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Abstract: The authors develop empirical likelihood (EL) based methods of inference for a common mean
using data from several independent but nonhomogeneous populations. For point estimation, they propose
a maximum empirical likelihood (MEL) estimator and show that it is

√
n -consistent and asymptotically

optimal. For confidence intervals, they consider two EL based methods and show that both intervals have
approximately correct coverage probabilities under large samples. Finite-sample performances of the MEL
estimator and the EL based confidence intervals are evaluated through a simulation study. The results indi-
cate that overall the MEL estimator and the weighted EL confidence intervalare superior alternatives to the
existing methods.

Inférence par la vraisemblance empirique pour
une moyenne commune en présence d’hétéroscédasticité
Résuḿe : Les auteurs d́eveloppent des ḿethodes d’inf́erence fond́ees sur la vraisemblance empirique (VE)
pour la moyenne commune de populations indépendantes non-homogènes. Pour l’estimation ponctuelle,
ils proposent un estimateur de vraisemblance empirique maximale (VEM) dont ils montrent qu’il est

√
n-

convergent et asymptotiquement optimal. Pour l’estimation par intervalle,ils consid̀erent deux ḿethodes
baśees sur la VE et montrent que les intervalles correspondants ontà peu pr̀es la bonne couverture dans de
grandśechantillons. Les performancesà taille finie de l’estimateur de VEM et des intervalles de confiance
de VE sont́evalúees par voie de simulation. Les résultats indiquent que globalement, l’estimateur de VEM
et l’intervalle de confiance de VE pondéŕe sont suṕerieurs aux ḿethodes existantes.

1. INTRODUCTION

Estimation of an unknown quantity using information from several independent but nonhomo-
geneous samples is a classical problem in statistics. Applications can be found in many different
contexts. For example, suppose two or more technicians perform assays on several sample mate-
rials. The technicians measure the same characteristic buttheir measurements differ in precision.
To make inferences about the common characteristic, we wishto make use of the combined sam-
ple data. This example is a special case of the more general measurement error problems where
several “instruments” are used to collect data on a common response variable. These instruments
are believed to have no systematic biases but differ in precision. Heteroscedasticity clearly is the
key feature of the combined sample data. Another example is in designed experiments involving
a single factor. When one fails to reject the null hypothesis that the mean responses at different
treatment levels are all the same, a point estimate and/or a confidence interval for the assumed
common mean using the combined sample data will be the main focus of subsequent analyses.

Such common mean problems have attracted much attention over the years and have led
to some very interesting solutions. Early work on such problems typically assumed that the
underlying distributions are normal. Neyman and Scott (1948) gave an estimator which is more
efficient than the maximum likelihood estimator when the number of samples approaches infinity.
Cochran & Carroll (1953), Meier (1953) and Bement & Williams(1969) examined the relative
efficiency of a weighted estimator to a simple unweighted estimator. Levy (1970) compared the
weighted estimator with the maximum likelihood estimator.C. R. Rao (1970), J. N. K. Rao
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(1973), and Hartley & Jayatillake (1973), among others, considered a more general problem of
estimation for linear models with unequal variances and some of these have their emphasis on
estimating the variances. For relative efficiencies of somecommonly used estimators and further
references, see J. N. K. Rao (1980) and the references therein.

In the present paper, we bring to bear a modern method of inference on this classical yet
still frequently encountered problem. We develop empirical likelihood (EL) based methods for
making inferences about the common mean; these methods are found to be very promising.
The EL approach (Owen 1988) is nonparametric and requires only some mild finite-moment
conditions. We define the maximum empirical likelihood (MEL) estimator and show that it
is

√
n -consistent and is asymptotically optimal. For finite samples, simulation results show

that the MEL estimator performs similarly to existing estimators when the parametric model is
correctly specified but it performs much better otherwise. Past work on point estimators has
sometimes avoided discussion of the construction of confidence intervals, partly because the
methods involved do not readily lend themselves to dealing with interval estimation. With the EL
approach, however, confidence intervals can be constructedin more than one way. We develop
two different ways of constructing EL confidence intervals for the common mean. The weighted
EL confidence interval emerges as the most reliable method when sample sizes are small or
moderate, while the naive EL confidence interval performs poorly for cases where sample sizes
are not large and/or the underlying population distributions are skewed. The MEL estimator
and the weighted EL confidence interval are found to be superior to the existing methods. In
particular, they are the most robust in that their performances are the least affected by the change
of the underlying distributions.

The rest of the paper is organized as follows. In Section 2, wedescribe the two most com-
monly used estimators: the optimal estimator and the maximum likelihood estimator, and set out
our notation. In Section 3, we present the MEL estimator and discuss its basic properties. In
Section 4, we present two EL based confidence intervals. A major issue in the implementation
of the EL methods is computation. In Section 5, we discuss computational algorithms. In Sec-
tion 6, we examine finite-sample performances of the proposed methods, and compare them to
the existing approaches through a limited simulation study. An application to a set of real data
on assessing the quality of a newly formulated gasoline is presented in Section 7. We conclude
with some additional remarks in Section 8.

2. OPTIMAL AND MAXIMUM LIKELIHOOD ESTIMATORS

The standard formulation of the common mean problem is as follows. LetYij , j = 1, . . . , ni,
i = 1, . . . , k be independent observations such that

E (Yij) = µ0 and var(Yij) = σ2
i .

