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Summary. The fish abundance index over an ocean region is defined here to be the integral of expected
catch per unit effort (CPUE), approximated by the sum of expected CPUE over grid squares. When trawl
surveys are done within grid squares selected according to a probability sampling design, several other sources
of variation such as the fish population dynamics and the catching process are also involved. In such situations
model-assisted methods for estimating abundance, assessed under both design and model perspectives, have
some advantages over purely design-based methods such as the Horvitz–Thompson (HT) estimator or purely
model-based prediction approaches. This article develops model-assisted empirical likelihood (EL) methods
via loglinear regression and nonparametric smoothing. The methods are applied to grid surveys of the Grand
Bank region carried out annually by Fishery Products International from 1996 through 2002. The HT and
EL methods produce similar point estimates of abundance indices. Simulation results, however, indicate
that the EL estimator under local linear smoothing is associated with smaller standard errors.
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1. Introduction
One problem of key importance to the management of fish-
ery resources is to obtain a reliable estimate of fish abun-
dance. The absolute fish abundance in an open ocean region
is hard to obtain. Instead, we often settle on estimating abun-
dance indices. Current practice in managing marine fisheries
in the area of the Northwest Atlantic Fisheries Organization
(NAFO) involves setting annual quotas for commercial species
with high abundance and maximum allowable percentages
of by-catch for species with low abundance which are un-
der monitoring. The estimated fish abundance indices, along
with others, are the major factors used in the decision-making
process.

Before the 1970s, fish abundance indices were estimated
using the catch-effort data reported by commercial fishing
units. It gradually became evident that such estimates are
not reliable, as many factors, including vessel and gear type,
crew experience, and underreporting, are confounded with
the abundance estimates. In addition, commercial fishing
activities inevitably focus on high population density areas
and therefore paint a biased abundance picture. Scientific re-
search trawl surveys using a standard vessel and gear type and
a probability sampling design have been adopted by many or-
ganizations since the 1970s (Doubleday and Rivard, 1981).
They allow us to define a more objective abundance index
and to obtain more accurate estimates for the abundance in-
dices and for the population distributions of the entire region
as well.

We define the response variable Y in a fishery trawl survey
as the number (or the biomass) of fish caught in a given loca-
tion by a research vessel with standard fishing gear through a
unit fishing time, i.e., catch per unit effort (CPUE). Suppose
a random set of locations is selected and the corresponding
response variables are observed. There are three main sources
of variation in the data. The first is the dynamics of the fish
population: The number of fish at the given location changes
constantly over time; the second is the fishing process: Only
a random subset of the total fish at the location is captured;
the third is the randomness of the location: Only a random
subset of feasible locations determined by the survey design
is observed.

In fishery literature, data from scientific research trawl sur-
veys are often analyzed using conventional model-based or
design-based methods in survey sampling. The model-based
approach makes inference according to an assumed probabil-
ity model for the response variable, ignoring the randomness
associated with the selection of sampling units; the design-
based approach makes inference according to the randomness
induced by the sampling design, treating the response variable
as nonrandom for each of the units.

In this article, we build a framework where two sources
of randomness, the catching process and the probability
selection of sampling units, are entertained. Our method
is similar to the model-assisted approach in survey sam-
pling but the resulting estimator is assessed using the model
and the sampling design jointly. This is different from the
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conventional model-assisted approach, which in general uses
a design-based analysis. We consider a short period of time
such that the fish population can be viewed as fixed. We pos-
tulate a semiparametric or nonparametric model that relates
the expected CPUE to various hydrographic and bathymet-
ric variables and fit the model based on data available from
the survey. We define a conceptually related abundance in-
dex and then estimate the index using a model-assisted ap-
proach. In Section 2, we formally define the fish abundance
index under the current framework. Issues and methods re-
lated to model building based on survey data are discussed
in Section 3. Model-assisted estimators are introduced in Sec-
tion 4. Variance estimators for the estimated abundance in-
dices are presented in Section 5. In Section 6, we apply our
proposed methodology to grid survey data of the Grand Bank
region (NAFO divisions 3LNO) provided by Fishery Products
International (FPI) Ltd. of Canada. Also in Section 6, a sim-
ulation study has been conducted to investigate the small
sample performances of three estimators considered in the
application, using a synthetic population created from the
FPI survey data. We conclude with some brief remarks in
Section 7.

