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Abstract: The authors show how an adjusted pseudo-empirical likelihood ratio staltiatics asymptoti-
cally distributed as a chi-square random variable can be used to cdrinficlence intervals for a finite
population mean or a finite population distribution function from complexesusamples. They consider
both non-stratified and stratified sampling designs, with or without auxilidorrimation. They examine
the behaviour of estimates of the mean and the distribution function at spgaifits using simulations
calling on the Rao—Sampford method of unequal probability sampling witieplacement. They conclude
that the pseudo-empirical likelihood ratio confidence intervals are gwgerthose based on the normal
approximation, whether in terms of coverage probability, tail error rateserage length of the intervals.

Calcul d'intervalles de confiance fondés sur le rapport de

pseudo-vraisemblances empiriques dans le cadre d’enquétes complexes

Résuné : Les auteurs montrent comment une statistiqgue du rapport de pseaidemblances empiriques
ajuste dont la loi est asymptotiquement khi-&peut servia katir des intervalles de confiance pour la
moyenne ou la fonction de&partition d’'une population finie dans le cadre d’edigs complexes. lls con-
siderent des plans dthantillonnage stratéfs et non stratifis pouvanéventuellement inclure de I'informa-
tion auxiliaire. lls examinent le comportement d’estimations de la moyenthe la fonction deé&partition
en des points f@cis au moyen de simulations faisant appéd nethode déchantillonnage sans remise et
a poids iregaux de Rao—Sampford. lls concluent que les intervalles de comfiands sur le rapport de
pseudo-vraisemblances empiriques sonésieprsa ceux qui s’appuient sur 'approximation normale, tant
en terme de probabiétde couverture que de taux d’erreur caudale et de longueur meyenn

1. INTRODUCTION

Owen (1988) introduced a non-parametric likelihood, namegirical likelihood (EL), for the
case of independent and identically distributed obsesmaty, , ... ,y, from some distribution
F(-)ofY. By putting probability masses = Pr(Y = y;) at the sample pointg, the empirical
likelihood function is defined a(F') = []"_, p; withp; > 0 and)_""_, p; = 1. Without further
restrictions orp = (p1,...,p,) ", the empirical distribution functiod, (¢t) = Y"1 | p:I(y; <

t) with p; = n~! is the maximum empirical likelihood estimator (MELE) 81(t), whereI( - )

is the indicator function, i.el(y; <t) = 1if y; < tandI(y; < t) = 0 otherwise. The MELE
of a scalar parameteély = 6,(F) is then given byéo = 0y(Fy); in particular,éo = ¢, the
sample mean, i, = E(Y). The MELE under further restrictions gnmay also be obtained
in a systematic manner, although often involving iteraeéutions. A major advantage of the
empirical likelihood approach is that it also provides marametric confidence intervals on
parameters of intere#t, similar to parametric likelihood ratio confidence intdsyaas shown
by Owen (1988). The parametés can also be defined as the unique solution of an estimating
equationE{g(Y,0y)} = 0. For exampleg(Y,0y) =Y — 0y andg(Y, 6y) = I(Y < t) — 0, give

6o = E(Y) andf, = F(t), respectively. A profile likelihood ratio function is theefthed as

n

R(0) = maX{H(npi) ’ > pig(yi,0) =0, p; >0,y pi = 1}-
i=1 i=1

i=1
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Under some mild moment conditions, Owen (1988) first prowedHe case of, = E(Y") that
r(6y) = —2log{R(y)} converges in distribution t§?, a chi-squared random variable with one
degree of freedom, as— co. Hence, thé1 — «)-level empirical likelihood confidence interval
on dg is given by {0 |r(0) < x3(a)}, wherex?(«) is the uppera-quantile ofx?, similar to
parametric likelihood ratio confidence intervals. Unlikéervals based on a normal approxima-
tion, empirical likelihood intervals do not require the xation of standard errors of estimators
and provide more balanced tail error rates. Moreover, tlapeatand orientation of empirical
likelihood intervals are determined entirely by the dataj ¢he intervals are range preserving
and transformation respecting. Owen’s (2001) monographiges an excellent account of the
empirical likelihood approach, including extensions tgression models and dependent data.

Historically, the concept of empirical likelihood was fitsted in survey sampling by Hartley
& Rao (1968, 1969) under the name “scale-load” approach.skople random sampling with
a negligible sampling fraction/N, whereN is the finite population size and is the sample
size, the scale-load likelihood is essentially the samewasr empirical likelihood. Hartley &
Rao (1968) obtained the MELE of the finite population méamhen the population meakl
of an auxiliary variable;, is known, and showed that it closely approximates the custg
regression estimator of. In the empirical likelihood setup, we use the additionaisteaint
Y ics PiTi = X, wheres denotes the sample of fixed size Chen & Qin (1993) considered
parameters of the forrly = N1 Zf;l g(y;) for specifiedg(-) and constraints of the form
> ics pia(x;) = 0 for knowna(-) and obtained the MELB, = o pig(y;) with positive
weightsp;; the choicey(y) = y anda(z) = — X givesy = Y and constrain}_,__ piz; = X.

By letting g(y) = I(y < t) for fixed ¢, we getF(t) = > ics Pil(y: < t) as the MELE of the
finite population distribution functiotly = F(¢). Note thatﬁ(t) is confined within the interval
[0, 1] and non-decreasing ih unlike the estimator of'(¢) based on the customary regression
weights, and hence it can be used to obtain the MELE of pdpulguantiles, in particular the
population median. Zhong & Rao (1996, 2000) obtained the KIBLY under stratified simple
random sampling, assuming negligible sampling fractiongV;, in each stratunk and known
overall meanX. They also studied empirical likelihood confidence intés\an Y by adjusting
the empirical log-likelihood ratio statistic to account fwithin-strata sampling fractions and
then showing that the adjusted statistic is asymptotiai#ifributed as?; the adjustment factor
reduces td — n/N in the special case of proportional allocatien,/n = N, /N, wheren is
the total sample size.

