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S

Design weights in surveys are often adjusted to accommodate auxiliary information and to meet
pre-specified range restrictions, typically via some ad hoc algorithmic adjustment to a generalised
regression estimator. In this paper, we present a simple solution to this problem using empirical
likelihood methods or generalised regression. We first develop algorithms for computing empirical
likelihood estimators and model-calibrated empirical likelihood estimators. The first algorithm
solves the computational problem of the empirical likelihood method in general, both in survey
and non-survey settings, and theoretically guarantees its convergence. The second exploits proper-
ties of the model-calibration method and is particularly simple. The algorithms are adapted for
handling benchmark constraints and pre-specified range restrictions on the weight adjustments.

Some key words: Benchmarking; Model calibration; Newton–Raphson.

1. I

Design weights in surveys are often adjusted to accommodate auxiliary information and to meet
pre-specified range restrictions. In particular, the resulting weights are often required to be nonnega-
tive. Often, some ad hoc algorithms have to be used to apply a generalised regression estimator
to meet these restrictions. In this paper, we present a simple algorithm for handling this problem
using empirical likelihood methods or generalised regression. Our algorithms are simple and con-
vergences are guaranteed. The pseudo-empirical maximum likelihood estimator (Chen & Sitter,
1999; Zhong & Rao, 2000) and the model-calibrated pseudo-empirical maximum likelihood esti-
mator (Wu & Sitter, 2001) are asymptotically equivalent to the generalised regression estimator
but with intrinsically positive weights. The simplicity of the algorithms and the theoretical support
for the convergences make these two estimators serious competitors of existing methods such as
those discussed in Huang & Fuller (1978), Deville & Särndal (1992), Fuller et al. (1994), Singh &
Mohl (1996) and Rao & Singh (1997).
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In § 2 we introduce the pseudo-empirical maximum likelihood and model-calibrated empirical
likelihood estimators. In § 3, we describe the algorithm which solves the computational problem
of empirical likelihood in general, not just in the survey context we focus on here. Some theoretical
results are obtained to guarantee the convergence of the algorithm. A particularly simple and
efficient algorithm is also given for the model-calibrated empirical likelihood estimator. A new
simple method for handling general range-restrictions on weights, and adaptations of the algorithms
for applying the method, are given in § 4. The resulting algorithms maintain their original simplicity
and are guaranteed to converge. Some empirical results are reported in § 5. We conclude with some
discussion in § 6.

2. E    

Consider a finite population consisting of N identifiable units. Associated with the ith unit are
the study variable, y

i
, and a vector of auxiliary variables, x

i
. Let s be the set of sampled units. The

values of {y
i
, x
i
, iµs} and the population mean of the x

i
, X9 =N−1WN

i=1
x
i
, are known. Assume

the inclusion probabilities p
i
=pr (iµs) are strictly positive. We will restrict attention to estimating

the population mean Y9 =N−1WN
i=1

y
i
.

Often in sampling, estimators of Y9 have the form YB =N−1W
iµs

w
i
y
i
. For example, the usual

Horvitz–Thompson estimator is obtained by using basic design weights w
i
=d
i
=p−1
i

. There are a
number of methods for adjusting these basic design weights to incorporate known X9 , either for
efficiency or to make survey estimates consistent with these known benchmarks:

N−1 ∑
iµs

w
i
x
i
=X9 . (2·1)

The generalised regression estimator is obtained if we use

w
i
=d
i C1+ (X9 −X9 HT )T qN−1 ∑

iµs
d
i
(x
i
−x: ) (xi−x: )Tr−1 (xi−x: )D , (2·2)

where X9 HT=N−1W
iµs

d
i
x
i
, x:=Wiµs

d*
i
x
i
and d*

i
=d
i
/W
iµs

d
i
. The pseudo-empirical maximum

likelihood estimator of Chen & Sitter (1999) is obtained by using

w
i
=Np@

i
=

Nd*
i

1+lT(x
i
−X9 )

, (2·3)

where the vector Lagrange multiplier, l, is the solution to

g
1
(l)= ∑

iµs

d*
i
(x
i
−X9 )

1+lT(x
i
−X9 )

=0.

