
Biometrika (2003), 90, 4, pp. 937–951

© 2003 Biometrika Trust

Printed in Great Britain

Optimal calibration estimators in survey sampling

B CHANGBAO WU

Department of Statistics & Actuarial Science, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1

cbwu@uwaterloo.ca

S

We show that the model-calibration estimator for the finite population mean, which
was proposed by Wu & Sitter (2001) through an intuitive argument, is optimal among a
class of calibration estimators. We also present optimal calibration estimators for the finite
population distribution function, the population variance, the variance of a linear esti-
mator and other quadratic finite population functions under a unified framework. The
proposed calibration estimators are optimal under the true model but remain design
consistent even if the working model is misspecified. A limited simulation study shows
that the improvement of these optimal estimators over the conventional ones can be
substantial. The question of when and how auxiliary information can be used for both
the estimation of the population mean using a generalised regression estimator and the
estimation of its variance through calibration is addressed clearly under the proposed
general methodology. Some fundamental issues in using auxiliary information from survey
data are also addressed in the context of optimal estimation.

Some key words: Asymptotic design variance; Auxiliary information; Model calibration; Optimal estimation;
Superpopulation.

1. I

The notion of calibration estimators was introduced by Deville & Särndal (1992) in
the context of using auxiliary information from survey data. Suppose U={1, 2, . . . , N}
is the set of labels for the finite population. Let (y

i
, x
i
) be the values of the study variable

y and the vector of auxiliary variables x attached to the ith unit. The question is how to
estimate Y9 =N−1 WN

i=1
y
i
effectively using the known population totals X=WN

i=1
x
i
at the

estimation stage. Let s={1, 2, . . . , n} be the set of sampled units under a general sampling
design, p, and let p

i
=pr (iµs) be the first-order inclusion probabilities. The conventional

calibration estimator for Y9 is defined by YB
C
=N−1 W

iµs
w
i
y
i
, where the w

i
’s are modified

from the basic design weights d
i
=1/p

i
by minimising a distance measure W

s
between the

w
i
’s and the d

i
’s subject to constraints

∑
iµs

w
i
x
i
= ∑
N

i=1
x
i
. (1·1)

The most commonly used distance measure is the chi-squared distance

W
s
= ∑
iµs

(w
i
−d
i
)2/(q
i
d
i
),
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where the q
i
’s are known positive constants uncorrelated with the d

i
’s. Alternative distance

measures can also be considered; see Deville & Särndal (1992) for a detailed discussion.
There are two basic components in the construction of calibration estimators, namely

a distance measure and a set of calibration equations. The choice of a distance measure
is less critical in terms of efficiency since the resulting estimators are all asymptotically
equivalent to the one obtained by using a chi-squared distance with a certain choice of
q
i
’s (Deville & Särndal, 1992). Calibration equations (1·1) are routinely used by many
survey organisations and are referred to as benchmark constraints. Benchmark constraints
are often imposed in practice for two reasons: the surveyor may believe that the weights
which give perfect estimates for the auxiliary variables should also give a good estimate
for the study variable; and the auxiliary information may only be available at the aggregate
level, i.e. only X is known. Statistics practitioners in areas such as demography sometimes
insist on benchmarking over lots of variables to match the known totals from a census
at the risk of worsening the efficiency of the estimators. On the other hand, if complete
auxiliary information x1 , . . . , xN is known, which is often the case in many survey prob-
lems, a very compelling question to ask would be ‘what is the best calibration equation
to be used in the construction of a calibration estimator?’
Let u

i
=u(x

i
) (i=1, . . . , N), where u(.) is a real-valued function. If we replace (1·1) by

∑
iµs

w
i
u(x
i
)= ∑
N

i=1
u(x
i
), (1·2)

then the question becomes ‘which u(.) will make YB
C
most efficient?’ Note that the bench-

mark constraints (1·1) consist of k equations, where k is the number of components in x,
while constraint (1·2) only has one equation involving the single data-reduction variable
u=u(x). The single calibration equation (1·2) is indeed more general than the k con-
straints (1·1), because of the unspecified function u(.). For any k-dimensional vector x=
(x1 , . . . , xk ), if we use u(x)=h0+h1x1+ . . .+h

k
x
k
, where h= (h0 , . . . , hk ) are estimated

by ordinary least squares, then the calibration estimator of the population mean or total
obtained by using the single constraint (1·2) is identical to the one using (1·1) (Wu &
Sitter, 2001, Theorem 1). The conventional calibration estimator based on (1·1) is therefore
a special member of the class of estimators considered in this paper.
It is well known that in survey sampling a uniformly minimum variance unbiased

estimator does not exist under the design-based framework. Indeed the only choice of u(.)
that results in a YB

C
with minimum variance is u(x

i
)¬y, and this of course is practically

useless.
The model-assisted optimal estimators that minimise the expected design variance

E
j
{V
p
(YB )} under a superpopulation model have been discussed by several authors; see for

example the work by Godambe (1955), Godambe & Thompson (1973), Cassel et al. (1976)
and Isaki & Fuller (1982). The expected design variance was also termed ‘anticipated
variance’ by Isaki & Fuller (1982). Note that E

p
and V

p
refer to the expectation and

variance under the sampling design, p, and E
j
and V

j
denote the expectation and variance

under a superpopulation model, j.
In this paper, we use a similar criterion. Calibration estimators belong to the class of

nonlinear estimators and their exact design variance or mean squared error does not have
a closed form. A natural replacement for optimality considerations is to minimise the
model expectation of the asymptotic design variance E

j
{AV
p
(YB )}, where AV

p
represents

the design-based asymptotic variance. Since the bias B
p
(YB
C
)=E

p
(YB
C
−Y9 ) of a calibra-
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tion estimator YB
C
satisfies B

p
(YB
C
)=o(n−D ) and V

p
(YB
C
)=O(n−1 ), minimising E

j
{AV
p
(YB
C
)}

is equivalent to minimising E
j
{E
p
(YB
C
−Y9 )2} asymptotically.