2. The Fish Abundance Index
A fish population in a large open area does not constitute
a conventional finite population. It is a mobile population
that changes over time due to migration, recruitment, natural
mortality, and fishing mortality. The fundamental principle
for design-based analysis in survey sampling, namely that the
finite population parameters are fixed and can be determined
without error by conducting a census, is grossly violated. The
underlying population dynamics are hard to observe and the
true stock size may never be known. Reed (1986) describes
this as a “black box” situation. Fortunately, what is really
important for stock assessment and management is to monitor
the fluctuation of the fish population so that a major decline
or boost in the population size or the total population biomass
can be detected, and consequently appropriate management
strategies can be adopted.

The response variable CPUE should not be used directly
to form the abundance index as it is likely affected by many
known or unknown factors. In addition to the fish popula-
tion size in the given region and time period, the CPUE may
also depend on, among other things, the fishing vessel and
gear type, the towing speed, the location, the time of the day,
the temperature of the water, and the roughness of the ocean
conditions. Despite all of these caveats, however, it may still
be reasonable to believe that there exists a conceptually ex-
pected CPUE value as a smooth function of location and the
aforementioned covariates in a given short period of time of
the year. We aim to define the abundance index as the inte-
gral of expected CPUE value over the region at standardized
levels of important covariates.

Let R denote the region where abundance of a certain fish
is of interest. Let µ(x) be the expected CPUE at x ∈ R under
standard conditions at the given time period. Mathematically,
our definition is as follows.

Definition 1: The fish abundance index in the region R is
defined as I(R) =

∫
R

µ(x) dx.

This definition, however, is hard to use in practice. In ad-
dition to the difficulty in specifying a functional form for
µ(x), it is computationally awkward when covariates other
than locations are also involved. One way to circumvent
these shortcomings is to form an index as follows. We di-
vide the region into N equal-sized grid squares represented by
gi , i=1, 2, . . . ,N . These grid squares should be large enough
to accommodate, say, a 30-minute tow by a typical fishing
vessel. Within each grid square gi , a response variable Yi

could be thought of as a CPUE obtained by “standard” fish-
ing gear under “standard” ocean conditions. Note that Yi is
random, and we assume that there is an unspecified prob-
ability model ξ behind this randomness. Under this model,
we assume Eξ(Yi |xi) = µ(xi) where xi consists of covariates
(including location) associated with grid square gi . This dis-
cretization is equivalent to assuming that the expected CPUE
value is constant within each grid square. With this conven-
tion, our practical definition of fish abundance index is as
follows.

Definition 2: The fish abundance index in the region R is
computed as I(R) =

∑N

i=1 µ(xi).

This index is not fish population size itself but a conceptual
and discretized expectation, which provides a relative mea-
surement of the true fish abundance. More importantly, it is
possible to construct unbiased estimators for the abundance
index under this framework while it is almost impossible to do
so for the true population abundance. In fishery literature, it is
often postulated that µ(xi) = qλ(xi), where q is the so-called
catchability coefficient (see, for example, Schnute, 1994) and
λ(xi) is the true stock size in the ith grid square. If q can be
determined from other sources, then Î(R)/q̂ serves as an esti-
mate for the total stock size. The true relation between µ(xi)
and λ(xi), however, can be very complicated (Gunderson,
1993). In this article, we focus on estimating the index I(R)
using scientific research trawl survey data. The issue of how
such an index is related to the actual population abundance
will not be addressed.

In grid surveys, it is Yi , not µ(xi), that is observed at each
sampled grid square gi . There are two sources of randomness
here, the random selection of sampling units (grid squares)
and the random observation of catch over a unit effort. An
estimator of I(R) should be assessed with respect to both the
model, ξ, and the design, p. To avoid confusion, we clarify our
interpretation of unbiasedness with the following definition.

Definition 3: Let Î(R) be an estimator of I(R). We
term Î(R) an unbiased estimator of I(R) if E{Î(R)} =
EξEp{Î(R)} = I(R).

3. Models for the Catching Process
Fitted values for µ(xi) are required for estimating the abun-
dance index I(R) and can be obtained through a working
model.

3.1 The Loglinear Model
An overdispersed loglinear model can be a natural choice
for catch data. The model is semiparametric and is speci-
fied through the first and the second order moments of Yi

given the xi, i.e., log(µi) = x′
iβ, V ξ(Yi |xi) = σ2µi, where

µi = µ(xi) = Eξ(Yi |xi) and V ξ denotes the variance under
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the catch model. The σ2 is often referred to as overdispersion
parameter. For catch data it is most likely that σ2 > 1.