The model-calibrated empirical likelihood estimator introduced by Wu & Sitter (2001) reduces
this high-dimensional computation problem to a scalar one. Under a linear working model, it is
obtained using w

i
=Np@

i
=Nd*

i
/{1+l(x

i
−X9 )Th@ }, in which the scalar Lagrange multiplier, l, is the

solution to

g
2
(l)= ∑

iµs

d*
i
(x
i
−X9 )Th@

1+l(x
i
−X9 )Th@

=0, (2·4)

where h@T=W
iµs

d
i
(x
i
−x: )Tyi{Wiµs

d
i
(x
i
−x: ) (xi−x: )T}−1.

Both the generalised regression and pseudo-empirical maximum likelihood estimators satisfy the
benchmark constraints in (2·1), while the model-calibrated empirical likelihood estimator satisfies
a benchmark constraint formed by the optimal linear combination hTx of x. All three estimators
of Y9 are asymptotically equivalent and more efficient than the Horvitz–Thompson estimator. The
weights of the pseudo-empirical maximum likelihood and model-calibrated empirical likelihood
estimators are positive by definition.
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3. A     - 
 -   

Numerically, the key to the pseudo-empirical likelihood method is to find the vector solution of
g1 (l)=0 within the range of l such that the resulting p@

i
>0 for all i. A necessary and sufficient

condition for the existence of the solution is that the convex hull of {x
i
: iµs} contains X9 as an

interior point. This condition is satisfied with probability approaching one for most sampling
designs and conceivable populations as the sample and population sizes increase; see Chen & Sitter
(1999) for details.
For notational simplicity and without loss of generality, assume that X9 =0. If not, replace x

i
by

x
i
−X9 throughout. If we let lA(l)=W

iµs
d*
i
log (1+lTx

i
), then lA(l) is a concave function and

its maximum point l satisfies the same equation, g1 (l)=0, and p@
i
given by (2·3) will satisfy

p@
i
>0, W

iµs
p@
i
=1 and (2·1); that is, maximising lA(l) is a dual problem of maximising l@( p) subject

to (2·1).
We first present an algorithm for finding the solution to g1 (l)=0 and then show that the
algorithm will always converge. We use d .d for the Euclidean norm.

A
Step 0. L et l0=0. Set k=0, c0=1 and e=10−8.

Step 1. Calculate D1 (lk )=∂l
A/∂l and D2 (lk )={∂2lA/(∂l ∂lT )}−1D

1
(l
k
), that is

D
1
(l)= ∑

iµs

d*
i
x
i

1+lTx
i
, D
2
(l)=q− ∑

iµs

d*
i
x
i
xT
i

(1+lTx
i
)2r−1 D1 (l). (3·1)

If dD2 (lk )d<e, stop the algorithm and report l
k
; otherwise go to Step 2.

Step 2. Calculate d
k
=c
k
D2 (lk ). If 1+ (l

k
−d
k
)Tx
i
∏0 for some i or lA(l

k
−d
k
)< lA(l

k
), let c

k
=c
k
/2

and repeat Step 2.
Step 3. Set l

k+1
=l
k
−d
k
, k=k+1 and c

k+1
= (k+1)−1/2. Go to Step 1.

The above algorithm is similar to the modified Newton’s method described in Polyak (1987,
p. 63). Such algorithms for minimising a convex function or maximising a concave function almost
always converge. Theoretically, however, some mild conditions are needed to guarantee the conver-
gence. These amount to boundedness of the first derivative and of the inverse of the second
derivative of the objective function and that the second derivative satisfies the Lipschitz condition.
When these conditions are satisfied, a sufficiently short step-size can be determined so that the
norm of the first derivative is always reduced after each iteration. These properties are established
in Lemmas 1 and 2 below. All the proofs are deferred to the Appendix.