It is not easy to obtain an empirical likelihood under gehseanpling designs. Because
of this difficulty, Chen & Sitter (1999) proposed an alteimatapproach based on a pseudo-
empirical log-likelihood (PELL) function. The finite pomtlon is regarded as a random sample
from an infinite superpopulation, leading to the “censug-lizelihood!y (p) = Zf;l log(p;).
The Horvitz—Thompson (HT) estimator

lut(p) = Z d; log(p;) 1)

1€ES

of [y (p) isthen used as a PELL, whefg= 77,;1 are the design weights ang are the inclusion
probabilities. MaximizindHT(p) subjecttgp; > 0and)_, . p; = 1 leads to the pseudo-MELE

of YasYy = Y ,ciDithi = Dies d;(s)y;, the Hajek estimator, wher& (s) = d;/ >ies di
are the normalized design weights for the given sampIeHoxvever, the Hajek estimator is
significantly less efficient than the Horvitz—Thompsonrestior Y ypr = N~} > ies diys under
unequal probability sampling without replacement witHurs@on probabilitiesr; proportional to
known size measures wheny; is approximately proportional tg;. We propose an improved
estimator ofY in the latter case. (See Section 2.1 for details.) Chen &Sitt999) also studied
the case of known population meXnof auxiliary variablese, and obtained a pseudo-MELE of
Y by imposing the additional constraidt, . p;x; = X. This estimatory . p;yi, is closely
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approximated by a generalized regression (GREG) estinvétdt, but unlike the latter it uses
positive weightsp;. As a result, the pseudo-MELE df(¢) is non-decreasing and is itself a
genuine distribution function. Chen, Sitter & Wu (2002) aid (2004) have given simple and
efficient algorithms for computing the weighisused in pseudo-MELE.

In the above mentioned work on the empirical likelihood noeltlin survey sampling, the
focus was on point estimation, excepting the work of Zhong & R2000) where empirical
likelihood confidence intervals under stratified simpled@am sampling were examined. In this
article, our primary aim is to use the pseudo-empiricalliil@d method for constructing con-
fidence intervals o’ and F(t) under unequal probability sampling without replacement. |
Section 2, we consider both non-stratified sampling andifstchsampling, and formulate an al-
ternative PELL that allows for a simple adjustment for thesigin-effect”. This formulation does
not change the point estimators, but ensures that the irespiseudo empirical log-likelihood
ratio function, adjusted for the corresponding desigeeffis asymptotically distributed ag,
as shown in Section 3. These asymptotic results requiréapechnical treatments of complex
sampling designs and do not follow from standard empirigalihood intervals or Chen & Sit-
ter (1999). The involved design-effect depends not onlyhensampling design but also on the
set of additional constraints involving auxiliary infortran. Asymptotic results and the deriva-
tion of the design-effect under stratified sampling are iyessamplified by using a reformulation
technique. Finite sample performance of the proposed psempirical likelihood confidence
intervals onY andF(t) is examined through an extensive simulation study repant&ection 4.
Our results show that the proposed intervals perform b#ttar the intervals based on normal
approximation in providing balanced tail error rates angrioved coverage probabilities, par-
ticularly for the finite population distribution functiofi(¢). Section 5 contains some additional
remarks. Proofs are relegated to the Appendix.

For asymptotic development, we assume that there is a segjoéfinite populations indexed
by v such that the population siz€, and the sample size, both tend to infinity ag' — oc.
For stratified sampling designs, we assume that the totabeumf stratal is fixed and the
stratum sample sizes all tend to infinity:as~ oco. The indexv will be suppressed for notational
simplicity. All limiting processes are under— oc.

2. PSEUDO-EMPIRICAL LIKELIHOOD ESTIMATORS

2.1. Non-stratified sampling.

For non-stratified unistage sampling designs with fixed darsigen, the pseudo-empirical log-
likelihood (PELL) function used in this article is defined as

=n Z d;(s)log(p;), (2

€S

whered}(g) are the normalized design weights as defined in Section helélesign weightd;
are all equal, then (2) reduces to the usual empirical logfitiood ", log(p;). The function

(2) differs from (1) used by Chen & Sitter (1999) in tha(s) is used instead of;, but maxi-
mizing (2) subject to a set of constraints on the is equivalent to maximizing (1) subject to the
same set of constraints.

In the absence of auxiliary population information, the yzskeMELE of the parameter
Oy = N1 Zl 1 9(y:) is given by the Hajek estimatdy; = D oics Pig(Wi) = D ics d; (8)g(yi)-
EstimatorsY ;; and Fi; () are obtained frondy by letting g(y;) = y: andg(y;) = I(y; < t)
respectively. As notAed in Section %H will be significantly less efficient than the Horvitz—

TAhompson estimatdr yr whenn; o« z; andy; andz; are closely related. On the other hand,
FH( ) will be efficient and more attractive than the Horvitz—Thsop estlmatorFHT( ) =
I3 e dil(y; < t) becausd (y; < t) andz; are not closely related and, unlllfé{T( ),
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ﬁH(t) is itself a distribution function. Estimates of populatignantiles can therefore be ob-
tained through direct inversion @fy (¢).
We now provide an improved pseudo-MELEYfwhenr; o z; by introducing the additional

constraint B

Zpizi =Z, (3)

1€S
whereZ is the known population mean of the size measutesNote that (3) is equivalent to
> ics Pimi = n/N. Maximizing (2) subject to (3) ani{_,_, p; = 1 gives the improved pseudo-
MELEY g = },., piy:- Note that the variance 6f; is zero wheny; « z;, unlike the Hajek
estimatorY 7, thus showing improved efficiency when o< z; andy; andz; are closely related.
It follows from Chen & Sitter (1999) that  is asymptotically equivalent to the GREG estimator

~

Ye=Yu+B(Z-Zy), (4)

whereB = Y, di(s)(z — Zu)yi/ Sies di(8)(zi — Zu)? is the weighted estimator of the
population regression coefficient. This result holds urnttlerconditions (ijmax;es [2; — Z| =
op(n*?)yand (i)Y, di(2 — Z)/ 3 ics di(zi — Z)* = Op(n~1/?), see Chen & Sitter (1999,

p. 390). The asymptotic variance Bt; is equivalent to the asymptotic variance of the Hajek
estimator involving the residuals = y; — Y — B(z; — Z ) which are weakly related tg, even
if y; andz; are closely related, whet® = 3", (2 — Z)y;/ >i_, (2 — Z)? is the population

regression coefficient. Hence, the alternative estimgtorshould perform better tha¥ig in
terms of efficiency. Our simulation results reported in #&ctt show that the inclusion of the
constraint (3) wheny; andz; are closely related anel « z; leads to a shorter pseudo-empirical
likelihood confidence interval ol relative to the interval not using (3).

