The Crossing Number of K_{11} is 100

January 29, 2007

Shengjun Pan¹ and R. Bruce Richter² University of Waterloo

Abstract

The crossing number of K_n is known for $n \leq 10$. We develop several simple counting properties that we shall exploit in showing by computer that $cr(K_{11}) = 100$, which implies that $cr(K_{12}) = 150$. We also determine the numbers of non-isomorphic optimal drawings of K_9 and K_{10} .

1 Introduction

Guy [4] conjectured that the crossing number $cr(K_n)$ of the complete graph K_n is equal to

$$Z(n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

He proved this for $n \leq 10$ and also determined that, for n = 4, 5, 6, 7, 8, the number of optimal drawings of K_n is 1, 1, 1, 1, 5, 3, respectively.

In general, we know that $.8594 Z(n) \le cr(K_n) \le Z(n)$. The latter inequality follows from the existence of a drawing (see [8] for one example) and the former is proved in [2].

In this paper we use some simple counting properties to provide the basis of an algorithm which we programmed to show that $cr(K_{11}) = Z(11)$. In particular, we determine that K_9 and K_{10} have 3080 and 5679 optimal drawings, respectively. Along the way, we answer affirmatively an open question of Brodsky, Durocher and Gethner [1] by showing that every good drawing (to be defined in the next section) of K_n induces a 3-connected planar graph.

2 Theory

In this section, we provide the simple theoretical background required for our algorithm.

¹Current address: University of California, San Diego

 $^{^2\}mathrm{NSERC}$ support for the research of RBR is gratefully acknowledged.

A drawing of a graph G consists of a set of distinct points of the sphere, one for each vertex, and a simple curve for each edge, joining the points representing the ends of the edge, without any vertex-point in its interior. Two drawings are *isomorphic* if there is a homeomorphism of the sphere to itself mapping the image of one drawing to the image of the other such that vertex-points are mapped to vertex-points.

A crossing in a drawing D of a graph G is an ordered pair $(x, \{e_1, e_2\})$ consisting of a non-vertex-point x of the sphere and distinct edges e_1, e_2 of G whose representing curves both contain x. The crossing number cr(D) is the number of crossings of D. Choosing the vertex-points as the corners of a convex polygon and using line-segments for the edges shows that G has a drawing with finitely many crossings. We shall only be concerned with drawings having finitely many crossings. The crossing number of a graph G, denoted by cr(G), is the minimum cr(D), taken over all drawings D of G. A drawing is optimal if its number of crossings achieves the minimum.

A drawing is *satisfactory* if two edges share at most one common point, including endpoints, and each non-vertex intersection between two edges is a transverse crossing. It is an easily proved folklore fact that every optimal drawing is satisfactory. A satisfactory drawing is *good* if no non-vertex point of the plane is in three edge-representing arcs. Likewise, it is an easy and well-known fact that if D is a satisfactory drawing of a graph G, then there is a good drawing D' of G having the same number of crossings. In particular, some optimal drawing of G is good.

The main theoretical result we need is the following.

Theorem 1.

- 1) For $n \leq 8$, every optimal drawing of K_n contains an optimal drawing of K_{n-1} .
- 2) A good optimal drawing of K₉ contains a good drawing of K₈ with at most 20 crossings. Any good drawing of K₈ with at most 20 crossings contains an optimal drawing of K₇.
- 3) A good drawing of K_{11} with fewer than 100 crossings contains a good drawing of K_{10} with at most 62 crossings. Any good drawing of K_{10} with at most 62 crossings contains an optimal drawing of K_9 .

We need the following facts to prove Theorem 1; the first is due to Kleitman [5], while the other two are standard counting results.

Lemma 2. If n is odd, then the number of crossings in any good drawing of K_n has the same parity as Z(n).

