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Abstract: The authors develop empirical likelihood (EL) based methods of inéeréor a common mean
using data from several independent but nonhomogeneous popsldfor point estimation, they propose
a maximum empirical likelihood (MEL) estimator and show that it {& -consistent and asymptotically
optimal. For confidence intervals, they consider two EL based methabistenw that both intervals have
approximately correct coverage probabilities under large sampldage-Bample performances of the MEL
estimator and the EL based confidence intervals are evaluated throunghlat®n study. The results indi-
cate that overall the MEL estimator and the weighted EL confidence in@maluperior alternatives to the
existing methods.

Inférence par la vraisemblance empirique pour

une moyenne commune en présence d’hétéroscédasticité

Résuné : Les auteurs @veloppent des éthodes d’'inérence fondes sur la vraisemblance empirique (VE)
pour la moyenne commune de populationséipeindantes non-homéges. Pour I'estimation ponctuelle,
ils proposent un estimateur de vraisemblance empirigue maximale (VBM)ld montrent qu'il est/n-
convergent et asymptotiquement optimal. Pour I'estimation par intenitallepnsicerent deux rathodes
bases sur la VE et montrent que les intervalles correspondants et pés la bonne couverture dans de
grandséchantillons. Les performancadaille finie de I'estimateur de VEM et des intervalles de confiance
de VE sontevallees par voie de simulation. Lessultats indiquent que globalement, I'estimateur de VEM
et I'intervalle de confiance de VE poar sont suprieurs aux rathodes existantes.

1. INTRODUCTION

Estimation of an unknown quantity using information fronvesal independent but nonhomo-
geneous samples is a classical problem in statistics. égtins can be found in many different
contexts. For example, suppose two or more techniciansmeidssays on several sample mate-
rials. The technicians measure the same characteristibdiuineasurements differ in precision.
To make inferences about the common characteristic, wetwistake use of the combined sam-
ple data. This example is a special case of the more geneeslurement error problems where
several “instruments” are used to collect data on a comneporese variable. These instruments
are believed to have no systematic biases but differ in pigati Heteroscedasticity clearly is the
key feature of the combined sample data. Another exampiedesigned experiments involving
a single factor. When one fails to reject the null hypothdsid the mean responses at different
treatment levels are all the same, a point estimate and/onfidence interval for the assumed
common mean using the combined sample data will be the meairsfof subsequent analyses.
Such common mean problems have attracted much attentiontteve/ears and have led
to some very interesting solutions. Early work on such motd typically assumed that the
underlying distributions are normal. Neyman and Scott 8 Qfave an estimator which is more
efficient than the maximum likelihood estimator when the benof samples approaches infinity.
Cochran & Carroll (1953), Meier (1953) and Bement & Williaifi®69) examined the relative
efficiency of a weighted estimator to a simple unweightetregbr. Levy (1970) compared the
weighted estimator with the maximum likelihood estimat@. R. Rao (1970), J. N. K. Rao
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(1973), and Hartley & Jayatillake (1973), among others satgred a more general problem of
estimation for linear models with unequal variances andesofrthese have their emphasis on
estimating the variances. For relative efficiencies of soammonly used estimators and further
references, see J. N. K. Rao (1980) and the referencesrtherei

In the present paper, we bring to bear a modern method ofeinéer on this classical yet
still frequently encountered problem. We develop empitigalihood (EL) based methods for
making inferences about the common mean; these methodewand fo be very promising.
The EL approach (Owen 1988) is nonparametric and requirBssame mild finite-moment
conditions. We define the maximum empirical likelihood (MEgstimator and show that it
is y/n-consistent and is asymptotically optimal. For finite sagsplsimulation results show
that the MEL estimator performs similarly to existing estiors when the parametric model is
correctly specified but it performs much better otherwisastRvork on point estimators has
sometimes avoided discussion of the construction of condieléntervals, partly because the
methods involved do not readily lend themselves to dealiitig wterval estimation. With the EL
approach, however, confidence intervals can be constrici®dre than one way. We develop
two different ways of constructing EL confidence intervalsthe common mean. The weighted
EL confidence interval emerges as the most reliable methaehwslample sizes are small or
moderate, while the naive EL confidence interval performslydor cases where sample sizes
are not large and/or the underlying population distringi@re skewed. The MEL estimator
and the weighted EL confidence interval are found to be sop#ithe existing methods. In
particular, they are the most robust in that their perforoearare the least affected by the change
of the underlying distributions.

The rest of the paper is organized as follows. In Section 2degeribe the two most com-
monly used estimators: the optimal estimator and the maxitikelihood estimator, and set out
our notation. In Section 3, we present the MEL estimator arduds its basic properties. In
Section 4, we present two EL based confidence intervals. Amiggue in the implementation
of the EL methods is computation. In Section 5, we discusspedational algorithms. In Sec-
tion 6, we examine finite-sample performances of the prapasethods, and compare them to
the existing approaches through a limited simulation stukty application to a set of real data
on assessing the quality of a newly formulated gasolinedsqmted in Section 7. We conclude
with some additional remarks in Section 8.