The variancesσ2
i are unknown. The focus here is on estimating the common meanµ0 and

constructing confidence intervals using the combined sample data.
There are two asymptotic scenarios which are often of interest. One is that allni are bounded

while the number of samplesk goes to infinity; the other holdsk fixed and allows each of the
sample sizesni to approach infinity. In this paper, we restrict our discussion to the latter case.
We also assume thatni/n → fi 6= 0 asn = n1 + · · · + nk → ∞. Under this setting, it is not
necessary to distinguish betweenni → ∞ andn → ∞, or betweenO(n

−1/2
i ) andO(n−1/2),

etc.
The most straightforward and yet very attractive method is the optimal combination estimator.

Let

µ̂ =

k∑

i=1

ciY i·, where Y i· = n−1
i

ni∑

j=1

Yij ,
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with ci ≥ 0 andc1 + · · · + ck = 1. The optimal choices ofci which minimizevar(µ̂) are given
by

ci =
ni

σ2
i

/ k∑

i=1

ni

σ2
i

.

Since the optimal choices ofci depend on the unknown variancesσ2
i , the followingasymptoti-

cally optimal estimatorwhereσ2
i is replaced by

s2
i = (ni − 1)−1

ni∑

j=1

(Yij − Y i·)
2

is used in practice instead:

µ̂op =

k∑

i=1

(
ni

s2
i

)
Y i·

/ k∑

i=1

(
ni

s2
i

)
. (1)

SinceY i· ands2
i are

√
n -consistent estimators forµ0 andσ2

i , respectively, it is clear that̂µop is
also a

√
n -consistent estimator forµ0.

Parametric approaches can be easily explored. Under normality assumptions whereYij ∼
N(µ0, σ

2
i ), the maximum likelihood (ML) estimator ofµ0, denoted bŷµml, can be shown to be

the solution to
k∑

i=1

ni(Y i· − µ)

n−1
i

∑ni

j=1(Yij − µ)2
= 0.

The µ̂ml under the assumed normal distributions is also approximately the same as the optimal
combination estimator since we can rewriteµ̂ml as

µ̂ml =
k∑

i=1

(
ni

σ̂2
i

)
Y i·

/ k∑

i=1

(
ni

σ̂2
i

)
,

where

σ̂2
i = n−1

i

ni∑

j=1

(Yij − µ̂ml)
2.

Under the normality condition, the maximum likelihood estimatorµ̂ml is
√

n -consistent and is
asymptotically optimal in the sense thatµ̂ml = µ̂op + op(n

−1/2).
Confidence intervals based on these point estimators are noteasy to construct. For the optimal

estimator̂µop, the major difficulty is the associated variance estimationproblem if one wishes to
construct a confidence interval through normal approximation to the distribution of̂µop. Meier
(1953) derived an approximate variance estimator forµ̂op under the normality assumption, but
in that case it may be preferable to use a confidence interval based on the maximum likelihood
estimatorµ̂ml. Also, for parametric approaches their vulnerability to model misspecifications
makes these intervals undesirable in many practical situations.

3. THE MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATOR

The empirical likelihood approach requires only some finite-moment conditions on the underly-
ing population distributions. To define the maximum EL estimator, we first formulate the empir-
ical likelihood function using ak-sample approach similar to the ANOVA setting discussed in
Owen (2001, p. 87). LetF1, . . . , Fk be the underlying distribution functions for thek samples,
respectively. The joint empirical log-likelihood function is given by

ℓ(F1, . . . , Fk) =

k∑

i=1

ni∑

j=1

log(pij),
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wherepij = Fi(Yij) − Fi(Yij−) is the probability of getting the valueYij in a sample fromFi.
The maximum empirical likelihood estimator of the common meanµ0 is defined as

µ̂el =

n1∑

j=1

p̂1jY1j = · · · =

nk∑

j=1

p̂kjYkj ,

where thêpij maximizeℓ(F1, . . . , Fk) subject to

ni∑

j=1

pij = 1 (pij > 0), i = 1, . . . , k and
n1∑

j=1

p1jY1j = · · · =

nk∑

j=1

pkjYkj . (2)

Let Hi = H(Yi1, . . . , Yini
) be the convex hull formed by theith sample data,i = 1, . . . , k.

Since we only consider a univariate response variable, it follows thatHi = (Y(i1), Y(ini)) and
the intersection

H∗ = H1 ∩ · · · ∩ Hk =
(
max{Y(11), . . . , Y(k1)},min{Y(1n1), . . . , Y(knk)}

)
,

whereY(i1) = min(Yi1, . . . , Yini
) andY(ini) = max(Yi1, . . . , Yini

) are the smallest and the
largest order statistics for theith sample. The empirical likelihood estimatorµ̂el is defined if and
only if H∗ 6= ∅. It is not difficult to show that asni → ∞, with probability tending to oneµ0 is
an interior point ofHi. Sincek is fixed, it follows that whenmini(ni) → ∞, with probability
tending to oneµ0 is an interior point of allHi. ThusH∗ = H1∩· · ·∩Hk 6= ∅ as allni → ∞. In
the following, we shall assume thatH∗ 6= ∅ and in particularµ0 ∈ H∗. The following theorem
gives some basic properties ofµ̂el.