In § 2, we show that the model-calibration estimator for the finite population mean,
which was proposed by Wu & Sitter (2001) through an intuitive argument, is indeed
optimal among a class of calibration estimators in the sense of minimising the expected
asymptotic design variance under a superpopulation model and any regular sampling
design. The result provides a unified framework for constructing optimal calibration esti-
mators for the finite population distribution function, the population variance, the variance
of a linear estimator and other quadratic finite population functions. Optimal calibration
estimators for the distribution function are presented in § 3, and estimators for a general
second-order finite population quantity using optimal calibration are constructed in § 4.
Also in § 4, the question of when and how auxiliary information can be used for both the
estimation of the population mean using a generalised regression estimator and the esti-
mation of its variance through calibration is addressed clearly under the unified frame-
work. The optimal pseudo empirical maximum likelihood estimators, which are
asymptotically equivalent to the optimal calibration estimators, are particularly useful in
estimating the distribution function, the population variance and other known nonnegative
quantities. Our proposed estimators are optimal under the true model but remain design
consistent even if the working model is misspecified. Results of a limited simulation study
on the performance of these optimal estimators under the true model and the robustness
of these estimators against model misspecifications along with comparison to the conven-
tional estimators are reported in § 5. Some fundamental issues in using auxiliary infor-
mation from survey data are also addressed under this framework, and these together
with some concluding remarks are given in § 6.

2. T    - 

For asymptotic analysis, we assume there is a sequence of finite populations, indexed
by n. The population size and sample size for the nth population are denoted by N

n
and

n
n
. As n�2, N

n
�2 and n

n
�2. All limiting processes should be understood to mean

n�2. The index n will be suppressed to simplify notation. For a detailed formulation of
this asymptotic framework, see Isaki & Fuller (1982).
We consider situations where the finite population measurements {(x

i
, y
i
), i=1, . . . , N}

can be viewed as independent realisations from a superpopulation model j such that

E
j
(y
i
|x
i
)=m(x

i
, h ), V

j
(y
i
|x
i
)={v(x

i
)}2s2 (i=1, 2, . . . , N), (2·1)

where h, typically vector-valued, and s2 are model parameters, and the mean function
m( . , . ) and the variance function v(.) have known forms. The v(.) could also be a known
function of m

i
=m(x

i
, h ) as in the case of a generalised linear model. We assume that

complete auxiliary information (x1 , . . . , xN ) is available.
Let YB

C
u

be a calibration estimator of Y9 when C
u
={u(x1 ), u(x2 ), . . .} is used in (1·2) and

an arbitrary distance measure is used. Let L be the set of sequences C
u
={u(x1 ), u(x2 ), . . .}

for all conceivable functions u(.) such that

N−1 ∑
N

i=1
{u(x
i
)}6=O(1)

and N−1 WN
i=1

{u(x
i
)}2�cN0 as N�2. These finite moment conditions on the sequence
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C
u
µL are not very restrictive and are used to furnish the proofs. We assume that

{m(x1 , h ), m(x2 , h ), . . .}µL and {v(x1 ), v(x2 ), . . .}µL .
A sampling design is said to be regular if the design results in a fixed sample size, has

inclusion probabilities p
i
and p

ij
independent of the response measurements y

i
given x

i
,

and satisfies the following conditions.

Condition 1. We require that max
iµs

nd
i
/N=O(1).

Condition 2. We require that N−1 W
iµs

d
i
u
i
−N−1 WN

i=1
u
i
=O
p
(n−D ) for any sequence

(u1 , u2 , . . . )µL .

Condition 1 simply states that no basic design weight is disproportionately large.
Condition 2 can sufficiently be replaced by assuming that the Horvitz–Thompson
estimator for u:N=N−1 WN

i=1
u
i
is asymptotically normally distributed.

T 1. Among the class of calibration estimators YB
C
u

with

C
u
={u(x1 ), u(x2 ), . . .}µL ,

the choice of C
m
={m(x1 , h ), m(x2 , h ), . . .} minimises E

j
{AV
p
(YB
C
u

)} under model (2·1) and
any regular sampling design.

See the Appendix for the proof.
In practice, the model parameter h will have to be replaced by a sample-based estimator,
h@ . The resulting estimator YBMC was termed by Wu & Sitter (2001) the model-calibration
estimator of Y9 . While YBMC is optimal under the true model, it remains design-consistent
even if the working model is misspecified. In other words, YBMC is robust against model
departures. To see this, from the proof of Theorem 1 in the Appendix, we have

YBMC=
1

N
∑
iµs

d
i
y
i
+

1

N q ∑N
i=1
m(x
i
, h@ )− ∑

iµs
d
i
m(x
i
, h@ )r BC , (2·2)

where BC is similarly defined as in the Appendix. Under the regularity conditions (i)–(iii)
described in Wu & Sitter (2001, p. 187), it can be shown that

YBMC=YBHT+
1

N q ∑N
i=1
m(x
i
, h
N
)− ∑
iµs

d
i
m (x
i
, h
N
)r BN+o

p
(n−D ), (2·3)

where YBHT is the Horvitz–Thompson estimator and hN and B
N
are finite population param-

eters estimated by h@ and BC , respectively. Since E
p
{WN
i=1
m(x
i
, h
N
)−W

iµs
d
i
m(x
i
, h
N
)}=0,

the model-calibration estimator YBMC will be design-consistent under any working model
and sampling design satisfying the regularity conditions, with bias of the order of o(n−D ).
When a nonlinear working model is used, however, care has to be given to the verification
of these regularity conditions; see § 5 for an example based on the log-linear model.
The optimal calibration variable m