2. OPTIMAL AND MAXIMUM LIKELIHOOD ESTIMATORS

The standard formulation of the common mean problem is dswel LetY;;, j = 1,...,n;,
i1 =1,...,k beindependent observations such that

E(Y;;) =po and var(Y;;) = o7
The variancesr? are unknown. The focus here is on estimating the common mgaand
constructing confidence intervals using the combined sauchgia.

There are two asymptotic scenarios which are often of istef2ne is that alk; are bounded
while the number of samplésgoes to infinity; the other holds fixed and allows each of the
sample sizes,; to approach infinity. In this paper, we restrict our discosdbp the latter case.
We also assume that /n — f; # 0asn = ny + --- + nx — oco. Under this setting, it is not
necessary to distinguish between — oo andn — oo, or betweerO(ni_lm) andO(n=1/2),
etc.

The most straightforward and yet very attractive methokesiptimal combination estimator.
Let

k L2
o= ZCZ'?Z'., where Y,;. = n;l Z Yi;,
i=1 j=1
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with ¢; > 0 ande; + - - - + ¢, = 1. The optimal choices af; which minimizevar(j) are given

by
k
Ci = —& E —.
2 2
oyl 3 %

Since the optimal choices of depend on the unknown variance$ the following asymptoti-
cally optimal estimatowhereo? is replaced by

si=(ni— 1)) (Vi = Vi)’

Jj=1

is used in practice instead:

k k
S5 ()
i=1 7? i=1 N7t

SinceY’;. ands? are/n -consistent estimators far, ando?, respectively, it is clear that,, is
also a,/n -consistent estimator fqry.

Parametric approaches can be easily explored. Under nityrassumptions wher&;; ~
N(to, o?), the maximum likelihood (ML) estimator gf,, denoted byf,,,;, can be shown to be
the solution to

k —
Z ni(Yi —p) _
i=1 ni_l Z;llzl()/?j - /’L)Q
The i, under the assumed normal distributions is also approxigntdte same as the optimal
combination estimator since we can rewyitg, as

)

k k

i=1 v

where .
67 =n; "> (Vg — fim)’-
Jj=1

Under the normality condition, the maximum likelihood esdtor ji,,, is v/n -consistent and is
asymptotically optimal in the sense thiat) = fiop + 0,(n~1/2).

Confidence intervals based on these point estimators asaspto construct. For the optimal
estimatotii,p,, the major difficulty is the associated variance estimapiablem if one wishes to
construct a confidence interval through normal approxiomat the distribution ofi.,. Meier
(1953) derived an approximate variance estimatorifgy under the normality assumption, but
in that case it may be preferable to use a confidence inteasgddon the maximum likelihood
estimatorji,,;. Also, for parametric approaches their vulnerability todabmisspecifications
makes these intervals undesirable in many practical siugst

3. THE MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATOR

The empirical likelihood approach requires only some finitement conditions on the underly-
ing population distributions. To define the maximum EL estion, we first formulate the empir-
ical likelihood function using &-sample approach similar to the ANOVA setting discussed in
Owen (2001, p. 87). Leky, ..., F}, be the underlying distribution functions for thesamples,
respectively. The joint empirical log-likelihood functigs given by

k  n;
UFy, ..., Fy) = Z Zlog(pij)>

i=1 j=1
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wherep;; = F;(Y;;) — Fi(Y;;—) is the probability of getting the valug; in a sample fron¥;.
The maximum empirical likelihood estimator of the commoramg,, is defined as

ni Nk
froo =Y _p1Yi == Pr;Yis,
j=1 j=1
where thep,;; maximizel(F1, . .., Fy) subject to
n; ni Nk
Zpijzl(pij >0),i=1,...,k and Zpljylj:"'zzpkjykj 2
j=1 j=1 j=1

LetH; = H(Yi1, ..., Y:,,) be the convex hull formed by théh sample data, = 1,.. ., k.
Since we only consider a univariate response variablejlavis that?; = (Y(;1), Y(in,)) and
the intersection

H*=HiN---NH = (maX{Y(H), ceey Y(kl)},IniIl{Y(lnl)7 .. 7Y(k'nk)})7

whereY(;1y = min(Y, ..., Yi,,) andY(;,,) = max(Y;,...,Y;,,) are the smallest and the
largest order statistics for thith sample. The empirical likelihood estimajay is defined if and
only if H* # (. Itis not difficult to show that as; — oo, with probability tending to ong, is
an interior point ofH;. Sincek is fixed, it follows that whemnin;(n;) — oo, with probability
tending to oneg is an interior point of all;. ThusH* = HyN---NHy # P as alln; — oco. In
the following, we shall assume that* # () and in particulan, € H*. The following theorem
gives some basic properties jaf.