We now turn to the case of known population médrof a vector of auxiliary variables
x related toy. In this case, the pseudo-MELf that uses the auxiliary information at the
estimation stage is computed 83, :g(y:), where the; maximizel,,(p) subject to

1€ES 1€S

Chen & Sitter (1999) showed thég is asymptotically equivalent to the GREG estimatofgf
but unlike the latter estimator, it uses positive weightsNote thatd, is a calibration estimator
in the sense o} ;. pizi = X, a set of equations often referred to as calibration ecusiio
benchmark constraints. Maximizirig, (p) subject to (5) gives; = d;(s)/{1 + X" (z; —-X )}
where the vector-valued Lagrange multiplkers the solution to

Ii(s)(@; — X
Yo A = X) (©)
ics 1+A (l‘i —X)
Chen, Sitter & Wu (2002) showed that the solution exists anshique ifX is an inner point of
the convex hull formed byz;, i € s}. They proposed an efficient algorithm for solving (6).
Wu (2005) has implemented the algorithm in R/SuB.

2.2. Stratified sampling.

For stratified unistage designs with samples of fixed sizedrawn independently from each of
the L strata, the pseudo-empirical log-likelihood (PELL) is defi as

L
lt(Py,- .- pL) = HZ Wh Z dpi(sn) 1og(phi), ()

h=1 1ESH
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wheredhi(sh) = dp;i/ Ziesh dy; are the normalized weights within strata witf); = 7@1
denoting the design weights;, is the set of sample units in stratutm W, = N, /N are the
known stratum weights with~_, N, = N, n = Y.r_, ny, is the total sample size, and
Py, = (Dhi,---,Phn, ) SUbject t0) e, pri = 1. Note thatls(p,, ..., p,) does not reduce
to the empirical log-likelihood functlorzh 1 2 ics, log(pri) under stratified simple random
sampling (Zhong & Rao 2000) unlesg = nW;, (proportional allocation).

In the absence of auxiliary information, maximizing (7) gdb to

thi:17 h:1>"'7L7 (8)

1ESH

givespyi = dni(sy). The pseudo-MELE of, = *125 DR L 9(yni) = >t Wabh is
given byeH(st Zh 1 W}LGH}“ Whereeh = N Zl lg(ym) andGHh = Zlesh d;”(sh)
g(yni) is the Hajek estimator af;,. Again, we can get an improved pseudo-MELEYofwhen
the inclusion probabilitiesr,; o« z,; andyy; and zp,; are closely related, by introducing the
additional constraint

> pnizni=2Zn, h=1,...,L, 9

ISEYS

where Z,, is the known stratum population mean of the size measuges Since the con-
straints (8) and (9) are separable for eactmaximizing (7) subject to (8) and (9) is equiv-
alent to maximizing each componemt.__ dx;(sp)log(pr;) of (7) separately. The resulting

1ESh

improved pseudo- MELEYE st) Zh A\ WhDlies, P PhiYi is asymptotlcally equivalent to a

separate GREG estimator of the fom(ét) = Zh 1 WhYGh, WhereYGh is obtained from (4)
for each stratuni.

We now turn to the case of known overall population m&ags- Zﬁzl W, X 5, of auxiliary
variablesz related toy, where the strata meai’;, are not known. In this case, the pseudo-
MELE fo = 321, Wi Y.ics, Prig(yn:) is obtained by maximizing (7) subject to

Z Phi = 17 h = 17 L and Z Wh Z PhiZhi = 7- (10)

i€ESh i€ESh

To compute they,;, we follow Wu (2004) and reformulate the constraints (10) as

Z Wiy pr=1 and Z Wiy puiz =X, (11)

1ESh 1€5p

whereX " is obtained by augmenting to includeW,, ..., Wy_; as its firstL — 1 components
andz;, is obtained by augmenting,; to include the first. — 1 stratum indicator variables. This
reformulation makes all the steps for maximization under-stratified sampling applicable to
stratified sampling. The difference between the two cassisnply a matter of single or double
summation. Maximizing (7) subject to (10), or equivalenthl), givespn; = dpi(sn)/(1 +

/\Tuhi) whereuy; =}, — X" and the vector-valuedl is the solution to
L
Z Z dlu (sh)wn; —0
T - b
h=1 i€sp L+ A up

which can be solved in a similar way to (6) for non-stratifiacheling designs. R/S+R's codes
for doing this can be found in Wu (2005).
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3. PSEUDO-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS

In this section we show that the pseudo-empirical log-iitl@d ratio functions associated with
(2) and (7), adjusted to the respective design effects, gn@ptotically distributed ag? under
certain regularity conditions. These results lead to pgeardpirical likelihood ratio confidence
intervals ord,, in particular onY and F (t).