i
=m(x

i
, h@ ) depends on the response variable y

through the estimated model parameters h@ , and therefore the optimal calibration weights
will also depend on the response variable. This dependence will restrict its applicability
in some cases. It may be required to have a single set of weights not depending on the
y-variables. There are also cases where the statistical agency publishes different weights
for different purposes. The optimal weights computed for a particular y will also produce
design-consistent estimators for other response variables, since the resulting estimator will
still have the form of (2·2) but in this case the mean function m( . , . ) and the estimated
parameters h@ will be associated with a different response variable. Design consistency of
the estimator, however, can be easily argued through (2·3).
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The optimal calibration approach can be applied to the pseudo empirical likeli-
hood method of Chen & Sitter (1999). Let YBEC

u

be the pseudo empirical maximum
likelihood estimator of Y9 obtained by calibrating over C

u
={u(x1 ), u(x2 ), . . .}; that is,

YBEC
u

=W
iµs

p@
i
y
i
, where the p@

i
’s maximise the pseudo empirical loglikelihood function

l( p)=W
iµs

d
i
log ( p

i
) subject to constraints

∑
iµs

p
i
=1 (0<p

i
<1), ∑

iµs
p
i
u(x
i
)=

1

N
∑
N

i=1
u(x
i
). (2·4)

The model-calibrated pseudo empirical maximum likelihood estimator YBME of Y9 is
obtained when C

m
={m(x1 , h

@ ), m(x2 , h
@ ), . . .} is used in constraints (2·4).

T 2. Among the class of pseudo empirical maximum likelihood estimators YBEC
ufor Y9 where C

u
µL , the choice of C

m
={m(x1 , h ), m(x2 , h ), . . .} minimises E

j
{AV
p
(YBEC
u

)}
under model (2·1) and any regular sampling design.

See the Appendix for the proof.
The model-calibrated pseudo empirical maximum likelihood estimator for Y9 is asymp-
totically equivalent to the model-calibration estimator and is optimal within the same
context. Simple algorithms for computing the estimator YBME have been developed by Chen
et al. (2002). The most attractive feature of the estimator YBME , however, is the intrinsic
properties of the weights: p@

i
>0 and W

iµs
p@
i
=1. This is particularly useful when the method

is extended to estimate the distribution function and other known nonnegative quantities.
This is detailed in § 3 for the distribution function and in § 4 for the estimation of variance
and other quadratic functions.

3. O      

The finite population distribution function F
Y
(t)=N−1 WN

i=1
I(y
i
∏t) is also a finite

population mean defined for an indicator variable z
i
=I(y

i
∏t).Without using any auxili-

ary information, estimation of F
Y
(t) is a special case of estimating the population mean

and is usually straightforward. In the presence of auxiliary information, the following
aspects require attention.
(a) While benchmark constraints (1·1) calibrated directly over the x-variables are some-
times justifiable for the estimation of Y9 , this internal consistency requirement, that the
weights for the study variable provide perfect estimates for the auxiliary variables, is not
needed for the estimation of F

Y
(t). Efficiency will be the primary concern.

(b) We have to work with the indicator variable z
i
=I(y

i
�t) and to consider the issue

of local efficiency, at a particular value of t, versus global efficiency, at an arbitrary t, in
estimating F

Y
(t).

(c) It is desirable that an estimator of F
Y
(t), FC

Y
(t) say, be itself a distribution function,

so that quantile estimates can be obtained through direct inversion of FC
Y
(t).

Many techniques for estimating Y9 , when applied directly to the estimation of FY (t), will
produce unsatisfactory results. For instance, in the case of a scalar x variable, a regression-
type estimator for F

Y
(t) will have the form FCRE (t)=FC

Y
(t)+{F

X
(t)−FC

X
(t)}BC , where

FC
Y
(t) and FC

X
(t) are Horvitz–Thompson-type estimators for F

Y
(t) and F

X
(t)=

N−1 WN
i=1

I(x
i
∏t). The BC is the estimated slope of regressing I(y

i
∏t) on I(x

i
∏t). The

estimator FC RE (t) suffers from several drawbacks, the obvious one being that FC RE (t) is not
a distribution function and can take values outside [0, 1].
The model-calibrated pseudo empirical likelihood method provides estimators of
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F
Y
(t) which are not only efficient but are also themselves genuine distribution functions.

The optimal calibration variable m(x
i
, h ) should now be replaced by g(x

i
, t)=

E
j
{I(y
i
∏t) |x

i
}=pr (y

i
∏t |x

i
). Two types of working model can be considered for

obtaining g(x
i
, t), models that relate the y

i
to the x

i
or models that relate the indicator

variable I(y
i
∏t) to the x

i
. Under the commonly used regression model, we have

y
i
=x∞
i
h+v(x

i
)e
i

(i=1, 2, . . . , N), (3·1)

where the e
i
’s are independent and identically distributed random variates with mean 0

and variance s2. Let G(.) be the cumulative distribution function of the e
i
’s. We have

g(x
i
, t)=pr (y

i
∏t |x

i
)=G{(t−x∞

i
h )/v(x

i
)}. (3·2)

As in the mean case, the model parameter h will have to be replaced by a sample-based
design-consistent estimator in applications.
Note that g

i
=g(x

i
, t) are probabilities. An alternative modelling process is to use a

generalised linear model for the binary observations I(y
i
∏t), such as a logistic regression

model

log A g
i

1−g
i
B=x∞

i
h, (3·3)

with the usual variance function V (g)=g(1−g). Under model (3·3) we have g(x
i
, t)=

exp (x∞
i
h )/{1+exp (x∞

i
h )}. Let FCEC

u

(t)=W
iµs

p@
i
I(y
i
∏t), where the p@

i
’s maximise l( p) subject

to constraints (2·4) with C
u
={u(x1 ), u(x2 ), . . .}.

T 3. T he pseudo empirical maximum likelihood estimator FCME (t) calibrated over
{g(x1 , t), g(x2 , t), . . .} is optimal among the class of estimators FCEC

u

(t) with C
u
µL under the

working model (3·1) or (3·3) and any regular sampling design.