Deleting a vertex of a good drawing of K_n produces a drawing of K_{n-1} . Any crossing occurs in n-4 of these n subdrawings. That is,

Lemma 3. For $n \ge 5$,

$$cr(K_n) \ge \left\lceil \frac{n}{n-4} \cdot cr(K_{n-1}) \right\rceil.$$

The responsibility of a vertex v in a drawing is the total number of edge crossings of edges incident with v. Notice that the sum of all the responsibilities counts every crossing four times. That is,

Lemma 4. Let G be a graph with n vertices and let D be a good drawing of G with cr(D) crossings. Then there is a vertex v of G with responsibility at least $\lceil 4cr(D)/n \rceil$.

Proof of Theorem 1. In every case, we compute $\lceil 4cr(D)/n \rceil$. For (1), it is easy to verify that, for $n \leq 8$, $\lceil 4cr(K_n)/n \rceil = Z(n) - Z(n-1)$, while $\lceil 4cr(K_9)/9 \rceil = 12$ yields the first part of (2). For the second part of (2), $\lceil 4 \cdot 20/8 \rceil = 10$ shows that every good drawing of K_8 with at most 20 crossings has a drawing of K_7 with at most 10 crossings. Now Lemma 2 implies any such drawing has in fact at most 9 crossings.

For (3), Lemma 3 implies that any good drawing D of K_{11} has at least 95 crossings. Lemma 2 implies cr(D) is even. So cr(D) < 100 implies $cr(D) \in \{96, 98\}$. If cr(D) = 96, then $\lceil 4 \cdot 96/11 \rceil = 35$, so some K_{10} is drawn in D with at most 96 - 35 = 61 crossings. If cr(D) = 98, then $\lceil 4 \cdot 98/11 \rceil = 36$, so some K_{10} is drawn in D with at most 98 - 36 = 62 crossings. Finally, if D is a drawing of K_{10} with $cr(D) \in \{60, 61, 62\}$, then $cr(D) - \lceil 4cr(D)/10 \rceil$ is either 60 - 24 = 36 or 61 - 25 = 36 or 62 - 25 = 37. Thus, some subdrawing of K_9 has at most 37 crossings; by Lemma 2 it has at most 36.

3 Algorithm

In this section, we describe our algorithm for showing $cr(K_{11}) \ge 100$. It is based on extending good drawings of K_{n-1} to good drawing of K_n .

A face of a drawing D of a graph G in the sphere S is a component of $S \setminus D$. If $cr(D) < \infty$ and G is connected, then each face is homeomorphic to an open disc. The *induced planar graph* of D, denoted as G_D , is the graph with vertices $V(G_D) = V(G) \cup \{\text{crossings}\}$, where the edges are the components of $D \setminus V(G_D)$ and v is incident to e if and only if v is in the closure of e. Any vertex in V(G)is a *non-crossing (vertex)* of G_D , and any crossing of D is a *crossing (vertex)* of G_D . We define the *dual graph* of a good drawing D to be the dual graph of the induced planar graph G_D .

Let \mathcal{D} be a set of good drawings. In this section we shall use the following notation:

 $cr(\mathcal{D})$: the minimum number of crossings over all the drawings in \mathcal{D} ;

- D_F^+ : the set of all good drawings obtained by inserting a new vertex v in a face F of a good drawing D, and drawing new edges from v to all vertices of D;
- \mathcal{D}^+ : the set of all good drawings so that deleting some vertex and its incident edges leaves a drawing in \mathcal{D} ;

 \mathcal{K}_n^c : the set of all good drawings of K_n with c crossings;

$$\mathcal{K}_n^{\leq c}$$
: the set of all good drawings of K_n with at most c crossings.

Obviously, $\mathcal{D}^+ = \bigcup_{D \in \mathcal{D}} \left(\bigcup_{F \in \mathcal{F}(D)} D_F^+ \right)$, where $\mathcal{F}(D)$ denotes the set of faces of a drawing D.

