping:

(i) which size variable should we use if there are

multiple possible choices? and (ii) how many groups

are appropriate to effectively identify the scale

effect? Those issues are addressed and some empirical

evidences are obtained in our simulation and

sensitivity studies reported in Sections III and IV.

(2) How to check heteroscedasticity?
There exist several methods which can be used to

directly deal with heteroscedasticity (see, for instance,

White (1980) and MacKinnon and White (1985)).

However, we are not interested in those procedures

since our goal is to simultaneously handle both

heteroscedasticity and coefficient bias. Under the

assumption that the pool of candidate models

includes one which is free from the scale effect, the

real question of interest here is how to identify a

model with a homogeneous variance structure and

free of coefficient bias as well. Studentized residuals

obtained from fitting a chosen model can be used

to identify the existence and to further measure the

severity of heteroscedasticity of the model.
Suppose sample firms are stratified into K groups,

based on a chosen firm size measure. Let Gk be the set

of firms and mk be the number of firms in the k-th

group, k ¼ 1, 2, . . . ,K; let "̂i be the studentized

residuals for the i-th firm obtained from fitting the

chosen candidate model using OLS. The Average

Absolute Values of the Studentized Residuals for the

k-th group is defined as

Ak ¼
1

mk

X
i2Gk

"̂i
�� ��

This quantity summarizes the goodness-of-fit of the

model to the sample data for the k-th group. If the

candidate model has a homogeneous variance struc-

ture and if the total sample size is large, then the "̂i’s
follow approximately a standard normal distribution

and are also approximately independent of each

other. Consequently,

E "̂i
�� ��� �

_¼

Z 1
�1

jxj
1ffiffiffiffiffiffi
2�
p e�x

2=2dx ¼

ffiffiffi
2

�

r
_¼ 0:8

and Var ðj"̂ijÞ _¼Eð"̂
2
i Þ � 0:82 _¼1� 0:64 ¼ 0:36. A one-

sided 95% level upper prediction bound for Ak is

given by 0:8 þ 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:36=mk

p
. For instance, if

mk¼ 100, then this upper bound is 0.899. Cases

where one or several values of Ak go beyond the upper

bound should be viewed as evidence of hetero-

scedasticity associated with the candidate model.

The severity of heteroscedasticity is therefore mea-

sured by the magnitude of Ak exceeding the

1744 C. Wu and B. Xu
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upper bound. On the other hand, a model with

uniformly smaller values of Ak should be considered

as more desirable when we try to select the best

model from the pool.

(3) How to assess coefficient bias?
The assessment for coefficient bias is the most

difficult and subtle aspect for deflator and model

selection. As we argued in previous sections, coeffi-

cient bias is neither identifiable nor estimable. It is

essentially the question of whether the candidate

model is the same as the underlying true model, which

can never be answered for sure based on a particular

sample dataset.
There are two fundamental objectives for regres-

sion analysis: to describe how the response variable

(or dependent variable) is related to important

independent variables (or covariates) using observed

data, and to make predictions for ‘future’ values

using the estimated regression equation. While a

larger-than-necessary model which includes redun-

dant independent variables can sometimes provide

improved goodness-of-fit to a particular dataset, it is

usually less powerful for predicting new cases and

future values. Under the current context, if a

candidate model is free of the scale effect, i.e. it is

close to the underlying true model, than it should

demonstrate a good balance between goodness-of-

fit and prediction power. To assess the existence of

coefficient bias in a candidate model, we therefore

require a measure of prediction power of the model.

A model with poor prediction capacity implies that

the model is not close to the underlying true one,

which further implies that coefficient bias may exist.

The prediction power together with the goodness-of-

fit criterion as measured by the Average Absolute

Values of the Studentized Residuals will provide

indirect but valid assessment for coefficient bias.
Let Di be the chosen candidate deflator. The

deflated model is given by

Yi

Di
¼ �0 þ �1

X1i

Di

� �
þ � � � þ �p

Xpi

Di

� �
þ ei ð7Þ

To assess the prediction power of model (7), we

propose to use the following procedure which is

similar to the cross-validation technique often used

in statistics. Let ðYi,X1i, . . . ,Xpi,DiÞ be the i-th row of

the data matrix associated with the i-th firm in the

sample. We fit model (7) using the OLS method

and the dataset with the i-th row removed from

the sample. Let ð�̂0½�i�, �̂1½�i�, . . . , �̂p½�i�Þ be the

estimated regression coefficients, where [�i ] indicates

that the i-th firm is deleted from the sample.

The predicted value of Yi is then computed as

Ŷi ¼ �̂0½�i�Di þ �̂1½�i�X1i þ � � � þ �̂p½�i�Xpi

This procedure is carried out for every firm included

in the sample. The prediction error for the i-th firm

is given by Yi�Ŷi. It should be noted that this

error does not belong to any type of residuals, since

Yi is not used in finding Ŷi.
The total prediction error

P
i2Gk
jYi�Ŷij for each

of the K groups may be used to measure the

prediction power of the candidate model. This

measurement, however, is difficult to interpret when

it comes to comparisons between firm groups of

different sizes. For instance, the error jYi�Ŷij ¼ 0:1
should be viewed as unacceptably large if the true

value is Yi¼ 0.001; on the other hand, the error

jYi�Ŷij ¼ 1000 is negligible if Yi¼ 1 000 000.

