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Abstract: The authors show how an adjusted pseudo-empirical likelihood ratio statisticthat is asymptoti-
cally distributed as a chi-square random variable can be used to construct confidence intervals for a finite
population mean or a finite population distribution function from complex survey samples. They consider
both non-stratified and stratified sampling designs, with or without auxiliary information. They examine
the behaviour of estimates of the mean and the distribution function at specific points using simulations
calling on the Rao–Sampford method of unequal probability sampling without replacement. They conclude
that the pseudo-empirical likelihood ratio confidence intervals are superior to those based on the normal
approximation, whether in terms of coverage probability, tail error ratesor average length of the intervals.

Calcul d’intervalles de confiance fondés sur le rapport de
pseudo-vraisemblances empiriques dans le cadre d’enquêtes complexes
Résuḿe : Les auteurs montrent comment une statistique du rapport de pseudo-vraisemblances empiriques
ajust́ee dont la loi est asymptotiquement khi-carré peut servir̀a b̂atir des intervalles de confiance pour la
moyenne ou la fonction de répartition d’une population finie dans le cadre d’enquêtes complexes. Ils con-
sidèrent des plans d’échantillonnage stratifíes et non stratifíes pouvant́eventuellement inclure de l’informa-
tion auxiliaire. Ils examinent le comportement d’estimations de la moyenne et de la fonction de ŕepartition
en des points précis au moyen de simulations faisant appelà la ḿethode d’́echantillonnage sans remise et
à poids ińegaux de Rao–Sampford. Ils concluent que les intervalles de confiance fond́es sur le rapport de
pseudo-vraisemblances empiriques sont supérieursà ceux qui s’appuient sur l’approximation normale, tant
en terme de probabilité de couverture que de taux d’erreur caudale et de longueur moyenne.

1. INTRODUCTION

Owen (1988) introduced a non-parametric likelihood, namedempirical likelihood (EL), for the
case of independent and identically distributed observationsy1, . . . , yn from some distribution
F ( · ) of Y . By putting probability massespi = Pr(Y = yi) at the sample pointsyi, the empirical
likelihood function is defined asL(F ) =

∏n
i=1 pi with pi > 0 and

∑n
i=1 pi = 1. Without further

restrictions onp = (p1, . . . , pn)⊤, the empirical distribution functionFn(t) =
∑n

i=1 p̂iI(yi ≤
t) with p̂i = n−1 is the maximum empirical likelihood estimator (MELE) ofF (t), whereI( · )
is the indicator function, i.e.,I(yi ≤ t) = 1 if yi ≤ t andI(yi ≤ t) = 0 otherwise. The MELE
of a scalar parameterθ0 = θ0(F ) is then given byθ̂0 = θ0(Fn); in particular, θ̂0 = ȳ, the
sample mean, ifθ0 = E(Y ). The MELE under further restrictions onp may also be obtained
in a systematic manner, although often involving iterativesolutions. A major advantage of the
empirical likelihood approach is that it also provides non-parametric confidence intervals on
parameters of interestθ0, similar to parametric likelihood ratio confidence intervals, as shown
by Owen (1988). The parameterθ0 can also be defined as the unique solution of an estimating
equationE{g(Y, θ0)} = 0. For example,g(Y, θ0) = Y − θ0 andg(Y, θ0) = I(Y ≤ t)− θ0 give
θ0 = E(Y ) andθ0 = F (t), respectively. A profile likelihood ratio function is then defined as

R(θ) = max

{ n∏

i=1

(npi)
∣∣∣

n∑

i=1

pig(yi, θ) = 0, pi > 0,

n∑

i=1

pi = 1

}
.



360 WU & RAO Vol. 34, No. 3

Under some mild moment conditions, Owen (1988) first proved for the case ofθ0 = E(Y ) that
r(θ0) = −2 log{R(θ0)} converges in distribution toχ2

1, a chi-squared random variable with one
degree of freedom, asn → ∞. Hence, the(1−α)-level empirical likelihood confidence interval
on θ0 is given by{θ | r(θ) < χ2

1(α)}, whereχ2
1(α) is the upperα-quantile ofχ2

1, similar to
parametric likelihood ratio confidence intervals. Unlike intervals based on a normal approxima-
tion, empirical likelihood intervals do not require the evaluation of standard errors of estimators
and provide more balanced tail error rates. Moreover, the shape and orientation of empirical
likelihood intervals are determined entirely by the data, and the intervals are range preserving
and transformation respecting. Owen’s (2001) monograph provides an excellent account of the
empirical likelihood approach, including extensions to regression models and dependent data.

Historically, the concept of empirical likelihood was firstused in survey sampling by Hartley
& Rao (1968, 1969) under the name “scale-load” approach. Forsimple random sampling with
a negligible sampling fractionn/N , whereN is the finite population size andn is the sample
size, the scale-load likelihood is essentially the same as Owen’s empirical likelihood. Hartley &
Rao (1968) obtained the MELE of the finite population meanY when the population meanX
of an auxiliary variable,x, is known, and showed that it closely approximates the customary
regression estimator ofY . In the empirical likelihood setup, we use the additional constraint∑

i∈s pixi = X, wheres denotes the sample of fixed sizen. Chen & Qin (1993) considered

parameters of the formθ0 = N−1
∑N

i=1 g(yi) for specifiedg( · ) and constraints of the form∑
i∈s pia(xi) = 0 for known a( · ) and obtained the MELẼθ0 =

∑n
i=1 p̃ig(yi) with positive

weightsp̃i; the choiceg(y) = y anda(x) = x−X givesθ0 = Y and constraint
∑

i∈s pixi = X.

By letting g(y) = I(y ≤ t) for fixed t, we getF̃(t) =
∑

i∈s p̃iI(yi ≤ t) as the MELE of the

finite population distribution functionθ0 = F (t). Note thatF̃(t) is confined within the interval
[0 , 1] and non-decreasing int, unlike the estimator ofF (t) based on the customary regression
weights, and hence it can be used to obtain the MELE of population quantiles, in particular the
population median. Zhong & Rao (1996, 2000) obtained the MELE of Y under stratified simple
random sampling, assuming negligible sampling fractionsnh/Nh in each stratumh and known
overall meanX. They also studied empirical likelihood confidence intervals on Y by adjusting
the empirical log-likelihood ratio statistic to account for within-strata sampling fractions and
then showing that the adjusted statistic is asymptoticallydistributed asχ2

1; the adjustment factor
reduces to1 − n/N in the special case of proportional allocation,nh/n = Nh/N , wheren is
the total sample size.

It is not easy to obtain an empirical likelihood under general sampling designs. Because
of this difficulty, Chen & Sitter (1999) proposed an alternative approach based on a pseudo-
empirical log-likelihood (PELL) function. The finite population is regarded as a random sample
from an infinite superpopulation, leading to the “census” log-likelihoodlN (p) =

∑N
i=1 log(pi).