Proof. The result follows directly from Theorem 2 if one replaces y
i
by I(y

i
∏t) and

m(x
i
, h ) by g(x

i
, t). %

The design-based properties and small sample performance of these estimators and the
related quantile estimation problem are investigated in Chen &Wu (2002). With complete
auxiliary information, there exist several other estimators for the distribution function in
the literature. Two leading competitors, the model-based estimator of Chambers &
Dunstan (1986) and the model-assisted difference estimator of Rao et al. (1990), together
with the calibration estimator of Chen & Sitter (1999) calibrated directly over the x
variables, will be examined in the simulation study reported in § 5.
Note that the two working models (3·1) and (3·3) discussed above are not compatible

with each other. Optimality of the resulting estimator, therefore, is meaningful under the
chosen model. Note also that the optimal calibration variable g(x

i
, t) depends on t. No

single set of weights p@
i
will produce an estimator that is optimal for all t. Chen & Wu

(2002) suggest using a fixed t0 in g(x
i
, t) while the resulting weights are used for any t in

FCME (t). As a result FCME (t) is a genuine distribution function. Chen & Wu (2002) demon-
strate through a simulation study that this FCME (t) is very efficient for values of t in a wide
neighbourhood of t0 . The actual value of t0 can be easily determined so as to maximise
the efficiency of the resulting estimator when a certain neighbourhood of t0 is of interest.
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4. O       

4·1. Estimation of second-order population quantities

Estimation of variance and other second-order finite population quantities using auxili-
ary information has been addressed by many survey researchers. Various techniques have
been attempted, such as regression, ratio and calibration estimation; see Sitter & Wu
(2002) for a literature review. A common weakness of these approaches is the ad hoc
argument of applying certain techniques, which were originally developed for estimating
Y9 , to estimate variance or other second-order population parameters without a common
framework that unifies the two types of finite population parameter.
The optimal model-calibration and the model-calibrated pseudo empirical likelihood

methods can be extended to handle variance and other second-order finite population
parameters through a batch approach. For parameters in a general form of
Q=WN

i=1
WN
j=i+1

w(y
i
, y
j
), which include the population variance

S2=N−1 ∑
N

i=1
(y
i
−Y9 )2={N(N−1)}−1 ∑

N

i=1
∑
N

j=i+1
(y
i
−y
j
)2

and the variance of the Horvitz–Thompson estimator

V
p
(YCHT )= ∑

N

i=1
∑
N

j=i+1
(p
i
p
j
−p
ij
) (y
i
/p
i
−y
j
/p
j
)2

as special cases, a unified estimation strategy can be developed as follows.
We may view Q as a total over a synthetic finite population, that is Q=WN*

a=1
t
a
, where

a= (ij )=1, 2, . . . , N*, t
a
=w(y

i
, y
j
) for a= (ij ), and N*=N(N−1)/2 is the total number

of pairs. The sample data over the synthetic population consist of all pairs from the
original sample: s*={(ij ) : i< j, i, jµs}. The ‘first-order’ inclusion probabilities under this
setting are p

ij
=pr (i, jµs), and the ‘basic design weights’ are d

ij
=1/p

ij
. The mean function

m(x
i
, h )=E

j
(y
i
|x
i
) should now be replaced by E

j
{w(y
i
, y
j
) |x
i
, x
j
}.

If we use the original pair index (ij ), the model-calibration estimator of Q is defined as
QC MC=Wiµs

W

j>i
w
ij
w(y
i
, y
j
), where the weights w

ij
minimise the modified chi-squared

distance measure

W
s*
= ∑
iµs
∑
j>i

(w
ij
−d
ij
)2/(d
ij
q
ij
)

subject to

∑
iµs
∑
j>i

w
ij
E
j
{w(y
i
, y
j
) |x
i
, y
j
}= ∑

N

i=1
∑
N

j=i+1
E
j
{w(y
i
, y
j
) |x
i
, x
j
}. (4·1)

Let QC
C*
u

be a calibration estimator of Q when C*
u
={u(x

i
, x
j
), i, j=1, 2, . . .} is used in

(4·1) as the calibration variable. Let L * be the set of all possible sequences
C*
u
={u(x

i
x
j
), i, j=1, 2, . . .} satisfying a finite moment condition similar to the one used

in defining L . If we redefine the regular sampling design by replacing the d
i
’s in Conditions

1 and 2 of § 2 by d
ij
with suitable reformulation, we have the following result.

T 4. Among the class of calibration estimators QC
C*
u

with

C*
u
={u(x

i
, x
j
), i, j=1, 2, . . .}µL *,

the model-calibration estimator QC MC attains the minimum value of E
j
{AV
p
(QC
C*
u

)} under model
(2·1) and any regular sampling design.

Proof. The result of Theorem 1 does not apply directly here because of a weak corre-
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lation among the sequence of t
a
=w(y

i
, y
j
), for a= (ij )=1, 2, . . . , N*, since t

a
and t

a∞
are

not independent of each other under model (2·1) if a= (ij ) and a∞= ( lm) have one index
in common. However, the total number of pairs (t

a
, t
a∞
) with possible nonzero covariance

is of order O(N3 )=O{(N*)3/2}, and the total number of zero-covariance pairs is of order
O{(N*)2}; with similar notation to that in the proof of Theorem 1, it can be shown that

E
p
{V
j
(T
1
)}=O{(N*)−1}, E

p
{V
j
(T
2
)}=O{(n*)−1(N*)−D},

where n*=n(n−1)/2. The rest of the proof follows directly from that of Theorem 1. %

The pseudo empirical loglikelihood function can also be modified to accommodate all
the pairs (ij ) using the d

ij
’s. Let

l*( p)= ∑
iµs
∑
j>i

d
ij
log p
ij
.