We therefore propose to use the Relative Total

Prediction Error for each of the K size groups,

denoted by Rk and defined below for the k-th group

as the measure of prediction power of the model,

Rk ¼

P
i2Gk
jYi � ŶijP

i2Gk
Yij j

If the model is acceptable, the Rk’s must be

comparable to each other among different firm size

groups. In addition, smaller values of Rk indicate

stronger prediction power of the model.
For GLMs, the estimated regression coefficients

ð�̂0½�i�, �̂1½�i�, . . . , �̂p½�i�Þ are obtained through the

quasi-score method (see the Appendix for details).

The predicted value of Yi is simply computed as

Ŷi ¼ �̂0½�i� þ �̂1½�i�X1i þ � � � þ �̂p½�i�Xpi. As indi-

cated previously, no deflator is involved in the

GLM approach.

III. Simulation Study

We illustrate the proposed deflator and model

selection process and demonstrate the effectiveness

of our proposed approach through a simulation

study. The data we use for the study mimic real

world applications but both the true regression

model and the true scale variable are set to be

known under the simulation setting. Our simulation

study is programmed using the free statistical

software package R which is downloadable at

www.r-project.org (R Development Core Team,

2005). The original datasets and the R programs

used in the simulation are available from the first

author of this article upon request.
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The dataset based on which our simulation
samples are generated is collected from
COMPUSTAT for the year 1999. The data file
contains complete information on market value of
equity (MV), book value of equity (BV), net income
(NI), R&D spendings (RD), sales (SA), cash flows
(NFO), total assets (TA), dividends (DI), capital
contributions (CC) and number of shares (SH)
outstanding. The total number of firms with these
types of information available is 3713. Since this is a
real dataset, we treat it as if all its observations
are affected by an unknown scale variable. To create
a dataset which is ‘scale-free’, we sort the data file
by SA,2 and the first N¼ 3240 observations from
the sorted file are used to form the ‘scale-free’
dataset. The motivation behind throwing away a
portion of large observations is that we will re-create
these large values through a chosen scale variable.

To ensure that sample data used for our simulation
studies follow a known regression model, we generate
the response variable Y�i using the following model,

Y�i ¼ �
�
0 þ �

�
1BV

�
i þ �

�
2NI�i þ �

�
3RD�i þ e�i ð8Þ

where BV*, NI* and RD* are the ‘scale-free’
variables and the error terms e�i follow an N(0, �2)
distribution. The regression coefficients
��j ¼ ðj ¼ 0, 1, 2, 3Þ are chosen as the estimated
regression coefficients by fitting the model (8) using
MV* as the response variable. In doing so the
generated response variable Y* mimics MV* but it
follows the known model (8); the error variance
�2 is chosen such that the sample multiple correlation
coefficient between Y�i and the set of independent
variables (BV�i , NI�i , RD�i ) is 0.80; an constant
number is added to all Y�i so that min Y�i ¼ 0:02
(this is the minimum value of MV* from the original
dataset). Our final ‘scale-free’ dataset consists of
N¼ 3240 observations on variables Y*, BV*, NI*,
RD*, DI*, CC*, SA* and MV*.

The scale-affected ‘observed’ sample data are
generated through the true scale variable. Under
model (8), the mean response values are given by
�i ¼ �

�
0 þ �

�
1BV

�
i þ �

�
2NI�i þ �

�
3RD�i . They are known

under the simulation setting. We consider four
scenarios for the true scale variable S. Those are
also likely representative cases in practice.

(i) Si¼BVi: the scale is one of the observed
independent variables.

(ii) Si ¼
ffiffiffiffiffiffiffiffi
BVi

p
: the scale is related to but not the

same as one of the observed independent
variables.

(iii) Si¼�i: the scale is linearly related to the set of

independent variables in the true model.
(iv) Si ¼

ffiffiffiffiffi
�i
p

: the scale nonlinearly relates to the

set of independent variables.

Under each scenario, the scale-affected observations
are obtained by multiplying the scale-free variables

by the scale variable. In cases (1) and (2), the scale

variable BV itself remains unaffected. Four

datasets are generated, one for each of the four

scenarios, and are used as ‘observed’ sample data in

the simulation study.
In what follows, we go through the process

according to our proposed strategy to select a
deflator and/or identify a model which is least

affected by the scale. The first step is to choose a

working model. We consider the following baseline

model:

Yi ¼ �0 þ �1BVi þ �2NIi þ �3RDi þ ei ð9Þ

This model has the same structure as the true one.