The Horvitz–Thompson (HT) estimator

l̂HT(p) =
∑

i∈s

di log(pi) (1)

of lN (p) is then used as a PELL, wheredi = π−1
i are the design weights andπi are the inclusion

probabilities. MaximizinĝlHT(p) subject topi > 0 and
∑

i∈s pi = 1 leads to the pseudo-MELE

of Y as Ŷ H =
∑

i∈s p̂iyi =
∑

i∈s d̃i(s)yi, the Hajek estimator, wherẽdi(s) = di/
∑

i∈s di

are the normalized design weights for the given sample,s. However, the Hajek estimator is

significantly less efficient than the Horvitz–Thompson estimator Ŷ HT = N−1
∑

i∈s diyi under
unequal probability sampling without replacement with inclusion probabilitiesπi proportional to
known size measureszi whenyi is approximately proportional tozi. We propose an improved
estimator ofY in the latter case. (See Section 2.1 for details.) Chen & Sitter (1999) also studied
the case of known population meanX of auxiliary variablesx, and obtained a pseudo-MELE of
Y by imposing the additional constraint

∑
i∈s pixi = X. This estimator,

∑
i∈s p̃iyi, is closely
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approximated by a generalized regression (GREG) estimatorof Y , but unlike the latter it uses
positive weightsp̂i. As a result, the pseudo-MELE ofF (t) is non-decreasing and is itself a
genuine distribution function. Chen, Sitter & Wu (2002) andWu (2004) have given simple and
efficient algorithms for computing the weightsp̂i used in pseudo-MELE.

In the above mentioned work on the empirical likelihood method in survey sampling, the
focus was on point estimation, excepting the work of Zhong & Rao (2000) where empirical
likelihood confidence intervals under stratified simple random sampling were examined. In this
article, our primary aim is to use the pseudo-empirical likelihood method for constructing con-
fidence intervals onY andF (t) under unequal probability sampling without replacement. In
Section 2, we consider both non-stratified sampling and stratified sampling, and formulate an al-
ternative PELL that allows for a simple adjustment for the “design-effect”. This formulation does
not change the point estimators, but ensures that the resulting pseudo empirical log-likelihood
ratio function, adjusted for the corresponding design-effect, is asymptotically distributed asχ2

1,
as shown in Section 3. These asymptotic results require special technical treatments of complex
sampling designs and do not follow from standard empirical likelihood intervals or Chen & Sit-
ter (1999). The involved design-effect depends not only on the sampling design but also on the
set of additional constraints involving auxiliary information. Asymptotic results and the deriva-
tion of the design-effect under stratified sampling are greatly simplified by using a reformulation
technique. Finite sample performance of the proposed pseudo-empirical likelihood confidence
intervals onY andF (t) is examined through an extensive simulation study reportedin Section 4.
Our results show that the proposed intervals perform betterthan the intervals based on normal
approximation in providing balanced tail error rates and improved coverage probabilities, par-
ticularly for the finite population distribution functionF (t). Section 5 contains some additional
remarks. Proofs are relegated to the Appendix.

For asymptotic development, we assume that there is a sequence of finite populations indexed
by ν such that the population sizeNν and the sample sizenν both tend to infinity asν → ∞.
For stratified sampling designs, we assume that the total number of strataL is fixed and the
stratum sample sizes all tend to infinity asν → ∞. The indexν will be suppressed for notational
simplicity. All limiting processes are underν → ∞.

2. PSEUDO-EMPIRICAL LIKELIHOOD ESTIMATORS

2.1. Non-stratified sampling.

For non-stratified unistage sampling designs with fixed sample sizen, the pseudo-empirical log-
likelihood (PELL) function used in this article is defined as

lns(p) = n
∑

i∈s

d̃i(s) log(pi), (2)

whered̃i(s) are the normalized design weights as defined in Section 1. If the design weightsdi

are all equal, then (2) reduces to the usual empirical log-likelihood
∑

i∈s log(pi). The function
(2) differs from (1) used by Chen & Sitter (1999) in thatd̃i(s) is used instead ofdi, but maxi-
mizing (2) subject to a set of constraints on thepis is equivalent to maximizing (1) subject to the
same set of constraints.

In the absence of auxiliary population information, the pseudo-MELE of the parameter
θ0 = N−1

∑N
i=1 g(yi) is given by the Hajek estimator̂θH =

∑
i∈s p̂ig(yi) =

∑
i∈s d̃i(s)g(yi).

EstimatorsŶ H andF̂H(t) are obtained from̂θH by lettingg(yi) = yi andg(yi) = I(yi ≤ t)

respectively. As noted in Section 1,̂Y H will be significantly less efficient than the Horvitz–

Thompson estimator̂Y HT whenπi ∝ zi andyi andzi are closely related. On the other hand,
F̂H(t) will be efficient and more attractive than the Horvitz–Thompson estimatorF̂HT(t) =

N−1
∑

i∈s diI(yi ≤ t) becauseI(yi ≤ t) andzi are not closely related and, unlikêFHT(t),
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F̂H(t) is itself a distribution function. Estimates of populationquantiles can therefore be ob-
tained through direct inversion of̂FH(t).

We now provide an improved pseudo-MELE ofY whenπi ∝ zi by introducing the additional
constraint ∑

i∈s

pizi = Z, (3)

whereZ is the known population mean of the size measureszi. Note that (3) is equivalent to∑
i∈s piπi = n/N . Maximizing (2) subject to (3) and

∑
i∈s pi = 1 gives the improved pseudo-

MELE Ŷ E =
∑

i∈s p̂iyi. Note that the variance of̂Y E is zero whenyi ∝ zi, unlike the Hajek

estimator̂Y H , thus showing improved efficiency whenπi ∝ zi andyi andzi are closely related.

It follows from Chen & Sitter (1999) that̂Y E is asymptotically equivalent to the GREG estimator

Ŷ G = Ŷ H + B̂(Z − ẐH), (4)

whereB̂ =
∑

i∈s d̃i(s)(zi − ẐH)yi/
∑

i∈s d̃i(s)(zi − ẐH)2 is the weighted estimator of the
population regression coefficient. This result holds underthe conditions (i)maxi∈s |zi − Z | =
op(n

1/2) and (ii)
∑

i∈s di(zi − Z )/
∑

i∈s di(zi − Z )2 = Op(n
−1/2), see Chen & Sitter (1999,

p. 390). The asymptotic variance ofŶ G is equivalent to the asymptotic variance of the Hajek
estimator involving the residualsri = yi − Y − B(zi − Z ) which are weakly related tozi even
if yi andzi are closely related, whereB =

∑N
i=1(zi − Z )yi/

∑N
i=1(zi − Z )2 is the population

regression coefficient. Hence, the alternative estimatorŶ E should perform better than̂Y H in
terms of efficiency. Our simulation results reported in Section 4 show that the inclusion of the
constraint (3) whenyi andzi are closely related andπi ∝ zi leads to a shorter pseudo-empirical
likelihood confidence interval onY relative to the interval not using (3).