3.1. Non-stratified sampling.

We first study the case of no auxiliary population informatéd the estimation stage. Maximiz-
ing l,s(p) given by (2), subject tp; > 0 and) . p; = 1 givesp; = d;(s). Letp;(0) be the
value ofp; obtained by maximizing (2) subject to

Zpi =1 and Zpig(yi) =0 (12)
1€ES 1€S
for a fixedf. The solution to this constrained maximization problensexand is unique wheh
is an inner point of the convex hull formed By(y;), i € s}.
The pseudo-empirical log-likelihood ratio function is givby

T'ns (9) = _2{lns (i)(@)) —lns (ﬁ)} (13)

We use the following regularity conditions for studying #ymptotic distribution of,;(6) as
n — oo. For simplicity, we consider the case @fy;) = v, but similar results hold for general
¢(y;) with suitable conditions op( - ).

C1 The sampling design(s) and the study variablg satisfymax;c; |y;| = o0,(n'/?), where
the stochastic order,( - ) is with respect to the sampling desig(s).

C2 The sampling design(s) satisfiesN 1>,  d; — 1 = O,(n~Y/?).

C3 The Horvitz—Thompson estimatépr = N~ >ies diyi of 6y = Y is asymptotically
normally distributed.

Condition C1 imposes some restrictions on both the samplsignp(s) and the finite pop-
ulation {1, ...,yn}. If the finite population satisfies C1'max{|y1], ..., [yn|} = o(N'/?),
then Condition C1 holds for any sampling design such thas#mepling fractiom /N — f # 0.

If the population valuesys,...,yn} can be viewed as an independent and identically distrib-
uted sample from a random variali#g then a sufficient condition for C1* i§(Y?) < oo
(Owen 2001, Lemma 11.2). Under the condition that! Zf’zl y} = O(1), as Chen & Sitter
(1999) showed, Condition C1 holds for probability propomtl to size (PPS) sampling with re-
placement, for the Rao—Hartley—Cochran method of PPS s&agnplthout replacement, and for
cluster sampling where the clusters are sampled with PPS/éindeplacement.

Condition C2 states thaV = > ics di is ay/n-consistent estimator a¥. Under simple
random sampling, stratified random sampling and singleestégster sampling where clusters
are sampled with probability proportional to size, we have- N which further implies C2.

Condition C3 is the central limit theorerp for a Horvitz—Thason estimator. Hajek (1960,

1964) established the asymptotic normalitygfr under simple random sampling and rejective
sampling with unequal selection probabilities. Visek (@p&stablished the asymptotic normality

of Yyt for the well-known Rao—Sampford method of unequal prolitgbilampling without
replacement. Note that Condition C3 is also required forcthreventional confidence intervals
based on normal theory.

The design effect (abbreviated deff) associated W:dighis defined as

deffyy = V,(Y1r)/(52/n). (14)
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Wheresj is the population variancé*j/n is the variance OT%H under simple random sampling
(ignoring the finite population correction factor) aligl - ) denotes the variance under the spec-
ified designp(s). Using deffy, we can also define the effective sample size as n/deffy.

THEOREM 1. Under the conditions C1-C3, the adjusted pseudo-empiligglikelihood ratio
statistic

ol

1(8) = {rns(0) }/deftyy (15)
is asymptotically distributed ag? whend = Y.

Note that deff; is associated with";;, and it will change with the choice af(y;) and/or
with additional constraints on auxiliary variables. A rissimilar to Theorem 1 is obtained
when the constrainzi@ p;z; = Z is used and the inclusion probabilities o< z;. In this case

the design effect is associated with the GREG estimgtorgiven by (4). The result that the
adjusted pseudo-EL ratio statistic is asymptoticgfyunder this additional constraint follows as
a special case of Theorem 2 below by changindo z;.

WhenX is known and the calibration constrait, . p;z; = X is used, then the pseudo-
empirical log-likelihood ratio function, adjusted by thesign effect associated with the GREG
estimator ofY, is asymptoticallyy? whenf = Y, as shown in Theorem 2 below. The GREG
“estimator” of Y, defined here for the purpose of theoretical developmenhbtitomputable

from the sample data, is given Bjqr = Yz + B' (X —X ), where B is the vector of
population regression coefficients defined as

R RS S SN Sl IR -0 DS ST ) ST

i=1 i=1

Note that we used the finite population quanfyinstead of a sample bas&lin defininglngR.
The design effect associated with,r is defined as

deffar = V,(Yer)/(S2/n), (17)

whereVp(}%GR) = Vpd{Sic di(s)ri}, ri = yi — Y — BT (x; — X ), S?/n is the variance of
Y qr under simple random sampling (ignoriig- n/N), andS2 = (N — 1)1 SN #2. We

require the following conditions (parallel to C1 and C3) ba auxiliary variables:;, v;here|| ol
denotes the; norm.

C4 maxcs ||| = op(nl/Q).

C5 )%HT =N-1 > ics dix; is asymptotically normally distributed.

THEOREM 2. Let p be the maximizer of,s(p) under the constraints ... p; = 1 and

D ics DiTi = X; let p(A) be obtained by maximizing,s(p) subject o) . c.mi = 1,

D icsPixi = X and ), p;y; = 0 for a fixedd. Then under the conditions C1-C5, the
adjusted pseudo-empirical log-likelihood ratio statisti

12 (0) = {7ns(6)} /deffar (18)

is asymptotically distributed ag? whend = Y, wherer,,;(0) = —2{1,,s(p(6)) — l,s(P) }.
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In practice the design effect deffor deffar will need to be estimated from the sample
data. The asymptotig? distribution of the adjusted pseudo-empirical likelihomdio statis-
tics remains unchanged when the design effect is condistestimated. The design effect

deffy = V,(Yr)/(S2/n) can be estimated by(Y 17)/(S2/n), wherev(Y ) is the lineariza-
tion estimator oft/,(Y ) given by

2
T — T [ € €;
I

1€ES j>1 i

with N = > ics di ande; = y; —Y i being the “residual variable” fdr 5, ands?. is the unbiased
estimator ofS; given by

o1 (i —y5)°
SN D

following the well-known Laplace expressids, = S S (Wi — )/ (N(N = 1)).
The design effect deff = (YGR)/(Sf/n) can similarly be estimated by(Y ¢r)/(52/n),
Wherev(YGR) has the same format of Y ;) but uses the “residual variable; = y; — Y —

~T — L . = ~ . . L .

