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Abstract: We use the model-calibrated pseudo empirical likelihood method to con-

struct estimators for the finite population distribution function. Under an assumed

superpopulation working model, the proposed estimators have minimum model ex-

pectation of asymptotic design-based variance among a class of estimators and

therefore are optimal in that class. The estimators are asymptotically design-

unbiased irrespective of the working model and are also approximately model-

unbiased under the model. They share the design-based asymptotic efficiency with

that of a generalized regression estimator but, unlike the latter, the estimators are

genuine distribution functions. Quantile estimation through direct inversion and

using a model-calibrated difference estimator are studied, and their asymptotic ef-

ficiency is investigated through Bahadur representations. Variance estimation and

confidence intervals for the distribution function are also addressed. Results of

a limited simulation study regarding the finite sample performance of proposed

estimators are reported.
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1. Introduction

The finite population distribution function FY (y) = N−1∑N
i=1 I(yi ≤ y) is

also a finite population mean of an indicator variable zi = I(yi ≤ y). Here yi
is the value of the study variable Y attached to the ith unit, zi = 1 if yi ≤ y

and zi = 0 otherwise. Without using any auxiliary information, estimation of
the distribution function is a special case of the population mean and is usually
straightforward.

In the presence of auxiliary information, there exist several general estima-
tion procedures in recent literature to obtain more efficient estimators for the
population means and totals. Effort has been made to directly apply these gen-
eral procedures for the estimation of the distribution function. However, due to
the specific nature of a distribution function, the resulting estimators often have
some undesirable properties.
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The model-based prediction estimator F̂m(y) proposed by Chambers and
Dunstan (1986) stimulated much of the later work in this area. Their proposed
estimator F̂m(y) is model-unbiased, i.e., Eξ{F̂m(y) − FY (y)} = 0, where Eξ

denotes the expectation under the assumed superpopulation model ξ. But F̂m(y)
is design-inconsistent, i.e., Ep{F̂m(y)}−FY (y) does not converge to zero as N →
∞, where Ep denotes the expectation under the sampling design p. Careful model
checking and diagnostics need to be carried out before this purely model-based
estimator is used.

Rao, Kovar and Mantel (1990) proposed a design-based difference estimator
F̂d(y). However, F̂d(y) may take values out of the range [0, 1] and it is not always
a monotone function of y. We cannot always invert F̂d(y) to obtain estimates
for the population quantiles. Rao et al. (1990) suggest transforming F̂d(y) into
a monotone function before obtaining estimates for quantiles. The same idea
was also discussed by Francisco and Fuller (1991). The implementation of such
a process is not trivial and the loss of efficiency during the process is unknown.

Under simple random sampling, Wang and Dorfman (1996) proposed a hy-
brid estimator F̂w(y) which is a weighted average of F̂m(y) and F̂d(y). Under
certain conditions the new estimator is more efficient than both F̂d(y) and F̂m(y).
However, it inherits the drawbacks of both estimators and the estimator cannot
be readily generalized to more complex sampling designs.

The generalized regression estimator (GREG) for the population means or
totals is the most popular one to use among survey practitioners. When this
technique is directly applied to the distribution function, the resulting estimator
shares many of the drawbacks of F̂d(y). To estimate the distribution function
having the same efficiency as GREG but without these limitations becomes an
interesting problem.

Estimation of the distribution function using auxiliary information differs
from the estimation of the population mean in several fundamental aspects. Most
existing approaches for the estimation of population means or totals are either
model-based or model-assisted with models directly specified over the study vari-
ables. The distribution function involves a dichotomous variable I(yi ≤ y). We
need special treatment for the modeling process to obtain efficient estimators for
the distribution function. Also, it is desirable to require that estimators of the
distribution function be themselves distribution functions. Quantile estimates
can then be obtained by direct inversion of the estimated distribution function.

In this article, we propose estimators for the finite population distribution
function and its quantiles using the recently developed model-calibration and
pseudo empirical likelihood methods (Chen and Sitter (1999); Wu and Sitter
(2001a)). The proposed estimators effectively use auxiliary information at the
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estimation stage and possess a number of attractive features. Under the as-
sumed working model, our proposed estimators are optimal in the sense of min-
imum model expectation of the design-based asymptotic variance. They are
asymptotically design-unbiased irrespective of the working model and are also
approximately model-unbiased under the model. In Section 2, we construct es-
timators for the distribution function under three different scenarios using the
model-calibrated pseudo empirical likelihood method. The proposed estimators
share the design-based asymptotic efficiency with that of a generalized regression
estimator and are genuine distribution functions. Quantile estimation through
direct inversion of the estimated distribution function is discussed in Section 3
and its asymptotic efficiency is studied through Bahadur representations. Also
in Section 3, we propose a model-calibrated difference estimator for the quan-
tiles that works well for both a general sampling design and a general working
model. Variance estimation and confidence intervals for the distribution func-
tion are addressed in Section 4. Results of a limited simulation study regarding
the finite sample performance of proposed estimators are reported in Section 5.
Some concluding remarks are given in Section 6. All proofs are deferred to the
Appendices.

2. Estimation of the Finite Population Distribution Function

The logical connection between the estimation of the population mean and
the estimation of the distribution function using auxiliary information can be
best seen under the model calibration and the model-calibrated pseudo empirical
likelihood approaches (Wu and Sitter (2001a)). Let (yi,xi) be the values of the
study variable Y and the vector auxiliary variable X for the ith unit in the finite
population, i = 1, . . . , N . We assume the values of x1, . . . ,xN are known. Let s
be the set of units included in the sample.