The practically important issue of misspecified

working models will be explored in the next section.
The second step is to create a pool of candidate

models. We consider three types of models:

(i) deflation models using the two independent
variables BV and NI and their square roots as

deflators; (ii) deflated models with the exogenous

variable MV and its square root as deflators; and

(iii) the two GLMs with the variance function

(a) Vi¼�i and (b) Vi ¼ �
2
i , denoted as GLMa and

GLMb. The variable RD is weakly correlated to the

response variable and is not considered as a sensible

choice of the scale variable. Our final pool of
candidate models can be represented by the set

� ¼
n
U,BV,NI,MV,

ffiffiffiffiffiffiffi
BV
p

,
ffiffiffiffiffiffi
NI
p

,

ffiffiffiffiffiffiffiffiffi
MV
p

,GLMa, GLMb

o

where ‘U’ represents the undeflated working model

(9). There are a total number of nine candidate

models included in the pool.
The third step is to group the sample firms by a size

measure. There are several variables which can be

interpreted as possible size measures. We consider

sales (SA) in this section but other choices are also
examined in Section IV. The number of groups is

another important issue. We report results for K¼ 40

groups in this section and discuss more on alternative

grouping schemes in Section IV. The number of firms

in each group is 3240/40¼ 81 when K¼ 40.

2 This is our size measure for simulation results reported in this article. Other choices of size measure are also considered, and
our major conclusions remain unchanged under different choices of size variables.
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The fourth step is to obtain numeric results. For
each of the four datasets, the average absolute
values of studentized residuals Ak and the relative
total prediction errors Rk are computed for all 40
groups under each of the nine candidate models in
the pool. The computation of Rk is quite intensive
since we need to fit the candidate model using the
delete-1 dataset for each firm, and the process
needs to be repeated for all firms in the sample as
well as for all candidate models.

A brief review of values of Ak and Rk for all 40
groups reveals an interesting phenomenon which
may have practically important implications: if the
values of Ak or Rk display a nonuniform pattern
over the 40 groups, the larger or smaller values are
always found in the first or last four groups. We
therefore only report results for the first four

groups (G1–G4) and the last four groups (G37–
G40) for Ak (Table 1) and Rk (Table 2). Values of
Ak and Rk for the unreported groups are always
somewhere in-between and hence are not very
informative for our decision makings.

The last step is to identify the ‘best’ model from
the pool of candidate models using the criteria of
goodness-of-fit and prediction power measured by
Ak and Rk. To make comparisons among different
candidate models considered in the simulation,
we note that (i) the 95% level upper prediction
bound for Ak is 0:8þ 1:645� 0:6=

ffiffiffiffiffi
81
p

_¼ 0:91 for
mk¼ 81 (see the section ‘Goodness-of-fit and predic-
tion power’ for detailed argument), and large values
of Ak are viewed as evidence of heteroscedasticity;
and (ii) a nonuniform pattern displayed by
the relative total prediction error Rk over different

Table 1. Average absolute values of studentized residuals for groups 1–4 and 37–40

Scale Model G1 G2 G3 G4 G37 G38 G39 G40

BVi U 0.39 0.38 0.38 0.37 0.92 1.04 1.24 2.19
BV 0.79 0.83 0.83 0.81 0.72 0.74 0.84 0.77
NI 0.64 1.25 1.01 0.90 0.11 0.11 0.09 0.09
MV 2.10 2.12 1.42 1.34 0.05 0.06 0.06 0.06ffiffiffiffiffiffiffi
BV
p

0.45 0.41 0.36 0.35 0.79 0.91 1.01 2.07ffiffiffiffiffiffi
NI
p

0.25 0.43 0.50 0.50 0.53 0.67 0.68 1.43ffiffiffiffiffiffiffiffiffi
MV
p

0.49 0.74 0.78 0.79 0.67 0.77 0.78 1.21
GLMa 0.25 0.14 0.13 0.10 0.69 0.87 0.91 2.01
GLMb 0.81 0.89 0.89 0.85 0.56 0.63 0.61 0.87ffiffiffiffiffiffiffiffi

BVi

p
U 0.67 0.52 0.46 0.40 1.20 1.12 1.60 2.09
BV 2.32 0.76 0.51 0.54 0.41 0.37 0.35 0.49
NI 2.11 1.46 0.71 0.92 0.16 0.17 0.14 0.14
MV 2.66 0.79 0.52 0.41 0.07 0.07 0.06 0.05ffiffiffiffiffiffiffi
BV
p

0.73 0.86 0.79 0.81 0.76 0.84 0.84 0.96ffiffiffiffiffiffi
NI
p

1.25 1.39 0.93 1.23 0.46 0.49 0.54 0.88ffiffiffiffiffiffiffiffiffi
MV
p

1.73 1.55 1.25 1.25 0.73 0.78 0.80 0.79
GLMa 1.24 0.88 0.76 0.64 0.96 0.86 1.17 1.10
GLMb 1.62 0.98 0.83 0.78 0.68 0.69 0.74 0.67

�i U 0.61 0.62 0.68 0.65 1.11 1.09 1.26 1.68
BV 0.99 0.09 0.02 0.17 0.02 0.02 0.03 0.02
NI 1.21 0.98 0.29 0.71 0.14 0.10 0.08 0.10
MV 1.11 0.81 0.67 0.83 0.42 0.26 0.27 0.23ffiffiffiffiffiffiffi
BV
p