B (z; — X ) which is associated with' gr, andS? is obtained as |rS§ but uses; in place
of y;. Section 4 contains further details on computing the desffgtts for scenarios considered
in the simulation.

Using Theorems 1 and 2, we can constr@lct— «)-level pseudo-empirical likelihood ratio
confidence intervals ofy, = Y as{¢ | rns(0) < x3()} for the case of no auxiliary information
and{9 | r(“) () < x3()} for the case of known meaXi of the auxiliary variables;, where
3 () is the(1 — a)—quantile ofx?.

3.2. Stratified sampling.
We first study the case of no auxiliary information at thereation stage. They;s which

maximizely (p,, ..., p;) of (7) subject to (8) are given bf; = dni(sy). Let pri(0) be the
value ofpy,; obtained by maximizing (7) subject to

> pi=1,h=1,...,L and ZWh > prig(yni) = (19)

1ESh 1ESh

for a fixed value of). The related computational problem can be handled simjlad in Sec-
tion 2.2, through an augmented method. The set of constréii) is equivalent to

Z Wh Z Phi = 1 and Z Wh Z thg yhz - 5 (20)

1ESp 1ESp

wheref* is obtained by augmentingjto includeWs, ..., Wy,_; as its firstL — 1 components,
andg™*(yn;) is obtained by augmenting v, ) to include the firsf.—1 stratum indicator variables.
The pseudo-empirical log-likelihood ratio function is givby

rst(0) = =2{lst(B1(9), .., PL(0) — lst(Py,-- - PL) }- (21)

To study the asymptotic distribution of;(6), we again consider the casedify,;) = yn; and
assume thaty,/n — f, # 0 asn — oco. We assume conditions C1-C3 to hold within each
stratumh to avoid further notational changes.
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THEOREM 3. Under the conditions C1-C3 within each stratéirthe adjusted pseudo-empirical
log- likelihood ratio statistic

rl4(8) = {rs(6)}/deffar o (22)

is asymptotically distributed ag? whend = Y.

The proof of Theorem 3 and the definition of the design effettg; . follow as special
cases of Theorem 4 below.

Now consider the case of known overall m@amwf auxiliary variablese. Letx;, andX  be
the augmented variables as defined in Section 2.25,;die obtained by maximizing (7) subject
to (10), or equivalently (11); lefi,;(#) be obtained by maximizing (7) subject to (11) and the

additional constraint .
S Wi > priglyni) =0

h=1  i€sy
for a fixedd. For simplicity, we again confine ourselvesd@y;) = yn; in which case the com-
bined GREG estimator of is given by?GR(St) = }%H(St) + (BHT(X" —)i(;(st)), where
X%H(St) = Zﬁ:l Wh ics, dni(sn)yns is the Hajek-type estimator under stratified sampling,
)%Z(St) is similarly defined using the augmenteg,. The vector of population regression coef-
ficients B* is defined similarly taB of (16) but usinge andX . The design effect associated
With ¥'p(ar) IS given by

deffan s = {’iwgvp <Z dhi(sh)rhi>} / (5:)

1€ESs
wherery, = (yni — V) — (B) (@), —X") ands? = (N — 1)1 S5 YoM 12,

THEOREM4. Under the conditions C1-C5 within each stratinthe adjusted pseudo-empirical
log-likelihood ratio statistic

ri(0) = {70 (0)}/deffar s (23)
is asymptotically distributed ag? whend = Y, where

Fot(0) = =2{lat(P1(0), ..., DL(0)) — Lst(Py,- -, D) }

is the pseudo-empirical log-likelihood ratio function @ndtratified sampling.

Because of the reformulated constraints (11), the proofhafofem 4 under stratified sam-
pling follows along the lines of the proof of Theorem 2 for retmatified sampling and hence is
omitted for brevity. The detailed proof can be found in anubifshed technical report (Wu &
Rao 2004). It also follows that Theorem 3 is a special casehebiiem 4 since in the absence
of auxiliary information the augmented variables, reduce to the firsE — 1 stratum indicator
variables an& " reduces tqWy,..., Wr_1).

Pseudo-empirical likelihood ratio confidence intervalsiim) for a givent can be obtained
from Theorems 1-4 by simply changingto I(y; < ¢). However, the use of benchmark con-
straints such a3, p;z; = X in making inferences oi(t) may not be very efficient due to
the weak correlation between the indicator varialflg < ¢) andx;. If the individual population
valueszx, ..., xy are known, then different benchmark constraints that leatidre efficient
inference or¥'(t) can be used (Chen & Wu 2002).
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4. SIMULATION STUDY

In this section we report the results of a simulation studyhanrelative performance of pseudo-
empirical likelihood ratio confidence intervals and intsvbased on normal approximation to
the usual Z-statistic, i.e(fy — 6)/{v(f)}'/2, on the population meal’ and the distribution
function F'(t). The latter also includes population proportions as speaises. In particular,
we examine the performance of coverage probabilitiesetadr rates and average lengths of
confidence intervals under the Rao—Sampford method (Rab, B¥npford 1967) of sampling
without replacement with inclusion probabilitiesexactly proportional to size measurgs The
major features of the Rao—Sampford method include: (a) maglementation for any sample
sizen subject toz; < 1/n to ensurer; < 1foralli = 1,..., N; (b) an exact recursive for-
mula for computing the second order inclusion probabditig;, that ensure non-negativity of

the Sen-Yates—Grundy-type variance estimators such¥ag) or v(Y qr) due to the property
mm; — m; > 0 for all (¢,7); and (c) variance of the Horvitz—Thompson estimator is gbva
smaller than the variance of the customary estimator unadagbility proportional to size sam-
pling with replacement. We study three cases: (i) Nonifigdtsampling with no auxiliary
information at the estimation stage; (ii) Non-stratifiechgding with auxiliary information at the
estimation stage; and (iii) Stratified random sampling wiigproportionate sample size alloca-
tion to ensure unequal; across strata. The Rao—Sampford sampling method was useasfs
(i) and (ii).