Estimation of the model parameters β and σ2 based on the
survey data may follow the general framework of Godambe
and Thompson (1986). Let s be the set of labels for the sam-
pled grid squares, n be the sample size, and πi = P (i ∈ s) be
the inclusion probabilities from the survey design. Let di =
1/πi be the design weights. The quasi-maximum likelihood
estimator β̂ is the solution to U(β) = X ′

nW n(Y n − µn) =
0, where xn = (x′

1, . . . ,x
′
n)′, Yn = (yi , . . . , yn)

′, µn =
(µ1, . . . ,µn)′, µi = exp(x′

iβ), and Wn = diag(d1, . . . , dn). The
yi ’s are the observed values for the Yi ’s. The fitted values for
µi = µ(xi) are given by µ̂i = exp(x′

iβ̂). A moment estima-
tor for σ2 can then be obtained based on Pearson-type fitted
residuals: σ̂2 = (N − k)−1

∑
i∈s di(yi − µ̂i)

2/µ̂i, where k is the
dimension of the parameter space for β.

3.2 Nonparametric Smoothing
Under the assumption that µ(x) is a smooth function of
x, we could estimate µ(xi) by a weighted mean of sam-
pled yj over the whole region. The general form is µ̂(xi) =∑

j∈s w(xj ,xi)yj . There exists a large variety of weighting
schemes under various smoothing strategies in the literature.
Our experience with fishery applications shows that the local
linear estimator is an ideal one to use in terms of the overall
performance of the abundance index estimators. Another ad-
vantage of local linear smoothing is the reduced boundary bias
(Fan and Gijbels, 1996), which could be substantial for other
methods under two or higher dimensional kernel analysis.

The local linear estimator estimates µ(xi) by fitting a linear
model in a neighborhood of xi. However, the µ̂(xi) can also be
expressed as a linear function of the yj ’s. When xi = (x1i, x2i)

′

is of dimension two, it can be shown that w(xj , x) is propor-
tional to∑

i∈s

x2
1iKh(xi − x)

∑
i∈s

x2
2iKh(xi − x)

−
{∑

i∈s

x1ix2iKh(xi − x)

}2

+ {x1jKh(xj − x)}

×
{∑

i∈s

x1ix2iKh(xi − x)
∑
i∈s

x2iKh(xi − x)

−
∑
i∈s

x1iKh(xi − x)
∑
i∈s

x2
2iKh(xi − x)

}

+ {x2jKh(xj − x)}

×
{∑

i∈s

x1iKh(xi − x)
∑
i∈s

x1ix2iKh(xi − x)

−
∑
i∈s

x2
1iKh(xi − x)

∑
i∈s

x2iKh(xi − x)

}
.

It is then rescaled so that
∑

j∈s w(xj ,x) = 1.
Two important issues in nonparametric smoothing are the

choices of the kernel function K and the bandwidth parame-
ter h. It is widely accepted that the choice of K is not crucial.
The literature on the choice of h is extensive. Many exist-

ing methods, such as plug-in, cross-validation, and general-
ized cross-validation, have equal convergence rates but differ
in terms of asymptotic variances (Härdle, Hall, and Marron,
1988; Ruppert, Sheather, and Wand, 1995; Wand, and
Jones, 1995). In this article, we use the data-driven cross-
validation method which minimizes the total prediction error∑

i∈s{µ̂−i(xi) − yi}2, where µ̂−i(xi) is computed with (yi , xi)
being removed from the data set. This method is simple to im-
plement and has good properties in terms of mean integrated
squared errors (Xia and Li, 2002).

4. Methods of Estimation
In this section, we first provide a brief review of conventional
model-based and design-based estimation methods and then
present our proposed model-assisted estimators for fish abun-
dance indices. We show that the maximum pseudo-empirical
likelihood estimator is particularly appealing in the current
context. The method is not only highly efficient but very flex-
ible for incorporating auxiliary information as well as histor-
ical survey data through the assumed catching model. It is
also robust against model misspecifications. In what follows
we consider a well-defined region R, and the abundance index
is simply denoted by I.

4.1 The Design-Based and the Model-Based Approaches:
A Review

There are two conventional approaches in the fishery litera-
ture for analyzing catch-effort data. See, for example, Smith
(1990) for a discussion. In the current context, the sample
data are in the form of {(yi , xi), i ∈ s}. The “design-based”
Horvitz–Thompson (HT) estimator

ÎHT =
∑
i∈s

diyi

for I is widely used, where di = 1/πi are the design weights.
Note that we use p to denote the randomization distribution
induced by the probability sampling design. Under the design-
based framework,

Ep(ÎHT ) =

N∑
i=1

yi,

where for i /∈ s the yi is conceived as the actual catch should
the ith grid square be sampled. It is clear that only if one
treats the observed yi as the true µ(xi) can this estimator be
viewed as design-unbiased for the abundance index I of Def-
inition 2. This amounts to ignoring the variation associated
with the catching process. The estimator is unbiased accord-
ing to Definition 3, but it ignores all the auxiliary information
that is routinely collected from the survey.