1.96 0.80 0.51 0.54 0.18 0.15 0.18 0.41ffiffiffiffiffiffi
NI
p

1.80 1.45 0.85 1.00 0.32 0.30 0.28 0.75ffiffiffiffiffiffiffiffiffi
MV
p

1.43 1.08 0.92 1.05 0.71 0.69 0.81 1.20
GLMa 0.73 0.75 0.85 0.81 0.85 0.82 0.91 0.99
GLMb 0.83 0.84 0.98 0.92 0.59 0.61 0.61 0.54ffiffiffiffiffi

�i
p

U 0.69 0.70 0.80 0.78 0.85 0.81 1.18 1.05
BV 0.94 0.07 0.02 0.18 0.02 0.02 0.02 0.02
NI 1.10 0.90 0.25 0.73 0.10 0.10 0.08 0.10
MV 1.12 0.82 0.66 0.83 0.30 0.38 0.26 0.25ffiffiffiffiffiffiffi
BV
p

1.86 0.72 0.44 0.49 0.18 0.16 0.19 0.37ffiffiffiffiffiffi
NI
p

1.76 1.42 0.78 1.00 0.33 0.34 0.31 0.68ffiffiffiffiffiffiffiffiffi
MV
p

1.50 1.14 0.94 1.12 0.74 0.74 0.83 1.19
GLMa 0.77 0.78 0.90 0.88 0.72 0.64 0.90 0.70
GLMb 0.84 0.85 0.98 0.95 0.60 0.49 0.68 0.46
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firm size groups indicates that the model is poor
or wrong, which further implies that the coefficient
bias problem is of concern. The tolerable upper
bound of Rk depends on how strongly the response
variable is correlated to the set of independent
variables. For most applications the prediction
power should be viewed as strong if Rk<0.20
for all size groups but this argument is quite
arbitrary. The bottom line is that the smaller the Rk

the stronger the prediction power.
Tables 1 and 2 contain results for the four datasets,

each with a different true scale variable. Our major
findings can be summarized as follows:

(i) For the scenario where Si¼BVi: the deflated
model with Di¼BVi and the GLMb are the
only acceptable models under the criteria

Ak; the two models also have identical
performance in terms of Rk for the first four
groups but the deflated model is slightly better
when judged by Rk for the last four groups.

(ii) For the case where Si ¼
ffiffiffiffiffiffiffi
BV
p

i : the deflated
model with Di ¼

ffiffiffiffiffiffiffiffi
BVi

p
is the only model with

all Ak bounded by 0.96; this is also the best
model under the criterion Rk.

(iii) For the third scenario where Si¼�i: the two
GLMs have satisfactory performance under
both criteria; the deflated model with Di¼BVi

seems working well in terms of goodness-of-fit
but has outrageous performance for predic-
tion; the baseline model itself (U) has good
prediction power but fits the data poorly.

(iv) For the last case where Si ¼
ffiffiffiffiffi
�i
p

: this case is
very much similar to scenario (iii). The two

Table 2. Relative total prediction errors for groups 1–4 and 37–40

Scale Model G1 G2 G3 G4 G37 G38 G39 G40

BVi U 97.3 34.1 24.1 17.0 0.34 0.30 0.34 0.25
BV 0.21 0.27 0.16 0.24 0.09 0.12 0.09 0.07
NI 0.22 0.29 0.16 0.24 0.61 0.54 0.70 1.50
MV 0.20 0.27 0.16 0.24 1.37 0.49 0.65 1.15ffiffiffiffiffiffiffi
BV
p

2.15 1.22 0.99 0.79 0.11 0.17 0.12 0.21ffiffiffiffiffiffi
NI
p

0.28 0.28 0.17 0.25 0.11 0.18 0.15 0.25ffiffiffiffiffiffiffiffiffi
MV
p

0.21 0.27 0.16 0.24 0.11 0.19 0.12 0.23
GLMa 0.50 0.29 0.18 0.23 0.10 0.18 0.12 0.22
GLMb 0.20 0.27 0.16 0.24 0.11 0.19 0.12 0.24ffiffiffiffiffiffiffiffi

BVi

p
U 2.29 1.25 0.78 0.79 0.13 0.13 0.10 0.09
BV 0.70 0.75 0.61 0.67 3.46 4.36 4.04 10.2
NI 0.60 0.39 0.43 0.42 7.07 10.8 7.19 20.2
MV 0.60 0.80 0.98 1.00 7.68 9.27 10.7 13.1ffiffiffiffiffiffiffi
BV
p

0.24 0.21 0.24 0.22 0.12 0.12 0.12 0.13ffiffiffiffiffiffi
NI
p

0.45 0.34 0.36 0.37 0.46 0.46 0.48 0.79ffiffiffiffiffiffiffiffiffi
MV
p

0.61 0.48 0.53 0.47 0.66 0.72 0.74 0.71
GLMa 1.68 0.84 0.52 0.50 0.14 0.14 0.12 0.11
GLMb 0.97 0.43 0.30 0.27 0.24 0.25 0.30 0.30

�i U 0.24 0.20 0.20 0.24 0.17 0.12 0.11 0.09
BV 1.20 1.06 1.43 2.03 48.1 45.7 53.1 268
NI 0.83 0.64 0.70 0.85 26.0 25.8 22.9 95.4
MV 5.32 4.68 5.65 6.95 185 158 171 279ffiffiffiffiffiffiffi
BV
p