Let gi = g(xi) be any known function of xi. The ordinary pseudo empirical
maximum likelihood estimator (Chen and Sitter (1999)) of the finite population
mean Ȳ is defined as ˆ̄Y =

∑
i∈s p̂iyi, where the p̂i’s maximize the pseudo empirical

log-likelihood function
l̂(p) =

∑
i∈s

di log pi, (1)

subject to ∑
i∈s

pi = 1,
∑
i∈s

pigi =
1
N

N∑
i=1

gi (0 < pi < 1) , (2)

where di = 1/πi and πi = P (i ∈ s) are the first order inclusion probabilities.
The model-calibrated pseudo empirical maximum likelihood (MPEML) es-

timator ˆ̄Y EL (Wu and Sitter (2001a)) is obtained by first adapting a superpop-
ulation model and then calibrating over-fitted values from the model. Suppose



1226 JIAHUA CHEN AND CHANGBAO WU

the relationship between Y and X can be depicted through a semi-parametric
model: Eξ(yi|xi) = µ(xi,θ), Vξ(yi|xi) = σ2

i , i = 1, . . . , N , where Eξ, Vξ denote
the expectation and variance with respect to the superpopulation model, and
θ is a vector of parameters of the superpopulation. A design-based estimator
θ̂ for the model parameter θ can be obtained through the general method of
estimating equations (Godambe and Thompson (1986); Wu and Sitter (2001a)).
The MPEML estimator ˆ̄Y EL is obtained by replacing gi used in the constraint
(2) with gi(θ) = Eξ(yi|xi) = µ(xi,θ). This choice of gi is optimal in that the
resulting estimator ˆ̄Y EL has minimum model expectation of design-based asymp-
totic variance among a class of estimators (Wu (2001)). Despite the underlying
non-parametric likelihood motivations, ˆ̄Y EL is asymptotically equivalent to the
generalized regression estimator under a linear regression model (Wu and Sitter
(2001a)). The most attractive feature of ˆ̄Y EL, however, is the intrinsic properties
of the weights: p̂i > 0 and

∑
i∈s p̂i = 1. This will play a key role in the following

development.
To estimate FY (y) for a given y0 we need to replace yi by zi = I(yi ≤ y0).

Among all choices of gi = g(xi) in (2), gi = Eξ(zi|xi) = P (yi ≤ y0|xi) minimizes
the model expectation of design-based asymptotic variance of the resulting esti-
mator for FY (y). It is important to notice that this optimal choice of gi depends
on y0. No gi with a fixed y0 can be uniformly optimal for FY (y) for all values
of y. Also, since the “response variable” is zi = I(yi ≤ y), two types of working
models can be considered: models that relate the yi to the xi or models that
relate the indicator variable I(yi ≤ y) to the xi. The gi’s are called the fitted
values for the zi’s. In what follows, we propose three MPEML estimators based
on three different working models.

2.1. Obtain fitted values from a regression model

A commonly used working model for the finite population is

yi = µ(xi,θ) + viεi , i = 1, . . . , N, (3)

where vi is a known function of xi, and εi’s are independent and identically
distributed (i.i.d.) random variables with mean 0 and variance σ2. Hence, we
can model zi indirectly through a model for yi. For a linear regression model
µ(xi,θ) = x′

iθ, but other non-linear models can also be considered. Let θN and
σN be respectively the estimators of θ and σ based on data from the entire finite
population. For instance, under a linear regression model with homogeneous
variance and θ of dimension p, we have θN = (X ′

NXN )−1X ′
NY N , where XN

is the N × p matrix with rows x′
i for i = 1, . . . , N , Y N = (y1, . . . , yN )′, and

σ2
N = (Y N − XNθN )′(Y N − XNθN )/(N − p).
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Under (3), Eξ(zi|xi) = P (yi ≤ y|xi) = G[{y−µ(xi,θ)}/vi], where G(·) is the
cumulative distribution function (cdf) of the error term, εi. In many situations
it is reasonable to assume that the error terms εi in model (3) are normally
distributed. In this case gi = gi(θN , σqN, y) = Φ[{y−µ(xi,θN )}/(viσN )], where
Φ(·) is the cdf of standard normal distribution. Note that θN , not θ, is used in
defining gi. With this treatment gi is well defined over the finite population and
this makes all design-based arguments possible. Let θ̂ and σ̂ be design-based
estimates for θN and σN , respectively.

We define our first MPEML estimator of FY (y) as F̂ (1)
EL(y) =

∑
i∈s p̂izi =∑

i∈s p̂iI(yi ≤ y), where the p̂i’s maximize l̂(p) subject to

∑
i∈s

pi = 1,
∑
i∈s

pigi(θ̂, σ̂, y0) =
1
N

N∑
i=1

gi(θ̂, σ̂, y0) (0 < pi < 1) . (4)

The value of y0 is pre-specified. Let z̄d = (
∑

i∈s di)−1 ∑
i∈s dizi, ḡN = N −1∑N

i=1 gi(θN , σN , y0), and ḡd = (
∑

i∈s di)−1∑
i∈s digi(θN , σN , y0). Note that z̄d

is the usual Horvitz-Thompson estimator for FY (y). The following results have
been established. The proof is given in Appendix 1.