The model-calibrated pseudo empirical maximum likelihood estimator of Q is defined as

QC ME=N* ∑
iµs
∑
j>i

p@
ij
w(y
i
, y
j
),

where the p@
ij
’s maximise l*( p) subject to p

ij
>0 and

∑
iµs
∑
j>i

p
ij
=1, ∑

iµs
∑
j>i

p
ij
E
j
{w(y
i
, y
j
) |x
i
, x
j
}=

1

N*
∑
N

i=1
∑
N

j=i+1
E
j
{w(y
i
, y
j
) |x
i
, x
j
}.

(4·2)

A theorem that is parallel to Theorem 2 regarding the optimality of QC ME can be similarly
established. As usual, any model parameter appearing in constraints (4·1) or (4·2) will be
replaced by sample-based design-consistent estimators.

4·2. Estimation of the population variance

Note that the population variance can be rewritten as

S2={N(N−1)}−1 ∑
N

i=1
∑
N

j=i+1
(y
i
−y
j
)2.

Under model (2·1),

E
j
{(y
i
−y
j
)2 |x
i
, x
j
}={m(x

i
, h )−m(x

j
, h )}2+s2{v2(x

i
)+v2(x

j
)},

and this should be used in constraints (4·1) for optimal estimation. One can also replace
(4·1) by two equations,

∑
iµs
∑
j>i

w
ij
{m(x
i
, h )−m(x

j
, h )}2= ∑

N

i=1
∑
N

j=i+1
{m(x
i
, h )−m(x

j
, h )}2, (4·3)

∑
iµs
∑
j>i

w
ij
{v2(x

i
)+v2(x

j
)}= ∑

N

i=1
∑
N

j=i+1
{v2(x

i
)+v2(x

j
)}, (4·4)

to avoid the estimation of s2. In many applications v(x
i
)¬1, in which case the second

calibration equation (4·4) becomes W
iµs
W

j>i
w
ij
=N*. The resulting estimator SC 2MC reduces

to the one proposed by Sitter & Wu (2002). Under a linear working model where
m(x
i
, h )=x∞

i
h, this estimator has a neat form of SC 2MC=SC 2HT+h

@ ∞(S2
x
−s2
x
)h@BC , where

SC 2HT={N(N−1)}−1 ∑
iµs
∑
j>i

d
ij
(y
i
−y
j
)2, S2

x
= (N−1)−1 ∑

N

i=1
(x
i
−X9 ) (xi−X9 )∞,

s2
x
={N(N−1)}−1 ∑

iµs
∑
j>i

d
ij
(x
i
−x
j
) (x
i
−x
j
)∞,
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and BC is the estimated regression coefficient of regressing v
ij
= (y
i
−y
j
)2 over

u
ij
=h@ ∞(x

i
−x
i
) (x
i
−x
j
)∞h@ .

The model-calibrated pseudo empirical maximum likelihood estimator is more useful
in this context, because of the normalised positive weights. Note that under model (2·1)
constraints (4·2) can be replaced by

∑
iµs
∑
j>i

p
ij
=1 ( p

ij
>0), (4·5)

∑
iµs
∑
j>i

p
ij
{m(x
i
, h )−m(x

j
, h )}2=

1

N*
∑
N

i=1
∑
N

j=i+1
{m(x
i
, h )−m(x

j
, h )}2, (4·6)

∑
iµs
∑
j>i

p
ij
{v2(x

i
)+v2(x

j
)}=

1

N*
∑
N

i=1
∑
N

j=i+1
{v2(x

i
)+v2(x

j
)}. (4·7)

When v(x
i
)¬1, equation (4·7) reduces to (4·5), and the resulting estimator SC 2ME also reduces

to the one proposed by Sitter & Wu (2002). A simple and stable algorithm for computing
the weights p@

ıj
is described in Sitter & Wu (2002). Since p@

ij
>0, the model-calibrated

pseudo empirical maximum likelihood estimator is always positive, which is desirable for
practical applications.
Under a model with nonhomogeneous variance, including constraint (4·4) or (4·7) will

usually improve the efficiency of the resulting estimators, as shown by the simulation
study reported in § 5.

4·3. Variance estimation for the generalised regression estimator

The generalised regression estimator for the population total or mean is one of the
most popular techniques for using auxiliary information from surveys. If the totals X
are assumed known, the generalised regression estimator for the population total Y is
computed as YCGR=YCHT+ (X−XC HT )∞h

@ , where YCHT=Wiµs
d
i
y
i
and XC HT=Wiµs

d
i
x
i
are the

conventional Horvitz–Thompson estimators, and h@ is the estimated regression coefficient
of y over x. Its asymptotic design variance is given by

AV
p
(YCGR )= ∑

N

i=1
∑
N

j=i+1
(p
i
p
j
−p
ij
) Aeip
i
−

e
j
p
j
B2,

where e
i
=y
i
−x∞
i
h
N
and h

N
is the finite population regression coefficient that is estimated

by h@ .
The question of when and how auxiliary information can be used for both the estimation

of the population total using a generalised regression estimator and the estimation of its
variance can now be answered clearly under the optimal model-calibration approach.
Note that AV

p
(YCGR ) has the form of Q with w(y

i
, y
j
)= (p

i
p
j
−p
ij
) (e
i
/p
i
−e
j
/p
j
)2. Under

model (3·1), which is the one that motivated the generalised regression estimator, the
optimal calibration variable that should be used in (4·1) is

E
j
{w(y
i
, y
j
) |x
i
, x
j
}j (p

i
p
j
−p
ij
) qv2(xi )p2

i
+

v2(x
j
)

p2
j
r s2.

Here we have used the fact that E
j
(e
i
)=0. It is now clear that, if model (3·1) has a

homogeneous variance structure, that is v(x
i
)¬1, the calibration variable will be indepen-

dent of the x
i
’s. The same auxiliary information cannot be used to improve variance

estimation for the generalised regression estimator. On the other hand, under a linear
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regression model with nonhomogeneous variance, there will be room for improvement.
The constraint that should be used to construct the model-calibration estimator is given
by

∑
iµs
∑
j>i

w
ij
(p
i
p
j
−p
ij
) qv2(xi )p2

i
+

v2(x
j
)

p2
j
r= ∑N
i=1

∑
N

j=i+1
(p
i
p
j
−p
ij
) qv2(xi )p2

i
+

v2(x
j
)

p2
j
r .