THEOREM 1. Let Yi1, . . . , Yini
be independent random variables with common distributionFi,

i = 1, . . . , k, and let thek samples be independent. SupposeE (Yij) = µ0, var(Yij) = σ2
i < ∞

for all i. Then

(i) The maximum empirical likelihood estimatorµ̂el exists and is unique.

(ii) µ̂el is a
√

n -consistent estimator ofµ0.

(iii) µ̂el is asymptotically optimal in the sense thatµ̂el = µ̂op + op(n
−1/2).

(iv) µ̂el is asymptotically normally distributed.

A proof of Theorem 1 is given in the Appendix. It should be noted that
√

n -consistency
follows from the asymptotic normality. A direct proof of theasymptotic normality of the max-
imum empirical likelihood estimator, however, can be quiteinvolved. See Zhong, Chen & Rao
(2000) for such a proof. The argument presented in the Appendix takes advantage of the specific
structure of thek-sample problem and is straightforward. The asymptotic normality is typically
used for constructing pivotal statistics for confidence intervals. It is not, however, of great inter-
est here since the empirical likelihood ratio confidence intervals to be presented in Section 4 are
more appealing than the usual symmetric intervals based on normal approximations.

Theorem 1 implies that the three point estimatorsµ̂el, µ̂op andµ̂ml are asymptotically equiv-
alent. For finite samples, however, results from a limited simulation study reported in Section 6
show that̂µel has comparable performance toµ̂ml or µ̂op under normal distributions but performs
much better when the underlying distributions are skewed. An algorithm for computinĝµel is
briefly discussed in Section 5.
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4. EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS

One of the major advantages of using the EL approach is the easy construction of the empirical
likelihood ratio confidence intervals. The EL confidence interval has several distinctive features
including (i) range respecting for the parameter space; (ii) not necessarily symmetric but data-
driven shape; and (iii) invariant coverage probabilities and length of the interval for the mean
under scale and location transformations. We now present two methods of constructing EL con-
fidence intervals forµ0.

4.1. Thek-sample empirical likelihood approach.

A naive empirical likelihood approach for constructing a confidence interval forµ0 proceeds as
follows. For an arbitrarily fixedµ, let

r(µ) =

k∑

i=1

ni∑

j=1

log(nipij)

be the empirical log-likelihood ratio statistic, where thepij maximizeℓ(F1, . . . , Fk) subject to

ni∑

j=1

pij = 1 (pij > 0), i = 1, . . . , k and
n1∑

j=1

p1jY1j = · · · =

nk∑

j=1

pkjYkj = µ. (3)

This formulation is equivalent to the one discussed by Owen (2001, p. 89). If we rewriter(µ)
as

r(µ) =
k∑

i=1

ni∑

j=1

log(pij/p̂ij),

wherep̂ij = 1/ni is the maximizer ofℓ(F1, . . . , Fk) subject topi1+· · ·+pini
= 1, i = 1, . . . , k,

then the difference between the number of constraints used for computingpij and the one for
p̂ij is k. We have the following result based on which a confidence interval for µ0 may be
constructed.

THEOREM 2. Suppose that the conditions of Theorem 1 hold. Then−2r(µ0) converges in
distribution to aχ2 random variable withk degrees of freedom asmini(ni) → ∞.

A proof of Theorem 2 can be found in the Appendix. It follows that a100 × (1 − α)% level
confidence interval forµ0 can be constructed as

Celk =
{
µ | − 2r(µ) < χ2

[k](α)
}
, (4)

whereχ2
[k](α) is the 1 − α quantile from aχ2 distribution withk degrees of freedom. The

confidence interval (4) has asymptotically correct coverage probability and performs reasonably
well when sample sizesni are all large but it also has several restrictions under small samples.
This is further discussed in Sections 6–8.

4.2. The weighted empirical likelihood approach.

When the variancesσ2
i are equal, one could simply treat{Yij , j = 1, . . . , ni, i = 1, . . . , k}

as a single pooled sample from a population with meanµ0 and variance, say,σ2. For such
cases, even though each of theni might be small or moderate, the combined sample sizen =
n1 + · · · + nk is often large enough that the usual one sample EL confidence interval forµ0

can provide more reliable and accurate results. The negative impact from the rather restrictive
condition of nonempty joint convex hull of thek samples (see further discussion in Section 8) is
not usually a problem.
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When theσ2
i are different but known, the weighted empirical likelihoodapproach proposed

by Wu (2004a) can be used where the pooled data are viewed as a single sample and the unequal
variance structure of the data is accommodated through an explicit weighting of the empirical
log-likelihood function using theσ2

i . Wu’s original formulation of the weighted empirical likeli-
hood deals with the situation whereY1, . . . , Yn are independent with common meanµ0 = E(Yi)
and nonhomogeneous variancevar(Yi) = viσ

2. Thevi are assumed to be known. The weighted
log-likelihood function is defined as

ℓw(F ) = Cn

n∑

i=1

vi{log(pi) − npi},

whereCn = n/(v1 + · · ·+ vn) is a scaling constant. To establish the asymptoticχ2 distribution
of the weighted empirical likelihood ratio statisticrw(µ0) = ℓw(µ0) − ℓw(µ̂), several finite
moment conditions on theYi as well as on the constant sequencevi are required. See Wu (2004a)
for further details.