The model-based approach assumes that the amount of
catch Y from a unit effort is random and follows a paramet-
ric probability distribution. The abundance index I is defined
and estimated through the estimation of model parameters.
The fact that a portion of the observed catches are zero, while
the rest take positive values and are right-skewed, leads to the
proposal of using the so-called ∆ distribution in estimating
the abundance index. This distribution assigns a positive pa-
rameter for the probability of having zero catch, and often a
lognormal distribution for the nonzero catches (Pennington,
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1983; Smith, 1988). The mean parameter of the ∆ distribution
is treated as the abundance index and is estimated through
the maximum likelihood method. This approach can also be
extended to incorporate auxiliary information. Another ver-
sion of the model-based approach is to rewrite

∑N

i=1 yi as∑
i∈s yi +

∑
i/∈s yi and to use a prediction type of estimator∑

i∈s yi +
∑

i/∈s ŷi through an assumed model (Smith, 1990).
The use of a parametric model such as the ∆ distribution

can provide efficient estimates for the abundance indices if
the model is appropriate. More often than not, however, the
assumed model is too restrictive to describe the particular sit-
uation under study and results in severe bias in estimating the
target abundance indices. In addition, the nature of complex
survey data makes model building and diagnostics difficult
tasks to fulfill. Due to these considerations, the purely model-
based approach will not be included in the FPI application
presented in Section 6.

4.2 The Model-Assisted Estimators
There have been three main model-assisted estimators pro-
posed in the survey research literature. These estimators can
be applied under the current context to obtain more efficient
and robust estimators for the abundance indices. The one
with the simplest structure is the generalized difference (GD)
estimator (Cassel et al., 1976).

ÎGD =
∑
i∈s

diyi −
∑
i∈s

diµ̂i +

N∑
i=1

µ̂i.

The GD estimator is more efficient than the HT estimator
(i.e., has smaller mean squared error) when µ̂(xi) is a good
enough predictor of Yi that the residual variable ri = yi −
µ̂(xi) has a smaller design-based variance than that of the
variable yi itself. This estimator is robust against model mis-
specifications in that E(ÎGD) = EξEp(ÎGD)

.
= I regardless of

the working model used to obtain µ̂(xi).
The model-calibration method (Wu and Sitter, 2001) can

also be applied here to obtain a generalized regression (GR)
estimator for the abundance index by treating µ̂i as an aux-
iliary variable:

ÎGR =
∑
i∈s

diyi + B̂

(
N∑
i=1

µ̂i −
∑
i∈s

diµ̂i

)
,

where B̂ is the estimated regression coefficient of yi on µi.
Since letting B̂ = 1 reduces the GR estimator to the GD esti-
mator, an optimal choice of B̂ guarantees some improvement
of GR over GD in theory. The GR estimator is also approxi-
mately unbiased for I irrespective of the working model used
for the catching process.

The third and more recently proposed pseudo-empirical
likelihood (EL) method (Chen and Sitter, 1999; Wu and
Sitter, 2001) can ideally be used for the estimation of I. Note
that the GR estimator can be rewritten as a weighted sum in
the form

∑
i∈s wiyi. The EL estimator also shares this form,

i.e., ÎEL =
∑

i∈s wiyi, with wi = Npi and pi being the maxi-
mizer of the pseudo-empirical loglikelihood function

l(p) =
∑
i∈s

di log(pi)

subject to constraints

∑
i∈s

pi = 1(pi > 0) and
∑
i∈s

piµ̂i =
1

N

N∑
i=1

µ̂i.

The EL estimator compares favorably with the GR estima-
tor in many aspects and has several distinctive features not
enjoyed by the other two methods.

For many commonly used sampling designs, such as the
stratified random sampling commonly used in fish abundance
surveys, and under some mild regularity conditions on the
modeling, the EL estimator is asymptotically equivalent to
the GR estimator (Wu and Sitter, 2001). One can make either
choice, ÎGR or ÎEL, without any loss of efficiency or robustness.
The GR estimator, when written as ÎGR =

∑
i∈s wiyi, has an

undesirable property: the weight wi can be negative. This
drawback is inherent to a regression-type estimator. Theo-
retically, it is possible to have a negative estimate ÎGR for
the index I. The weights wi = Npi for the EL estimator, on
the other hand, are always positive and hence guarantee non-
negative estimation for I. The EL estimator has a clear max-
imum likelihood interpretation, a feature that is often pre-
ferred by practitioners. In terms of computation, simple and
stable algorithms for computing the EL weights are available
(Chen et al., 2002).