A similar constraint should be used when one estimates AV
p
(YCGR ) using the model-

calibrated pseudo empirical likelihood method.

5. S 

In this section, we investigate the optimality of the proposed estimators under the
true model and their robustness against model misspecifications. We also compare our
estimators to the leading existing competitors.
In the simulation, a fixed finite population of size N=2000 was generated from a super-
population model, j. Two superpopulation models were used: model P1 is a linear regression
model with a nonhomogeneous variance structure, so that y

i
=b0+b1x1i+b2x2i+x

1i
e
i
,

and model P2 is the log-linear model log yi=b0+b1x1i+b2x2i+ei , for i=1, . . . , N. Let
x
i
= (1, x

1i
, x
2i

)∞ and b= (b0 , b1 , b2 )∞. The mean function and the variance function for
the linear model P1 are mi=m(xi , b)=x∞

i
b and v

i
=v(x

i
)=x
1i

, and for the nonlinear
model P2 they are mi=exp (x∞ib) and v

i
=m
i
, that is V

j
(y
i
|x
i
)=s2m2

i
. Under the log-

linear model P2 , the regularity condition (ii) of Wu & Sitter (2001) would require
N−1 WN

i=1
exp (x∞

i
b)=O(1), so certain heavy-tailed distributions such as the log-normal

distribution or the gamma distribution with a large scale parameter cannot be used to
generate the x values. With this in mind, we generated the x

1i
’s from a gamma distribution

with shape parameter 1 and scale parameter 0·5, and the x
2i
’s from |Z | where Z~N(0, 1).

Both auxiliary variables take nonnegative values and are skewed to the right, which is
quite common in real applications. The values of b1 and b2 were both conveniently set to
be 1 and b0 was chosen such that y

i
>0 for model P1 . The ei’s are independent and

identically distributed as N(0, s2
0
). Four different values of s2

0
were used such that the

finite population correlation coefficient r between y
i
and x

1i
+x
2i
for model P1 or between

log y
i
and x

1i
+x
2i
for model P2 are 0·9, 0·8, 0·7 and 0·6, respectively. In each simulation

run, a simple random sample of size n=100 was taken from the finite population, the
model parameters (b0 , b1 , b2 ) and s2 were estimated by the weighted least squares method
for model P1 and by the quasi maximum likelihood method for model P2 , and various
estimators were computed. The process was repeated B=1000 times. The simulation was
programmed in R/S-Plus and the source codes are available from the author upon request.
For the population mean Y9 , the conventional calibration estimator of Deville & Särndal
(1992) is equivalent to the model-calibration estimator under a linear model. We denote
the model-calibration estimator, , and the model-calibrated pseudo empirical maximum
likelihood estimator, , under the linear model P1 by YBMC

1

and YBME
1

; the corresponding
estimators under the log-linear model P2 are denoted by YBMC

2

and YBME
2

. The performance
of an estimator YB is evaluated using its relative bias, , and relative efficiency, , defined
by

=B−1 ∑
B

b=1
(YB
b
−Y9 )/Y9 , = (YBHT )/ (YB ),

where  (YB )=B−1 WB
b=1

(YB
b
−Y9 )2 and YB

b
is computed from the bth simulated sample.
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The Horvitz–Thompson estimator, YBHT , is used for baseline comparison. Large values of
 (>1) represent high efficiency.
The simulated absolute values of relative biases are all less than 0·5%. The simulated

relative efficiencies are reported in Table 1. Note that YBMC
1

and YBME
1

are optimal under
model P1 while YBMC

2

and YBME
2

are optimal under model P2 , and other cases are associated
with model misspecification. The optimality of the  and the  estimators under the
true model and the robustness of these estimators against misspecified models are clearly
supported by the simulation results. The fact that fitting a log-linear model under P1 is
less serious than fitting a linear model under P2 is also shown from the simulation. For
example, under P1 with r(yi , x1i+x

2i
)=0·80, we found that r( log y

i
, x
1i
+x
2i
)=0·77,

while, under P2 with r( log y
i
, x
1i
+x
2i
)=0·80, we observed r(y

i
, x
1i
+x
2i
)=0·59. Under

all cases the  estimator and the  estimator perform similarly to each other.

Table 1. Simulated relative eYciencies of estimators for the
population mean relative to the Horvitz–T hompson estimator

r YBMC
1

YBME
1

YBMC
2

YBME
2

YBMC
1

YBME
1

YBMC
2

YBME
2

Model P1 Model P2
0·60 1·62 1·61 1·58 1·57 1·01 1·02 1·08 1·05
0·70 2·07 2·05 1·96 1·96 1·10 1·11 1·56 1·49
0·80 2·91 2·87 2·52 2·58 1·25 1·28 2·42 2·28
0·90 5·71 5·66 3·87 4·24 1·52 1·58 5·54 5·19

For the distribution function F
Y
(t), four estimators are computed under the linear

regression model P1 , the model-based estimator of Chambers & Dunstan (1986), , the
model-assisted difference estimator of Rao et al. (1990), , the optimal model-calibrated
empirical likelihood estimator, 1 , and the pseudo empirical likelihood estimator of Chen
& Sitter (1999) calibrated directly over the x variables, . The optimal model-calibrated
empirical likelihood estimator under the logistic regression model (3·3) is denoted by 2 .
Once again, the Horvitz–Thompson estimator FCHT (t) is used for baseline comparison. All
estimators are computed at five different population quantiles t

a
with a=0·10, 0·30, 0·50,

0·70 and 0·90, and the optimal weights p@
i
are computed using the particular value of t

a
.