We now turn to the case of known population meanX of a vector of auxiliary variables
x related toy. In this case, the pseudo-MELẼθ0 that uses the auxiliary information at the
estimation stage is computed as

∑
i∈s p̃ig(yi), where thẽpi maximizelns(p) subject to

∑

i∈s

pi = 1 and
∑

i∈s

pixi =X. (5)

Chen & Sitter (1999) showed thatθ̃0 is asymptotically equivalent to the GREG estimator ofθ0,
but unlike the latter estimator, it uses positive weightsp̂i. Note thatθ̃0 is a calibration estimator
in the sense of

∑
i∈s p̃ixi = X, a set of equations often referred to as calibration equations or

benchmark constraints. Maximizinglns(p) subject to (5) gives̃pi = d̃i(s)/
{
1 + λ⊤(xi −X )

}

where the vector-valued Lagrange multiplierλ is the solution to

∑

i∈s

d̃i(s)(xi −X )

1 + λ⊤(xi −X )
= 0. (6)

Chen, Sitter & Wu (2002) showed that the solution exists and is unique ifX is an inner point of
the convex hull formed by{xi, i ∈ s}. They proposed an efficient algorithm for solving (6).
Wu (2005) has implemented the algorithm in R/S-PLUS.

2.2. Stratified sampling.

For stratified unistage designs with samples of fixed sizesnh drawn independently from each of
theL strata, the pseudo-empirical log-likelihood (PELL) is defined as

lst(p1, . . . ,pL) = n

L∑

h=1

Wh

∑

i∈sh

d̃hi(sh) log(phi), (7)
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where d̃hi(sh) = dhi/
∑

i∈sh
dhi are the normalized weights within strata withdhi = π−1

hi

denoting the design weights,sh is the set of sample units in stratumh, Wh = Nh/N are the
known stratum weights with

∑L
h=1 Nh = N , n =

∑L
h=1 nh is the total sample size, and

ph = (ph1, . . . , phnh
)⊤ subject to

∑
i∈sh

phi = 1. Note thatlst(p1, . . . ,pL) does not reduce

to the empirical log-likelihood function
∑L

h=1

∑
i∈sh

log(phi) under stratified simple random
sampling (Zhong & Rao 2000) unlessnh = nWh (proportional allocation).

In the absence of auxiliary information, maximizing (7) subject to

∑

i∈sh

phi = 1, h = 1, . . . , L, (8)

gives p̂hi = d̃hi(sh). The pseudo-MELE ofθ0 = N−1
∑L

h=1

∑Nh

i=1 g(yhi) =
∑L

h=1 Whθh is
given by θ̂H(st) =

∑L
h=1 Whθ̂Hh, whereθh = N−1

h

∑Nh

i=1 g(yhi) and θ̂Hh =
∑

i∈sh
d̃hi(sh)

g(yhi) is the Hajek estimator ofθh. Again, we can get an improved pseudo-MELE ofY , when
the inclusion probabilitiesπhi ∝ zhi andyhi and zhi are closely related, by introducing the
additional constraint ∑

i∈sh

phizhi = Zh, h = 1, . . . , L, (9)

whereZh is the known stratum population mean of the size measureszhi. Since the con-
straints (8) and (9) are separable for eachh, maximizing (7) subject to (8) and (9) is equiv-
alent to maximizing each component

∑
i∈sh

d̃hi(sh) log(phi) of (7) separately. The resulting

improved pseudo-MELÊY E(st) =
∑L

h=1 Wh

∑
i∈sh

p̂hiyi is asymptotically equivalent to a

separate GREG estimator of the form̂Y G(st) =
∑L

h=1 WhŶ Gh, whereŶ Gh is obtained from (4)
for each stratumh.

We now turn to the case of known overall population meanX =
∑L

h=1 WhXh of auxiliary
variablesx related toy, where the strata meansXh are not known. In this case, the pseudo-
MELE θ̃0 =

∑L
h=1 Wh

∑
i∈sh

p̃hig(yhi) is obtained by maximizing (7) subject to

∑

i∈sh

phi = 1, h = 1, . . . , L and
L∑

h=1

Wh

∑

i∈sh

phixhi =X . (10)

To compute thẽphi, we follow Wu (2004) and reformulate the constraints (10) as

L∑

h=1

Wh

∑

i∈sh

phi = 1 and
L∑

h=1

Wh

∑

i∈sh

phix
∗
hi =X

∗
, (11)

whereX
∗

is obtained by augmentingX to includeW1, . . . ,WL−1 as its firstL − 1 components
andx∗

hi is obtained by augmentingxhi to include the firstL−1 stratum indicator variables. This
reformulation makes all the steps for maximization under non-stratified sampling applicable to
stratified sampling. The difference between the two cases issimply a matter of single or double
summation. Maximizing (7) subject to (10), or equivalently(11), givesp̃hi = d̃hi(sh)/(1 +

λ⊤uhi) whereuhi = x∗
hi −X

∗
and the vector-valuedλ is the solution to

L∑

h=1

Wh

∑

i∈sh

d̃hi(sh)uhi

1 + λ⊤uhi

= 0,

which can be solved in a similar way to (6) for non-stratified sampling designs. R/S-PLUS codes
for doing this can be found in Wu (2005).
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3. PSEUDO-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS

In this section we show that the pseudo-empirical log-likelihood ratio functions associated with
(2) and (7), adjusted to the respective design effects, are asymptotically distributed asχ2

1 under
certain regularity conditions. These results lead to pseudo-empirical likelihood ratio confidence
intervals onθ0, in particular onY andF (t).

3.1. Non-stratified sampling.

We first study the case of no auxiliary population information at the estimation stage. Maximiz-
ing lns(p) given by (2), subject topi > 0 and

∑
i∈s pi = 1 givesp̂i = d̃i(s). Let p̂i(θ) be the

value ofpi obtained by maximizing (2) subject to
∑

i∈s

pi = 1 and
∑

i∈s

pig(yi) = θ (12)

for a fixedθ. The solution to this constrained maximization problem exists and is unique whenθ
is an inner point of the convex hull formed by{g(yi), i ∈ s}.

The pseudo-empirical log-likelihood ratio function is given by

rns(θ) = −2
{
lns(p̂(θ)) − lns(p̂)

}
. (13)

We use the following regularity conditions for studying theasymptotic distribution ofrns(θ) as
n → ∞. For simplicity, we consider the case ofg(yi) = yi, but similar results hold for general
g(yi) with suitable conditions ong( · ).