Theorem 1. (1) Under the regularity conditions specified in Appendix 1, the
model-calibrated pseudo empirical maximum likelihood estimator F̂ (1)

EL(y) is asymp-
totically equivalent to a generalized regression type estimator:

F̂
(1)
EL(y) = z̄d + (ḡN − ḡd)BN + op(n−1/2) , (5)

where BN =
∑N

i=1{gi(θN , σN , y0)− ḡN}zi/∑N
i=1{gi(θN , σN , y0)− ḡN}2.

(2) F̂
(1)
EL(y) is asymptotically design-consistent estimator of FY (y) and is also

approximately model-unbiased under (3) at y = y0.

Note that the generalized regression type estimator referred to in (5) is for
asymptotic comparison only. It is not a real estimator. Also note that y0 used in
(4) is fixed, the weights p̂i’s are independent of y. It is easy to see that F̂ (1)

EL(y) is
itself a distribution function. Hence, F̂ (1)

EL(y) shares the asymptotic efficiencies of
a generalized regression type estimator without the drawbacks of those of F̂d(y).
However, F̂ (1)

EL(y) will be most efficient at y in the neighborhood of y0. The value
of y0 can be easily specified according to efficiency considerations.

The normality assumption about the error terms εi is used in proving (13)
of Appendix 1 where a Taylor series expansion has been applied to ĝi = Φ[{y −
µ(xi, θ̂)}/(viσ̂)]. When this assumption is not desirable, the cdf of εi, G(·), will
have to be estimated from the fitted residuals. Let ε̂i = {yi − µ(xi, θ̂)}/vi for
i = 1, . . . , N , Gn(u) =

∑
i∈s diI(ε̂i ≤ u)/

∑
i∈s di. The gi used in constraint (4)
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can then be replaced by gi = Gn[{y0 −µ(xi, θ̂)}/vi]. Under some mild regularity
conditions, Theorem 1 and the variance estimator for F̂EL(y) presented in Section
4.1 can still be used when G(·) is replaced by Gn(·). A key argument in proving
this is to show that replacing θ̂ by θ in the definition of Gn(u) will not change
the resulting estimator asymptotically. This requires uniform convergence of Gn

under some conditions on the sampling design. The required regularity conditions
and the related technical details are similar to those used in Appendix 2 of Wu
and Sitter (2001b) where the same kind of problem was encountered.

Variance estimation for the proposed MPEML estimators will be addressed
in Section 4. A simple and stable algorithm to compute the weights p̂i is available
in Chen, Sitter and Wu (2002).

2.2. Obtain fitted values from a generalized linear model

It is very attractive to directly adapt a generalized linear model as a working
model for gi = Eξ(I(yi ≤ y0)|xi) = P (yi ≤ y0|xi). The extensive literature
on binary data analysis can be borrowed here to get fitted values for gi. For
instance, we may use a logistic regression model

log
(

gi
1− gi

)
= x′

iθ , (6)

with variance function V (g) = g(1−g). Under such a model the finite population
parameter θN can be defined as a solution to the optimal estimating equations
based on the entire finite population,

∑N
i=1 xi(z∗i −gi) = 0, where z∗i = I(yi ≤ y0),

gi = exp(x′
iθ)/{1+exp(x′

iθ)}. A design-based estimator θ̂ for θN can be obtained
by solving a sample-based version of the system

∑
i∈s dixi(z∗i − gi) = 0. Let

gi(θN ) = exp(x′
iθN )/{1+ exp(x′

iθN )}. Our second proposed MPEML estimator
F̂

(2)
EL(y) is now similarly defined by using the gi(θ̂) in the constraint (4). Let z̄d,

ḡN , ḡd and BN be similarly defined as in Theorem 1, but replace gi(θN , σN , y0)
by gi(θN ).

Theorem 2. The model-calibrated pseudo empirical maximum likelihood esti-
mator F̂ (2)

EL(y) is asymptotically equivalent to a generalized regression estimator:
F̂

(2)
EL(y) = z̄d+(ḡN − ḡd)BN + op(n−1/2). Hence F̂ (2)

EL(y) is asymptotically design-
consistent estimator of FY (y). It is also approximately model-unbiased under (6)
for y = y0.

Proof of the theorem is similar to that of Theorem 1 and is omitted. One of
the advantages of using a generalized linear model is that the error distribution
in the regression model is no longer an issue. The logistic regression model gives
a reasonable fit in most situations.
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2.3. Obtain pseudo fitted values from a semi-parametric model

The variable zi = I(yi ≤ y) only takes values of 0 or 1, but the fitted values gi
from Sections 2.1 and 2.2 are always between 0 and 1. It is tempting to use what
we called pseudo fitted values gi(θ̂) = I(ŷi ≤ y0) which are also 0 − 1 variates,
where ŷi are fitted values for yi. Under a semi-parametric model Eξ(yi|xi) = µi,
Vξ(yi|xi) = v(µi), where µi = µ(xi,θ) and v(·) is a variance function, and the
fitted values ŷi are given by µ(xi, θ̂). Let h(·) be a known link function such
that h(µi) = x′

iθ. The θ̂ is the maximum quasi-likelihood estimator of θ given
by solving estimating equations:

∑
i∈s{dixi(yi − µi)}/{v(µi)h′(µi)} = 0, where

h′(u)=dh(u)/du. Let θN be the solution to
∑N

i=1{xi(yi−µi)}/{v(µi)h′(µi)}=0.
We similarly define the third MPEML estimator F̂ (3)

EL(y) as before but use
the pseudo fitted values gi(θ̂) = I(ŷi ≤ y0) in the constraint (4).