L 1. Assume that 0 is an inner point of the convex hull of {x
i
: iµs} and that W

iµs
d*
i
x
i
xT
i

is
positive definite. L et A1={l : 1+lTx

i
>0 for iµs}. T here exist constants C and M, depending on

the particular set of x
i
but not on l, such that, for lµA1 , (a) det |−∂2l

A/∂l ∂lT |�C>0, and (b) D2
given by (3·1) satisfies dD2d∏M.

Unfortunately, the Lipschitz condition is not satisfied here in the entire range of feasible l.
However, our algorithm is designed in such a way that the condition is practically satisfied. This
is detailed in Lemma 2.

L 2. Assume that the conditions in L emma 1 are satisfied. L et A2={l : lA(l)� lA(0)=0}. T hen
there exists an L>0 such that, for any l

a
, l
b
µA2 ,

d∂2lA/(∂l ∂lT ) |
l=l
a

−∂2lA/(∂l ∂lT ) |
l=l
b

d
2
∏L dl

a
−l
b
d,

where d .d
2

is the largest absolute value of all the elements in the matrix.

We are now able to show that the properties described in Lemmas 1 and 2 ensure the convergence
of the algorithm. For simplicity of presentation, we will proceed as if l is a scalar. The layout of
the algorithm clearly guarantees that l

k
µA2 for all k=0, 1, 2, . . . . Let c be the upper bound of
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lA∞(l)/lA◊(l). Then c is finite by Lemma 1(b). For each k such that l
k+1
−l
k
=−(k+1)−1/2lA∞(l

k
)/lA◊(l

k
),

by the mean value theorem, we have

lA∞(l
k+1

)= lA∞(l
k
)+ lA◊(j

k
) (l
k+1
−l
k
)= lA∞(l

k
) q1− lA◊(j

k
)

(k+1)1/2lA◊(l
k
)r ,

where j
k
is between l

k
and l

k+1
. Since lA(l) is a concave function and the set A2 is closed and compact,

we must have j
k
µA2 . By the Lipschitz condition, see Lemma 2, |l

A◊(j
k
)/lA◊(l

k
)−1 |∏L |(j

k
−l
k
)/l◊(l

k
) |.

By Lemma 1(b), |j
k
−l
k
|∏|l

k+1
−l
k
|∏M(k+1)−1/2. Combining the above with Lemma 1(a), we

get | lA◊(j
k
)/lA◊(l

k
)−1 |∏L *(k+1)−1/2 with L *=L M/C. Therefore, for large k,

| lA∞(l
k+1

) |∏| lA∞(l
k
) |{1− (k+1)−1/2+ (k+1)−1L *}∏| lA∞(l

k
) |{1− (2k)−1/2}.

This implies that, when k is large, a reduction in | lA∞(l
k+1
) | is guaranteed. As a result of concavity,

lA{l
k
− (k+1)−1/2D

k
}� lA(l

k
) and 1+{l

k
− (k+1)−1/2D

k
}x
i
>0 will be satisfied for all i and larger

k. Since X2
k=1

{1− (2k)−1/2}=0, we must have | lA∞(l
k+1
) |�0 as k�2. This implies that the

algorithm converges and lA(l
k
) converges to the global maximum.

While the step-size reduction procedure of having c
k
= (k+1)−1/2 is typically needed to prove

the convergence of the algorithm, it seems that the specific nature of the empirical likelihood
calculation renders it unnecessary. An algorithm without this procedure worked well for our
computations in § 5.
As for the model-calibrated empirical likelihood estimator, there exists an extremely simple
algorithm for computing the weights. Note that p@

i
>0 imply that the solution to g2 (l)=0 is within

the range of (−U−1,−L−1 ), where U=max{(x
i
−X9 )Th@ , iµs}, and L=min{(x

i
−X9 )Th@ , iµs}. Then

g2 (l) is a monotone decreasing function of l in this interval. The solution can then be found using
a bisection method.