C1 The sampling designp(s) and the study variabley satisfymaxi∈s |yi| = op(n
1/2), where

the stochastic orderop( · ) is with respect to the sampling designp(s).

C2 The sampling designp(s) satisfiesN−1
∑

i∈s di − 1 = Op(n
−1/2).

C3 The Horvitz–Thompson estimatorθ̂HT = N−1
∑

i∈s diyi of θ0 = Y is asymptotically
normally distributed.

Condition C1 imposes some restrictions on both the samplingdesignp(s) and the finite pop-
ulation {y1, . . . , yN}. If the finite population satisfies C1*:max{|y1|, . . . , |yN |} = o(N1/2),
then Condition C1 holds for any sampling design such that thesampling fractionn/N → f 6= 0.
If the population values{y1, . . . , yN} can be viewed as an independent and identically distrib-
uted sample from a random variableY , then a sufficient condition for C1* isE(Y 2) < ∞
(Owen 2001, Lemma 11.2). Under the condition thatN−1

∑N
i=1 y4

i = O(1), as Chen & Sitter
(1999) showed, Condition C1 holds for probability proportional to size (PPS) sampling with re-
placement, for the Rao–Hartley–Cochran method of PPS sampling without replacement, and for
cluster sampling where the clusters are sampled with PPS andwith replacement.

Condition C2 states that̂N =
∑

i∈s di is a
√

n -consistent estimator ofN . Under simple
random sampling, stratified random sampling and single stage cluster sampling where clusters
are sampled with probability proportional to size, we haveN̂ = N which further implies C2.

Condition C3 is the central limit theorem for a Horvitz–Thompson estimator. Hajek (1960,

1964) established the asymptotic normality ofŶ HT under simple random sampling and rejective
sampling with unequal selection probabilities. Visek (1979) established the asymptotic normality

of Ŷ HT for the well-known Rao–Sampford method of unequal probability sampling without
replacement. Note that Condition C3 is also required for theconventional confidence intervals
based on normal theory.

The design effect (abbreviated deff) associated withŶ H is defined as

deffH = Vp( Ŷ H)/(S2
y/n), (14)
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whereS2
y is the population variance,S2

y/n is the variance of̂Y H under simple random sampling
(ignoring the finite population correction factor) andVp( · ) denotes the variance under the spec-
ified designp(s). Using deffH , we can also define the effective sample size asne = n/deffH .

THEOREM 1. Under the conditions C1–C3, the adjusted pseudo-empiricallog-likelihood ratio
statistic

r[a]
ns(θ) = {rns(θ)}/deffH (15)

is asymptotically distributed asχ2
1 whenθ = Y .

Note that deffH is associated witĥY H , and it will change with the choice ofg(yi) and/or
with additional constraints on auxiliary variables. A result similar to Theorem 1 is obtained
when the constraint

∑
i∈s pizi = Z is used and the inclusion probabilitiesπi ∝ zi. In this case

the design effect is associated with the GREG estimatorŶ G given by (4). The result that the
adjusted pseudo-EL ratio statistic is asymptoticallyχ2

1 under this additional constraint follows as
a special case of Theorem 2 below by changingxi to zi.

WhenX is known and the calibration constraint
∑

i∈s pixi = X is used, then the pseudo-
empirical log-likelihood ratio function, adjusted by the design effect associated with the GREG
estimator ofY , is asymptoticallyχ2

1 whenθ = Y , as shown in Theorem 2 below. The GREG
“estimator” of Y , defined here for the purpose of theoretical development butnot computable

from the sample data, is given bŷY GR = Ŷ H + B⊤(X −X̂H), whereB is the vector of
population regression coefficients defined as

B =

{
1

N

N∑

i=1

(xi −X )(xi −X )⊤
}−1{

1

N

N∑

i=1

(xi −X )(yi − Y )

}
. (16)

Note that we used the finite population quantityB instead of a sample based̂B in definingŶ GR.

The design effect associated witĥY GR is defined as

deffGR = Vp( Ŷ GR)/(S2
r/n), (17)

whereVp( Ŷ GR) = Vp

{∑
i∈s d̃i(s)ri

}
, ri = yi − Y − B⊤(xi −X ), S2

r/n is the variance of

Ŷ GR under simple random sampling (ignoring1 − n/N ), andS2
r = (N − 1)−1

∑N
i=1 r2

i . We
require the following conditions (parallel to C1 and C3) on the auxiliary variablesxi, where‖ · ‖
denotes theL1 norm.

C4 maxi∈s ‖xi‖ = op(n
1/2).

C5 X̂HT = N−1
∑

i∈s dixi is asymptotically normally distributed.

THEOREM 2. Let p̃ be the maximizer oflns(p) under the constraints
∑

i∈s pi = 1 and∑
i∈s pixi = X; let p̃(θ) be obtained by maximizinglns(p) subject to

∑
i∈s pi = 1,∑

i∈s pixi = X and
∑

i∈s piyi = θ for a fixedθ. Then under the conditions C1–C5, the
adjusted pseudo-empirical log-likelihood ratio statistic

r(a)
ns (θ) = {r̃ns(θ)}/deffGR (18)

is asymptotically distributed asχ2
1 whenθ = Y , wherer̃ns(θ) = −2

{
lns(p̃(θ)) − lns(p̃)

}
.
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In practice the design effect deffH or deffGR will need to be estimated from the sample
data. The asymptoticχ2

1 distribution of the adjusted pseudo-empirical likelihoodratio statis-
tics remains unchanged when the design effect is consistently estimated. The design effect

deffH = Vp( Ŷ H)/(S2
y/n) can be estimated byv( Ŷ H)/(Ŝ2

y/n), wherev( Ŷ H) is the lineariza-

tion estimator ofVp( Ŷ H) given by

v( Ŷ H) =
1

N̂2

∑

i∈s

∑

j>i

πiπj − πij

πij

(
ei

πi
− ej

πj

)2

with N̂ =
∑

i∈s di andei = yi−Ŷ H being the “residual variable” for̂Y H , andŝ2
y is the unbiased

estimator ofS2
y given by

Ŝ2
y =

1

N(N − 1)

∑

i∈s

∑

j>i

(yi − yj)
2

πij
,

following the well-known Laplace expressionS2
y =

∑N
i=1

∑N
j=i+1(yi − yj)

2/(N(N − 1)).

The design effect deffGR = Vp( Ŷ GR)/(S2
r/n) can similarly be estimated byv( Ŷ GR)/(Ŝ2

r/n),

wherev( Ŷ GR) has the same format ofv( Ŷ H) but uses the “residual variable”ri = yi − Ŷ H −
B̂

⊤

(xi −X ) which is associated witĥY GR, andŜ2
r is obtained as in̂S2

y but usesri in place
of yi. Section 4 contains further details on computing the designeffects for scenarios considered
in the simulation.