Under the same conditions of Theorem 1, it can be shown that F̂ (3)
EL(y) =

z̄d + (ḡN − ḡd)BN + op(n−1/2), where z̄d, ḡN , ḡd and BN are similarly defined as
in Theorem 1 but use gi(θN ) = I{µ(xi,θN ) ≤ y0} in place of gi(θN , σN , y0).

It follows that F̂ (3)
EL(y) is asymptotically design-unbiased estimator for FY (y).

But F̂
(3)
EL(y) is not approximately model-unbiased since Eξ{I(yi ≤ y)|x} �=

I{µ(xi,θ) ≤ y}. However, F̂ (3)
EL(y) possesses properties not enjoyed by F̂

(1)
EL(y)

and F̂
(2)
EL(y).

An ad hoc argument for using F̂
(3)
EL(y) is that if the model fits the finite

population perfectly, i.e., yi = µ(xi,θN ), i = 1, . . . , N , then gi(θ̂) = I(yi ≤ y0)
and F̂ (3)

EL(y0) reduces to the exact value of FY (y0). It can be expected that in the
case of strong auxiliary information, the correlation between yi and ŷi is high,
and consequently, F̂ (3)

EL(y) will perform well.
Under a simple linear model with a single x variable, µ(xi,θ) = θ0 + θ1xi,

and
1
N

N∑
i=1

gi(θ) =
1
N

N∑
i=1

I(θ0 + θ1xi ≤ y0) = FX((y0 − θ0)/θ1) ,

where FX(u) is the finite population distribution function of the x variable. The
constraint (4) reduces to∑

i∈s
pi = 1,

∑
i∈s

piI(θ̂0 + θ̂1xi ≤ y0) = FX((y0 − θ̂0)/θ̂1) (0 < pi < 1) ,

so only the frequency distribution of x needs to be known for the implementa-
tion of F̂ (3)

EL(y).
In all three cases, the proposed estimators are asymptotically equivalent to a

generalized regression estimator and are themselves distribution functions. The
location y0 can be determined based on efficiency requirement. We will discuss
this issue more in Sections 3 and 5.
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3. Quantile Estimation

Let 0 < t < 1. The tth quantile corresponding to a cdf F (y) is ξ(t) =
F−1(t) = inf{y : F (y) ≥ t}. The conventional estimator for ξ(t) of a finite popu-
lation without using auxiliary information is obtained by inverting the Horvitz-
Thompson estimator for the distribution function: ξ̂HT (t) = F̂−1

HT (t), where
F̂HT (y) =

∑
i∈s diI(yi ≤ y)/

∑
i∈s di.

3.1. Quantile estimation through direct inversion

An efficient estimator for ξ(t) can be obtained by inverting an efficient esti-
mator for the distribution function. Let F̂EL(y) be any one of the estimators from
Section 2, with the choice of y0 = ξ̂HT (t), then F̂EL(y) will be more efficient than
F̂HT (y) for y in the neighborhood of ξ(t). For any t ∈ (0, 1), let ξ̂EL(t) = F̂−1

EL(t).
Since F̂EL(y) is a distribution function, the above inversion is computationally
simple. Without loss of generality, assume y1 ≤ y2 ≤ · · · ≤ yn, it can be seen
that ξ̂EL(t) = yk, where k is determined by

∑k
i=1 p̂i ≥ t and

∑k−1
i=1 p̂i < t.

To ease presentation, the following sampling designs will be referred to as
type I: (1) simple random sampling with or without replacement; (2) stratified
simple random sampling with or without replacement; (3) single stage unequal
probability sampling with replacement; (4) multi-stage sampling with first stage
clusters sampled with replacement. In the case of with-replacement design, the
Hansen-Hurwitz type estimator will be used instead of the H-T estimator, i.e.,
πi = nqi, where n is the number of draws, qi is the probability of selecting unit
i from each of the n draws. Results from draw to draw are independent.

A weak version of Bahadur representation for quantile process ξ̂EL(t) can be
established under type I sampling designs. The proof is given in Appendix 2.

Theorem 3.Under a type I sampling design and conditions specified in Appendix
2,

ξ̂EL(t)− ξ(t) = {f(ξ(t))}−1{t− F̂EL(ξ(t))} + op(n−1/2) ,

where F̂EL(y) is one of the model-calibrated pseudo empirical likelihood estimators
from which ξ̂EL is obtained, f(·) is the density function of the limiting distribution
function of FY (y) as N → ∞.

The improvement in efficiency from using ξ̂EL(t) over ξ̂HT (t) is comparable
to that of F̂EL(y) over F̂HT (y). With the optimal choice of gi = Eξ(zi|xi), the
maximum gain of asymptotic efficiency is guaranteed. The major advantage of
the model-calibrated pseudo empirical likelihood approach is to achieve this high
efficiency while maintaining the computational simplicity. The method can be
easily applied to complex sampling designs and multivariate auxiliary variables.
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3.2. Quantile estimation using a model-calibrated difference estimator

A model-calibrated difference estimator (MD) for ξ(t) can be derived as
follows. Let ŷi = µ(xi, θ̂), i = 1, . . . , N , be the fitted values from a working
model. Let

F̂U (y) =
1
N

N∑
i=1

I(ŷi ≤ y) and F̂V (y) = (
∑
i∈s

di)−1
∑
i∈s

diI(ŷi ≤ y) .