4. G    

In most cases it is desirable to place restrictions on the adjusted weights so as not to allow them
to be too different from the basic design weights d

i
. Suppose we wish to restrict the weights to the

range c1d*i ∏w
i
∏c2d*i where 0∏c1<1<c2 ; the case c1=0 and c2=2 represents a nonnegative

weight restriction. If c1=c2=1, the y:=Wiµs
d*
i
y
i
will be the only one that meets the range restric-

tions. In this section we present a simple adaptation of the algorithms of § 3 for handling this
problem. It is more direct than the methods of Huang & Fuller (1978) and Rao & Singh (1997),
which require ad hoc adjustments at each iteration. Our method uses a minimum relaxation of
benchmark constraints to meet the pre-specified range restriction requirement. The algorithm
remains simple and a solution is guaranteed.
We only consider the pseudo-empirical maximum likelihood estimator, but the same idea works
for the model-calibrated empirical likelihood and the generalised regression estimators, as shown
in a technical report available from the authors. Without loss of generality, we assume that X9 =
0 and a solution to the pseudo-empirical likelihood method exists. The benchmark constraints
(2·1) become W

iµs
p
i
x
i
=0. If the weights in (2·1) do not meet the range restrictions or if the convex

hull of {x
i
: iµs} does not contain X9 , so that the benchmark constraints are unattainable, we relax

the benchmark constraints by using W
iµs

p
i
x
i
=t for some t that differs from 0. Note that a solution

always exists if we choose t=x:=Wiµs
d*
i
x
i
,which amounts to removing the benchmark constraints,

and the solution, which is given by p
i
=d*
i
, will automatically meet the range restrictions. Thus we

can choose t=dx: with the smallest possible d such that the resulting weights meet the range
restrictions; that is, we can move t away from 0 in the direction of x: . Since 0∏d∏1, the simple
and stable bisection method can be used to search for this d. Note that this algorithm will always
yield a solution. Also, it will find a point which represents the smallest possible departure from
t=0, in the direction of x: .
Sometimes, some components of (2·1) are more important than others (Rao & Singh, 1997).



234 J. C, R. R. S  C. W

One would prefer to relax these components less. This translates into letting t= (t1 , . . . , tk )T=
(d1x:1 , . . . , dkx: k ), where x:= (x:1 , . . . , x: k )T , and moving each of the dj from 0 towards 1 at different
speeds which reflect their different importance. To do this, consider a small step of size dt from t
towards x: . Then dt1/dt2=dd1/dd2= (1−d1 )/(1−d2 )will represent the relative distance that compo-
nents 1 and 2 of t move, or the relative speed at which the components are being moved. If,
however, we feel that the second constraint is n times as important as the first constraint we might
wish to reduce its speed by a factor of n, that is, to force dt1/dt2=n(1−d1 )/(1−d2 ). If we enforce
this at each point as we move t from 0 toward x: , the solution to the resulting differential equation
is to let d1=1− (1−d2 )n. This translates into letting t= (h1 (d )x:1 , . . . , hk (d )x: k )T , where h

j
(d )=

1− (1−d )n
j
, and letting d range from 0 to 1. Note that h

j
(0)=0 and h

j
(1)=1 for all j=1, . . . , k.

More specifically, order the constraints from most important, j=1, to least important, j=k,
and suppose that we wish the first m<k constraints to remain fixed. Let n

j
=0 for j=1, . . . , m

and let n
m+1
=1. Define n

j
for j=m+2, . . . , k to be the importance of constraint j relative to

constraint m+1; that is, if constraint j is twice as important as constraint m+1, let n
j
=2. With

this rephrasing of the problem one can now apply the above algorithm by merely replacing t by
this new definition.