0.53 0.42 0.38 0.41 1.07 0.67 1.15 2.24ffiffiffiffiffiffi
NI
p

0.51 0.44 0.41 0.44 1.38 1.24 1.18 2.61ffiffiffiffiffiffiffiffiffi
MV
p

0.75 0.73 0.71 0.66 3.62 3.42 4.20 4.90
GLMa 0.23 0.20 0.19 0.24 0.15 0.10 0.11 0.12
GLMb 0.23 0.20 0.19 0.24 0.14 0.10 0.13 0.18ffiffiffiffiffi

�i
p

U 0.23 0.20 0.20 0.23 0.14 0.12 0.12 0.07
BV 1.36 1.29 1.73 2.47 51.4 46.6 54.1 29.5
NI 0.83 0.63 0.71 0.91 27.1 33.2 22.5 85.5
MV 5.37 4.75 6.03 7.30 148 186 138 256ffiffiffiffiffiffiffi
BV
p

0.51 0.40 0.37 0.39 1.32 1.04 1.43 2.95ffiffiffiffiffiffi
NI
p

0.51 0.43 0.42 0.43 1.51 1.76 1.38 3.16ffiffiffiffiffiffiffiffiffi
MV
p

0.79 0.78 0.75 0.68 4.29 4.42 4.79 6.37
GLMa 0.23 0.20 0.20 0.23 0.14 0.12 0.12 0.09
GLMb 0.23 0.20 0.20 0.23 0.14 0.12 0.12 0.10
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GLMs are indeed better than all others and
both models are satisfactory.

It is also observed that the exogenous variable MV,
based on which our response variable tries to mimic,
is not a statistically meaningful deflator. In cases
(iii) and (iv) where the true scale variable is related to
the whole set of independent variables, none of the
traditionally deflated models, i.e. using a single
variable as deflator, is effective. Indeed all these
deflated models produce spurious and in some
cases outrageous results, as judged by the
prediction capacity of the model. Note that
Rk ¼ ð

P
i2Gk
jYi � ŶijÞ=ð

P
i2Gk
jYijÞ ¼ 1 if we simply

use Ŷi ¼ 0 as predicted values for all sample firms,
the model must be outrageously wrong if Rk>1 for
any firm size group. The GLMs, GLMa and GLMb,
provide more efficient and reliable inference in cases
(iii) and (iv), and the two models have similar and
desirable behaviour under both assessing criteria.

IV. Sensitivity Analysis

For any real world application of the proposed
deflator and model selection strategy, different
decisions and choices could be made at each of the
major steps as outlined in Section III. An incom-
plete list of these decisions includes (i) the choice of
a size variable used for stratification; (ii) the number
of groups (or strata) used for evaluation; (iii) the
choice of a baseline working model; and
(iv) candidate models to be included in the pool.
In this section, we consider some of these aspects
and conduct a sensitivity analysis. We focus here on
(ii) and (iii) and see how things unfold if different
grouping methods and/or misspecified working
models are used. We will briefly summarize our
findings regarding (i) and (iv) at the end of this
section.

We first look at the issue of stratification, using
the dataset with Si ¼

ffiffiffiffiffiffiffiffi
BVi

p
as an example.

We compute the values of Ak and Rk under three
grouping schemes with the number of groups being
10, 20 and 40, respectively. The variable SA is used
as the size measure. Similar to what we observed
in Section III, for each of the three grouping schemes,
if values of Ak and Rk display a nonuniform pattern,
the larger and smaller values are always shown in
the first and last three or four groups. Table 3
presents the values of Rk for the first four groups
(G1–G4) and the last four groups (G-4–G-1) under
each of the three grouping schemes. There are two
clear messages conveyed from the table: for the best

model ðDi ¼
ffiffiffiffiffiffiffiffi
BVi

p
Þ the values of Rk remain virtually

unchanged under different grouping schemes, but for
models with Rk displaying a nonuniform pattern over

the groups the nonuniformity is more pronounced
under the more refined grouping scheme (i.e. 40

groups), which suggests that using a larger number of
size groups can help better identify coefficient bias

associated with the candidate model. This finding is
also confirmed by other datasets considered in

Section III and by the results of Ak (not reported
here) as well.

Another major concern for all real world applica-

tions is the possible misspecification of a working
model. While outrageously wrong models could be

avoided by a careful selection of the response
variable and the set of independent variables based

on economic and statistical considerations, some
mild departure of the working model from the true

one can never be eliminated. The most common
problems are either an over-specified working model

with too many independent variables or an under-
specified model with important covariates missing

from the model.
We repeat the simulation study of Section III

using the same datasets generated from model (8)

but two different working models. The sample
correlation coefficients between the response vari-

able Y and the five independent variables in the
order of BV, NI, RD, CC and DI are, respectively,

0.94, 0.85, 0.50, 0.44 and 0.22 for the dataset with
Si ¼

ffiffiffiffiffiffiffiffi
BVi

p
. This leads to the following natural

consideration of under-specified and over-specified
working models:

Yi ¼ �0 þ �1BVi þ ei ð10Þ

Yi ¼ �0 þ �1BVi þ �2NIi þ �3RDi þ �4CCi

þ �5DIi þ ei ð11Þ

The correctly specified working model is (9) used

in Section III. We compute the values of Ak and Rk

under models (10) and (11) using 40 groups based

on the firm size measure SA. Values of Rk for the
first and last four groups are presented in Table 4,

where the first column C–M denotes Candidate
Models considered in the pool and the second

column W–M represents Working Models
(i.e. models (10) and (11)) used to produce the

candidate model. Results under the correct working
model (9) are repeated here for the purpose

of comparison.
All candidate models produce comparable values

of Rk for groups G1–G4 under all three working

models but some behave quite differently for
groups G37–G40. The most important observation
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is that the relative performance of these candidate
models remains the same under all three working
models. For instance, the deflated model using
Di ¼

ffiffiffiffiffiffiffiffi
BVi

p
is still the best while the two deflated

models with Di¼NIi and Di¼MVi are among the
worst.

We also explored the sensitivity of our proposed
strategy using (i) COMPUSTAT data from 1997
and 1998 to generate sample data for the simula-
tion; and (ii) number of shares (SH) outstanding
and market value of equity (MV) as firm size
measures. Under all the scenarios considered in the
analysis, there are two common observations
speaking loud and clear. First, if the true scale
variable depends on a single independent variable
and if the corresponding deflated model is included
in the pool of candidate models, this deflator and
the associated deflated model are always correctly
identified. Second, if the true scale variable is
related to the whole set of independent variables
through the mean function, the two GLMs are
always the best under the criteria Ak and Rk, but
there seems to be no clear-cut winner between
GLMa and GLMb.

V. Concluding Remarks

Deflator and model selection for market-based
regression analyses involves both economical and
statistical considerations. For most level-based
research designs, one of the important econome-
trical tasks is to control and mitigate the ‘scale
effect’. Most prior studies on this topic are
conducted by accounting researchers. Those studies
focus on economic justifications for individual
deflator candidate using various baseline models.
Conclusions and recommendations are often
restricted to particular datasets and specific baseline
models used in the study. No generalizable deflator
in an economic sense has been identified.

The current study establishes a unified statistical
framework to guide the deflator and model
selection process. Given the fact that the true
‘scale’ and the magnitude of ‘scale effect’ are both
unknown, the proposed framework provides an
objective, systematic and statistically meaningful
way to select an appropriate model which is least
affected by the ‘scale’. The proposed framework
consists of two integrated parts: The creation of a

Table 3. Relative total prediction errors under different groupings

Model #Group G1 G2 G3 G4 G-4 G-3 G-2 G-1

U 10 1.13 0.44 0.27 0.22 0.19 0.17 0.15 0.11
20 1.67 0.78 0.52 0.38 0.15 0.14 0.13 0.10
40 2.29 1.25 0.78 0.79 0.13 0.13 0.10 0.09

BV 10 0.68 0.54 0.42 0.53 2.16 2.35 3.64 6.58
20 0.73 0.64 0.56 0.52 3.89 3.47 3.92 8.13
40 0.70 0.75 0.61 0.67 3.46 4.36 4.04 10.2

NI 10 0.44 0.52 0.77 1.50 5.19 5.53 6.08 13.2
20 0.48 0.42 0.45 0.58 6.27 5.95 9.01 15.7
40 0.60 0.39 0.43 0.42 7.07 10.8 7.19 20.2

MV 10 0.88 1.82 2.54 3.93 9.73 7.53 14.38 10.9
20 0.72 0.99 1.25 2.30 12.3 15.8 8.49 12.3
40 0.60 0.80 0.98 1.00 7.68 9.27 10.7 13.1ffiffiffiffiffiffiffi

BV
p

10 0.22 0.21 0.21 0.20 0.17 0.16 0.14 0.12
20 0.22 0.23 0.22 0.21 0.16 0.13 0.12 0.12
40 0.24 0.21 0.24 0.22 0.12 0.12 0.12 0.13ffiffiffiffiffiffi

NI
p

10 0.37 0.32 0.27 0.31 0.46 0.37 0.42 0.60
20 0.38 0.36 0.35 0.29 0.46 0.39 0.46 0.68
40 0.45 0.34 0.36 0.37 0.46 0.46 0.48 0.79ffiffiffiffiffiffiffiffiffi

MV
p

10 0.51 0.38 0.30 0.33 0.61 0.64 0.82 0.71
20 0.53 0.50 0.40 0.37 0.85 0.80 0.69 0.72
40 0.61 0.48 0.53 0.47 0.66 0.72 0.74 0.71

GLMa 10 0.77 0.31 0.24 0.22 0.20 0.17 0.16 0.12
20 1.18 0.51 0.36 0.27 0.17 0.15 0.14 0.12
40 1.68 0.84 0.52 0.50 0.14 0.14 0.12 0.11

GLMb 10 0.42 0.25 0.25 0.23 0.20 0.21 0.28 0.28
20 0.64 0.28 0.26 0.23 0.27 0.28 0.24 0.30
40 0.97 0.43 0.30 0.27 0.24 0.25 0.30 0.30
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pool of candidate models serves as the first critical
component of the framework. The pool of candi-
date models should include those that can be
justified by economic considerations and those
that are statistically meaningful. Potential deflators
should include important independent variables
and/or their square roots. In creating such a
pool, GLMs should also be considered to handle
the scenario where the scale factor is associated
with more than one independent variable. Criteria
for deflator and model selection mark the second
critical component. We argue and show that the
two criteria, the average absolute values of
studentized residuals and the relative total predic-
tion error for all firm size groups, are valid and
effective measures for the scale effect defined as the
intriguing combination of coefficient bias and
heteroscedasticity. The technique of stratification
by a size variable for the assessment of candidate
models was also previously used by Easton and
Sommers (2003).