F̂U (y) can be viewed as a prediction estimator for FY (y) while F̂V (y) is a design-
based estimate for F̂U (y). They are both distribution functions. Note that, as
candidate estimators for FY (y), neither of them can be better than F̂HT (y). Let
ξ̂U(t) = F̂−1

U (t) and ξ̂V (t) = F̂−1
V (t). A model-calibrated difference estimator of

ξ(t) can then be constructed as

ξ̂MD(t) = ξ̂HT (t)− ξ̂V (t) + ξ̂U (t) . (7)

Similar to the construction of F̂ (3)
EL(y), an ad hoc motivation behind ξ̂MD(t)

is that, in the case of no modeling variation for the finite population, i.e.,
yi = ŷi, i = 1, . . . , N , we have ξ̂U (t) = ξ(t), ξ̂V (t) = ξ̂HT (t), and this model-
calibrated difference estimator ξ̂MD(t) reduces to the exact value ξ(t). This esti-
mator is closely related to the difference estimator for the distribution function,
F̂MD(y) = F̂HT (y)−F̂V (y)+F̂U (y). It has been shown by Rao et al. (1990) that
F̂MD usually performs better than the Horvitz-Thompson estimator F̂HT (y), and
therefore ξ̂MD(t) can also be expected to perform better than ξ̂HT (t). Note that
F̂MD(y) itself is not a distribution function, obtaining estimates for quantiles
through direct inversion of F̂MD(y) may be difficult or undesirable. The pro-
posed strategy successfully bypasses this difficulty and the resulting estimator is
efficient and computationally simple.

Under a linear model with a single x variable, ŷi = θ̂0+ θ̂1xi, ξ̂MD(t) reduces
to ξ̂MD(t) = ξ̂HT (t) + {ξX(t) − ξ̂X(t)}θ̂1, where ξX(t) and ξ̂X(t) are the tth
population quantile of the x variable and its Horvitz-Thompson estimator, θ̂1 is
the estimated regression coefficient of y over x (assume θ̂1 > 0).

4. Variance Estimation and Confidence Intervals

4.1. Variance estimation for the distribution function

Let F̂EL(y) be any one of the estimators discussed in Section 2, let gi(θN )
and BN be defined accordingly. The asymptotic design-based variance of F̂EL(y)
is the same as that of (

∑
i∈s di)−1∑

i∈s di{I(yi ≤ y)−gi(θN )BN} which is a ratio
type estimator. Let Vp denote the design-based variance.
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Theorem 4. Under conditions specified in Appendix 1 and a fixed sample size
design, the asymptotic design-based variance of F̂EL(y) is

Vp{F̂EL(y)} =
1
N2

∑
i<j

N∑
j=1

(πiπj − πij)

(
Ui

πi
− Uj

πj

)2

+ o(n−1) ,

where Ui = I(yi ≤ y) − FY (y) − {gi(θN ) − ḡN}BN , ḡN = N−1∑N
i=1 gi(θN ).

Vp{F̂EL(y)} can be consistently estimated by

v{F̂EL(y)} =
1
N2

∑
i<j

∑
j∈s

πiπj − πij
πij

(
ui
πi

− uj
πj

)2

,

where ui = I(yi ≤ y) − F̂EL(y) − {gi(θ̂) − ḡ}B̂, and ḡ and B̂ are sample-based
estimates for ḡN and BN .

4.2. Confidence intervals for the distribution function

Let v = v[F̂ (y0)] be the estimated variance of F̂ (y) at y = y0, where the
estimator F̂ (y) for F (y) may be chosen to be (but not necessarily restricted to
be) one of those in Section 2. The conventional 1 − α confidence interval for
FY (y0) is

(F̂ (y0)− zα/2v
1/2 , F̂ (y0) + zα/2v

1/2) , (8)

where zα/2 is 1 − α/2 quantile from N(0, 1). The validity of (8) relies on the
asymptotic normality of F̂ (y0),

{F̂ (y0)− FY (y0)}/v1/2 L−→ N(0, 1) , (9)

which can be justified in many situations (see, for example, Francisco and Fuller
(1991), Theorem 2). However, for small to moderate sample size, due to the
range constraint 0 ≤ F̂ (y) ≤ 1, the sampling distribution of F̂ (y) for y at large
or small quantiles is usually not symmetric. The finite sample performance of
confidence intervals (8) at those quantiles is often not satisfactory: the coverage
probability is usually lower than the nominal value, and the two tail probabilities
are seriously unbalanced (Wu (1999)).

A simple transformation technique can be employed here to construct better
behaved confidence intervals for the distribution function.

If (9) holds, then for any monotone smooth function g, Ŵ = g(F̂ (y0)) also
has an asymptotic normal distribution with mean W

.= g(FY (y0)) and vari-
ance V ar(Ŵ ) .= [g′{FY (y0)}]2 V ar{F̂ (y0)} (Shao and Tu (1995), p.448), where
g′(u) = dg(u)/du. Let v(Ŵ ) = [g′{F̂ (y0)}]2 v{F̂ (y0)}. A 1 − α confidence in-
terval for FY (y0) can be constructed by first obtaining a 1−α normal confidence
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interval for W = g(FY (y0)) and then transforming back to FY (y0). This gives
the following transformed confidence interval for FY (y0),

(g−1{Ŵ − zα/2v
1/2(Ŵ )} , g−1{Ŵ + zα/2v

1/2(Ŵ )}) . (10)