THEOREM 1. LetYy, ..., Y:,, be independent random variables with common distribufipn
i=1,...,k, and let thek samples be independent. SuppBS&;;) = po, var(Y;;) = 07 < oo
for all 7. Then

(i) The maximum empirical likelihood estimatfay exists and is unique.
(i) fie is a+/n-consistent estimator ¢f.
(i) fi1 is asymptotically optimal in the sense thiat = jio, + 0, (n"'/2).

(iv) fie is asymptotically normally distributed.

A proof of Theorem 1 is given in the Appendix. It should be mbtkat./n -consistency
follows from the asymptotic normality. A direct proof of tlasymptotic normality of the max-
imum empirical likelihood estimator, however, can be quitmlved. See Zhong, Chen & Rao
(2000) for such a proof. The argument presented in the Appeakles advantage of the specific
structure of the:-sample problem and is straightforward. The asymptotienadity is typically
used for constructing pivotal statistics for confidencerwls. It is not, however, of great inter-
est here since the empirical likelihood ratio confidencerirdls to be presented in Section 4 are
more appealing than the usual symmetric intervals base@onal approximations.

Theorem 1 implies that the three point estimafass /o, andjim, are asymptotically equiv-
alent. For finite samples, however, results from a limiteduation study reported in Section 6
show thaii.; has comparable performanceitg; or fi,, under normal distributions but performs
much better when the underlying distributions are skewed.alyorithm for computingi,, is
briefly discussed in Section 5.
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4. EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS

One of the major advantages of using the EL approach is theceastruction of the empirical
likelihood ratio confidence intervals. The EL confidenceiméal has several distinctive features
including (i) range respecting for the parameter spacenit necessarily symmetric but data-
driven shape; and (iii) invariant coverage probabilitiesl &&ngth of the interval for the mean
under scale and location transformations. We now presanitethods of constructing EL con-
fidence intervals fop.

4.1. Thek-sample empirical likelihood approach.

A naive empirical likelihood approach for constructing afidence interval foy.y proceeds as
follows. For an arbitrarily fixeds, let

k n;
r(p) =Y log(nipij)

i=1 j=1
be the empirical log-likelihood ratio statistic, where fhe maximize/(F, ..., Fy,) subject to
n; ni Nk
zpijzl(pij >0),i=1,...,k and Zpljylj:“':Zpijkj:M- 3)
Jj=1 j=1 j=1

This formulation is equivalent to the one discussed by O\R601, p. 89). If we rewrite (u)

as
ko ng

r(p) = Z ZIOg(pij/ﬁij)7
i=1 j=1
wherep;; = 1/n; is the maximizer of(F1, ..., Fy) subjecttap;1 +- - -+pin, = 1,i = 1,...,k,
then the difference between the number of constraints usedoimputingp;; and the one for
pij is k. We have the following result based on which a confidencevatdor p, may be
constructed.

THEOREM 2. Suppose that the conditions of Theorem 1 hold. Theén(uy) converges in
distribution to ax? random variable witht degrees of freedom asin;(n;) — oc.

A proof of Theorem 2 can be found in the Appendix. It followath100 x (1 — «)% level
confidence interval for can be constructed as

Car = {n| = 2r(p) < xfiy (@)}, 4)

where x?. () is thel — « quantile from ay? distribution with k degrees of freedom. The
confidence interval (4) has asymptotically correct covenagbability and performs reasonably
well when sample sizes; are all large but it also has several restrictions underIssaatples.
This is further discussed in Sections 6-8.

4.2. The weighted empirical likelihood approach.

When the variances? are equal, one could simply trefY;;, j = 1,...,n;, i = 1,...,k}

as a single pooled sample from a population with mgarand variance, sayy?. For such
cases, even though each of themight be small or moderate, the combined sample size

ni + --- + ng is often large enough that the usual one sample EL confideresval for 1o

can provide more reliable and accurate results. The negatipact from the rather restrictive
condition of nonempty joint convex hull of tHesamples (see further discussion in Section 8) is
not usually a problem.



50 TSAO & WU Vol. 34, No. 1

When thes? are different but known, the weighted empirical likelihomglroach proposed
by Wu (2004a) can be used where the pooled data are viewedragasample and the unequal
variance structure of the data is accommodated through glitigxveighting of the empirical
log-likelihood function using the?. Wu’s original formulation of the weighted empirical likel
hood deals with the situation wheyg, . . ., Y,, are independent with common mean= E (Y;)
and nonhomogeneous varianee(Y;) = v;02. Thew; are assumed to be known. The weighted
log-likelihood function is defined as

ly(F) = Cy Z'Ui{l()g(pi) —np;},

i=1

whereC,, = n/(vy + - - - +v,) is a scaling constant. To establish the asymptetidistribution
of the weighted empirical likelihood ratio statisti, (110) = £ (10) — 4w (fi), Several finite
moment conditions on thg; as well as on the constant sequencare required. See Wu (2004a)
for further details.