The biggest advantage of using the EL estimator, however,
is the natural extension of the method to incorporating histor-
ical data or data from other sources to improve the abundance
estimates. It has been observed from fishery history that a
fish population usually evolves slowly over time. A sudden
dramatic change in the total stock size or major migration of
the entire fish school from one region to another is unlikely.
Historical data or data from other sources collected from the
same region can be very valuable.

Let µi(t) be the expected grid CPUE for year t, with t =
2 representing the current year and t = 1 the past year (or
other time period). Let µ̂i(2) be obtained using the current
year data and µ̂i(1) using historical data or data from other
sources. Let {yi , i ∈ s} be the observed CPUE from the cur-
rent year survey. The EL estimator of I which uses histori-
cal data as additional auxiliary information is computed as
ÎEL = N

∑
i∈s piyi, where the pi maximize l(p) subject to

∑
i∈s

pi = 1(pi > 0) and
∑
i∈s

piµ̂i(t) =
1

N

N∑
i=1

µ̂i(t), t = 1, 2.

The effect of adding one more constraint into the maximiza-
tion process is equivalent to including an extra independent
variable in regression analysis. The estimator using both con-
straints (t = 1, 2) will perform asymptotically at least as well
as the one using a single constraint (t = 2). The gain in effi-
ciency depends only on the correlation of data between this
year and past years. No models are needed to relate the data
explicitly over different years. The basic properties of the EL
estimator are preserved even if the historical data are irrele-
vant. In such situations the resulting estimator might be less
stable when the sample size is small, a scenario similar to that
of the generalized regression estimator. In addition, one can
incorporate data from many years or many sources by simply
adding more constraints. It is not a problem if the data from
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other sources are collected using different vessels or fishing
gear.

There are many existing methods that employ models built
on biological constraints, or models that accommodate his-
torical data to some degree. Most of those models are state
space models (Schnute, 1994) or autoregressive models (Roff,
1983) that explicitly relate the data structure over the time se-
quence. Efficient analysis from those models can be expected
when the assumed model is correct, but substantial bias could
also be induced when the model is misspecified.

5. Variance Estimation
The two sources of variation associated with the catching pro-
cess and the sampling selection induce two variance compo-
nents for the estimated abundance indices. Let Var denote the
overall variance under the mixed ξp randomization, and V ξ

and Vp the variances under the model and the survey design,
respectively. For the “design-based” HT estimator, we have

Var(ÎHT) = Vξ{Ep(ÎHT)} + Eξ{Vp(ÎHT)}

= Vξ

(
N∑
i=1

yi

)
+ Eξ{Vp(ÎHT)}.

The first term is the variance component due to the random-
ness in fishing, and the second is due to probability sampling.
Typically, the first term is of order O(N) and the second is of
order O(N 2/n). In cases where the sampling fraction is neg-
ligible, i.e., n/N

.
= 0, estimating Var(ÎHT) is asymptotically

equivalent to estimating Vp(ÎHT).
For the grid survey defined in this article, since a single grid

square needs to be defined large enough to accommodate a
typical tow at a certain speed over a 30- or 60-minute time pe-
riod, the total number of grid squares (N) over a fixed region is
usually moderate. For instance, the stratum sampling fraction
used in the FPI survey is sometimes as large as 80%. Variance
estimators following the so-called “design-based” approach by
ignoring the first component will undoubtedly underestimate
the true variance, resulting in unreliable confidence intervals
for the abundance indices.

The first component cannot be estimated without using a
model. Under the loglinear model discussed in Section 3, as-
suming that yi , i = 1, 2, . . . ,N are conditionally independent
given xi, i = 1, 2, . . . ,N , we have

Vξ

(
N∑
i=1

yi

)
= σ2

N∑
i=1

µi = σ2I.

An approximately unbiased variance estimator for ÎHT is given
by

Var(ÎHT) = σ̂2Î + vp(ÎHT),

where vp(ÎHT) is a design unbiased estimator of Vp(ÎHT).