4.1. Case (i).
We generated three finite populations, each of 8ize 800, from the model (Model I)

Yi = Bo + P12z + o€ (24)

with 3y = 31 = 1, where thez;s follow the standard exponential distribution and~ x? — 1
which ensures thdt(e;) = 0. A constant number was added to aflto eliminate extremely
small values ot;. Three different values af were used to reflect a weak, moderate and strong
correlation betweeny andz: o(y,z) = 0.3, 0.5 and0.8. The finite populations so generated
remain fixed under repeated simulation runs.

The task of computing the; ;s needed for normal approximation and pseudo-empiriced lik
lihood ratio confidence intervals is very heavy for repeatiasulation runs. We used = 40
and 80, corresponding to sampling fractiors$ and 10%, in the simulation. Our simula-
tions were programmed in R/S:Bs using the algorithms outlined in Wu (2005). The R
source codes are available from the authors upon requestdeneate the pseudo-empirical
likelihood intervals without using the additional congtita(3) on the size measures as EL1
and those with the constraint as EL2. The design effect @&ssdcwith EL1 ford, = Y

is deffy given by (14) and is estimated hy(?H)/(%/n) as outlined in Section 3.1; for
EL2, the design effect is computed agY gr)/(52/n), where the residual variable is de-
fined asr; = y; — Yy — E(zi — Z). The estimated regression coefficient is computed as

B = {N=1Y e, dizi — ZHT)Q}_l{N—1 >ics di(zi — Zur)y; }. For the distribution func-
tion F'(¢), y; is replaced by (y; < t) for estimating the associated design effect.

We used 1000 simulation runs for each sample siaaed correlatiorv(y, ). Table 1 reports
the simulated values of coverage probability (CP), lowgraihd upper (U) tail error rates, aver-
age length of tge interval (AL) and average lower bound (Ld&8)the 95% confidence intervals

on Y based oYzt and normal approximation (NA), EL1 and EL2 fofy, ) = 0.3 and0.8.
Wu & Rao (2004) contains simulation results for additioragmeter combinations. The results
can be summarized as follows: (1) In terms of balanced tadreates, EL1 and EL2 clearly
outperform NA. The latter leads to much smaller L and largeh&h the nomina2.5% rate at
each tail. For example, with = 80 ando(y, z) = 0.3, L=0.7 and U=6.3 for NA compared to
L=2.5 and U=3.8 for EL2; (2) EL2 has better coverage prolitgtithan NA with similar average
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length; EL1 has better coverage probability but the aveteggth is bigger, and indeed much
bigger wheng(y, z) = 0.80: AL=0.51 for EL1 compared to AL=0.33 for EL2 when = 80;

(3) EL2 has the largest lower bound (LB) and close to2ié; lower tail nominal error rate in
all cases, a feature which is desirable in some applicasaok as audit sampling. The smaller
lower tail error rate (L) for NA is associated with the smalt@ver bound LB.

TABLE 1: 95% confidence intervals for the population mean (Model I).

0 n Cl CP L U AL LB

0.30 40 NA 90.2 05 93 1.85 5.26
EL1 927 23 5.0 1.97 5.37

EL2 914 28 538 1.86 5.44

80 NA 93.0 0.7 6.3 1.30 5.55

EL1 934 25 41 1.38 5.61

EL2 93.7 25 38 1.32 5.64

0.80 40 NA 91.7 06 7.7 0.48 5.84
EL1 947 2.3 3.0 0.75 5.76

EL2 923 27 50 0.47 5.89

80 NA 942 15 43 0.34 591

EL1 946 18 3.6 0.51 5.85

EL2 938 25 37 0.33 5.94

It appears from Table 1 that EL2 is the most reliable methodef\the correlation between
y; and the size measuresis weak (e.go(y, z) = 0.30), EL1 may be used. It has better coverage
probability with small to moderate inflation in length. TheZEinterval is closely related to the

Hajek estimatol’ ;. The much increased length of EL1 under strong correlatetseen; and

z is due to the inefficiency df  under such situations, as discussed in Section 2.1.

Table 2 reports the simulated values of CP, L, U and AL for tistrithution functionF(t)
with ¢ = ¢, andp = 0.10, 0.50 and0.90, wheret,, satisfiesF'(t,) = p ando(y,z) = 0.50.
Additional simulation results fop(y, z) = 0.30 and0.80 and forp = 0.20 and0.80 can be
found in Wu & Rao (2004). The5% NA interval is computed a&Fy (t) — 1.96{v(Fy (t)}/2,
Fr(t) +1.96{v(Fy (t)}1/2), with the lower and upper bounds respectively truncatedeaicD1.
It is evident from Table 2 that both EL1 and EL2 perform unifidy better than NA in terms of
coverage probability, balanced tail error rates and aeetaggth. NA performs well only for
the case op = 0.50 where the underlying distribution dfy (¢) is nearly symmetric. The only
unsatisfactory case for the pseudo-empirical likelihoathad isn = 40 andp = 0.10 where
the sample size is not large enough to handle the extremeilgugrand the resulting tail error
rates are not balanced. Our simulation results show thatiakla good and stable performance
for all cases considered. The correlation betwégn < t) andz; is generally weak and the
Hajek estimatorﬁH(t) performs well regardless af(y, z). The EL2 interval is shorter when
o(y, z) = 0.80 but its coverage probabilities are also deteriorated agpeaoad to EL1.
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TABLE 2: 95% confidence intervals for the distribution function (Modeb(y, z) = 0.5).