Under the current setting, we vieft;;, j = 1,...,n;, ¢ = 1,...,k} as a single indepen-
dent sample such th&(Y;;) = po andvar(Y;;) = o?. Since thes? are typically unknown, we
use

n;

si=(ni— 1)) (Vi = Vi)’

j=1
in the formulation of a weighted empirical log-likelihoodrfction. Let

k k n;
Cn=n / D ngsi and Ly (p) =Cn Y 57> {log(pij) — npij},
i=1 P

where thep;; maximize

k ni
bw =51 ) {log(pi) — npij}
i=1  j=1
subject to
k k  n;
Zzpij =1 (pij > 0) and ZZPUYU = u.
i=1j=1 i=1j=1
Let

U2

k
Co(t) = Cn Y 57> {log(n™") —1}.
i=1  j=1

The following theorem establishes the asymptgfidistribution of the weighted empirical log-
likelihood ratio statistio,, (1) = £y, (1) — £w(f1).

THEOREM 3. SupposdY;;, j = 1,...,n;, ¢ = 1,...,k} are independent random variables
and foreach ofthé = 1,. .., k, theith subgroup{Y;1, ..., Y., } follows a common distribution
with meanug. If E(]Y;;*7°) < oo for some fixed > 0, then—2r,, (o) = —2{ly (10) —

¢, (1)} converges in distribution to 2 random variable with one degree of freedomas» oo.

A proof of Theorem 3 is given in the Appendix. By Theorem 3, Weighted empirical
likelihood ratio confidence interval fqr, is constructed as

Cuwel = {,LL| - 27‘111(:“) < X[Ql] (O/)} (5)

This interval has an asymptotically correct coverage podiyaat 1 — « level and compares
very favorably to thek-sample interval (4), as we will see from the simulation gtegported in
Section 6. Itis also less restrictive due to the combinedobasize.
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5. NOTES ON COMPUTATIONAL ALGORITHMS

The major computational task is to maximi@g, . . ., Fi.) subject to the set of constraints (2)
or (3). For the latter case, the problem reduces to

ng ng g

maximizing Zlog(pij) subject tOZpij =1land Zpinij =pu
j=1 j=1 j=1
fori =1,...,k, astandard situation in empirical likelihood inference.
To maximizel(F4, ..., Fy) subject to (2), a strategy similar to the one used in Wu (2004b

p. 24) can be adapted. Without loss of generality, wekuse3 to illustrate the procedure. Let
¢i; = pi;/3 and define the variable;; as follows:

1 -1 0
1 0 —1
U = Vi, , U = vy, , U3 = 0
Y1, 0 —Y3;
It is straightforward to show that maximizidgF, . . ., F) subject to (2) fok = 3 is equivalent
to
maximizing Z Z log(g:;) subject IOZ i: gi; = 1and Z Z gijui; = 0.
i=1 j=1 i=1 j=1 i=1 j=1

The final maximizer of (Fy, ..., Fy,) is computed ag;; = 3d;;, whereg;; = 1/{n(1+X'u;;)}
and the vector-valued Lagrange multiplieis the solution to

1 u;
:ﬁzzlJr)\]/u” n

The modified Newton—Raphson procedure proposed by Cheter RitWu (2002) and an R
function developed by Wu (2005) can be used to sglwe) = 0.

Except for some notational modifications, the algorithmcdégd in Wu (2004a) for han-
dling the weighted empirical likelihood method remainddah the current context.

The final EL confidence interval (4) or (5) can be found thropgtfiling. Note that for the
EL interval (4), the minimum value of 2r(u) is achieved af. = fio. The interval (4) is also
bounded by L, R) whereL = max{Y{11),..., Y1)} @ndR = min{Y(1,,,), ..., Y(kn,)}. The
empirical likelihood ratio functionr(y) is convex fory € (L, R), which implies that-(u) is
monotone increasing fqr € (L, i) and monotone decreasing fere (i, R). The upper and
lower bound of the interval can be determined by using a bisesearch method withi(, /i)
and(fie1, R), respectively. Wu (2005) contains sample R codes for findirgh intervals.

6. SIMULATION STUDY

In this section, we present results from a limited simulastudy on finite-sample performances
of proposed methods. We considefed= 3 and generated sample data from the madel=

to + oi€i5, where thee;; are independent and identically distributed random véggwith
zero mean and unit variance. The simulation study was caeduore;; ~ N(0,1) and for
ei; ~ (X% — 1)/V2, respectively. The value gf, was chosen to be.