The empirical likelihood estimator ÎEL is a nonlinear es-
timator and its exact variance does not have a closed form.
Under certain regularity conditions on the sampling design
and on the assumed model, similar to those used by Chen

and Sitter (1999) and Wu and Sitter (2001), we can show
that

ÎEL = ÎHT + B

(
N∑
i=1

µi −
∑
i∈s

diµi

)
+ op(Nn−1/2),

where B = (
∑N

i=1 yiµi)/(
∑N

i=1 µ2
i), and the stochastic order

op is with respect to the probability sampling. It follows

immediately that Ep(ÎEL) = Ep(ÎHT) + o(Nn−1/2), and con-

sequently Var(ÎEL)
.
= Vξ(

∑N

i=1 yi) + Eξ{Vp(ÎEL)}, where the
design-based variance component is given by

Vp(ÎEL)
.
= Vp

{∑
i∈s

di(yi − Bµi)

}
.

For most commonly used sampling designs, we have Vp(ÎEL) <

Vp(ÎHT) which implies Var(ÎEL) < Var(ÎHT). Estimation of this
design-based variance component and construction of a vari-
ance estimator for the EL estimator ÎEL are straightforward.
Confidence intervals for the abundance indices can be con-
structed by resorting to the usual normal approximations.

6. Application to the FPI Grid Survey
of the Grand Bank Region

Grid surveys have been conducted over part of the Grand
Bank region on the east coast of Canada since 1996 by FPI
Ltd. The survey aims to provide estimates of abundance in-
dices for several important commercial fish species including
yellowtail flounder, Atlantic cod, and American plaice. Our
analysis reported here is based on the 2001 survey and uses
the data for yellowtail flounder. More analyses on the FPI
grid survey data can be found in a detailed technical report
available from the authors.

The entire region is divided into 626 equal-sized grid
squares, each 10 × 10 square miles. A stratified random sam-
pling design was used where strata boundaries were deter-
mined based on practicality in terms of data collection as well
as homogeneity of fish abundance within each stratum. The
grid map and the strata boundaries are shown in Figure 1.
An approximately optimal sample size allocation scheme was
used where stratum sample size is proportional to the esti-
mated total abundance index of the stratum computed using
data from other sources.

6.1 Modeling
We first build a model that includes all important auxiliary
variables. Preliminary examination of the data reveals that
variables that should be considered include x1 and x2: the
latitude and longitude of the location; x3: light during the tow;
x4: time of the day; and x5: average depth of the tow. The
response variable Y is the number of fish caught per minute
during a 30-minute tow.

Due to economic and physical constraints over trawl sur-
veys, the tows were arranged so that nearby grid squares are
more likely to be towed in an ordered fashion. We may hence
expect some temporal or sequential effect in the survey data.
However, a preliminary time series analysis shows that the
temporal effect is very minor once the spatial factors are in-
corporated into the model. That is, the temporal and spatial
effects are confounded and including the spatial covariates
into the model will likely remove most of the temporal effect.
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Figure 1. Grid map and population density plot.

For the purpose of predicting the expected CPUE over indi-
vidual grid squares, the conditional model assuming the Yi ’s
are independent given the xi’s seems plausible. Note that this
conditional independence assumption is used only for variance
estimation.

For the loglinear model, it is determined that terms of sec-
ond order and/or interaction between x1 and x2 may also be
important. Results from statistical hypothesis tests show that
both x1 and x2 and their second order terms as well as the
interaction term are significant; x3 is also significant but x4

and x5 are not, provided that x1, x2, and x3 are included in
the model. Our final loglinear model includes x1, x2, x2

1, x2
2,

x1 × x2, and x3.
For the local linear regression method, only x1 and x2 are

included in the model. We suspect that not imposing a restric-
tive form for µ(x) allowed x1 and x2 to have better interpretive
power than they have in the loglinear model. This judgment
seems to be supported by the simulation results reported in
Section 6.3.

Our estimation procedure requires x values at each grid
square in the entire region. We do have the first two com-
ponents x1 and x2 corresponding to the central location of
each grid square. Information on other x components were
collected only for the sampled grid squares. In the loglinear
model we set the third covariate x3 to its median value 4.5
(x3 was recorded using a 0–9 scale) in computing the pre-
dicted value µ̂(xi). With this adjustment the impact of x3

was appropriately taken into account.

6.2 The Estimated Abundance Indices over
the Grand Bank Region

We computed three abundance index estimates using the HT
estimator (ÎHT), the EL estimator under the loglinear model

Table 1
Estimated abundance indices for the Grand

Bank region

Stratum Î % (SE)

1 2917.0 49.4 (176.4)
2 1688.3 28.7 (143.4)
3 997.8 16.9 (127.1)
4 230.2 3.9 (68.8)
5 63.9 1.1 (28.8)

Total 5889.8 100 (271.1)

(ÎEL1), and the EL estimator under local linear smoothing
(ÎEL2). The three estimators provide similar point estimates
for the abundance index, with ÎEL2 having the smallest esti-
mated standard error for almost all cases.