5. S  

We consider the 1996 Statistics Canada’s Family Expenditure Survey for the province of Ontario.
The data consist of 2396 sampled households and a variety of variables. As auxiliary variables we
choose x1 , the number of children (age<15), x2 , the number of youths (age 15–24), x3 , the number
of people in the household, and x4 , the total income after taxes. As response variables we use y1 ,
the annual expenditure on clothing, y2 , the annual expenditure on furnishings and equipment, and
y3 , the total annual expenditure. We treat the dataset itself as the population in our study. This
population is split into eight strata using the original design weights, and stratified random samples
are taken from the resulting population.
For sample size n=40, 80 and 160, under repeated sampling, about 35%, 13% and 4%, respect-
ively, of the samples produce negative regression weights. The ranges of the weights for generalised
regression and pseudo-empirical maximum likelihood vary dramatically from sample to sample.
The g-weights, g

i
=w
i
/d
i
, for generalised regression can be as low as −3·0. The weights from

pseudo-empirical maximum likelihood are intrinsically positive, but they sometimes contain a few
very large values, exceeding 5·0, for n=40. This may be undesirable as it places too much emphasis
on a single observation. The range of the g-weights for the model-calibrated empirical likelihood
estimator is extremely stable, typically between 0·5 and 2·0 and often in the range (0·8, 1·25).
Table 1 reports the relative bias as a percentage, %= (B/Y9 )×100, and the relative efficiency

to the Horvitz–Thompson estimator, = (Y9HT )/, where the bias, B, and the mean squared
error, , of each estimator are estimated from 1000 simulation runs with n=80. Without range
restrictions, %<2·5 for all three methods. In terms of , the methods all outperform Y9HT
similarly. When benchmark constraints are relaxed to meet range restrictions, that is c1=0·8 and
c2=1·25, the relative biases remain small. The impacts on the generalised regression and pseudo-
empirical maximum likelihood methods are much greater than on the model-calibrated empirical
likelihood estimator.
We further examine the percentage relative relaxation of benchmark constraints, that is

(W
iµs

p@
i
x
ji
−X9 j )/X9 j , for j=1, . . . , k. To do so, we considered a single simulated sample with two

different range restrictions: (i) c1=0·5 and c2=2·0, and (ii) c1=0·8 and c2=1·25. The first case is
milder and more typical, while the second is very restrictive. We assumed equal importance of the
benchmark constraints for each of x1 , . . . , x4 . Note that the more one relaxes the benchmark
constraints the less efficient the estimator becomes as one moves towards ignoring the auxiliary
information. Results are given in Table 2.
For both these cases the percent relative relaxation of the benchmark constraints is not extreme,
with absolute value less than 13. For the mild constraints, the model-calibrated empirical likelihood
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Table 1. Statistics Canada data. Relative bias, %,
and relative eYciency, , for n=80

% 

     

Without range restrictions
y1 −0·93 −1·25 −0·82 1·17 1·20 1·16
y2 −2·43 −1·55 −1·91 1·11 1·06 1·09
y3 0·00 0·04 0·02 1·68 1·68 1·65

With range restrictions
y1 −0·86 −0·97 −1·13 1·10 1·10 1·16
y2 −2·02 −2·06 −2·23 1·07 1·06 1·07
y3 0·03 −0·04 −0·17 1·33 1·34 1·58

, generalised regression estimator; , pseudo-
empirical maximum likelihood estimator; , model-
calibrated pseudo-empirical maximum likelihood estimator.