Using Theorems 1 and 2, we can construct(1 − α)-level pseudo-empirical likelihood ratio
confidence intervals onθ0 = Y as

{
θ | r[a]

ns(θ) ≤ χ2
1(α)

}
for the case of no auxiliary information

and
{
θ | r(a)

ns (θ) ≤ χ2
1(α)

}
for the case of known meanX of the auxiliary variablesxi, where

χ2
1(α) is the(1 − α)-quantile ofχ2

1.

3.2. Stratified sampling.

We first study the case of no auxiliary information at the estimation stage. Thêphis which
maximizelst(p1, . . . ,pL) of (7) subject to (8) are given bŷphi = d̃hi(sh). Let p̂hi(θ) be the
value ofphi obtained by maximizing (7) subject to

∑

i∈sh

phi = 1, h = 1, . . . , L and
L∑

h=1

Wh

∑

i∈sh

phig(yhi) = θ (19)

for a fixed value ofθ. The related computational problem can be handled similarly, as in Sec-
tion 2.2, through an augmented method. The set of constraints (19) is equivalent to

L∑

h=1

Wh

∑

i∈sh

phi = 1 and
L∑

h=1

Wh

∑

i∈sh

phig
∗(yhi) = θ∗, (20)

whereθ∗ is obtained by augmentingθ to includeW1, . . . ,WL−1 as its firstL − 1 components,
andg∗(yhi) is obtained by augmentingg(yhi) to include the firstL−1 stratum indicator variables.

The pseudo-empirical log-likelihood ratio function is given by

rst(θ) = −2
{
lst(p̂1(θ), . . . , p̂L(θ)) − lst(p̂1, . . . , p̂L)

}
. (21)

To study the asymptotic distribution ofrst(θ), we again consider the case ofg(yhi) = yhi and
assume thatnh/n → fh 6= 0 asn → ∞. We assume conditions C1–C3 to hold within each
stratumh to avoid further notational changes.



2006 CONFIDENCE INTERVALS FOR COMPLEX SURVEYS 367

THEOREM3. Under the conditions C1–C3 within each stratumh, the adjusted pseudo-empirical
log- likelihood ratio statistic

r
[a]
st (θ) = {rst(θ)}/deffGR(st) (22)

is asymptotically distributed asχ2
1 whenθ = Y .

The proof of Theorem 3 and the definition of the design effect deffGR(st) follow as special
cases of Theorem 4 below.

Now consider the case of known overall meanX of auxiliary variablesx. Letx∗
hi andX

∗
be

the augmented variables as defined in Section 2.2. Letp̃hi be obtained by maximizing (7) subject
to (10), or equivalently (11); let̃phi(θ) be obtained by maximizing (7) subject to (11) and the
additional constraint

L∑

h=1

Wh

∑

i∈sh

phig(yhi) = θ

for a fixedθ. For simplicity, we again confine ourselves tog(yhi) = yhi in which case the com-

bined GREG estimator ofY is given byŶ GR(st) = Ŷ H(st) + (B∗)⊤(X
∗ −X̂

∗

H(st)), where

Ŷ H(st) =
∑L

h=1 Wh

∑
i∈sh

d̃hi(sh)yhi is the Hajek-type estimator under stratified sampling,

X̂
∗

H(st) is similarly defined using the augmentedx∗
hi. The vector of population regression coef-

ficientsB∗ is defined similarly toB of (16) but usingx∗
i andX

∗
. The design effect associated

with Ŷ GR(st) is given by

deffGR(st) =

{ L∑

h=1

W 2
hVp

(∑

i∈s

d̃hi(sh)rhi

)} / (
S2

r

n

)
,

whererhi = (yhi − Y ) − (B∗)⊤(x∗
hi −X

∗
) andS2

r = (N − 1)−1
∑L

h=1

∑Nh

i=1 r2
hi.

THEOREM4. Under the conditions C1–C5 within each stratumh, the adjusted pseudo-empirical
log-likelihood ratio statistic

r
(a)
st (θ) = {r̃st(θ)}/deffGR(st) (23)

is asymptotically distributed asχ2
1 whenθ = Y , where

r̃st(θ) = −2
{
lst(p̃1(θ), . . . , p̃L(θ)) − lst(p̃1, . . . , p̃L)

}

is the pseudo-empirical log-likelihood ratio function under stratified sampling.

Because of the reformulated constraints (11), the proof of Theorem 4 under stratified sam-
pling follows along the lines of the proof of Theorem 2 for non-stratified sampling and hence is
omitted for brevity. The detailed proof can be found in an unpublished technical report (Wu &
Rao 2004). It also follows that Theorem 3 is a special case of Theorem 4 since in the absence
of auxiliary information the augmented variablesx∗

hi reduce to the firstL − 1 stratum indicator
variables andX

∗
reduces to(W1, . . . ,WL−1).

Pseudo-empirical likelihood ratio confidence intervals onF (t) for a givent can be obtained
from Theorems 1–4 by simply changingyi to I(yi ≤ t). However, the use of benchmark con-
straints such as

∑
i∈s pixi = X in making inferences onF (t) may not be very efficient due to

the weak correlation between the indicator variableI(yi ≤ t) andxi. If the individual population
valuesx1, . . . ,xN are known, then different benchmark constraints that lead to more efficient
inference onF (t) can be used (Chen & Wu 2002).
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4. SIMULATION STUDY

In this section we report the results of a simulation study onthe relative performance of pseudo-
empirical likelihood ratio confidence intervals and intervals based on normal approximation to
the usual Z-statistic, i.e.,(θ̂0 − θ0)/{v(θ̂0)}1/2, on the population meanY and the distribution
function F (t). The latter also includes population proportions as special cases. In particular,
we examine the performance of coverage probabilities, tailerror rates and average lengths of
confidence intervals under the Rao–Sampford method (Rao 1965, Sampford 1967) of sampling
without replacement with inclusion probabilitiesπi exactly proportional to size measureszi. The
major features of the Rao–Sampford method include: (a) easyimplementation for any sample
sizen subject tozi < 1/n to ensureπi < 1 for all i = 1, . . . , N ; (b) an exact recursive for-
mula for computing the second order inclusion probabilities, πij , that ensure non-negativity of

the Sen–Yates–Grundy-type variance estimators such asv( Ŷ H) or v( Ŷ GR) due to the property
πiπj − πij > 0 for all (i, j); and (c) variance of the Horvitz–Thompson estimator is always
smaller than the variance of the customary estimator under probability proportional to size sam-
pling with replacement. We study three cases: (i) Non-stratified sampling with no auxiliary
information at the estimation stage; (ii) Non-stratified sampling with auxiliary information at the
estimation stage; and (iii) Stratified random sampling withdisproportionate sample size alloca-
tion to ensure unequalπi across strata. The Rao–Sampford sampling method was used for cases
(i) and (ii).