Several interesting findings come out from our
simulation and sensitivity studies, which may

have implications for practical applications. First,
if the true scale factor is used as deflator to produce
one of the candidate models, this model can be
correctly identified using the proposed strategy.
Second, if values of Ak and Rk display a nonuniform
pattern over the firm groups, the extreme values
are always shown up in the first and last few groups.
Third, if the total sample size is large, a refined
stratification of firms (i.e. more groups) will make
nonuniform patterns of values of Ak and Rk more
pronounced and therefore make bad models look
even worse without causing substantial changes of
the uniform pattern for the good ones. Finally and
more importantly, the GLM methodology exhibits
a great power for mitigating the ‘scale effect’ under
certain scenarios and can be a very useful tool
for market-based regression analyses. In the simplest
application, GLM can be used to address the
estimation problem in commonly encountered sce-
narios in the level-based regression analysis where
larger responses also have larger variations. This
approach is statistically more attractive and
theoretically sounder than deflation by the response

Table 4. Relative total prediction errors under different working models

C–M W–M G1 G2 G3 G4 G37 G38 G39 G40

U (10) 2.29 1.26 0.79 0.80 0.24 0.21 0.18 0.19
(11) 2.29 1.25 0.78 0.79 0.13 0.13 0.11 0.09
(9) 2.29 1.25 0.78 0.79 0.13 0.13 0.10 0.09

BV (10) 0.54 0.40 0.44 0.38 1.01 1.28 1.11 4.11
(11) 0.68 0.73 0.59 0.66 3.53 4.51 4.38 10.0
(9) 0.70 0.75 0.61 0.67 3.46 4.36 4.04 10.2

NI (10) 0.59 0.40 0.43 0.41 10.5 11.8 11.4 14.4
(11) 0.59 0.38 0.44 0.41 6.30 9.46 6.57 17.9
(9) 0.60 0.39 0.43 0.42 7.07 10.8 7.19 20.2

MV (10) 0.60 0.64 0.88 0.98 25.0 30.8 31.6 42.2
(11) 0.55 0.74 0.98 0.96 8.33 7.86 11.0 13.3
(9) 0.60 0.80 0.98 1.00 7.68 9.27 10.7 13.1ffiffiffiffiffiffiffi

BV
p

(10) 0.24 0.22 0.25 0.22 0.24 0.21 0.18 0.21
(11) 0.24 0.21 0.24 0.22 0.12 0.12 0.11 0.13
(9) 0.24 0.21 0.24 0.22 0.12 0.12 0.12 0.13ffiffiffiffiffiffi

NI
p

(10) 0.52 0.46 0.43 0.42 0.59 0.71 0.71 0.63
(11) 0.45 0.34 0.36 0.37 0.41 0.44 0.48 0.77
(9) 0.45 0.34 0.36 0.37 0.46 0.46 0.48 0.79ffiffiffiffiffiffiffiffiffi

MV
p

(10) 0.69 0.60 0.59 0.55 0.83 1.01 1.12 1.15
(11) 0.59 0.47 0.52 0.46 0.60 0.64 0.69 0.68
(9) 0.61 0.48 0.53 0.47 0.66 0.72 0.74 0.71

GLMa (10) 1.53 0.76 0.46 0.44 0.25 0.22 0.21 0.23
(11) 1.68 0.84 0.51 0.50 0.13 0.14 0.12 0.11
(9) 1.68 0.84 0.52 0.50 0.14 0.14 0.12 0.11

GLMb (10) 0.94 0.43 0.29 0.26 0.29 0.33 0.35 0.40
(11) 0.96 0.42 0.30 0.26 0.23 0.25 0.29 0.30
(9) 0.97 0.43 0.30 0.27 0.24 0.25 0.30 0.30
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variable itself. Comparisons between the GLM

method and other popular approaches in existing

literature, such as White (1980) and MacKinnon

and White (1985), require intensive work and are

currently under study.
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Appendix: A Brief Overview of GLM
Estimation Theory

In this appendix we provide a short summary of

GLMs and the related estimation theory, with

particular reference to models useful for market-

based regression analyses. More details can be found

in the classical reference on GLM by McCullagh and

Nelder (1989). Let (Yi,X1i, . . . ,Xki) be the variables of

interest and let �i¼E(Yi) be the mean value of the

dependent variable. The first major feature of GLM

is that the variance of Yi depends on the mean �i

through the so-called variance function V(�),

VarðYiÞ ¼ Vð�iÞ�
2

and the form of V(�) is assumed to be known. The

second major feature of GLM is that the response

variable Yi can be related to (X1i, . . . ,Xki) using the

mean value �i and a link function, g(�).

