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Abstract 

We present computational algorithms for the recently proposed pseudo empirical likelihood method for the analysis of 
complex survey data. Several key algorithms for computing the maximum pseudo empirical likelihood estimators and for 
constructing the pseudo empirical likelihood ratio confidence intervals are implemented using the popular statistical 
software R and S-PLUS. Major codes are written in the form of R/S-PLUS functions and therefore can directly be used for 
survey applications and/or simulation studies. 
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1. Introduction  
One of the major challenges in applying advanced and 

often sophisticated statistical methods for real world surveys 
is the computational implementation of the method. Prac-
tical considerations often rule out the use of methods which 
are theoretically sound and attractive but are computa-
tionally formidable.  

The empirical likelihood method first proposed by Owen 
(1988) is one of the major advances in statistics during the 
past fifteen years. In addition to its data driven and range 
respecting feature in estimation and testing, its non-
parametric and discrete nature is particularly appealing for 
finite population problems. Indeed an early version of the 
method, the so-called scale-load estimators, was used in 
survey sampling by Hartley and Rao back in 1968. The 
more recent investigation of the method in survey sampling 
has resulted in a series of research papers and generated 
noticeable interests among survey statisticians to further 
explore the method. Wu and Rao (2004) contains a brief 
summary on the recent development of the pseudo empirical 
likelihood (PEL) method in survey sampling. 

Progress on algorithmic development for the PEL 
method has also been made. A modified Newton-Raphson 
procedure for computing the maximum PEL estimators 
under non-stratified sampling was proposed by Chen, Sitter 
and Wu (2002). The procedure was further modified by Wu 
(2004a) to handle stratified sampling designs.  

In this article we present computational algorithms for 
computing the maximum PEL estimators and for construc-
ting the related PEL ratio confidence intervals for complex 
surveys under a unified framework, with particular interest 
in implementing those algorithms using R and PLUS.-S  
The software package R, a friendly programming 

environment and compatible to the popular commercial 
statistical software S-PLUS, is attracting more and more  
users from the statistical community. What is advantageous 
about using R is that it is available free for research use and 
the package may be easily downloaded from the web. It is 
hoped that this article will bridge the current gap between 
theoretical developments and practical applications of the 
PEL method and will generate more research activities in 
this direction to make fully practical use of the PEL method 
a reality. 

The algorithm for computing the maximum PEL 
estimator under non-stratified sampling and some notes on 
its implementation in R/S-PLUS are presented in section 2. 
The algorithm of Wu (2004a) for stratified sampling is 
discussed in section 3. Construction of the PEL ratio 
confidence intervals involves profiling the pseudo empirical 
likelihood ratio statistic and is detailed in section 4. All R 
functions or sample codes are included in the Appendix. 
They can also be downloaded from the author’s personal 
homepage http://www.stats.uwaterloo.ca/~ cbwu/paper. html. 
These functions and codes had been tested in the simulation 
study reported in Wu and Rao (2004) and were observed to 
perform very well.  

2. Non-Stratified Sampling 
 

Consider a finite population consisting of N  identifiable 
units. Associated with the thi  unit are values of the study 
variable, ,iy  and a vector of auxiliary variables, .ix  The 
vector of population means ∑ =

−= N
i iN 1

1 xX  is known. Let  
}),,{( siy ii ∈x  be the sample data where s  is the set of 

units selected using a complex survey design. Let 
)( siPi ∈=π  be the inclusion probabilities and iid π= /1  

be the design weights.  