4.1. Case (i).

We generated three finite populations, each of sizeN = 800, from the model (Model I)

yi = β0 + β1zi + σεi (24)

with β0 = β1 = 1, where thezis follow the standard exponential distribution andεi ∼ χ2
1 − 1

which ensures thatE(εi) = 0. A constant number was added to allzi to eliminate extremely
small values ofzi. Three different values ofσ were used to reflect a weak, moderate and strong
correlation betweeny andz: ̺(y, z) = 0.3, 0.5 and0.8. The finite populations so generated
remain fixed under repeated simulation runs.

The task of computing theπijs needed for normal approximation and pseudo-empirical like-
lihood ratio confidence intervals is very heavy for repeatedsimulation runs. We usedn = 40
and 80, corresponding to sampling fractions5% and 10%, in the simulation. Our simula-
tions were programmed in R/S-PLUS using the algorithms outlined in Wu (2005). The R
source codes are available from the authors upon request. Wedenote the pseudo-empirical
likelihood intervals without using the additional constraint (3) on the size measureszi as EL1
and those with the constraint as EL2. The design effect associated with EL1 forθ0 = Y

is deffH given by (14) and is estimated byv( Ŷ H)/(Ŝ2
y/n) as outlined in Section 3.1; for

EL2, the design effect is computed asv( Ŷ GR)/(Ŝ2
r/n), where the residual variable is de-

fined asri = yi − Ŷ H − B̂(zi − Z ). The estimated regression coefficient is computed as

B̂ =
{
N−1

∑
i∈s di(zi − ẐHT)2

}−1{
N−1

∑
i∈s di(zi − ẐHT)yi

}
. For the distribution func-

tion F (t), yi is replaced byI(yi ≤ t) for estimating the associated design effect.
We used 1000 simulation runs for each sample sizen and correlation̺ (y, z). Table 1 reports

the simulated values of coverage probability (CP), lower (L) and upper (U) tail error rates, aver-
age length of the interval (AL) and average lower bound (LB) for the95% confidence intervals

on Y based on̂Y HT and normal approximation (NA), EL1 and EL2 for̺(y, z) = 0.3 and0.8.
Wu & Rao (2004) contains simulation results for additional parameter combinations. The results
can be summarized as follows: (1) In terms of balanced tail error rates, EL1 and EL2 clearly
outperform NA. The latter leads to much smaller L and larger Uthan the nominal2.5% rate at
each tail. For example, withn = 80 and̺(y, z) = 0.3, L=0.7 and U=6.3 for NA compared to
L=2.5 and U=3.8 for EL2; (2) EL2 has better coverage probability than NA with similar average
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length; EL1 has better coverage probability but the averagelength is bigger, and indeed much
bigger when̺ (y, z) = 0.80: AL=0.51 for EL1 compared to AL=0.33 for EL2 whenn = 80;
(3) EL2 has the largest lower bound (LB) and close to the2.5% lower tail nominal error rate in
all cases, a feature which is desirable in some applicationssuch as audit sampling. The smaller
lower tail error rate (L) for NA is associated with the smaller lower bound LB.

TABLE 1: 95% confidence intervals for the population mean (Model I).

̺ n CI CP L U AL LB

0.30 40 NA 90.2 0.5 9.3 1.85 5.26

EL1 92.7 2.3 5.0 1.97 5.37

EL2 91.4 2.8 5.8 1.86 5.44

80 NA 93.0 0.7 6.3 1.30 5.55

EL1 93.4 2.5 4.1 1.38 5.61

EL2 93.7 2.5 3.8 1.32 5.64

0.80 40 NA 91.7 0.6 7.7 0.48 5.84

EL1 94.7 2.3 3.0 0.75 5.76

EL2 92.3 2.7 5.0 0.47 5.89

80 NA 94.2 1.5 4.3 0.34 5.91

EL1 94.6 1.8 3.6 0.51 5.85

EL2 93.8 2.5 3.7 0.33 5.94

It appears from Table 1 that EL2 is the most reliable method. When the correlation between
yi and the size measureszi is weak (e.g.̺ (y, z) = 0.30), EL1 may be used. It has better coverage
probability with small to moderate inflation in length. The EL1 interval is closely related to the

Hajek estimator̂Y H . The much increased length of EL1 under strong correlationsbetweeny and

z is due to the inefficiency of̂Y H under such situations, as discussed in Section 2.1.
Table 2 reports the simulated values of CP, L, U and AL for the distribution functionF (t)

with t = tp andp = 0.10, 0.50 and0.90, wheretp satisfiesF (tp) = p and̺(y, z) = 0.50.
Additional simulation results for̺ (y, z) = 0.30 and0.80 and forp = 0.20 and0.80 can be
found in Wu & Rao (2004). The95% NA interval is computed as(F̂H(t) − 1.96{v(F̂H(t)}1/2,
F̂H(t) + 1.96{v(F̂H(t)}1/2), with the lower and upper bounds respectively truncated at 0and 1.
It is evident from Table 2 that both EL1 and EL2 perform uniformly better than NA in terms of
coverage probability, balanced tail error rates and average length. NA performs well only for
the case ofp = 0.50 where the underlying distribution of̂FH(t) is nearly symmetric. The only
unsatisfactory case for the pseudo-empirical likelihood method isn = 40 andp = 0.10 where
the sample size is not large enough to handle the extreme quantile tp and the resulting tail error
rates are not balanced. Our simulation results show that EL1has a good and stable performance
for all cases considered. The correlation betweenI(yi ≤ t) andzi is generally weak and the
Hajek estimatorF̂H(t) performs well regardless of̺(y, z). The EL2 interval is shorter when
̺(y, z) = 0.80 but its coverage probabilities are also deteriorated as compared to EL1.
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TABLE 2: 95% confidence intervals for the distribution function (Model I,̺(y, z) = 0.5).