Under the current setting, we view{Yij , j = 1, . . . , ni, i = 1, . . . , k} as a single indepen-
dent sample such thatE (Yij) = µ0 andvar(Yij) = σ2

i . Since theσ2
i are typically unknown, we

use

s2
i = (ni − 1)−1

ni∑

j=1

(Yij − Y i·)
2

in the formulation of a weighted empirical log-likelihood function. Let

Cn = n
/ k∑

i=1

nis
2
i and ℓw(µ) = Cn

k∑

i=1

s2
i

ni∑

j=1

{log(pij) − npij},

where thepij maximize

ℓw =
k∑

i=1

s2
i

ni∑

j=1

{log(pij) − npij}

subject to
k∑

i=1

ni∑

j=1

pij = 1 (pij > 0) and
k∑

i=1

ni∑

j=1

pijYij = µ.

Let

ℓw(µ̂) = Cn

k∑

i=1

s2
i

ni∑

j=1

{log(n−1) − 1}.

The following theorem establishes the asymptoticχ2 distribution of the weighted empirical log-
likelihood ratio statisticrw(µ) = ℓw(µ) − ℓw(µ̂).

THEOREM 3. Suppose{Yij , j = 1, . . . , ni, i = 1, . . . , k} are independent random variables
and for each of thei = 1, . . . , k, theith subgroup{Yi1, . . ., Yini

} follows a common distribution
with meanµ0. If E (|Yij |2+δ) < ∞ for some fixedδ > 0, then−2rw(µ0) = −2{ℓw(µ0) −
ℓw(µ̂)} converges in distribution to aχ2 random variable with one degree of freedom asn → ∞.

A proof of Theorem 3 is given in the Appendix. By Theorem 3, theweighted empirical
likelihood ratio confidence interval forµ0 is constructed as

Cwel =
{
µ | − 2rw(µ) < χ2

[1](α)
}
. (5)

This interval has an asymptotically correct coverage probability at 1 − α level and compares
very favorably to thek-sample interval (4), as we will see from the simulation study reported in
Section 6. It is also less restrictive due to the combined sample size.
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5. NOTES ON COMPUTATIONAL ALGORITHMS

The major computational task is to maximizeℓ(F1, . . . , Fk) subject to the set of constraints (2)
or (3). For the latter case, the problem reduces to

maximizing

ni∑

j=1

log(pij) subject to
ni∑

j=1

pij = 1 and
ni∑

j=1

pijYij = µ

for i = 1, . . . , k, a standard situation in empirical likelihood inference.
To maximizeℓ(F1, . . . , Fk) subject to (2), a strategy similar to the one used in Wu (2004b,

p. 24) can be adapted. Without loss of generality, we usek = 3 to illustrate the procedure. Let
qij = pij/3 and define the variableuij as follows:

u1j =




1

1

Y1j

Y1j


 , u2j =




−1

0

−Y2j

0


 , u3j =




0

−1

0

−Y3j


 .

It is straightforward to show that maximizingℓ(F1, . . . , Fk) subject to (2) fork = 3 is equivalent
to

maximizing

3∑

i=1

ni∑

j=1

log(qij) subject to
3∑

i=1

ni∑

j=1

qij = 1 and
3∑

i=1

ni∑

j=1

qijuij = 0.

The final maximizer ofℓ(F1, . . . , Fk) is computed aŝpij = 3q̂ij , whereq̂ij = 1/{n(1+λ
′
uij)}

and the vector-valued Lagrange multiplierλ is the solution to

g(λ) =
1

n

3∑

i=1

ni∑

j=1

uij

1 + λ
′
uij

= 0.

The modified Newton–Raphson procedure proposed by Chen, Sitter & Wu (2002) and an R
function developed by Wu (2005) can be used to solveg(λ) = 0.

Except for some notational modifications, the algorithm described in Wu (2004a) for han-
dling the weighted empirical likelihood method remains valid in the current context.

The final EL confidence interval (4) or (5) can be found throughprofiling. Note that for the
EL interval (4), the minimum value of−2r(µ) is achieved atµ = µ̂el. The interval (4) is also
bounded by(L,R) whereL = max{Y(11), . . . , Y(k1)} andR = min{Y(1n1), . . . , Y(knk)}. The
empirical likelihood ratio functionr(µ) is convex forµ ∈ (L,R), which implies thatr(µ) is
monotone increasing forµ ∈ (L, µ̂el) and monotone decreasing forµ ∈ (µ̂el, R). The upper and
lower bound of the interval can be determined by using a bisection search method within(L, µ̂el)
and(µ̂el, R), respectively. Wu (2005) contains sample R codes for findingsuch intervals.

6. SIMULATION STUDY

In this section, we present results from a limited simulation study on finite-sample performances
of proposed methods. We consideredk = 3 and generated sample data from the modelYij =
µ0 + σiεij , where theεij are independent and identically distributed random variables with
zero mean and unit variance. The simulation study was conducted for εij ∼ N(0, 1) and for
εij ∼ (χ2

[1] − 1)/
√

2 , respectively. The value ofµ0 was chosen to be1.
Three scenarios of variance structure were examined: (i) the case of equal vari-

ances(σ2
1 , σ2

2 , σ2
3) = (1, 1, 1); (ii) the case of moderate nonhomogeneity(σ2

1 , σ2
2 , σ2

3) =(
1/
√

2 , 1,
√

2
)
; and (iii) the case of severe heteroscedasticity(σ2

1 , σ2
2 , σ2

3) = (1/2, 1, 2) where
max(σ2

i )/min(σ2
i ) = 4. Various combinations of the sample sizes(n1, n2, n3) were considered

in the simulation, with values ofni ranging from10 to 60.
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To evaluate the relative performance of the proposed MEL estimator µ̂el, we compared it to
the two commonly used estimators described in Section 2: theparametric maximum likelihood
estimatorµ̂ml and the optimal estimator̂µop. The maximum likelihood estimator is based on
the normal model, and thus the model is misspecified when the data are generated from the
transformed chi-square distribution.