240 Wu: Algorithms and R Codes for the Pseudo Empirical Likelihood Method in Survey Sampling 
 

 
Statistics Canada, Catalogue No. 12-001-XPB 

The pseudo empirical maximum likelihood estimator of 
the population mean ∑ =

−= N
i iyNY 1

1  is computed as =PELŶ  
∑ ∈si ii yp̂  where the weights ip̂  are obtained by maxi-
mizing the pseudo empirical log likelihood function 

)(log)( **
i

si
ins pdnl ∑

∈
=p  (2.1) 

subject to the set of constraints 

.and1,10 Xx ==<< ∑ ∑
∈ ∈si si

iiii ppp  (2.2) 

The original pseudo empirical likelihood function proposed 
by Chen and Sitter (1999) is .)(log)( isi i pdl ∑ ∈=p  The 
pseudo empirical likelihood function )( pnsl  given by (2.1) 
was used by Wu and Rao (2004), where ∑ ∈= si iii ddd /*  
are the normalized design weights and *n  is the effective 
sample size. The point estimator ∑ ∈= si ii ypY ˆˆ

PEL  remains 
the same for either version of the likelihood function. The 
rescaling used in )( pnsl  facilitates the construction of the 
PEL ratio confidence intervals. 

Using a standard Lagrange multiplier argument it can be 
shown that  

,for
)(1

ˆ
*

si
d

p
i

i
i ∈

−′+
=

Xxλ
 (2.3) 

where the vector-valued Lagrange multiplier, ,λ  is the 
solution to 

.0
)(1

)(
)(

*

1 =
−′+

−
=∑

∈si i

iid
g

Xx

Xx

λ
λ  

The major computational task here is to find the solution to 
.0)(1 =λg  This can be done using the modified Newton-

Raphson procedure proposed by Chen et al. (2002). The 
modification involves checking at each updating stage that 
the constraint 0)(1 >−′+ Xxiλ  )0,( >ipi.e.  is always 
satisfied. Without loss of generality, we assume 0=X  (if 
not, replace ix  by Xx −i  throughout). The modified 
procedure is as follows. 
 
Step 0: Let .0 0λ =  Set 1,0 0 =γ=k  and .10 8−=ε  
 
Step 1: Calculate )(1 kλΔ  and )(2 kλΔ  where 

∑
∈ ′+

=
si i

i
id

x
x
λ

λΔ
1

)( *
1  

and 

).(
)1(

)( 1

1

2
*

2 λΔ
λ

λΔ
−

∈ ⎭
⎬
⎫

⎩
⎨
⎧

′+
′

−= ∑
si i

ii
id

x

xx
 

If ,||)(|| 2 ε<kλΔ  stop the algorithm and report ;kλ  
otherwise go to Step 2.  
Step 2: Calculate ).(2 kkk λΔδ γ=  If 0)(1 ≤′−+ ikk xδλ  
for some ,i  let 2/kk γ=γ  and repeat Step 2.  
Step 3: Set 1,1 +=−=+ kkkkk δλλ  and =γ +1k  

.)1( 2/1−+k  Go to Step 1. 

In the original algorithm presented by Chen et al. (2002), 
their step 2 also checks a related dual objective function. 
While this is necessary for the theoretical proof of 
convergence of the algorithm, it is not really required for 
practical applications.  

The R function Lag2(u,ds,mu) can be used for finding 
the solution to 0)(1 =λg  when the vector of auxiliary 
variables x  is of dimension m  and .2≥m  When x  is 
univariate, an extremely simple and stable bi-section 
method to be described shortly should be used. Let n  be the 
sample size. The three required arguments are the mn×  
data matrix u, the 1×n  vector of design weights ds and the 

1×m  population mean vector mu. The output of the 
function Lag2(u,ds,mu) returns the value of λ  which is the 
solution to .0)(1 =λg  

The function Lag2(u,ds,mu) will fail to provide a 
solution if (i) the mean vector X  is not an inner point of the 
convex hull formed by },,{ sii ∈x  or (ii) the matrix 
∑ ∈ ′si iiid xx  is not of full rank. In case (i) the pseudo 
empirical maximum likelihood estimator does not exist. 
This happens with probability approaching to zero as the 
sample size n  goes to infinity; in case (ii) one may consider 
to remove some components of the x  variables from the set 
of constraints (2.2) to eliminate the collinearity problem. 