n p CI CP L U AL

40 0.10 NA 86.0 0.5 13.5 0.183

EL1 96.9 3.1 0.0 0.194

EL2 97.0 2.8 0.2 0.183

0.50 NA 94.4 2.6 3.0 0.307

EL1 95.0 2.7 2.3 0.296

EL2 94.7 2.9 2.4 0.265

0.90 NA 88.3 10.8 0.9 0.160

EL1 92.4 5.3 2.3 0.162

EL2 91.1 6.6 2.3 0.156

80 0.10 NA 90.7 0.2 9.1 0.134

EL1 94.1 1.7 4.2 0.134

EL2 94.5 1.9 3.6 0.127

0.50 NA 95.3 2.4 2.3 0.212

EL1 95.5 2.4 2.1 0.208

EL2 95.4 2.8 1.8 0.187

0.90 NA 93.9 5.0 1.1 0.116

EL1 95.2 2.7 2.1 0.115

EL2 93.5 4.0 2.5 0.110

4.2. Case (ii).

In this case, we generated finite populations, each of sizeN = 800, from the model (Model II)

yi = β0 + β1zi + β2xi + σεi (25)

with β0 = 1, andβ1 = 1, β2 = 1 (Model II-1), β1 = 1, β2 = 2 (Model II-2) andβ1 = 2
and β2 = 1 (Model II-3), wherezi and xi follow the standard exponential distribution and
εi ∼ χ2

1−1. Thez-variable is used as the design variable for the Rao–Sampford sampling method
and thex-variable is used at the estimation stage. Three values ofσ were used for each model to
reflect weak, moderate and strong multiple correlation betweeny andβ0 + β1z + β2x, denoted
by ̺. We studied the performance of confidence intervals forY based on the following methods:
(a) Normal approximation to the GREG estimator calibrated over (1, x) (GR1); (b) Pseudo-
EL interval with benchmark constraint overx (EL1); (c) Normal approximation to the GREG
estimator calibrated over(1, z, x) (GR2); and (d) Pseudo-EL interval with benchmark constraints

over bothz andx (EL2). The design effect for EL1 or EL2 is estimated as{v( Ŷ GR)}/(Ŝ2
r/n),

whereŶ GR involves only thex-variable for EL1 and bothz andx for EL2.
Table 3 reports the simulated values of CP, L, U and AL for the mean Y under Model II-

1, based on 1,000 simulation runs forn = 40 and 80. When we compare EL1 to GR1, or
EL2 to GR2, the pseudo-EL interval is clearly better than theGR interval in terms of coverage
probability and balanced tail error rates and is comparableto GR in terms of average length. For
example, CP= 94.2, L= 2.3, U= 3.5 and AL= 1.88 for EL2 compared to CP= 92.5, L= 1.2,
U= 6.3 and AL= 1.85 for GR2 when̺ = 0.30 andn = 80. To choose between EL1 and
EL2, it appears reasonable to use EL1 for most cases unless the multiple correlation is strong
(̺ = 0.80) and the sample size is large (n = 80), where EL2 has good coverage probability
but is considerably shorter. Results under Models II-2 and II-3 (not reported here) demonstrate
similar trends except that the superiority of the pseudo-ELinterval over the GR interval is more
pronounced in terms of CP under Model II-3.
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TABLE 3: 95% confidence intervals for the population mean (Model II-1).

̺ n CI CP L U AL

0.30 40 GR1 90.5 1.4 8.1 2.68

EL1 91.2 2.9 5.9 2.72

GR2 88.5 1.3 10.2 2.59

EL2 89.9 2.7 7.4 2.60

80 GR1 94.5 1.2 4.3 1.89

EL1 94.8 2.3 2.9 1.92

GR2 92.5 1.2 6.3 1.85

EL2 94.2 2.3 3.5 1.88

0.80 40 GR1 92.3 2.8 4.9 0.85

EL1 93.6 2.7 3.7 0.87

GR2 89.3 1.2 9.5 0.63

EL2 90.8 2.1 7.0 0.63

80 GR1 94.1 1.5 4.4 0.59

EL1 95.0 1.5 3.5 0.60

GR2 92.8 0.7 6.5 0.45

EL2 94.2 1.6 4.2 0.45

TABLE 4: 95% confidence intervals for the population mean (Model III: Stratified random sampling.)

̺ nh CI CP L U AL

0.30 20 HT 93.4 1.4 5.2 12.22

EL1 94.4 2.7 2.9 12.47

GR 93.7 1.2 5.1 11.98

EL2 94.5 2.7 2.8 12.13

40 HT 92.7 1.7 5.6 8.51

EL1 92.8 3.2 4.0 8.65

GR 92.1 1.5 6.4 8.38

EL2 93.5 2.5 4.0 8.49

0.80 20 HT 94.6 1.3 4.1 3.10

EL1 94.7 2.6 2.7 3.16

GR 94.0 2.3 3.7 2.52

EL2 94.5 3.1 2.4 2.27

40 HT 93.6 2.4 4.0 2.13

EL1 95.1 2.7 2.2 2.16

GR 93.2 1.9 4.9 1.77

EL2 93.3 2.3 4.4 1.59

4.3. Case (iii).

For stratified random sampling, we generated finite populations, each consisting ofL = 4 strata
with strata sizesN1 = 800, N2 = 600, N3 = 400 andN4 = 200, from the model (Model III)

yhi = αh + βhxhi + σεhi. (26)
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Thexhis were generated fromexp(λh) with the parameterλh = 1/h andεhi ∼ χ2
1 − 1. The

regression coefficients in (26) were fixed asαh = 2h andβh = h. Note thatE(X) = 1/λ and
var(X) = 1/λ2 if X ∼ exp(λ), under the current setting, smaller strata (h = 3, 4) have larger
population means and variances, a scenario often seen in survey practice. We used three values
of σ such that the overall population correlations betweeny andx, ̺(y, x), are 0.3, 0.5 and 0.8.
Equal sample size allocations were used so that the samplingfractions,nh/Nh, are larger for
smaller strata, resulting in unequal selection probabilities across strata.

We studied the performance of confidence intervals onY based on (a)̂Y HT and normal
approximation (HT); (b) pseudo-EL without using thex-variable (EL1); (c) GREG estimator
calibrated overx at the population level and normal approximation (GR); and (d) Pseudo-EL
with benchmark constraint onx at the population level (EL2). Table 4 reports the simulation
results fornh = 20 and40. When we compare EL1 to HT, or EL2 to GR, the pseudo-EL interval
has more balanced tail error rates and improved coverage probability with similar average length.
For example, CP= 94.4, L= 2.7, U= 2.9 and AL= 12.47 for EL1 compared to CP= 93.4,
L= 1.4, U= 5.2 and AL= 12.22 for HT when̺ = 0.30 andnh = 20. EL2 is better than EL1 in
terms of AL since EL2 calibrates overx at the population level and is also comparable to EL1 in
terms of CP.