Three scenarios of variance structure were examined: @) d¢hse of equal vari-
ances(of,o%,a%) = (1,1,1); (ii) the case of moderate nonhomogene{ty%,a%,a%) =
(l/f ,V/2); and (iii) the case of severe heteroscedastigitj, 03,0%) = (1/2,1,2) where
max(o )/ min(c?) = 4. Various combinations of the sample siZas, n, n3) were considered
in the S|mulat|on with values of; ranging from10 to 60.
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To evaluate the relative performance of the proposed MEimasbr /i), we compared it to
the two commonly used estimators described in Section 2padin@metric maximum likelihood
estimator/iy, and the optimal estimatqi,,. The maximum likelihood estimator is based on
the normal model, and thus the model is misspecified when &ite afe generated from the
transformed chi-square distribution.

TABLE 1: Simulated mean squared err¢ss100) for estimating the common mean.

N(0,1) X[21]

(U'%y 0'%7 U‘g) (nlv n2, n3) fbm1 flop flel fiml  flop  flel
1, 1, 1) (15,15,15) 242 242 244 3.57 3.65 2.72
(10,15,20) 244 245 2.86 3.78 391 3.14
(20,15,10) 246 244 279 3.63 3.77 3.04
(1/v2,1,v2) (15,15,15) 233 233 236 3.32 3.48 259
(10,15,20) 257 255 288 3.69 3.87 3.06
(20,15,10) 219 219 255 3.29 3,50 2.80
(1/2, 1, 2) (15,15,15) 207 208 210 297 3.09 225
(10,15,20) 248 246 2.67 3.36 356 2.71
(20,15,10) 1.83 183 215 261 3.03 2.35
1, 1, 1) (30,30,30) 116 116 1.17 161 160 1.20
(20,30,40) 1.15 115 1.27 1.67 168 141
(40,30,20) 1.15 116 1.30 1.67 167 1.35
(1/v2,1,v/2) (30,30,30) 1.10 1.10 111 154 153 1.15
(20,30,40) 1.20 1.19 1.30 1.70 1.72 1.43
(40,30,20) 1.01 1.02 115 147 150 1.22
(1/2, 1, 2) (30,30,30) 097 097 0.98 1.32 134 1.02
(20,30,40) 1.14 114 122 157 160 1.32
(40,30,20) 084 084 094 1.18 1.23 1.01

At each simulation run, sample data were first generatedjtisexchosen model and a partic-
ular setting of parameters. The three estimators were thi@pgted using the sample data. The
process was repeated independentlyBor 2000 times. The performances of these estimators
are evaluated using the simulated mean squared error (MSE)

B
MSE = B~ (i — p10)”

b=1
and the simulated relative bias (RB)
B
RB=B""Y (i — po)/ o,
b=1

wherefi, is the estimate given by one of the three estimators fobtiaimulated sample. Our
simulation was carried out with an R/S-PLUS program and tlogiqam is available from the
authors upon request.

The simulated mean squared errors reported in Table 1 irdibat the MEL estimatofi.,
is slightly less efficient than the maximum likelihood esior /i,,,; under the correctly specified
normal model. The gain of efficiency from usifig; under the chi-square model, however, can
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be substantial with reductions in mean squared errors 0d 8F%. Further, it is interesting to
note that for the chi-squared case, the optimal estimajpris also outperformed by the MEL
estimator. In terms of their relative biases, simulatiosutts (not reported here) suggest that all
three estimators are essentially unbiased under the nonodgl. When the chi-square model is
used, however, botfi,, and /i, have nonnegligible biases but the bias of the MEL estimator
is considerably smaller. A referee has correctly pointetitioat /., is, strictly speaking, not
optimal for finite-sample sizes as the weights in (1) arevestiéd. Also, the maximum likelihood
estimator/i,,; may perform poorly in finite-sample situations. The scessdonsidered here
for comparing the three estimators are clearly not exhaeistHowever, given the lack of a
more commonly used estimator and the difficulty in identifyia correct parametric model for
practical situations, the robust behaviour and relativigscy offic tO jimi OF fiop SUggest that
the MEL estimator is a very attractive and favourable aliéve approach.

TABLE 2: Simulated results ¢f0% confidence intervals for the common mean.