TABLE 1: Simulated mean squared errors(×100) for estimating the common mean.

N(0, 1) χ2
[1]

(σ2
1 , σ2

2 , σ2
3) (n1, n2, n3) µ̂ml µ̂op µ̂el µ̂ml µ̂op µ̂el

(1, 1, 1) (15,15,15) 2.42 2.42 2.44 3.57 3.65 2.72

(10,15,20) 2.44 2.45 2.86 3.78 3.91 3.14

(20,15,10) 2.46 2.44 2.79 3.63 3.77 3.04

(1/
√

2 , 1,
√

2 ) (15,15,15) 2.33 2.33 2.36 3.32 3.48 2.59

(10,15,20) 2.57 2.55 2.88 3.69 3.87 3.06

(20,15,10) 2.19 2.19 2.55 3.29 3.50 2.80

(1/2, 1, 2) (15,15,15) 2.07 2.08 2.10 2.97 3.09 2.25

(10,15,20) 2.48 2.46 2.67 3.36 3.56 2.71

(20,15,10) 1.83 1.83 2.15 2.61 3.03 2.35

(1, 1, 1) (30,30,30) 1.16 1.16 1.17 1.61 1.60 1.20

(20,30,40) 1.15 1.15 1.27 1.67 1.68 1.41

(40,30,20) 1.15 1.16 1.30 1.67 1.67 1.35

(1/
√

2 , 1,
√

2 ) (30,30,30) 1.10 1.10 1.11 1.54 1.53 1.15

(20,30,40) 1.20 1.19 1.30 1.70 1.72 1.43

(40,30,20) 1.01 1.02 1.15 1.47 1.50 1.22

(1/2, 1, 2) (30,30,30) 0.97 0.97 0.98 1.32 1.34 1.02

(20,30,40) 1.14 1.14 1.22 1.57 1.60 1.32

(40,30,20) 0.84 0.84 0.94 1.18 1.23 1.01

At each simulation run, sample data were first generated using the chosen model and a partic-
ular setting of parameters. The three estimators were then computed using the sample data. The
process was repeated independently forB = 2000 times. The performances of these estimators
are evaluated using the simulated mean squared error (MSE)

MSE = B−1
B∑

b=1

(µ̂b − µ0)
2

and the simulated relative bias (RB)

RB = B−1
B∑

b=1

(µ̂b − µ0)/µ0,

whereµ̂b is the estimate given by one of the three estimators for thebth simulated sample. Our
simulation was carried out with an R/S-PLUS program and the program is available from the
authors upon request.

The simulated mean squared errors reported in Table 1 indicate that the MEL estimator̂µel

is slightly less efficient than the maximum likelihood estimatorµ̂ml under the correctly specified
normal model. The gain of efficiency from usinĝµel under the chi-square model, however, can
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be substantial with reductions in mean squared errors of up to 37%. Further, it is interesting to
note that for the chi-squared case, the optimal estimatorµ̂op is also outperformed by the MEL
estimator. In terms of their relative biases, simulation results (not reported here) suggest that all
three estimators are essentially unbiased under the normalmodel. When the chi-square model is
used, however, botĥµml andµ̂op have nonnegligible biases but the bias of the MEL estimator
is considerably smaller. A referee has correctly pointed out that µ̂op is, strictly speaking, not
optimal for finite-sample sizes as the weights in (1) are estimated. Also, the maximum likelihood
estimatorµ̂ml may perform poorly in finite-sample situations. The scenarios considered here
for comparing the three estimators are clearly not exhaustive. However, given the lack of a
more commonly used estimator and the difficulty in identifying a correct parametric model for
practical situations, the robust behaviour and relative accuracy ofµ̂el to µ̂ml or µ̂op suggest that
the MEL estimator is a very attractive and favourable alternative approach.

TABLE 2: Simulated results of90% confidence intervals for the common mean.

N(0, 1) χ2
[1]