5. SOME ADDITIONAL REMARKS

In survey sampling, confidence intervals are customarily constructed based on normal approxi-
mations. The performance of such intervals is often unsatisfactory when the underlying distrib-
ution is skewed and/or the parameter is confined within a restricted range. The pseudo-empirical
likelihood ratio confidence interval proposed in this papercan be an attractive alternative ap-
proach. The orientation of the pseudo-EL interval is automatically determined by the data and
the range of the parameter space is fully respected. It has similar performance to the normal in-
terval when the latter is satisfactory and performs better otherwise in terms of balanced tail error
rates and coverage probabilities. Unlike the EL method in other areas of statistics, the pseudo-EL
ratio function for complex surveys requires adjustment to reflect features of the sampling design
and the use of auxiliary information at the estimation stage. Finding the pseudo-EL interval in
the form of{θ | r(a)(θ) ≤ χ2

1(α)} involves profile analysis. For high dimensional problems this
is a daunting task. Whenθ0 is a scalar, such as the population meanY or the distribution func-
tion F (t) for a specifiedt, the lower and upper bounds of this interval can be found through a
simple bisection search method as outlined in Wu (2005).

Our main results can also be modified, using general design weights, to cover unequal proba-
bility samplingwith replacementand the Rao–Hartley–Cochran probability proportional to size
sampling method. The asymptoticχ2 distributions established in Theorems 1–4, however, do
not cover cases where the response variable is not a scalar and therefore cannot be used directly
to construct confidence regions for vector-valued population means.

APPENDIX: PROOFS

Proof of Theorem 1.Let θ = Y (i.e.,θ0). Using the standard Lagrange multiplier argument, the
p̂i(θ) which maximizelns(p) subject to (12) are given bŷpi(θ) = d̃i(s)/{1 + λ(yi − Y )}, with
theλ being the solution to

∑

i∈s

d̃i(s)(yi − Y )

1 + λ(yi − Y )
= 0. (27)

By rewriting d̃i(s)(yi − Y ) asd̃i(s)(yi − Y )
[
1 + λ(yi − Y )− λ(yi − Y )

]
, we can rearrange

(27) to obtain

λ
∑

i∈s

d̃i(s)(yi − Y )2

1 + λ(yi − Y )
=

∑

i∈s

d̃i(s)yi − Y . (28)
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It follows from (28) that

|λ|
1 + |λ|u∗

∑

i∈s

d̃i(s)(yi − Y )2 ≤
∣∣∣∣
∑

i∈s

d̃i(s)yi − Y

∣∣∣∣, (29)

whereu∗ = maxi∈s |yi − Y | which is of orderop(n
1/2) by condition C1. Under conditions C2

and C3, we havêY HT = Y + Op(n
−1/2) andN̂/N = 1 + Op(n

−1/2), whereN̂ =
∑

i∈s di,

which imply
∑

i∈s d̃i(s)yi = Ŷ HT/(N̂/N) = Y + Op(n
−1/2). Noting that

∑
i∈s d̃i(s)(yi −

Y )2 is the Hajek-type estimator ofS2
y which is of orderO(1), it follows from (29) that we must

haveλ = Op(n
−1/2) and, consequently,maxi∈s |λ(yi − Y )| = op(1). This together with (28)

leads to

λ =

{∑

i∈s

d̃i(s)(yi − Y )2
}−1(∑

i∈s

d̃i(s)yi − Y

)
+ op(n

−1/2).

Using a Taylor series expansion oflog(1 + x) at x = λ(yi − Y ) up to the second order, we
obtain

rns(Y ) = 2n
∑

i∈s

d̃i(s) log{1 + λ(yi − Y )}

= n

(∑

i∈s

d̃i(s)yi − Y

)2 / (∑

i∈s

d̃i(s)(yi − Y )2
)

+ op(1).

Since
∑

i∈s d̃i(s)(yi − Y )2 = S2
y + op(1), and

∑
i∈s d̃i(s)yi is asymptotically normal with

meanY and varianceVp( Ŷ H) under Conditions C2 and C3, the conclusion that the adjusted
pseudo-empirical likelihood ratio statistic converges indistribution toχ2

1 follows immediately

sincer
[a]
ns(Y ) =

{∑
i∈s d̃i(s)yi − Y

}2
/Vp

{∑
i∈s d̃i(s)yi

}
+ op(1).

Proof of Theorem 2.The arguments on the order of magnitude and the asymptotic expansion of
the involved Lagrange multiplier are similar to those givenin the proof of Theorem 1. There are
two crucial arguments, however, which are unique to this proof. Thep̃i which maximizelns(p)
subject to

∑
i∈s pi = 1 and

∑
i∈s pixi = X are given byp̃i = d̃i(s)/

{
1 + λ⊤(xi −X )

}
,

where theλ is the solution to (6). Under Conditions C2, C4 and C5, we can show that‖λ‖ =
Op(n

−1/2) and

λ =

{∑

i∈s

d̃i(s)(xi −X )(xi −X )⊤
}−1(∑

i∈s

d̃i(s)xi −X

)
+ op(n

−1/2).

With the termn
∑

i∈s d̃i(s) log(d̃i(s)) omitted, we obtain the following asymptotic expansion
for lns(p̃):

−n

2

(∑

i∈s

d̃i(s)xi−X

)⊤{∑

i∈s

d̃i(s)(xi−X )(xi−X )⊤
}−1(∑

i∈s

d̃i(s)xi−X

)
+op(1). (30)

To obtain a similar expansion forlns(p̃(Y )) wherep̃(Y ) maximizelns(p) subject to
∑

i∈s

pi = 1,
∑

i∈s

pixi =X and
∑

i∈s

piyi = Y , (31)

our first crucial argument is to reformulate the constrainedmaximization problem as follows: let
ri = yi − Y − B⊤(xi −X ) whereB is defined by (16). Then the set of constraints (31) is
equivalent to ∑

i∈s

pi = 1,
∑

i∈s

pixi =X and
∑

i∈s

piri = 0. (32)



374 WU & RAO Vol. 34, No. 3

With complete parallel development that leads tolns(p̃) given by (30), maximizinglns(p)
subject to (32) leads to the following expansion forlns(p̃(Y )) (with the same term
n

∑
i∈s d̃i(s) log(d̃i(s)) omitted):

−n

2

(∑

i∈s

d̃i(s)ui−U

)⊤{∑

i∈s

d̃i(s)(ui−U )(ui−U )⊤
}−1(∑

i∈s

d̃i(s)ui−U

)
+op(1), (33)

whereui = (x⊤
i , ri)

⊤ andU = (X
⊤

, 0)⊤. Our second crucial argument is the observation
that

∑N
i=1(xi −X )ri = 0, i.e., the matrix involved in the middle of (33) is an estimate for its

population counterpart which is block diagonal. It is straightforward to show that

r̃ns(Y ) = −2
{
lns(p̃(Y )) − lns(p̃)

}
= n

(∑

i∈s

d̃i(s)ri

)2 / (
1

N

N∑

i=1

r2
i

)
+ op(1). (34)

The conclusion of the theorem follows since
∑

i∈s d̃i(s)ri is asymptotically normal with mean
0 and varianceVp

{∑
i∈s d̃i(s)ri

}
under Conditions C3 and C5.
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