Table 2 presents the simulated relative efficiencies under populations P1 and P2 , both
with r=0·80. Results for other values of r demonstrated a similar pattern, together with
reduced relative efficiency for all estimators as r decreases. The simulated relative biases
are all within 2% except for the Chambers & Dunstan estimator which is outrageously
biased under model P2 . Table 2 can be summarised as follows: the optimal estimator 1
and the Rao et al. difference estimator show good and similar performance under the true

Table 2. Simulated eYciencies of estimators for the distribution function
relative to the Horvitz–T hompson estimator, at five a-quantiles

a a
Method 0·10 0·30 0·50 0·70 0·90 0·10 0·30 0·50 0·70 0·90

Model P1 Model P2
 7·85 9·85 8·60 7·96 6·95 0·05 1·13 0·61 0·34 0·26
 2·04 2·75 2·56 2·67 2·28 0·93 1·28 1·40 1·45 1·32
1 1·99 2·75 2·56 2·65 2·17 1·07 1·29 1·40 1·45 1·31
2 1·56 2·13 2·15 2·31 1·85 1·14 1·48 1·66 1·96 1·62
 1·08 1·47 1·76 1·93 1·46 1·11 1·35 1·60 1·83 1·42
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model P1 and are robust against the misspecified model P2 ; the model-based Chambers
&Dunstan estimator has superb performance under the true model P1 but totally collapsed
under the misspecified model P2 ; the estimator 2 based on an assumed logistic regression
model performs reasonably well. It is less efficient than 1 under the true model but has
better performance when the model is misspecified as P2 ; the Chen & Sitter estimator
shows marginal to moderate gain of efficiency at all cases.
The optimal estimator 1 may be preferred to the Rao et al. estimator for real

applications. Let g
i
=g(x

i
, t) be given by (3·2). The Rao et al. estimator is

FCRKM (t)=FCHT (t)+N−1 A ∑N
i=1

g
i
− ∑
iµs

d
i
g
iB .

It is not a distribution function and can indeed take values outside [0, 1]. On the other
hand, the 1 estimator is FCME

1

(t)=W
iµs

p
i
I(y
i
∏t) with p

i
>0 and W

iµs
p
i
=1. Quantile

estimation can be easily achieved through direct inversion of FCME
1

(t). Theoretically we
can show that the 1 estimator will perform at least as well as the Rao et al. estimator
under large samples (Chen & Wu, 2002).
For the population variance S2, the calibration estimator and the empirical maximum
likelihood estimator of Sitter & Wu (2002) using the single constraint (4·3) or (4·6) are
denoted by SC 2MC

1

and SC 2ME
1

, respectively. The optimal estimators using both constraints
(4·3) and (4·4), or (4·6) and (4·7), are denoted by SC 2MC

2

and SC 2ME
2

. The uniform weights
q
ij
=1 are used for the  estimators. These estimators are computed based on model P1 .

The relative bias and relative efficiency are similarly defined and comparisons are made
with the baseline Horvitz–Thompson estimator SC 2HT .
The simulated relative efficiencies of all four estimators under the true model are

reported in Table 3. The absolute values of the simulated relative bias are all less than
4%. The estimators SC 2MC

1

and SC 2ME
1

perform well when the variable of the mean function,
m(x
i
, b@ )=x∞

i
b@ , is a strong predictor of the response variable, corresponding to a high value

of r, but they deteriorate quickly as the relationship becomes weak. The optimal estimators
and SC 2MC

2

and SC 2ME
2

, which use auxiliary information from both the mean function m(x
i
, b@ )

and the variance function v(x
i
), perform well for all cases, and their loss of efficiency when

r is reduced is less dramatic.

Table 3. Simulated eYciencies of estimators
for the population variance relative to the

Horvitz–T hompson estimator

r SC 2MC
1

SC 2ME
1

SC 2MC
2

SC 2ME
2

0·60 1·72 1·68 2·20 2·05
0·70 1·82 1·77 2·25 2·13
0·80 2·00 1·94 2·34 2·25
0·90 2·55 2·47 2·77 2·68

6. D

The proposed optimal calibration approach requires specification of a mean function
m(x
i
, h ) and/or a variance function v(x

i
) from the model. A general discussion of model

building and diagnostics using complex survey data is beyond the scope of this paper and
requires further research. In many applications, the parametric linear regression model
(3·1) will probably be used. In the case of a single x variable, Breidt & Opsomer (2000)
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used nonparametric smoothing technique to find the model expectations of the response
variable. Extending the method to multiple x variables seems possible.
An important feature of the results presented in this paper is that the optimality of the

model-calibration or the model-calibrated pseudo empirical maximum likelihood esti-
mators is independent of the sampling design as long as the latter is ‘regular’. This is in
contrast to the results of Godambe & Thompson (1973), or Cassel et al. (1976), where
an optimal estimator corresponds to a particular sampling design. The independence of
the optimality of an estimator to sampling design is practically appealing when such an
estimator is to be constructed at the estimation stage. Some fundamental issues in using
auxiliary information from surveys can now be addressed more clearly in the light of this
optimal calibration approach.
(i) The effective use of auxiliary information from survey data depends on both the

population quantities to be estimated and the actual relationship between the response
variable and the covariates. Blindly calibrating over auxiliary variables is usually not a
good approach.
(ii) The benchmark constraints used in (1·1) are justifiable if the relationship between

y and x is close to linear and the parameter of interest is the population mean or
total. In this case the resulting conventional calibration estimator of Y9 is identical to the
optimal model-calibration estimator obtained using m@

i
=x∞
i
h@ as the calibration variable,

so benchmarking implies efficient estimation.
(iii) If the relationship between y and x is linear, knowing X9 is ‘sufficient’ for efficient

estimation of the population mean Y9 or the total Y. If the relationship is nonlinear, or
the parameters of interest involve a nonlinear function, complete auxiliary information
and/or more advanced modelling are essential for ‘optimal’ estimation.
(iv) The variance function v(x

i
) from model (2·1) does not play a role in the construction

of optimal calibration estimators for the population mean or total. However, this is not
the case for the optimal estimation of the finite population distribution function, the
population variance or other second-order population quantities where v(x

i
) is equally as

important as the mean function m(x
i
, h ).