When the x  variable is univariate, so is the involved 
Lagrange multiplier .λ  In this case we need to solve 

∑ ∈ =λ+=λ si iii xxdg 0)1/()( *
2  for a scalar ,λ  as-

suming .0=X  A unique solution exists if and only if 
}.,{max0},{min sixsix ii ∈<<∈  The solution, if 

exists, lies between },{max/1 sixL i ∈−=  and =U  
}.,{min/1 sixi ∈−  Noting that )(2 λg  is a monotone 

decreasing function for ),,( UL∈λ  the most efficient and 
reliable algorithm for solving 0)(2 =λg  is the bi-section 
method. The function Lag1(u,ds,mu) does exactly this, 
where the required arguments are u  ),...,,( 1 nxx=  ds =  

)...,,( 1 ndd  and mu  .X=  The output returns the solution 
to .0)λ(2 =g  

The function Lag1(u,ds,mu) can be used in conjunction 
with the model-calibrated pseudo empirical likelihood 
(MCPEL) approach of Wu and Sitter (2001) to handle cases 
where the x  variable is high dimensional. The MCPEL 
approach involves only a single dimension reduction 
variable derived from a multiple linear regression model and 
the related Lagrange multiplier problem is always of 
dimension one.  

3. Stratified Sampling  
Let }...,,1,),,{( Hhsiy hhihi =∈x  be the sample 

data from a stratified sampling design. Let =*
hid  

∑ ∈ hsi hihi dd /  be the normalized design weights for stratum 
....,,1, Hhh =  The pseudo empirical likelihood function 
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under stratified sampling defined by Wu and Rao (2004) is 
given by  

∑ ∑
= ∈

=
H

h si
hihihHst

h

pdWnl
1

**
1 ),(log)...,,( pp  (3.1) 

where NNW hh /=  are the stratum weights and *n  is the 
total effective sample size as defined in Wu and Rao (2004). 
The value of *n  is not required for point estimation but this 
scaling constant is needed for the construction of confidence 
intervals. Let X  be the known vector of population means 
for auxiliary variables. The maximum pseudo empirical 
likelihood estimator of the population mean =Y  
∑ =

H
h hh YW1  is defined as ∑ ∑= ∈= H

h si hihih h
ypWY 1PEL ˆˆ  

where the hip̂  maximize )...,,( 1 Hstl pp  subject to the set 
of constraints 

∑
∈

==>
hsi

hihi Hhpp ...,,1,1,0  

and 
.∑ ∑

∈
=

h si
hihih

h

pW Xx  (3.2) 

The major computational difficulty under stratified 
sampling is caused by the fact that the subnormalization of 
weights (i.e., 1=∑ ∈ hsi hip ) occurs at the stratum level while 
the benchmark constraints (i.e., Xx =∑ ∑ ∈ hih si hih h

pW ) 
and the constrained maximization of the PEL function are 
taken  at the the population level. The algorithm proposed 
by Wu (2004a) for computing the hip̂  proceeds as follows: 
let hix  be augmented to include the first 1−H  stratum 
indicator variables and X  be augmented to include 

)...,,( 11 −HWW  as its first 1−H  components. In the case of 
no benchmark constraints involved, the augmented x  
variable will consist of the 1−H  stratum indicator 
variables only and )....,,( 11 −= HWWX  It follows that the 
set of constraints (3.2) is equivalent to  

∑∑
∈=

=>
hsi

hi

H

h
hhi pWp 1,0

1

 

and 

,
1

∑∑
∈=

=
hsi

hihi

H

h
h pW Xx  (3.3) 

where the x  variable is now augmented. Let =hiu  
.Xx −hi  It is straightforward by using a standard Lagrange 

multiplier argument to show that  

,
1

ˆ
*

hi

hi
hi

d
p

uλ′+
=  

with the vector-valued λ  being the solution to  

∑ ∑
∈

=
′+

=
h si hi

hihi
h

h

d
Wg .0

1
)(

*

3 u
u
λ

λ  

The modified Newton-Raphson procedure of section 2 for 
solving 0λ =)(1g  can be used for solving .)(3 0λ =g  The 

key computational step under stratified sampling designs is 
to prepare the data file into suitable format so that the R 
function Lag2(u,ds,mu) for non-stratified sampling can 
directly be called. Sample R codes for doing this are 
included in the Appendix. 