The transformation is chosen such that the distribution of Ŵ is better ap-
proximated by the normal distribution. Two such transformations are readily
available, namely, the logit transformation and the complementary log-log trans-
formation: Ŵ1 = log{F̂ (y0)/(1 − F̂ (y0))} and Ŵ2 = log{− log(F̂ (y0))}. The
resulting confidence intervals using (10) both have simple closed forms:

(F̂ (y0)C1L, F̂ (y0)C1U ) (11)

(F̂ (y0)
C2L

, F̂ (y0)
C2U ) (12)

where C1L = {F̂ (y0) + (1 − F̂ (y0)) exp[zα/2v1/2[F̂ (y0)]/(F̂ (y0)(1 − F̂ (y0)))]}−1,
C1U = {F̂ (y0) + (1 − F̂ (y0)) exp[−zα/2v1/2[F̂ (y0)] / (F̂ (y0)(1 − F̂ (y0))) ]}−1,
C2L = exp[−zα/2v1/2[F̂ (y0)]/(F̂ (y0) log(F̂ (y0)))], and C2U =exp[zα/2v1/2[F̂ (y0)]/
(F̂ (y0) log(F̂ (y0)))].

A simulation study conducted by Wu (1999) shows that (11) and (12) per-
form like (8) when y0 is in the middle range of quantiles, but are dramatically
superior when y0 is at small or large quantiles.

5. A Simulation

We conducted a small simulation study to investigate the finite sample per-
formance of the estimators for the distribution function, and the impact of dif-
ferent choices of y0 on the resulting estimators. More simulation results on the
transformed confidence intervals (10) and quantile estimator ξ̂MD(t) can be found
in Wu (1999).

Two finite populations of size N = 2000 were generated from a regression
model yi = β0 + β1x1i + β2x2i + εi, where the x1i’s and x2i’s were generated
respectively from a gamma distribution and a lognormal distribution, and the
εi’s are i.i.d. random variates from N(0, σ2). The value of σ2 is chosen such that
for Population 1 the correlation coefficient between yi and β0 + β1x1i + β2x2i is
0.90, and for Population 2 it is 0.70.

At each simulation run, a simple random sample of size n = 100 was taken
from the finite population and the three model-calibrated pseudo empirical maxi-
mum likelihood estimators for FY (y) were computed at y=ξ(t) for t=0.1, . . . , 0.9.
The fixed value y0 used in the calibration equation (4) was preset at ξ(0.3), ξ(0.5)
and ξ(0.7) and separate results were obtained under each of these preset values.
The process was repeated B = 1000 times.
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The performance of these estimators was evaluated in terms of Relative Bias
(RB) and Relative Efficiency (RE) with RB=B−1∑B

b=1[F̂EL(y)−FY (y)]/FY (y)
and RE = MSEHT /MSEEL, where b indexes the bth simulation run,MSEEL =
B−1∑B

b=1[F̂EL(y) − FY (y)]2, and MSEHT is similarly defined for the baseline
Horvitz-Thompson estimator. Table 1 reports the simulated RE for each of the
estimators at various population quantiles. The absolute values of the RB’s are
all less than 1% and are thus not reported.

Table 1. Relative Efficiency of Estimators for FY (y) at y = ξ(t) (P1 and P2).

y0 F̂EL(y) t = 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

P1 ξ(0.3) F̂
(1)
EL(y) 1.16 1.32 1.54 1.65 1.71 1.67 1.48 1.29 1.14

F̂
(3)
EL(y) 1.15 1.24 1.31 1.32 1.33 1.28 1.16 1.08 1.04

ξ(0.5) F̂
(1)
EL(y) 1.12 1.24 1.47 1.63 1.78 1.89 1.78 1.56 1.27

F̂
(2)
EL(y) 1.12 1.24 1.46 1.61 1.74 1.82 1.68 1.49 1.26

F̂
(3)
EL(y) 1.08 1.17 1.35 1.45 1.58 1.52 1.39 1.25 1.13

ξ(0.7) F̂
(1)
EL(y) 1.05 1.13 1.29 1.43 1.58 1.87 2.11 2.14 1.61

F̂
(2)
EL(y) 1.05 1.12 1.27 1.41 1.54 1.79 2.00 2.08 1.60

F̂
(3)
EL(y) 1.03 1.07 1.16 1.24 1.32 1.50 1.68 1.71 1.32

P2 ξ(0.3) F̂
(1)
EL(y) 1.06 1.08 1.11 1.19 1.21 1.24 1.29 1.22 1.18

F̂
(2)
EL(y) 1.06 1.08 1.10 1.17 1.19 1.22 1.27 1.20 1.16

F̂
(3)
EL(y) 1.02 1.02 1.01 1.04 1.03 1.01 1.02 1.00 1.00

ξ(0.5) F̂
(1)
EL(y) 1.05 1.08 1.10 1.18 1.21 1.27 1.34 1.32 1.28

F̂
(2)
EL(y) 1.05 1.07 1.09 1.16 1.19 1.25 1.32 1.29 1.26

F̂
(3)
EL(y) 1.04 1.06 1.07 1.11 1.11 1.14 1.16 1.12 1.09

ξ(0.7) F̂
(1)
EL(y) 1.04 1.06 1.09 1.15 1.20 1.27 1.38 1.42 1.43

F̂
(2)
EL(y) 1.04 1.06 1.09 1.14 1.18 1.25 1.34 1.39 1.40

F̂
(3)
EL(y) 1.01 1.03 1.05 1.08 1.12 1.17 1.22 1.28 1.21

Table 1 can be summarized as follows: (i) F̂ (1)
EL and F̂

(2)
EL have very similar

performance and are better than F̂ (3)
EL in all cases; (ii) the most efficient estimator