(v) Auxiliary information can sometimes be triply used at the design stage, the esti-
mation of the population mean or total using a generalised regression estimator, and the
estimation of its variance through calibration. Such situations can be identified under the
optimal calibration approach.
For cases where complete auxiliary information is required for optimal estimation but

such information is not available, the optimal calibration approach can be combined with
two-phase sampling in which the large first-phase sample measured over the covariates is
treated as ‘complete’ auxiliary information; see Wu & Luan (2003) for further details.
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A

Proofs of T heorems 1 and 2

Proof of T heorem 1. Without loss of generality, we consider the chi-squared distance measure
with the weights q

i
satisfying N−1 WN

i=1
q6
i
=O(1) and q

i
�q for some constant q>0. It can be
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easily shown that minimising W
s
subject to (1·2) leads to

YB
C
u

=
1

N
∑
iµs

d
i
y
i
+

1

N A ∑N
i=1

u
i
− ∑
iµs

d
i
u
iB BC ,

where u
i
=u(x

i
) and BC= (W

iµs
d
i
q
i
u
i
y
i
)/(W
iµs

d
i
q
i
u2
i
). Under a regular sampling design,

AV
p
(YB
C
u

)=V
p
(T ), where

T=
1

N
∑
iµs

d
i
y
i
+

1

N A ∑N
i=1

u
i
− ∑
iµs

d
i
u
iB BN

and B
N
= (WN

i=1
u
i
q
i
y
i
)/(WN
i=1

q
i
u2
i
).

Let m
i
=m(x

i
, h ), m:=E

j
(Y9 )=N−1 WN

i=1
m
i
and B

j
(T )=E

j
(T )−m: . Since E

p
(T )=Y9 and

V
p
(T )=E

p
(T−Y9 )2, it is straightforward to show that

E
j
{V
p
(T )}=E

p
{V
j
(T )}+E

p
{B
j
(T )}2−V

j
(Y9 ).

Note that E
j
and V

j
are conditional on the given x

i
’s. Let

U2=N−1 ∑
N

i=1
q
i
u2
i
, D=N−1 A ∑N

i=1
u
i
− ∑
iµs

d
i
u
iB .

We can rewrite T as T1+T2 , where T
1
=N−1 W

iµs
d
i
y
i
and T

2
=DU−2N−1 WN

i=1
q
i
u
i
y
i
. We have

E
p
{V
j
(T )}=E

p
{V
j
(T
1
)}+E

p
{V
j
(T
2
)}+2E

p
{cov
j
(T
1
, T
2
)},

where cov
j
(T1 , T2 ) denotes the covariance under the model. It can be seen that

E
p
{V
j
(T
1
)}=

1

N2
∑
N

i=1
d
i
v2(x
i
)s2=O A1nB , (A·1)

E
p
{V
j
(T
2
)}={E

p
(D2 )}U−4

1

N2
∑
N

i=1
q2
i
u2
i
v2(x
i
)s2=O A 1nNB . (A·2)

Here the last step in (A·1) follows from the Condition 1 that max
iµs

nd
i
/N=O(1) and the

assumption that {v(x1 ), v(x2 ), . . .}µL , and the last step in (A·2) follows by noting that

E
p
(D2 )=V

p AN−1 ∑
iµs

d
i
u
iB=O(n−1 ),

U2 is bounded from zero, and N−1 WN
i=1

q2
i
u2
i
v2(x
i
)=O(1) under the assumed finite moment

conditions.
It also follows from |cov

j
(T
1
, T
2
) |∏{V

j
(T
1
)}1/2{V

j
(T
2
)}1/2 that

{E
p
|cov
j
(T
1
, T
2
) |}2∏E

p
{V
j
(T
1
)}E
p
{V
j
(T
2
)},

which implies that E
p
{cov
j
(T
1
, T
2
)}=O(n−3/2 ). When n is large, the leading term in E

p
{V
j
(T )} is

E
p
{V
j
(T1 )}, which is independent of the choice of sequence C

u
. The term V

j
(Y9 ) is also independent

of C
u
.

For the term E
p
{B
j
(T )}2, note that

B
j
(T )=

1

N
∑
iµs

d
i
(m
i
−u
i
B)−

1

N
∑
N

i=1
(m
i
−u
i
B),

where B=WN
i=1

q
i
u
i
m
i
/WN
i=1

q
i
u2
i
. It follows that E

p
{B
j
(T )}=0 and

E
p
{B
j
(T )}2=V

p
{B
j
(T )}=V

p qN−1 ∑
iµs

d
i
(m
i
−u
i
B)r=O(n−1 ).

Minimising E
j
{AV
p
(YB
C
u

)} amounts to minimising E
p
{B
j
(T )}2. The choice C

m
= (m
1
, m
2
, . . . ) results
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in B=1 and E
p
{B
j
(T )}2=0. %

Proof of T heorem 2. By Theorem 1 of Chen & Sitter (1999), we have

YBME=A∑
iµs

d
iB−1 ∑

iµs
d
i
y
i
+q 1N ∑N

i=1
u(x
i
)−A∑

iµs
d
iB−1 ∑

iµs
d
i
u(x
i
)r BC+o

p
(n−1/2 ),

where BC is similarly defined as in Theorem 1 with q
i
=1.

The term T *
1
= (W

iµs
d
i
)−1 W

iµs
d
i
y
i
is a ratio-type estimator and its design-based variance

V
p
(T *
1

) is not the same as V
p
(T1 ), where T

1
=N−1 W

iµs
d
i
y
i
. However, since W

iµs
d
i
is a constant

under the superpopulation model, the conclusion about E
p
{V
j
(T1 )} in Theorem 1 can also be

restated here in terms of T *
1

. The remaining part of the proof is similar to the proof of Theorem 1
and is omitted. %
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