Table 2. Statistics Canada data. Percent relative relaxation of benchmark
constraints

c1=0·5, c2=2·0 c1=0·8, c2=1·25
d x1 x2 x3 x4 d x1 x2 x3 x4

 0·52 7·6 −4·5 −0·6 4·1 0·81 11·8 −7·0 −1·0 6·4
 0·20 2·9 −1·7 −0·2 1·6 0·76 11·0 −6·6 −0·9 6·0
1 0·00 3·8 −1·0 −4·5 −1·1 0·41 8·2 −4·1 −3·1 2·6
2 0·00 12·0 0·5 −2·3 1·1 0·31 12·7 −2·5 −2·0 3·2
3 0·00 10·0 −8·5 −3·5 1·2 0·18 11·3 −8·5 −3·0 2·4

, generalised regression estimator; , pseudo-empirical maximum likelihood
estimator; 

k
, model-calibrated pseudo-empirical maximum likelihood estimator

using response variable y
k
, for k=1, 2, 3.

estimator weights require no adjustment and the percent absolute relative relaxation of the bench-
mark constraints are all less than 4·5 for x3 and x4 , but vary from 0·5 to 12·0 for x1 and x2 . It is
necessary to relax the benchmark constraints for the pseudo-empirical maximum likelihood method
and more so for the generalised regression method, but in some cases to lesser extent than is
inherent in the model-calibrated empirical likelihood estimator. When we tighten to c1=0·8 and
c2=1·25, we obtain d=0·76 and d=0·81 for the pseudo-empirical maximum likelihood and gener-
alised regression methods, respectively, and the percent absolute relative relaxation of the bench-
mark constraints of both become comparable to those of model-calibrated empirical likelihood
estimator.

6. D

Usually, both benchmark constraints and range restrictions on weights are desired. In most
situations all existing methods no longer match benchmark constraints exactly and require an
algorithm.With this in mind, the empirical likelihood-based methods, combined with the algorithms
presented here, become attractive competitors.
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A

Proofs

Proof of L emma 1(a). It is easy to see that ∂2lA/∂l ∂lT is negative definite. Let j be a vector of
unit length. Then W

iµs
d*
i
(jTx
i
)2�t

(1)
>0, where t(1) is the smallest eigenvalue of Wiµs

d*
i
x
i
xT
i
.

Furthermore, we have

jT{−∂2lA/(∂l ∂lT )}j�
t
(1)

{1+max
iµs

(lTx
i
)}2

. (A·1)

If we can show that

sup qmaxiµs (lTx
i
) : lµA

1r∏M<2, (A·2)

then the conclusion of the lemma follows from (A·1).
Let r=dld and lA=l/r. Since lµA1 , 1+lTx

i
=1+rlATx

i
>0 for all iµs. Meanwhile, since 0

is assumed to be an interior point of the convex hull of {x
i
: iµs}, min

iµs
(lATx
i
)<0. Since the set

{lA : dlAd=1} is closed and compact, it follows that sup{min
iµs
(lATx
i
)}∏−c<0, where c>0 is

a constant, independent of lA . Hence, for each l, r∏{max
iµs

(−lATx
i
)}−1, and consequently

r∏sup{max
iµs

(−lATx
i
)}−1∏c−1, from which (A·2) immediately follows. %

Proof of L emma 1(b). Let

A=−∂2lA/(∂l ∂lT )= ∑
iµs

d*
i

x
i
xT
i

(1+lTx
i
)2

, B=∂lA/(∂l)= ∑
iµs

d*
i

x
i

1+lTx
i
.

Since W
iµs

d*
i
=1, we could define a random vector Z such that A=E(ZZT ) and B=E(Z). Note

that, since A−BBT�0, it follows that tr (A−1−A−2BBT )=tr{A−1(A−BBT )A−1}�0. Hence

dD
2
d2=BTA−2B=tr (A−2BBT )∏tr (A−1 ).

By (a), tr (A−1 )∏M for some constant that is independent of l. %

Proof of L emma 2. Note that, by the assumed conditions, 0 is an interior point of the convex
hull of {x

i
, iµs}. Note also that A1 forms a bounded set with l=0 an interior point; see the proof

of Lemma 1 for the bound on r=dld. Consider further the set A2 of l such that lA(l)� lA(0)=0.
Note that A25A1 , it is a closed set, and hence is compact. The third derivative of l

A(l) is obviously
continuous on A2 and hence has a finite upper bound, component-wise. Thus, its second derivative
must have the property as stated. %
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