for FY (y) is obtained by setting y0 = y in (4), but the estimator F̂EL(y) with a
prespecified value y0 is also very efficient when y is close to y0, though it becomes
less efficient when y is far away from y0; (iii) with strong auxiliary information
(Population 1), the gain from using F̂EL(y) can be substantial compared to the
baseline Horvitz-Thompson estimator, and when auxiliary information becomes
weak or less relevant (Population 2), the superiority of our proposed estimators
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gradually disappears though they are never worse than the HT estimator; (iv) for
the two populations considered here, higher efficiency occurs at higher population
quantiles (large y) (this last point due to the skewed distribution of Y , the X

variables are better predictors for the response variable Y at the higher quantiles).
We also considered other finite populations where the regression model is

misspecified. For instance, we generated finite populations from a superpopula-
tion model yi = β0 + β1x1i + β2x2i + β11x

2
1i + β22x

2
2i + β12x1ix2i + εi, and then

blindly fit a simple linear regression model or a logistic regression model as we
did for Populations 1 and 2 for each of the sample data. The conclusions are very
much the same as before. The gain of efficiency from using F̂EL(y) depends on
the correlation between the X variables and the response variable Y . Knowing
the “correct model” will of course maximize the efficiency of those estimators,
but any “reasonable” working model will guarantee the gain of efficiency from
using the proposed estimators.

6. Concluding Remarks

Estimation of the finite population distribution function and quantiles in the
presence of auxiliary information requires special treatments in terms of both
modeling and construction. The generalized regression estimator which is the
most popular one for the estimation of means and totals cannot be directly ap-
plied here to get an estimator with desirable properties. The model-calibrated
pseudo empirical maximum likelihood estimators proposed in this article are
optimal under a chosen model, very easy to compute and highly efficient with
strong auxiliary information. They are also robust against model misspecifica-
tions. Implementation of these estimators requires complete auxiliary informa-
tion in general, i.e., values of the X variables for the entire finite population.
When such information is not available, the technique can be used under two-
phase sampling where a large first phase sample serves as “complete” auxiliary
information. Estimates for quantiles can be obtained directly from inverting the
estimated distribution function.

Appendix 1: Proof of Theorem 1.

We assume there is a sequence of finite populations {Uν , ν = 1, 2, . . .}. Fν(y),
ξν(t) refer to FY (y) and ξ(t) for the finite population Uν . The index ν will be
suppressed when there is no confusion. All limiting processes are under ν → ∞.

Let µ′(x,θ) = ∂µ(x,θ)/∂θ. The following regularity conditions are required.
A1.1 |θ̂ − θN | = Op(n−1/2) and σ̂ − σN = Op(n−1/2).
A1.2 maxi=1,...,N (ndi/N) = O(1).
A1.3 For each xi, µ(xi,θ) is twice differentiable, N−1∑N

i=1{µ′(xi,θN )/vi}2 =



1236 JIAHUA CHEN AND CHANGBAO WU

O(1), N−1∑N
i=1(µ(xi,θN )/vi)2 = O(1), and N−1∑N

i=1 v
−2
i = O(1).

Proof of part (1). Suppose that θN and σN are known. We use gi = gi(θN , σN ,

y0) in (4) to construct F̂ (1)
EL(y). Let ui = gi(θN , σN , y0) − ḡN . Since |ui| ≤ 1,

it follows from the proof of Theorem 1 in Chen and Sitter (1999) that p̂i =
wi/(1 + λui), λ = {∑i∈swiui}/{∑i∈swiu

2
i } + op(n−1/2), with wi = di/

∑
i∈s di.

Note that p̂i = wi(1−λui)+ op(n−1/2). Hence (5) follows from above expansion.
When gi = gi(θN , σN , y0) is replaced by ĝi = gi(θ̂, σ̂, y0), we need only show

that

1
N

N∑
i=1

ĝi − (
∑
i∈s

di)−1
∑
i∈s

diĝi =
1
N

N∑
i=1

gi − (
∑
i∈s

di)−1
∑
i∈s

digi + op(n−1/2) . (13)

Condition A1.2 implies that N−1∑
i∈s dici − N−1∑N

i=1 ci = Op(n−1/2) if
N−1∑N

i=1 c
2
i = O(1). Let ai(θ, σ) = (∂/∂θ)gi(θ, σ), bi(θ, σ) = (∂/∂σ)gi(θ, σ). It

follows from a Taylor series expansion that

ĝi=gi+[ai(θN , σN )]′(θ̂−θN )+bi(θN , σN )(σ̂−σN )+Op(|θ̂−θN |2)+Op((σ̂−σN )2) .

Under the regularity conditions, N−1∑N
i=1 ai−(

∑
i∈s di)−1∑

i∈s diai=Op(n−1/2),
N−1∑N

i=1 bi − (
∑

i∈s di)−1∑
i∈s dibi = Op(n−1/2). Under condition A1.1, (13)

follows immediately from the foregoing expansion. This proves the first part of
Theorem 1.