(σ2
1 , σ2

2 , σ2
3) (n1, n2, n3) CI L CP R AL L CP R AL

(1, 1, 1) (15,15,15) PLR 6.2 87.2 6.6 0.49 1.3 66.3 32.4 0.40

ELk 7.5 84.3 8.2 0.53 4.5 70.2 25.3 0.42

WEL 5.2 89.4 5.4 0.49 4.4 86.1 9.5 0.48

(30,30,30) PLR 5.1 89.3 5.6 0.35 1.1 74.7 24.2 0.31

ELk 6.0 87.8 6.2 0.40 4.6 79.2 16.2 0.35

WEL 4.5 90.5 5.0 0.35 3.9 89.4 6.7 0.34

(45,45,45) PLR 6.0 88.7 5.3 0.28 1.6 79.3 19.1 0.26

ELk 4.8 89.5 5.7 0.34 5.6 82.9 11.5 0.30

WEL 5.3 89.9 4.8 0.28 4.4 89.4 6.2 0.28

(1/2, 1, 2) (15,15,15) PLR 6.0 87.0 7.0 0.45 1.3 68.7 30.0 0.38

ELk 8.1 84.3 7.6 0.49 4.5 70.2 25.3 0.39

WEL 5.2 89.5 5.3 0.53 4.1 86.5 9.4 0.51

(30,30,30) PLR 4.6 90.0 5.4 0.32 1.1 75.6 23.3 0.29

ELk 6.2 87.8 6.0 0.37 5.0 79.1 15.9 0.32

WEL 5.4 89.3 5.3 0.38 4.1 88.8 7.1 0.37

(45,45,45) PLR 5.2 90.1 4.7 0.26 1.3 80.2 18.5 0.24

ELk 5.0 89.5 5.5 0.31 6.0 82.9 11.1 0.28

WEL 4.7 90.1 5.2 0.31 4.5 88.9 6.6 0.30

To evaluate the confidence intervals, our simulation study included the parametric likelihood
ratio (PLR) interval based on the normality assumption, thenaive EL interval based on Theorem 2
(denoted by ELk where the limiting chi-square distributionhask degrees of freedom) and the
weighted EL interval (WEL) from (5). Since a general varianceformula forµ̂op is not available,
it is not clear how to construct a confidence interval based onµ̂op.

Let (L̂b, Ûb) be a confidence interval forµ0 computed from thebth simulated sample. The
simulated average length (AL) of the interval, the coverageprobability (CP), the lower tail error
rate (L) and the upper tail error rate (U) are respectively computed as

AL = B−1
B∑

b=1

(Ûb − L̂b), CP = B−1
B∑

b=1

I(L̂b < µ0 < Ûb) × 100,
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L = B−1
B∑

b=1

I(µ0 ≤ L̂b) × 100, U = B−1
B∑

b=1

I(µ0 ≥ Ûb) × 100,

whereI is the usual indicator function. Simulation results for a90% confidence interval based on
B = 2000 independent runs are presented in Table 2 for the case of equal variance(σ2

1 , σ2
2 , σ2

3)
= (1, 1, 1) and the case of severe heteroscedasticity(σ2

1 , σ2
2 , σ2

3) = (1/2, 1, 2). Results for
the case of moderate nonhomogeneity, i.e.,(σ2

1 , σ2
2 , σ2

3) =
(
1/
√

2 , 1,
√

2
)
, are somewhat in

between and are not reported. Only cases wheren1 = n2 = n3 are reported but many other
cases with unequal sample sizes have also been examined and the results do not seem to differ
dramatically. Our major findings based on all cases are summarized as follows.

1. Under the normal model, all three intervals perform well when theni are around 30 or
more. When theni are around 15, the weighted EL interval (WEL) performs the best in
terms of coverage probabilities but is slightly wider than the PLR interval under severe
heteroscedasticity.

2. Under the chi-square model, the PLR interval based on normality is totally off target; so is
the interval ELk. The weighted interval WEL, on the other hand, has coverage probabilities
very close to the nominal value at almost all cases. It also has the most balanced tail errors
among all methods considered.

3. The naive interval ELk does not show any robustness against change of underlying distri-
butions, a property often expected from nonparametric approaches. Under the chi-square
model the coverage probabilities are too low and the method shouldn’t be recommended
for practical uses (see Section 8 for more discussion on thismethod).

Finally, we have also considered a few other models in our simulation study and results (not
included here) are consistent with what have been reported above.

7. APPLICATION TO ENVIRONMENTAL PROTECTION AGENCY DATA SET

Yu, Sun & Sinha (2002) presented a data set on evaluating gasoline quality based on what is
known as Reid vapor pressure (RVP), collected by the Environmental Protection Agency of the
United States. Two types of Reid vapor pressure measurements X andY are included in the
data set. Values ofX are obtained by an Agency inspector who visits gas pumps in a city, takes
samples of gasoline of a particular brand, and measures the Reid vapor pressure right on the spot;
values ofY , on the other hand, are produced by shipping gasoline samples to the laboratory for
measurements of presumably higher precision at a high cost.The original data set has a double
sampling structure, with a subset of the sample units havingmeasurements on bothX andY .
Table 3 contains two independent samples of a new reformulated gasoline, one related toX with
sample size 30 and the other, toY with sample size 15.

TABLE 3: Field and lab data on Reid vapor pressure for newly reformulated gasoline.

X (Field) 8.09 8.46 7.37 8.80 7.59 8.62 7.88 7.98 7.47 8.90

8.51 8.69 7.93 7.96 7.45 8.02 7.32 7.45 7.86 7.88

7.39 8.03 7.31 7.44 7.95 7.92 7.53 8.01 7.16 7.31

Y (Lab) 8.28 8.63 9.28 7.85 8.62 9.14 7.86 7.90 8.52 7.92

7.89 8.48 7.95 8.32 7.60

One of the assumptions of Yu, Sun & Sinha (2002) is that the field measurementX and the
lab measurementY have common meanµ. The two types of measurements differ, however, in
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terms of precision. Yu, Sun & Sinha (2002) also assume that(X,Y ) is bivariate normal, which
is not required under our proposed empirical likelihood approach. We compute three versions of
the point estimate and three types of90% confidence interval forµ, as described in Section 6.
The results are given in Table 4.