gð�iÞ ¼ �0 þ �1X1i þ � � � þ �kXki

Once again, the form of g(�) is known. For

the classical regression model where Yi ¼ �0þ
�1X1i þ � � � þ �kXki þ ei and Var(ei)¼ �

2, it

corresponds to a GLM with g(�i)¼�i and
V(�i)¼ 1. Other forms of variance functions and
nonlinear link functions are also permitted. Among
popular link functions and variance functions, the
identity link g(�i)¼�i and the log link g(�i)¼ log(�i),
the Poisson variance V(�i)¼�i and the Gamma
variance Vð�iÞ ¼ �

2
i might be of particular interest

for market-based regression analyses.
The GLM method is semi-parametric and

requires specifications only on the first- and
second-order moments, i.e. �i¼E(Yi) and Var(Yi).
The link function specifies how the mean �i is
related to independent variables and the variance
function describes how the variation in response is
related to the mean. The combination
�i ¼ �0 þ �1X1i þ � � � þ �kXki is called the linear
predictor while the true mean �i might depend
on �i through a nonlinear function, g(�i)¼ �i. The
model coefficients ð�0,�1, . . . ,�kÞ are estimated
using the maximum quasi-likelihood method. For
the most general case, the estimator, denoted by
�̂ ¼ ð�̂0, �̂1, . . . , �̂kÞ

0, is the solution to the following
quasi-score equation:

D0V
�1
ðY� lÞ ¼ 0 ðA1Þ
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where Y ¼ ðY1, . . . ,YnÞ
0, k ¼ ð�1, . . . ,�nÞ

0,
V ¼ diagðVð�1Þ, . . . ,Vð�nÞÞ and D¼ @�/@�. The
model parameters �i are hidden inside (A1) through
k, V and D. In the simple case of linear model where
�i ¼ �0 þ �1X1i þ � � � þ �kXki, we have k¼Xb
and D¼X, where X is the usual design matrix
for the regression model. The quasi-score Equation
A1 becomes X0V�1Xb¼X0V�1Y, which is equivalent
to the normal equation used for the WLS estimation
if we treat the variance matrix V as the weight matrix.
If V(�i)¼ vi is a known constant, then the solution
to (A1) is b̂ ¼ ðX0V�1X0Þ�1X0V�1Y, the WLS estima-
tor. But if V(�i) depends on �i, then the weight
matrix V involves the regression parameters �,
and consequently no closed form solution exists
for (A1).

The major difficulty in finding the maximum
quasi-likelihood estimator �̂ is that one typically
needs to solve (A1) using iterative procedures. The
statistical softwares S-PLUS and R, among others,
have built-in functions for fitting GLMs. The R
package works almost the same as S-PLUS but
is free for research use and downloadable from the
R-project homepage. Suppose we wish to find
the maximum quasi-likelihood estimator of
b¼ (�0,�1,�2) for the model �i¼E(Yi)¼�0þ
�1X1iþ �2X2i and VarðYiÞ ¼ l2

i �
2 with Y, X1 and

X2 being the vectors of sample data for each of the
variables. The following lines show how to obtain b̂
using R or S-PLUS.

b0<�lm(Y ~ X1 + X2)$coefficients
b1<�glm(Y ~ X1 + X2, start = b0,
quasi(var = ’’mu^2’’,link =
‘‘identity’’))$coefficients

The b0 is the OLS estimator which serves as the
initial value for the GLM estimator b1. The function
glm usually requires that all Yi’s be positive. Other
variance function options include var¼ ‘mu’ and
var¼ ‘constant’, and the link function could for
instance be link¼ ‘log’. Another way to find b̂ is to
write a specific R program for each of the models
under consideration. This is what we used in this
study. The following R/S-PLUS program computes b̂
for g(�i)¼�i and Vð�iÞ ¼ �

2
i , with Y, X1 and X2

being the vectors of sample data for each of the
variables as in the previous example. Let n be the
sample size.

tol<�1e-08
dif<�1
int<�rep(1,n)
X<�cbind(int,X1,X2)
b0<�solve(t(X)%*%X,t(X)%*%Y)
while(dif > tol){
mu<�as.vector(X%*%b0)
XX<�cbind(int/mu^2,X1/mu^2,X2/mu^2)
D<�solve(t(X)%*%XX,t(XX)%*%(Y�mu))
dif<�max(abs(D))
b1<�b0 + 0.1*D
b0<�b1}

If the variance function is V(�i)¼�i, one
needs to modify the line involving XX using
XX5� cbindðint=mu;X1=mu;X2=muÞ. The fitted
(or predicted) value for Yi at xi ¼ ð1,X1i, . . . ,XkiÞ

0

is computed as �̂i ¼ g�1ðx0ib̂Þ, where g�1(�) is the
inverse of the link function; the method of moment
estimator for �2 is given by �̂2 ¼ ðn� k� 1Þ�1Pn

i¼1ðYi � �̂iÞ
2=Vð�̂iÞ; and the studentized residuals

are computed as ri ¼ ðYi � �̂iÞ=ð�̂
ffiffiffiffiffiffiffiffiffiffiffiffi
Vð�̂iÞ

p
Þ.
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