Proof of part (2). From part (1), F̂ (1)
EL(y) = F̂HT (y) +Op(n−1/2), so F̂ (1)

EL(y) is
asymptotically design-consistent. Assume (xi, yi), i = 1, . . . , N are i.i.d. random
variates from the superpopulation, then θN = θ + Op(n−1/2). To prove that
F̂

(1)
EL(y) is approximately model-unbiased at y = y0, we substitute ĝi = gi(θ̂, σ̂, y0)

used in (4) by g∗i = gi(θ, σ, y0), denote the resulting estimator by F̂ ∗
EL(y) =∑

i∈s p∗i I(yi ≤ y). Under model (3), we have

Eξ{F̂ ∗
EL(y0)} =

∑
i∈s

p∗iEξ{I(yi ≤ y0)} =
∑
i∈s

p∗i g
∗
i =

1
N

N∑
i=1

g∗i = Eξ{FY (y0)} .

Hence F̂ ∗
EL(y0) is exactly model-unbiased for FY (y0). However, there is a con-

ceptual gap between θ̂ and θ: it is usually true that θ̂ = θN + Op(n−1/2) under
the design-based framework and θN = θ +Op(n−1/2) under the superpopulation
model. To conclude that θ̂ = θ+Op(n−1/2) we need to consider the joint expec-
tation under both the design and the model. Suppose that θ̂ = θ + Op(n−1/2)
under the model, it is then straightforward to show that ĝi = g∗i + op(1), with
the uniform term op(1) over i. Similarly, ui = u∗i + op(1), uniformly over i,
where ui = ĝi − N−1∑N

i=1 ĝi and u∗i = g∗i − N−1∑N
i=1 g

∗
i . It now follows that
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p̂i = wi/(1 + λui) + op(n−1/2) = wi/(1 + λu∗i ) + op(1) = p∗i + op(1). The approx-
imate model unbiasedness follows from F̂

(1)
EL(y0) = F̂ ∗

EL(y0) + op(1).

Appendix 2: Proof of Theorem 3.

To simplify notation, for a fixed t ∈ (0, 1), we use ξν , ξ and ξ̂ instead of ξν(t),
ξ(t) and ξ̂(t), etc. The conditions needed are those used in Theorem 1, and A2.1
and A2.2 below.
A2.1 There exists a cdf F (y) which is twice differentiable, with density function

f(y), such that Fν(y)− F (y) = o(1); and for any aν = O(n−1/2),

sup
|δ|≤aν

|[Fν(y + δ) − Fν(y)]− [F (y + δ)− F (y)]| = o(n−1/2
ν ) ,

where the sample size nν → ∞ as ν → ∞.
A2.2 For fixed t ∈ (0, 1), ξν → ξ0, where ξ0 is the tth quantile from F (y) and

f(ξ0) > 0.
It is straightforward to show that ξ̂EL − ξ = Op(n−1/2). Following Serfling

(1980), we need only to show that, for cn = Op(n−1/2),

sup
|δ|≤cn

|[F̂EL(ξ + δ) − F̂EL(ξ)] − [FY (ξ + δ) − FY (ξ)]| = op(n−1/2) . (14)

We prove (14) in three steps.
Step 1. Let ĜHT (y) = N−1∑

i∈s diI(yi ≤ y) be the conventional Horvitz-
Thompson estimator for FY (y). We first investigate the validity of

sup
|δ|≤cn

|[ĜHT (ξ + δ) − ĜHT (ξ)]− [FY (ξ + δ)− FY (ξ)]| = op(n−1/2) . (15)

Shao and Rao (1993) show that (15) is true under stratified multi-stage sampling
with first stage sampling of clusters with replacement (see also Chen, Rao and
Sitter (2000)). The crucial argument that leads to this result is the Bernstein’s
inequality (Serfling (1980), p.95). The inequality is valid for simple random
sampling with or without replacement (Shorack and Wellner (1986), p.878), and
under unequal probability sampling with replacement.

Step 2. Let F̂HT (y) =
∑

i∈s diI(yi ≤ y)/
∑

i∈s di be the modified Horvitz-
Thompson estimator for FY (y). Note that F̂HT (y) is a ratio estimator. Condition
A1.3 implies N−1∑

i∈s di = 1 +Op(n−1/2). It now follows that

sup
|δ|≤cn

|[ĜHT (ξ + δ)− ĜHT (ξ)]− [F̂HT (ξ + δ)− F̂HT (ξ)]| = op(n−1/2) , (16)

since [ĜHT (ξ+δ)−ĜHT (ξ)]−[F̂HT (ξ+δ)−F̂HT (ξ)] = (N−1∑
i∈s di−1)[F̂HT (ξ+

δ)− F̂HT (ξ)].



1238 JIAHUA CHEN AND CHANGBAO WU

Step 3. The final step is to show that

sup
|δ|≤cn

|[F̂EL(ξ + δ)− F̂EL(ξ)]− [F̂HT (ξ + δ) − F̂HT (ξ)]| = op(n−1/2) , (17)

then the conclusion (14) follows from (15), (16) and (17). Note that p̂i = wi/(1+
λui) = wi −wiλui/(1+ λui), where wi = di/

∑
i∈s di. It is straightforward to see

that, for any s1 < s2,

[F̂EL(s2)− F̂EL(s1)]− [F̂HT (s2)− F̂HT (s1)] = −λ
∑
i∈s

wiui
1 + λui

I(s1 < yi ≤ s2) .

Since |ui| ≤ 1, (17) follows from the argument of Lemma 2 of Chen and Chen
(2000).
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