 
4. Construction of PEL Ratio  

     Confidence Intervals  
While the computational algorithms for the maximum 

PEL estimator under non-stratified and stratified sampling 
designs are somewhat different, the search for the lower and 
the upper boundary of the pseudo empirical likelihood ratio 
confidence interval for Y  involves the same type of profile 
analysis. Under non-stratified sampling designs, the 

−α− )1( level PEL ratio confidence interval of Y  is 
constructed as 

)},()(|{ 2
1 αχ<θθ nsr  (4.1) 

where )(2
1 αχ  is the α−1  quantile from a 2χ  distribution 

with one degree of freedom. The pseudo empirical log 
likelihood ratio statistic )(θnsr  is computed as  

)},ˆ()~({2)( pp nsnsns llr −−=θ  

where the p̂  maximize )( pnsl  subject to the set of 
“standard constraints” such as (2.2) and the p~  maximize 

)( pnsl  subject to the “standard constraints” plus an 
additional one induced by the parameter of interest, ,Y  i.e. 

∑
∈

θ=
si

ii yp .  (4.2) 

To compute p~  one needs to treat (4.2) as an additional 
component of the “standard constraints” for each fixed 
value of θ  so that the maximization process is essential the 
same as before. 

Let )ˆ,ˆ( UL  be the interval given by (4.1). Our proposed 
bi-section method in searching for L̂  and Û  is based on 
following observations:  

i) The minimum value of )(θnsr  is achieved at =θ  
.ˆˆ PELYypsi ii =∑ ∈  In this case pp ˆ~ =  and =θ)(nsr  

.0   
ii) The interval )ˆ,ˆ( UL  is bounded by ),( )()1( nyy  where 

},{min)1( siyy i ∈=  and }.,{max)( siyy in ∈=    
iii) The pseudo empirical likelihood ratio function 

)(θnsr  is monotone decreasing for )ˆ,( PEL)1( Yy∈θ  
and monotone increasing for ).,ˆ( )(PEL nyY∈θ  

 
Conclusion iii) can be reached by noting that )ˆ( pnsl  does 
not involve θ  and ∑ ∈= si iins pdnl )~(log)~( **p  is typically a 
concave function of .θ  It is also possible to show this by 
directly checking ./)( θθ ddrns  For instance, in the case of 
no auxiliary information involved, the “standard con-
straints” are 0>ip  and ∑ ∈ =si ip .1  The ip̂  are given by 

*
id  and ∑ ∈= si ii ydY .ˆ *

PEL  The ip~  are computed as 
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,
)(1

~
*

θ−λ+
=

i

i
i y

d
p  (4.3) 

where the λ  is the solution to  

∑
∈

=
θ−λ+

θ−
si i

ii

y

yd
.0

)(1

)(*

 (4.4) 

Using (4.3) and (4.4), and noting that ∑ ∈si id /*  
,1))(1( =θ−λ+ iy  it is straightforward to show that  

∑
∈

λ−=
θ−λ+

λ−θ−θλ=θ
θ si i

ii
ns n

y

yddd
nr

d

d
.2

)(1

})()/{(
2)( *

*
*  

By re-writing )(* θ−ii yd  as )(* θ−ii yd )}(1[{ θ−λ+ iy  
)]( θ−λ− iy  and after some re-grouping in (4.4) we get  

∑ ∑
∈ ∈

θ−=
θ−λ+

θ−λ
si si

ii
i

ii yd
y

yd
.