TABLE 4: Point estimates and90% confidence intervals for Reid vapor pressure.

µ̂ml µ̂op µ̂el PLR ELk WEL

7.989 8.008 8.124 (7.848, 8.137) (NA) (7.888, 8.145)

The two sample means areX = 7.876 andY = 8.283. The maximum EL estimator̂µel relies
more on the second sampleY and is larger than the other two. For90% confidence intervals, it
turns out that the naive EL interval (4) based on two degrees of freedom is not available. The
related EL ratio statistic−2r(µ) has minimum value atµ = µ̂el. One of the constraints for (4)
to be computable is that−2r(µ̂el) < χ2

[k](α), which is not the case for this particular example.
There are also other restrictions associated with this naive EL interval (see Section 8 for more
discussion). On the other hand, the WEL interval is shorter and has a larger lower bound than
the parametric likelihood ratio confidence interval based on the normal assumption. We do not
intend to draw any general conclusion here, but our theoretical and simulated results suggest that
the maximum EL estimator̂µel = 8.124 and the WEL confidence interval(7.888 , 8.145) should
be used for this particular application.

8. CONCLUDING REMARKS

In the past decade, the empirical likelihood method has attracted increased attention from many
statisticians. Applications of the method have been found in many areas of statistics, as evidenced
by the wide range of topics included in the recent book by Owen(2001). For the majority of
these developments, the main focus is the construction of confidence intervals or significance
tests using the empirical likelihood ratio statistics. It is shown in this article that the EL method
provides both efficient point estimates and reliable confidence intervals for a common mean
when the data are combined from several independent but nonhomogeneous samples. Even
when the underlying distribution is correctly specified, the parametric approach does not seem to
have any major advantages over the EL method. The proposed maximum empirical likelihood
estimator and the weighted empirical likelihood confidenceinterval, on the other hand, are robust
against model misspecifications and have good to satisfactory performance in almost all cases
investigated in the current study.

The standard error of the MEL estimator is not easily available because the estimator does
not have an explicit analytic expression. At a price of considerably more computing effort, we
may estimate the standard error by bootstrap methods. Nevertheless, we note that the lack of an
easy means to compute the standard error should have little impact on the usefulness and com-
petitiveness of the MEL estimator. This is so because the standard error is often computed for
the sole purpose of constructing confidence intervals and, in our case, there is already a comple-
mentary weighted EL confidence interval. Further, the standard errors of its main competitors,
the optimal and maximum likelihood estimators, are equallydifficult to compute.

Computational issues and the lack of explicit analytic forms may discourage some potential
users from using the proposed methods which we believe are superior alternatives to existing
methods. We intend to develop a reliable R/S-PLUS program for handling the computation and
make it available in a public R/S-PLUS software library. Ourexperience with the simulation
studies shows that the computation can be handled as routinepractice once a few crucial cod-
ings are available. Some of these codings in the context of survey sampling have already been
implemented in R by Wu (2005).
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Empirical likelihood ratio confidence intervals such as (4)are often associated with an under-
coverage problem when sample sizes are small or even moderate. Among possible causes for
this is the fact that the finite-sample distribution of the empirical log-likelihood ratio statistic is
actually a mixture distribution with an atom at infinity. As such, this distribution may be poorly
approximated by the limiting, continuous, chi-squared distribution (Tsao 2004). In general, the
larger the atom, the poorer the chi-square approximation and the more serious the under-coverage
problem. In the current setting, the atom of thek-sample EL ratio statistic is the probability that
the joint convex hullH∗ does not coverµ0. Since

H∗ =
(
max{Y(11), . . . , Y(k1)},min{Y(1n1), . . . , Y(knk)}

)
,

the bigger thek and the smaller theni, the bigger the atom will be and consequently the more
serious the under-coverage problem. The joint convex hullH∗ is more restrictive under skewed
distributions than that under symmetric ones (Tsao 2004). This can be seen from the results of
our simulation studies reported in Section 6 and the unavailability of the interval (4) using the
real Environmental Protection Agency data. Naively applying the empirical likelihood approach
without knowing the severity of this atom could lead to a veryinefficient method. Presently,
work is continuing to find ways to alleviate this problem.

The asymptotic framework used in this article keepsk fixed, while letting all theni go to
infinity. When some of theni are very small, cautions must be exercised in using the proposed
methods. Some preliminary investigation through simulation might be helpful when one faces
such situations. Our results do not cover cases where allni are bounded while the number of
independent samplesk becomes large, a scenario discussed by J. N. K.Rao (1980) andothers.
As a future research problem, it may be of interest to determine the asymptotic behaviour of the
empirical log-likelihood ratio statistic when bothk and theni are allowed to go to infinity at
some fixed relative speed. Finally, it may be possible to extend the empirical likelihood approach
discussed here to regression models with nonhomogeneous variances. We are presently studying
this possibility. There are some technical difficulties in extending the weighted EL method to
such situations. We hope to report our findings on these issues when they become available.

APPENDIX: PROOFS FOR THEOREMS

Proof of Theorem 1.For a given combined sample and under the assumed conditions, the MEL
estimator̂µel exists and is unique since the empirical log-likelihood function is convex in a small
neighbourhood ofµ0, andµ̂el must be located within such a neighbourhood, as shown below.