n o p o] cP L U AL

40 0.10 NA 86.0 05 135 0.183
EL1 969 31 0.0 0.194

EL2 97.0 28 0.2 0.183

0.50 NA 944 26 30 0.307
EL1 95.0 27 23 0.296

EL2 947 29 24 0.265

0.90 NA 88.3 10.8 0.9 0.160
EL1 924 53 23 0.162

EL2 911 6.6 23 0.156

80 0.10 NA 90.7 0.2 91 0.134
EL1 941 17 4.2 0.134

EL2 945 19 36 0.127

0.50 NA 953 24 23 0.212
EL1 955 24 21 0.208

EL2 954 28 138 0.187

0.90 NA 939 50 11 0.116
EL1 952 27 21 0.115

EL2 935 40 25 0.110

4.2. Case (ii).
In this case, we generated finite populations, each of§ize 800, from the model (Model I1)

Yi = Bo + Brzi + Pz + o€y (25)

with 5o = 1, andf; = 1, B2 = 1 (Model 1I-1), 5, = 1, B2 = 2 (Model 1I-2) andj; = 2
and 5, = 1 (Model 11-3), wherez; and z; follow the standard exponential distribution and
i ~ X3—1. Thez-variable is used as the design variable for the Rao—Sawhpéompling method
and thex-variable is used at the estimation stage. Three valuesagre used for each model to
reflect weak, moderate and strong multiple correlation betw andg, + 31z + (2, denoted
by 0. We studied the performance of confidence intervalsfdrased on the following methods:
(a) Normal approximation to the GREG estimator calibratedr@l, z) (GR1); (b) Pseudo-
EL interval with benchmark constraint over(EL1); (c) Normal approximation to the GREG
estimator calibrated ovét, z, x) (GR2); and (d) Pseudo-EL interval with benchmark constsain

over bothz andz (EL2). The design effect for EL1 or EL2 is estimated{a$ Y cr)} /(52 /n),

whereY gr involves only thex-variable for EL1 and both andx for EL2.

Table 3 reports the simulated values of CP, L, U and AL for tteamY” under Model II-
1, based on 1,000 simulation runs fer= 40 and80. When we compare EL1 to GR1, or
EL2 to GR2, the pseudo-EL interval is clearly better than@®finterval in terms of coverage
probability and balanced tail error rates and is compar@h&R in terms of average length. For
example, CE 94.2, L= 2.3, U= 3.5 and AL= 1.88 for EL2 compared to CR 92.5, L= 1.2,
U= 6.3 and AL= 1.85 for GR2 whenp = 0.30 andn = 80. To choose between EL1 and
EL2, it appears reasonable to use EL1 for most cases unlesadutiple correlation is strong
(0 = 0.80) and the sample size is large & 80), where EL2 has good coverage probability
but is considerably shorter. Results under Models 11-2 &8l(hot reported here) demonstrate
similar trends except that the superiority of the pseudartrval over the GR interval is more
pronounced in terms of CP under Model II-3.
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TABLE 3: 95% confidence intervals for the population mean (Model II-1).

o n CI cCP L U AL

0.30 40 GR1 905 14 81 2.68
EL1 912 29 5.9 2.72

GR2 885 1.3 10.2 2.59

EL2 899 27 7.4 2.60

80 GR1 945 12 43 1.89

EL1 948 23 29 1.92

GR2 925 12 6.3 1.85

EL2 942 23 35 1.88

0.80 40 GR1 923 28 49 0.85
EL1 936 27 3.7 0.87

GR2 89.3 12 095 0.63

EL2 90.8 21 7.0 0.63

80 GR1 941 15 44 0.59

EL1 95.0 15 35 0.60

GR2 928 0.7 6.5 0.45

EL2 942 16 4.2 0.45

TABLE 4: 95% confidence intervals for the population mean (Model IlI: Stratified caimdampling.)

o N Cl CP L U AL

0.30 20 HT 934 14 52 12.22
EL1 944 27 29 12.47

GR 93.7 12 51 11.98

EL2 945 2.7 28 12.13

40 HT 92.7 1.7 5.6 8.51

EL1 928 3.2 4.0 8.65

GR 921 15 64 8.38

EL2 935 25 40 8.49

0.80 20 HT 946 13 41 3.10
EL1 94.7 2.6 2.7 3.16

GR 940 23 3.7 2.52

EL2 945 31 24 2.27

40 HT 936 24 40 2.13

EL1 95.1 27 22 2.16

GR 932 19 49 1.77

EL2 93.3 23 44 1.59

4.3. Case (iii).

For stratified random sampling, we generated finite popratieach consisting df = 4 strata
with strata sizegV; = 800, Ny = 600, N3 = 400 and N4 = 200, from the model (Model I11)

Yhi = Qp + BrTh; + 0€n;. (26)
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The z;,;s were generated froexp()\;) with the parameteh;, = 1/h andey,; ~ x? — 1. The
regression coefficients in (26) were fixedas = 2h andg;, = h. Note thatE(X) = 1/) and
var(X) = 1/A? if X ~ exp(\), under the current setting, smaller straia={ 3,4) have larger
population means and variances, a scenario often seenveyspiractice. We used three values
of o such that the overall population correlations betwgamdz, o(y, x), are 0.3, 0.5 and 0.8.
Equal sample size allocations were used so that the sanfpéiotions,n,, / N}, are larger for
smaller strata, resulting in unequal selection probabsliacross strata.

We studied the performance of confidence intervalsYomased on (a) gt and normal
approximation (HT); (b) pseudo-EL without using thevariable (EL1); (c) GREG estimator
calibrated overr at the population level and normal approximation (GR); aidRseudo-EL
with benchmark constraint on at the population level (EL2). Table 4 reports the simulatio
results forn;, = 20 and40. When we compare EL1 to HT, or EL2 to GR, the pseudo-EL interval
has more balanced tail error rates and improved coveradgpabpitdy with similar average length.
For example, CR 94.4, L= 2.7, U= 2.9 and AL= 12.47 for EL1 compared to CR 93.4,

L= 1.4, U= 5.2 and AL= 12.22 for HT whenp = 0.30 andn,;, = 20. EL2 is better than EL1 in
terms of AL since EL2 calibrates overat the population level and is also comparable to EL1 in
terms of CP.