Our results reported in Table 1 are based on ÎEL2, and the
overdispersion parameter σ2 is estimated using the combined
data from all strata. A very large proportion (78.1%) of the
total abundance is distributed over the first two strata (I and
II), with some fish activity in stratum III. The large northern
area (stratum V) has virtually no presence of this species.

We supplement Table 1 with the smoothed population den-
sity plot as shown in Figure 1. The abundance index at a given
grid square is the predicted value µ̂(xi) based on local linear
smoothing. The percentages shown are the population abun-
dance index quantiles for the entire region. It is clear that
stratum I contains almost exclusively the top 10% population
quantiles, and strata I and II include most of the top 30% pop-
ulation quantiles, with some minor indication that certain fish
schools appear close to the deep water of the southeast part
of the region.

6.3 A Simulation
While theoretical considerations and the results from Sec-
tion 6.2 are in favor of the EL estimator under local lin-
ear smoothing, it is difficult to draw conclusions regarding
the finite sample performance of the estimator based only
on a single analysis without knowing the true abundance in-
dex. The extremely high sampling fractions in strata I and II
also undermine the performance of the EL estimator since in
such cases the model variance component is likely to prevail.
These issues, however, can be investigated through simulation
studies.

To reduce the huge computational burden over repeated
simulation runs where loglinear model fitting, cross-validation
for local linear smoothing, and maximum empirical likelihood
estimation have to be carried out for each of the simulated
samples, we consider a smaller region consisting of N = 200
grid squares from the original strata I and II. However, strat-
ification will not be used in the simulation. The very high
sampling fractions over this region also enable us to create
a “true index” that is close to the real world. The values of
µ(xi) are obtained through local linear smoothing, and these
smoothed µ(xi) are treated as the true expected CPUE; con-

sequently the true index I =
∑N

i=1 µ(xi) is known under this
setting. Only the location variables are included as covariates.

At each simulation run, the response variable Y is first gen-
erated by using a negative binomial distribution such that
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Table 2
Simulated variance components for abundance index

estimators (×103)

σ2 = 1.5 σ2 = 6.0

f Î V 1 V 2 MSE V 1 V 2 MSE

0.3 HT 7.36 71.92 79.28 30.24 125.12 155.36
EL1 7.36 38.04 45.40 30.24 97.72 127.96
EL2 7.36 29.24 36.60 30.24 96.56 126.80

0.5 HT 7.36 29.12 36.48 31.00 53.16 84.16
EL1 7.36 14.76 22.12 31.00 39.92 70.92
EL2 7.36 10.16 17.52 31.00 36.68 67.68

0.7 HT 7.32 12.00 19.32 29.60 18.96 48.56
EL1 7.32 6.92 14.24 29.60 12.36 41.96
EL2 7.32 4.36 11.68 29.60 12.28 41.88

Eξ(Yi |xi) = µ(xi) and V ξ(Yi |xi) = σ2µ(xi) for a prechosen
overdispersion parameter, σ2. A sample s of n grid squares
is then drawn by simple random sampling without replace-
ment. The three estimators mentioned in Section 6.2 are com-
puted for each sample. This process is repeated B = 1000
times. The simulated bias and mean squared error for an es-
timator Î are computed as Bias(Î) = B−1

∑B

b=1(Îb − I) and

MSE(Î) = B−1
∑B

b=1(Îb − I)2, respectively, where Îb denotes

the estimate Î from the bth simulated sample. The model vari-
ance component is given by V1 = B−1

∑B

b=1(
∑N

i=1 Ybi − I)2

where Ybi is the response variable from the ith grid square
and the bth simulation run. The variance component due to
sampling is obtained as V 2 = MSE − V 1 assuming the bias
is negligible.

Results for three choices of sample size and two values of
the overdispersion parameter are presented in Table 2. The
relative biases |Bias(Î)/I| for all cases are less than 0.5% and
thus are not reported. The three sample sizes represent typical
sampling fractions at low (f = 0.3), median (f = 0.5), and
high (f = 0.7) levels in trawl surveys, and the two values of
σ2 correspond to mild overdispersion (σ2 = 1.5) and severe
overdispersion (σ2 = 6).

The simulation results can be summarized as follows:
(1) the EL estimator under local linear smoothing (ÎEL2) has
the smallest overall variance (or MSE) among all three es-
timators considered; (2) the EL estimator under a loglinear
model (ÎEL1) has performance close to ÎEL2 in many cases but
never outperforms ÎEL2; (3) the HT estimator (ÎHT) has sub-
stantially larger overall variance (or MSE) when the sampling
fraction is not too large; and (4) the model variance compo-
nent becomes dominant when the sampling fraction is high,
particularly under severely overdispersed models.