)(1

)( *
2*

 

It follows that 02/)( * <λ−=θθ nddrns  if <θ  
∑ ∈ =si ii Yyd PEL

* ˆ  and 0/)( >θθ ddrns  otherwise.  
Sample codes for finding )ˆ,ˆ( UL  where no auxiliary 

variable is involved are included in the Appendix. In this 
case *ˆ ii dp =  and ∑ ∈ == si Hii YydY ˆˆ *

PEL  is the Hajek 
estimator for .Y  The profiling process involves finding λ  
for each chosen value of θ  and evaluating the PEL ratio 
statistic )(θnsr  against the cut-off value from the 2

1χ  
distribution under the desired confidence level .1 α−  With 
auxiliary information, one needs to modify the computation 
of )(θnsr  for each fixed .θ  The bi-section search algorithm 
for finding L̂  and Û  remains the same. 

The value of the effective sample size *n  is required for 
computing the PEL ratio statistic ).(θnsr  For non-stratified 
sampling designs it is computed as )(ˆ/ˆ 2* yVSn y=  where  

∑ ∑
∈ > π

−
−

=
si ij ij

ji
y

yy

NN
S ,

)(

)1(

1ˆ
2

2  

and 

∑ ∑
∈ >

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
−

ππ
π−ππ

=
si ij j

j

i

i

ij

ijji ee

N
yV ,

1
)(ˆ

2

2
 

where HTŶye ii −=  and ∑ ∈
−= si ii ydNY .ˆ 1

HT  See Wu and 
Rao (2004) for further detail. Computation of *n  involves 
the second order inclusion probabilities ijπ  which  may 
impose a real challenge if a psπ  sampling scheme is used. 
In the simulation study reported in Wu and Rao (2004), the 
Rao-Sampford psπ  sampling method was used. R 
functions for selecting a psπ  sample using this method as 
well as for computing the related second order inclusion 
probabilities can be found in Wu (2004b). Similar R 
functions are also available in an add-on R package called 
“pps”, written by J. Gambino (2003), which can be 
downloaded from the R homepage http://cran.r-project.org/ 
by clicking the packages option. 
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Appendix: R/S-PLUS Codes  

A1. R Function for solving 0)(1 =λg . 
 

Let m  be the number of auxiliary variables involved and 
.2≥m  There are three required arguments in the function 

Lag2(u,ds,mu):  
 

(1) u: the mn×  data matrix with ix  as its thi  row, 
....,,1 ni =  

 
 (2) ds: the 1×n  vector of design weights consisting of 

....,,1 ndd  
 

 (3) mu: the 1×m  population mean vector .X  
 
The output of the function is the solution to .0)(1 =λg  
 
Lag2<-function(u,ds,mu) 
{ 
   n<-length(ds) 
   u<-u-rep(1,n)%*%t(mu) 
   M<-0*mu 
   dif<-1 
   tol<-1e-08 
   while(dif>tol){ 
      D1<-0*mu 
      DD<-D1%*%t(D1) 
      for(i in 1:n){ 
         aa<-as.numeric(1+t(M)%*%u[i,]) 
         D1<-D1+ds[i]*u[i,]/aa 
         DD<-DD-ds[i]*(u[i,]%*%t(u[i,]))/aa^2 
                   } 
      D2<-solve(DD,D1,tol=1e-12) 
      dif<-max(abs(D2)) 
      rule<-1 
      while(rule>0){ 
         rule<-0 
         if(min(1+t(M-D2)%*%t(u))<=0) rule<-rule+1 
         if(rule>0) D2<-D2/2 
                   } 
      M<-M-D2 
   } 
   return(M) 
} 
 
A2. R Function for solving 0)λ(2 =g . 
 