N(071) X[21]
(0%,03,03)  (ni,m2,n3)  Cl L CcP R AL L CP R AL
@, 1, 1) (15,15,15)  PLR 62 872 66 049 1.3 66.3 324 0.40

ELk 75 843 82 053 45 702 253 042
WEL 52 894 54 049 44 861 95 048

(30,30,30) PLR 51 893 56 035 11 747 242 031

ELk 60 878 62 040 46 792 162 0.35

WEL 45 905 50 035 39 894 67 034

(4545450 PLR 60 887 53 028 16 793 19.1 0.26

ELk 48 895 57 034 56 829 115 0.30

WEL 53 899 48 028 44 894 62 0.28

1/2, 1,2 (151515 PLR 60 870 7.0 045 1.3 687 300 0.38
ELk 81 843 7.6 049 45 702 253 0.39

WEL 52 895 53 053 41 865 94 051

(30,30,30) PLR 46 900 54 032 11 756 233 029

ELk 62 878 6.0 037 50 791 159 0.32

WEL 54 893 53 038 41 888 7.1 037

(454545 PLR 52 901 47 026 13 802 185 0.24

ELk 50 895 55 031 60 829 11.1 0.28

WEL 47 901 52 031 45 889 6.6 030

To evaluate the confidence intervals, our simulation stadided the parametric likelihood
ratio (PLR) interval based on the normality assumptionniee EL interval based on Theorem 2
(denoted by ELk where the limiting chi-square distributtwas & degrees of freedom) and the
weighted EL interval (WEL) from (5). Since a general variafarenula for i, is not available,
it is not clear how to construct a confidence interval basefdgn

Let (ﬁb, ﬁ'b) be a confidence interval fqr, computed from théth simulated sample. The
simulated average length (AL) of the interval, the covenagibability (CP), the lower tail error
rate (L) and the upper tail error rate (U) are respectiveippoted as

B B
AL=B'> (U, — L), CP=B"1> I(L, < po < Uy) x 100,
b=1 b=1
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B B
L=B"1Y I(u < Ly) x 100, U=B"1Y" I(uo>T) x 100,

b=1 b=1
wherel is the usual indicator function. Simulation results f®0& confidence interval based on
B = 2000 independent runs are presented in Table 2 for the case ofeayience(o?, 03, 03)
= (1,1,1) and the case of severe heteroscedasticif}; o3,02) = (1/2,1,2). Results for
the case of moderate nonhomogeneity, i3, 0%,03) = (1/v2,1,v2), are somewhat in
between and are not reported. Only cases where= n, = n3 are reported but many other
cases with unequal sample sizes have also been examinetearesults do not seem to differ
dramatically. Our major findings based on all cases are suinatkas follows.

1. Under the normal model, all three intervals perform wellew then; are around 30 or
more. When the:; are around 15, the weighted EL interval (WEL) performs the bres
terms of coverage probabilities but is slightly wider thAe PLR interval under severe

heteroscedasticity.

2. Under the chi-square model, the PLR interval based on aldynis totally off target; so is
the interval ELk. The weighted interval WEL, on the other haraks coverage probabilities
very close to the nominal value at almost all cases. It alsaliramost balanced tail errors
among all methods considered.

3. The naive interval ELk does not show any robustness agaiasge of underlying distri-
butions, a property often expected from nonparametricaggres. Under the chi-square
model the coverage probabilities are too low and the methodldn't be recommended
for practical uses (see Section 8 for more discussion ombifod).

Finally, we have also considered a few other models in ouudkition study and results (not
included here) are consistent with what have been repobtedea

7. APPLICATION TO ENVIRONMENTAL PROTECTION AGENCY DATA SET

Yu, Sun & Sinha (2002) presented a data set on evaluatindigasgquality based on what is
known as Reid vapor pressure (RVP), collected by the Enmirtal Protection Agency of the
United States. Two types of Reid vapor pressure measuremeandY are included in the
data set. Values ok are obtained by an Agency inspector who visits gas pumps iity,aakes
samples of gasoline of a particular brand, and measuresdide/Bpor pressure right on the spot;
values ofY’, on the other hand, are produced by shipping gasoline sartgptée laboratory for
measurements of presumably higher precision at a high Tbstoriginal data set has a double
sampling structure, with a subset of the sample units hawiegsurements on botki andY'.
Table 3 contains two independent samples of a new reforedigdsoline, one related £ with
sample size 30 and the other,Yowith sample size 15.

TaBLE 3: Field and lab data on Reid vapor pressure for newly reformulatedliges

X (Field) 8.09 846 7.37 880 759 862 7.88 7.98 7.47 8.90
851 869 793 796 745 802 732 745 7.86 7.88
739 803 731 744 795 792 753 801 7.16 7.31

Y (Lab) 8.28 8.63 9.28 7.85 8.62 9.14 7.86 7.90 852 7.92
7.89 848 7.95 8.32 7.60

One of the assumptions of Yu, Sun & Sinha (2002) is that thd fireéasuremenk and the
lab measuremenit have common mean. The two types of measurements differ, however, in
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terms of precision. Yu, Sun & Sinha (2002) also assume(tal”) is bivariate normal, which
is not required under our proposed empirical likelihoodrapph. We compute three versions of
the point estimate and three types99f% confidence interval fop:, as described in Section 6.
The results are given in Table 4.