7. Concluding Remarks
Under our model-assisted framework used in this article, fish
abundance surveys are not viewed as classical design-based
finite population problems. There are two major sources of
variation that should be considered at both the sampling de-
sign stage and the estimation stage, namely, the variation due
to the catching process and the variation due to the sampling
design. The associated variance components are very different

in nature and both play important roles in the estimation of
fish population abundance indices.

Standardization is the key to reducing the variance compo-
nent due to fishing. The FPI grid survey, which uses a stan-
dard scientific vessel, Atlantic Lindsey, and a standard fishing
gear with a group of experienced crew members at a fixed
time period of the year, is an excellent move in that direc-
tion. Information on factors that could affect the fishing out-
come such as temperature and sea bottom type can be used
to build more accurate models for the fishing process. This
information is not collected by the current FPI survey. Such
information would be even more useful if collected for all grid
squares in the region, not just sampled grid squares.

An optimal survey design and suitable estimation tech-
niques are crucial to reducing the other variance component
due to sampling. A near-optimal stratified design should be
attractive for practical considerations when strata boundaries
are chosen for the convenience of the actual trips for data col-
lection. The empirical likelihood method is very attractive in
terms of estimation. Auxiliary information and historical data
can easily be used to improve the abundance estimates.
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Résumé

L’indice d’abondance de poisson pour une région océanique
est défini ici comme l’intégrale de la prise moyenne par ten-
tative (CPUE moyenne), qu’on approxime par la somme des
CPUE espérées sur un maillage. Lorsque les recensements au
chalut sont effectués dans des maillages sélectionnés selon
un schéma d’échantillonnage probabilisé, plusieurs autres
sources de variation interviennent, telles que les dynamiques
des populations de poisson, et le processus de pêche. Dans
ces situations, des méthodes assistées par modèle pour es-
timer l’abondance, reposant à la fois sur le schéma et sur le
modèle, sont avantageuses par rapport à des méthodes basées
seulement sur le schéma comme l’estimateur de Hurvitz-
Thomson (HT) ou seulement sur une approche de prédiction
par modèle. Ce papier développe des méthodes, assistées par
modèle, de vraisemblance empirique (EL) par régression non
linéaire et lissage non paramétrique. Les méthodes sont ap-
pliquées aux recensements maillés de la zone de pêche du
Grand Banc réalisés chaque année de 1996 à 2002 par Fish-
ery Products International. Les méthodes HT et EL don-
nent des estimations ponctuelles des indices d’abondance sim-
ilaires. Des résultats de simulation indiquent cependant que
l’estimateur EL avec lissage local linéaire est associé à de plus
petits écarts-type.
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Härdle, W., Hall, P., and Marron, J. S. (1988). How far are
automatically chosen regression smoothing parameters
from their optimum? Journal of the American Statistical
Association 83, 86–95.

Pennington, M. (1983). Efficient estimators of abundance for
fish and plankton surveys. Biometrics 39, 281–286.

Reed, W. J. (1986). Analyzing catch-effort data allowing for
randomness in the catching process. Canadian Journal of
Fisheries and Aquatic Science 43, 174–186.

Roff, D. A. (1983). Analysis of catch/effort data: A compari-
son of three methods. Canadian Journal of Fisheries and
Aquatic Science 40, 1496–1506.

Ruppert, D., Sheather, S. J., and Wand, M. P. (1995). An
effective bandwidth selector for local least squares re-
gression. Journal of the American Statistical Association
90, 1257–1270.

Schnute, J. T. (1994). A general framework for developing se-
quential fisheries models. Canadian Journal of Fisheries
and Aquatic Science 51, 1676–1688.

Smith, S. J. (1988). Evaluating the efficiency of the
∆-distribution mean estimator. Biometrics 44, 485–493.

Smith, S. J. (1990). Use of statistical models for the estima-
tion of abundance from groundfish trawl survey data.
Canadian Journal of Fisheries and Aquatic Science 47,
894–903.

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. New
York: Chapman & Hall.

Wu, C. and Sitter, R. R. (2001). A model-calibration ap-
proach to using complete auxiliary information from sur-
vey data. Journal of the American Statistical Association
96, 185–193.

Xia, Y. and Li, W. K. (2002). Asymptotic behavior of band-
width selected by the cross-validation method for local
polynomial fitting. Journal of Multivariate Analysis 83,
265–287.

Received January 2003. Revised September 2003.
Accepted September 2003.