When the x  variable is univariate, the solution to 
0)λ(2 =g  can be found through a simple and reliable bi-

section method. The three required arguments for the 
function Lag1(u,ds,mu) are u ),...,,( 1 nxx=  ds =  

)...,,( 1 ndd  and mu .X=  The output is the solution to 
.0)λ(2 =g  
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Lag1<-function(u,ds,mu) 
{ 
   L<--1/max(u-mu) 
   R<--1/min(u-mu) 
   dif<-1 
   tol<-1e-08 
   while(dif>tol){ 
      M<-(L+R)/2 
      glam<-sum((ds*(u-mu))/(1+M*(u-mu))) 
      if(glam>0) L<-M 
      if(glam<0) R<-M 
      dif<-abs(glam) 
   } 
   return(M) 
}  
 
A3. Sample code for stratified sampling.  

We need to call the function Lag2(u,ds,mu) from 
nonstratified sampling. The key step is to prepare the data 
file into suitable format. Let   

(1) n )...,,( 1 Hnn=  be the vector of stratum sample 
sizes.  

(2) x be the data matrix with hix  as row vectors, 
....,,1,...,,1 Hhni h ==   

(3) ds = ),...,,...,,...,,( **
1

*
1

*
11 1 HHnHn dddd  where *

hid  
are the normalized initial design weights for 
stratum .h   

(4) X be the vector of known population means.  
(5) W )...,,( 1 HWW=  be the vector of stratum 

weights (i.e., NNW hh /= ). 
 
The following sample codes show how the solution to  

0λ =)(3g  is found (M from the second last line of the 
following code) and how the hip̂ ’s are computed (phi from 
the last line).  
 
### 
nst<-sum(n) 
k<-length(n)-1 
ntot<-rep(0,k) 
   ntot[1]<-n[1] 
   for(j in 2:k) ntot[j]<-ntot[j-1]+n[j] 
ist<-matrix(0,nst,k) 
   ist[1:n[1],1]<-1 
   for(j in 2:k) ist[(ntot[j-1]+1):ntot[j],j]<-1 
uhi<-cbind(ist,x) 
mu<-c(W[1:k],X) 
whi<-rep(W[1],n[1]) 
   for(j in 2:(k+1)) whi<-c(whi,rep(W[j],n[j])) 
dhi<-whi*ds 
M<-Lag2(uhi,dhi,mu) 
phi<-as.vector(ds/(1+(uhi-rep(1,nst)%*%t(mu))%*%M)) 
### 
 
A4. Sample code for finding the PEL ratio confidence 

interval.  
The search for the lower boundary (LB) and the upper 

boundary (UB) of the PEL ratio confidence interval needs to 
be carried out separately. The following codes show how 
this is done for the case of no auxiliary information. With 
auxiliary information, one needs to modify the computation 

of the involved pseudo empirical likelihood ratio statistic 
(elratio) accordingly. Let   

(1) a α−= 1  be the confidence level of the desired 
interval.  

(2) ys )...,,( 1 nyy=  be the sample data.  
(3) ds = )...,,( **

1 ndd  be the normalized design 
weights.  

(4) YEL ∑ ∈= si ii yp̂  (in this case ).ˆ *
ii dp =   

(5) nss be the estimated effective sample size .*n  
 
### 
tol<-1e-08 
cut<-qchisq(a,1) 
### 
t1<-YEL 
t2<-max(ys)  
dif<-t2-t1 
while(dif>tol){ 
      tau<-(t1+t2)/2 
      M<-Lag1(ys,ds,tau) 
      elratio<-2*nss*sum(ds*log(1+M*(ys-tau))) 
      if(elratio>cut) t2<-tau 
      if(elratio<=cut) t1<-tau 
      dif<-t2-t1 
            } 
UB<-(t1+t2)/2 
### 
t1<-YEL 
t2<-min(ys)  
dif<-t1-t2 
while(dif>tol){ 
      tau<-(t1+t2)/2 
      M<-Lag1(ys,ds,tau) 
      elratio<-2*nss*sum(ds*log(1+M*(ys-tau))) 
      if(elratio>cut) t2<-tau 
      if(elratio<=cut) t1<-tau 
      dif<-t1-t2 
            } 
LB<-(t1+t2)/2 
### 
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