5. SOME ADDITIONAL REMARKS

In survey sampling, confidence intervals are customarihstoicted based on normal approxi-
mations. The performance of such intervals is often urfaatisry when the underlying distrib-
ution is skewed and/or the parameter is confined within aicéstl range. The pseudo-empirical
likelihood ratio confidence interval proposed in this papan be an attractive alternative ap-
proach. The orientation of the pseudo-EL interval is autically determined by the data and
the range of the parameter space is fully respected. It hakasiperformance to the normal in-
terval when the latter is satisfactory and performs bettegrvise in terms of balanced tail error
rates and coverage probabilities. Unlike the EL methodhieoareas of statistics, the pseudo-EL
ratio function for complex surveys requires adjustmengeftect features of the sampling design
and the use of auxiliary information at the estimation stageading the pseudo-EL interval in
the form of {6 | () () < x?(«)} involves profile analysis. For high dimensional problenis th
is a daunting task. Wheffy, is a scalar, such as the population méawr the distribution func-
tion F(t) for a specified, the lower and upper bounds of this interval can be founduidinca
simple bisection search method as outlined in Wu (2005).

Our main results can also be modified, using general desigghtgeto cover unequal proba-
bility samplingwith replacemenand the Rao—Hartley—Cochran probability proportionalize s
sampling method. The asymptotié distributions established in Theorems 1-4, however, do
not cover cases where the response variable is not a scdltinenefore cannot be used directly
to construct confidence regions for vector-valued popatatneans.

APPENDIX: PROOFS

Proof of Theorem 1Letd = Y (i.e.,f,). Using the standard Lagrange multiplier argument, the
pi(0) which maximizel,,;(p) subject to (12) are given b (0) = d;(s)/{1+ A(y; — Y )}, with
the A being the solution to

di(s)(y; = Y)
Z—?) 0. (27)

By rewriting d;(s)(y; — Y) asd;(s)(yi — Y )[1+ My — Y) — My: — Y )], we can rearrange

(27) to obtain
di(s) Y)? . —
DV e s ROE )

i€ESs
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It follows from (28) that

Al 7

Wzdz(s)(% - ?)2 <
1€ES

Z CZZ(S)yz -Y

i€ES

; (29)

whereu* = max;e, |y; — Y | which is of ordero, (n'/2) by condition C1. Under conditions C2
and C3, we hav&'ur — }7+O (nY2) andN/N = 1+ O,(n~'/?), whereN = 3", d;
which imply 3. di(s)y; = YHT/ N/N) = Y + O,(n"/2). Noting that}",_, di(s )(yi —
Y )? is the Hajek-type estimator cﬁ‘g which is of orderO(1), it follows from (29) that we must
have) = O,(n~1/2) and, consequentlynax;c, |A(y; — Y )| = o0,(1). This together with (28)

leads to
A= {Z(Zi(s)(yi } (Zd ) +0,(n1/?).

1€ESs 1€s

Using a Taylor series expansion log(1 + x) atz = A(y; — Y ) up to the second order, we
obtain

rs(Y) = ZnZd Yog{1l+ A(y; — Y)}

i€ES

n( e - ) / (Zd TP o)

1€ES 1€ESs
sinceX", ., di(s)(y; — ?)f = S2 + 0,(1), and Y, di(s)y: is asymptotically normal with

meanY and variancé/, (Y ;) under Conditions C2 and C3, the conclusion that the adjusted
pseudo empirical IikeIihood ratio statistic convergeslistribution tox? follows immediately

sincertd (V) = {Xc. di(s)yi = ¥ 12 Vil Sies di(s)yi } + 0p(1).

Proof of Theorem 2The arguments on the order of magnitude and the asymptgiansion of
the involved Lagrange multiplier are similar to those giwetthe proof of Theorem 1. There are
two crucial arguments, however, which are unique to thi®prohe p; which maximizel,.s(p)
subject toy", ., p; = 1 andY,_, p;z; = X are given byp; = d;(s)/{1 + AT (z; —X)},
where the is the solution to (6). Under Conditions C2, C4 and C5 we ¢awsthat||A\|| =
Op(n~1/2) and

A= {Z(L(s)(mi—X)(wi —X)T} (Zd ) +0,(n"1?).

1€ES i€ES

With the termn ", d;(s) log(d;(s)) omitted, we obtain the following asymptotic expansion

1€ES

for 1,,s(p):
—Z(;Ji(s)wi—X> {ze:d (@~ X )(x;—X) } (gd aci—X>+0p(1). (30)

To obtain a similar expansion fég . (p(Y )) wherep(Y ) maximizel,,(p) subject to
Zpi =1, Zpi33i =X and Zpiyi =Y, (31)
i€s €S i€s
our first crucial argument is to reformulate the constraimeaimization problem as follows: let
T =y — Y — BT(wi — X ) whereB is defined by (16). Then the set of constraints (31) is

equivalent to
Zpi =1, Zpiﬁci =X and me' =0. (32)

i€ESs 1€S 1€s
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With complete parallel development that leadsito(p) given by (30), maximizing,s(p)
subject to (32) leads to the following expansion fhr(p(Y)) (with the same term

N ics d;(s)log(d;(s)) omitted):

’;(Zcixs)mU)T{des)(uiv')( o)} (Zd ~0)+a,). (39)

1€Ss 1€ES 1€ES

wherew; = (z],r;)" andU = (X',0)T. Our second crucial argument is the observation
thatzfil(:c,» — X ))r; = 0, i.e., the matrix involved in the middle of (33) is an estimédr its
population counterpart which is block diagonal. It is gjtdforward to show that

N

el 7) = =2{1as V) = a9} = (i) )/ (5 272) +on: @

(ASE] i=1

The conclusion of the theorem follows sinke; d;(s)r; is asymptotically normal with mean
0 and variancé/, {}", (s)r; } under Condmons C3and C5.
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