TABLE 4: Point estimates ar@)% confidence intervals for Reid vapor pressure.

fiml flop flel PLR ELk WEL

7.980 8.008 8.124  (7.848.137) (NA) (7.8888.145)

The two sample means ale = 7.876 andY = 8.283. The maximum EL estimatql,, relies
more on the second sampteand is larger than the other two. Fa% confidence intervals, it
turns out that the naive EL interval (4) based on two degrédéseedom is not available. The
related EL ratio statistie-2r(x) has minimum value gt = fi;. One of the constraints for (4)
to be computable is that2r(fi.) < ka] («), which is not the case for this particular example.
There are also other restrictions associated with thisenly interval (see Section 8 for more
discussion). On the other hand, the WEL interval is shorterteas a larger lower bound than
the parametric likelihood ratio confidence interval basedie normal assumption. We do not
intend to draw any general conclusion here, but our thezaiedind simulated results suggest that
the maximum EL estimatqi,; = 8.124 and the WEL confidence intervéi.888 , 8.145) should
be used for this particular application.

8. CONCLUDING REMARKS

In the past decade, the empirical likelihood method haa@#d increased attention from many
statisticians. Applications of the method have been foumdany areas of statistics, as evidenced
by the wide range of topics included in the recent book by O@801). For the majority of
these developments, the main focus is the construction mid@nce intervals or significance
tests using the empirical likelihood ratio statistics.slshown in this article that the EL method
provides both efficient point estimates and reliable configeintervals for a common mean
when the data are combined from several independent butonmodeneous samples. Even
when the underlying distribution is correctly specifieds garametric approach does not seem to
have any major advantages over the EL method. The proposeidoma empirical likelihood
estimator and the weighted empirical likelihood confideinterval, on the other hand, are robust
against model misspecifications and have good to satisfaperformance in almost all cases
investigated in the current study.

The standard error of the MEL estimator is not easily avéldiecause the estimator does
not have an explicit analytic expression. At a price of cdesibly more computing effort, we
may estimate the standard error by bootstrap methods. theless, we note that the lack of an
easy means to compute the standard error should haveniiadt on the usefulness and com-
petitiveness of the MEL estimator. This is so because thedata error is often computed for
the sole purpose of constructing confidence intervals anal)i case, there is already a comple-
mentary weighted EL confidence interval. Further, the steshé@rrors of its main competitors,
the optimal and maximum likelihood estimators, are equdiffjcult to compute.

Computational issues and the lack of explicit analytic femmay discourage some potential
users from using the proposed methods which we believe qrerisu alternatives to existing
methods. We intend to develop a reliable R/S-PLUS prograrhdadling the computation and
make it available in a public R/S-PLUS software library. @uperience with the simulation
studies shows that the computation can be handled as rqutigce once a few crucial cod-
ings are available. Some of these codings in the contextreegisampling have already been
implemented in R by Wu (2005).
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Empirical likelihood ratio confidence intervals such asg® often associated with an under-
coverage problem when sample sizes are small or even medekatong possible causes for
this is the fact that the finite-sample distribution of thepétical log-likelihood ratio statistic is
actually a mixture distribution with an atom at infinity. Asch, this distribution may be poorly
approximated by the limiting, continuous, chi-squaredritigtion (Tsao 2004). In general, the
larger the atom, the poorer the chi-square approximatidritemmore serious the under-coverage
problem. In the current setting, the atom of #heample EL ratio statistic is the probability that
the joint convex hullH* does not cover,y. Since

H* = (max{x/(ll)a R }/(kl)}v min{}/(lnl)7 EERE Yr(knk)})a

the bigger thek and the smaller the,, the bigger the atom will be and consequently the more
serious the under-coverage problem. The joint convexMtilis more restrictive under skewed
distributions than that under symmetric ones (Tsao 2004js @an be seen from the results of
our simulation studies reported in Section 6 and the unatvidilly of the interval (4) using the
real Environmental Protection Agency data. Naively apmiythe empirical likelihood approach
without knowing the severity of this atom could lead to a vawgfficient method. Presently,
work is continuing to find ways to alleviate this problem.

The asymptotic framework used in this article keépiixed, while letting all then; go to
infinity. When some of thex; are very small, cautions must be exercised in using the gexpo
methods. Some preliminary investigation through simafatnight be helpful when one faces
such situations. Our results do not cover cases whene; @te bounded while the number of
independent sampldsbecomes large, a scenario discussed by J. N. K.Rao (1980)thack.
As a future research problem, it may be of interest to detsgrtlie asymptotic behaviour of the
empirical log-likelihood ratio statistic when bothand then; are allowed to go to infinity at
some fixed relative speed. Finally, it may be possible torekthe empirical likelihood approach
discussed here to regression models with nonhomogenenasaes. We are presently studying
this possibility. There are some technical difficulties ktemding the weighted EL method to
such situations. We hope to report our findings on thesessshen they become available.