For theith sample, let

ℓi(µ) =

ni∑

j=1

log(pij),

wherepij maximize
∑ni

j=1 log(pij) subject to

ni∑

j=1

pij = 1 and

ni∑

j=1

pijYij = µ

for some fixedµ. We observe that (a)ℓi(µ) is maximized at̂µi = Y i· and (b)ℓi(µ) is monotone
increasing whenµ < Y i· and is monotone decreasing whenµ > Y i·.

Let

ℓ(µ) =

k∑

i=1

ni∑

j=1

log(pij)

be the joint empirical log-likelihood function wherepij maximizeℓ(F1, . . . , Fk) subject to

ni∑

j=1

pij = 1, i = 1, . . . , k and

n1∑

j=1

p1jY1j = · · · =

nk∑

j=1

pkjYkj = µ
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for the fixedµ. It is clear thatℓ(µ) = ℓ1(µ) + · · · + ℓk(µ) andℓ(µ) is monotone increasing
whenµ < mini(Y i·) and monotone decreasing whenµ > maxi(Y i·). It follows that the MEL
estimator̂µel must satisfy

min
1≤i≤k

(Y i·) ≤ µ̂el ≤ max
1≤i≤k

(Y i·).

Noting thatY i· = µ0 + Op(n
−1/2) for i = 1, . . . , k whenk is fixed, we conclude that̂µel =

µ0 + Op(n
−1/2). This completes the proof of (1) and (2). 2

By using the standard Lagrange multiplier method it can be shown that thepij which maxi-
mizeℓ(F1, . . . , Fk) subject topi1+ · · ·+pini

= 1 andpi1Yi1+ · · ·+pini
Yini

= µ, i = 1, . . . , k,
are given by

pij =
1

ni{1 + λi(Yij − µ)} , (6)

where the Lagrange multiplierλi is the solution to

ni∑

j=1

(Yij − µ)/{1 + λi(Yij − µ)} = 0. (7)

The resulting profile empirical log-likelihood function (omitting a constant term) is given by

ℓ(µ) = −
k∑

i=1

ni∑

j=1

log{1 + λi(Yij − µ)}.

The MEL estimator̂µel is the solution to∂ℓ(µ)/∂µ = 0. We have

∂ℓ(µ)

∂µ
= −

k∑

i=1

ni∑

j=1

{
∂λi

∂µ
(Yij − µ) − λi

}
{1 + λi(Yij − µ)}−1 =

k∑

i=1

niλi,

where the last step used the identities (6),pi1 + · · · + pini
= 1 and (7). For any fixedµ such

thatµ = µ0 + O(n−1/2), we haveY i· − µ = Op(n
−1/2). Again by using standard arguments

(Owen, 2001, pp. 219–222), we can show that

λi = (Y i· − µ)
/{

n−1
i

ni∑

j=1

(Yij − µ)2
}

+ op(n
−1/2
i ).

It follows thatµ̂el satisfies

k∑

i=1

ni(Y i· − µ)

n−1
i

∑ni

j=1(Yij − µ)2
= op

(√
n

)
,

which leads to

µ̂el =

k∑

i=1

(
ni

σ̃2
i

)
Y i·

/ k∑

i=1

(
ni

σ̃2
i

)
+ op

(
1√
n

)
, (8)

where

σ̃2
i = n−1

i

ni∑

j=1

(Yij − µ̂el)
2.

Sinceai = ni/n = O(1), Y i· − µ0 = Op(n
−1/2) andσ̃2

i = σ2
i + Op(n

−1/2), it follows from
(8) that

µ̂el − µ0 =

k∑

i=1

(
ai

σ2
i

)
(Y i· − µ0)

/ k∑

i=1

(
ai

σ2
i

)
+ op

(
1√
n

)
. (9)

The asymptotic optimality of̂µel follows from (8) and the asymptotic normality ofµ̂el follows
from (9) when we apply the central limit theorem toY i·.
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Proof of Theorem 2. Following the standard argument of Owen (2001, p. 220), onecan show that

−2r(µ0) =

k∑

i=1

{
ni(Y i· − µ0)

2/S̃2
i

}
+ op(1),

where

S̃2
i = n−1

i

ni∑

j=1

(Yij − µ0)
2.

Since thek samples are independent, the conclusion of the theorem follows from the fact that
ni(Y i· − µ0)

2/S̃2
i converges in distribution to aχ2 random variable with one degree of freedom

asni → ∞.

Proof of Theorem 3. Note thatYi1, . . . , Yini
have a common distribution with meanµ0. Let

σ2
i = var(Yij) andτi = E |Yij − µ0|2+δ. Since

k∑

i=1

ni∑

j=1

E |Yij − µ0|2+δ =

k∑

i=1

niτi = o(B2+δ
n ),

where

B2
n =

k∑

i=1

ni∑

j=1

var(Yij) =
k∑

i=1

niσ
2
i ,

the Liapunov condition holds for the sequence of random variablesYij . The asymptoticχ2

distribution of−2rw(µ0) follows directly from the proof of Theorem 1 in Wu (2004a) if we
replaces2

i by σ2
i in the formulation ofrw(µ0). To complete the proof, we note thatni/n = O(1)

ands2
i = σ2

i + Op(n
−1/2), and so it is straightforward to show by following the lines of the

proof in Wu (2004a) that replacingσ2
i by s2

i does not change the leading term in the expansion
of −2rw(µ0) and therefore results in the same asymptotic distribution for−2rw(µ0). 2
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