APPENDIX: PROOFS FOR THEOREMS

Proof of Theorem 1For a given combined sample and under the assumed condlitiensEL

estimator, exists and is unique since the empirical log-likelihooddiimn is convex in a small

neighbourhood ofiy, andji,; must be located within such a neighbourhood, as shown below.
For theith sample, let

0 = Y Tos(ry)

wherep;; maximized 7, log(pi;) subject to

74 uz
Zpij =1 and ZPinij =H
=1 =1

for some fixed.. We observe that (&) (1) is maximized afi, :fi. and (b)¢;(u) is monotone
increasing whem < Y;. and is monotone decreasing when- Y';..

Let .
) = " log(pij)
i=1 j=1
be the joint empirical log-likelihood function whepe; maximizel(Fy, ..., Fy,) subject to

n; ni

ng
Yopy=1,i=1...k and Y pVij == piVi=p
i=1 =1 =1
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for the fixedp. Itis clear that/(u) = £1(p) + -+ + €x(p) and£(x) is monotone increasing
whenp < min;(Y;.) and monotone decreasing when> max;(Y;.). It follows that the MEL
estimatorji,; must satisfy

min (Y;.) < fiq < max (Y;.).

1<i<k 1<i<k
Noting thatY;. = o + O,(n~'/2) fori = 1,..., k whenk is fixed, we conclude that.,, =
o + O,(n~1/2). This completes the proof of (1) and (2). i

By using the standard Lagrange multiplier method it can lwevsithat thep;; which maxi-
mizeZ(Fl, e ,Fk) SUbjeCt tap;1 +- - “+Din, = 1 andpilYﬂ +-- +pzn7}/1n7 = U, 1=1,..., k,
are given by

1
Pig = : (6)
Tl (Y - )
where the Lagrange multipliey; is the solution to
Z(Yij —m)/{1+Xi(Yi; —p)} = 0. @)

j=1

The resulting profile empirical log-likelihood functionritting a constant term) is given by

k  ny
() = => > log{1+ \i(Yi; — )}

i=1 j=1

The MEL estimatotii,, is the solution t@¢(u)/0u = 0. We have

o) _
ou __Z

i=1 j=1

ng

O\ -
{0 =) = A+ A = ) = o
i=1

where the last step used the identities (§),+ - - - + pi,, = 1 and (7). For any fixed: such
thaty = o + O(n~'/?), we haveY,. — u = O,(n~'/?). Again by using standard arguments
(Owen, 2001, pp. 219-222), we can show that

v = =/ o o -2+ oy,
j=1
It follows that i) satisfies

k

nz(?1 7”) _, .
; ni_l Z;lzzl(ym 7Iu)2 - P(\/>)7

CEEEE ()

n;
57 =n; "> (Vi — fia).
j=1

which leads to

where

Sincea; = n;/n = O(1),Y;. — o = Op(n~Y/?) ands? = o2 + O,(n~1/?), it follows from

(8) that
k a; — k a; 1
Mel—m:;(ag)(yi-—uo)/;<gg) +0p<\/ﬁ>~ 9)
The asymptotic optimality ofi.; follows from (8) and the asymptotic normality gf,; follows
from (9) when we apply the central limit theorem¥q..
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Proof of Theorem 2Following the standard argument of Owen (2001, p. 220) cameshow that

k
—2r(po) = Z{ni<?i' - u0)2/§i2} + 0p(1),

where _
SE=n;" (Vi — o).
j=1

Since thek samples are independent, the conclusion of the theoreowi®lfrom the fact that
n; (Y. — po)?/S? converges in distribution to g? random variable with one degree of freedom
asn; — o0.

Proof of Theorem 3 Note thatY;s, ..., Y;,, have a common distribution with mearn. Let
o? = var(Y;;) andr; = E|Y;; — po|*™°. Since

k

n; k
ZZE Yij — pol*™° = an =o(B2),
=1

i=1 j=1

where

k  n; k
By =% var(Yy) =Y moi,

i=1 j=1 i=1
the Liapunov condition holds for the sequence of randomadesY;;. The asymptoticy?
distribution of —2r,, (o) follows directly from the proof of Theorem 1 in Wu (2004a) ilew
replaces? by o2 in the formulation of-,, (110). To complete the proof, we note that/n = O(1)
ands? = o2 + O,(n"'/?), and so it is straightforward to show by following the linestioe
proof in Wu (2004a) that replacing? by s? does not change the leading term in the expansion
of —2r,,(up) and therefore results in the same asymptotic distributon-2r,, (110). O
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