3.1 Idea

Given a good drawing D of K_n with vertices v_i , $i = 1, 2, \dots, n$, and a face $F \in \mathcal{F}(D)$, let $d(F, v_i)$ be the minimum distance in the dual graph from F to the faces incident to v_i . Then $cr(D) + \sum_{i=1}^n d(F, v_i)$ is a lower bound Lb(D, F) for $cr(D_F^+)$. Therefore, letting $Lb[\mathcal{D}] = \min\{Lb(D, F) \mid D \in \mathcal{D}, F \in \mathcal{F}(D)\}$,

$$cr(\mathcal{D}^+) \ge Lb[\mathcal{D}].$$
 (1)

Here is how we will show $cr(K_{11}) \ge 100$. Theorem 1(3) says $\mathcal{K}_{11}^{\leqslant 99} \subseteq (\mathcal{K}_{10}^{\leqslant 62})^+$, so if $\mathcal{K}_{11}^{\leqslant 99} \neq \emptyset$, then Inequality (1) implies that

$$99 \geqslant cr(\mathcal{K}_{11}^{\leqslant 99}) \geqslant Lb\left[\mathcal{K}_{10}^{\leqslant 62}\right].$$

The algorithm will show that $Lb\left[\mathcal{K}_{10}^{\leq 62}\right] \ge 100$, giving a contradiction. Thus $\mathcal{K}_{11}^{\leq 99} = \emptyset$, i.e., $cr(K_{11}) \ge 100$.

We give an algorithm for generating all the drawings in $\mathcal{K}_{10}^{\leq 62}$ as follows. **Input:** a set \mathcal{D} of good drawings of K_n $(n \ge 4)$, and an integer $\delta \in \{0, 1, 2\}$. **Output:** all the drawings in \mathcal{D}^+ having at most $cr(K_{n+1}) + \delta$ crossings.

Applying the following inputs (\mathcal{D}, δ) , one after the other, to the algorithm:

 $(\mathcal{K}_{4}^{0},0), \ (\mathcal{K}_{5}^{1},0), \ (\mathcal{K}_{6}^{3},1), \ (\mathcal{K}_{7}^{9},2), \ (\mathcal{K}_{8}^{\leqslant 20},0) \ , (\mathcal{K}_{9}^{36},2),$

by Theorem 1, we shall get the sequence of sets of drawings:

$$\mathcal{K}_{5}^{1}, \ \mathcal{K}_{6}^{3}, \ \mathcal{K}_{7}^{9}, \ \mathcal{K}_{8}^{\leqslant 20}, \ \mathcal{K}_{9}^{36}, \ \mathcal{K}_{10}^{\leqslant 62}$$

3.2 Generating Drawings

For each D in the input (\mathcal{D}, δ) and each face F in $\mathcal{F}(D)$, a good drawing in D_F^+ consists of D plus the new vertex and curves joining the new vertex to the vertices in D. In general, these curves correspond to walks in the dual graph. Claim 1 below shows that, in our context, it suffices to consider paths.

The algorithm first adds a new vertex v in F, then searches for all the paths in the dual graph from v to a face incident to v_i with length at most $d(F, v_i) + 2$. Denote such a set of paths by S_i . The algorithm then checks each combination (P_1, P_2, \dots, P_n) , where $P_i \in S_i$. For each combination (P_1, P_2, \dots, P_n) , if

- 1) any two new edges can been drawn without crossing each other,
- 2) any new edge can be drawn by crossing each edge in D at most once, and
- 3) the total length is no more than $cr(K_{n+1}) + \delta cr(D)$,

then (P_1, P_2, \dots, P_n) determines a way to add new edges to D so that the new drawing of K_{n+1} is valid for output.

The following claim shows that it is sufficient to search for paths in the dual graph.

Claim 1. Let \mathcal{D} be a set of good drawings of K_n , let $\delta \in \{0, 1, 2\}$, let $D \in (\mathcal{D}, \delta)$, and let $F \in \mathcal{F}(D)$. Let $D' \in D_F^+$, let v be the new vertex and let (W_1, W_2, \dots, W_n) be the dual walks in D corresponding to the curves incident with v. Then each W_i is a path.

We first prove a lemma, which answers affirmatively an open question in [1].

Lemma 5. For $n \ge 4$, the induced planar graph G_D of a good drawing D of K_n is 3-connected.

Proof. For n = 4, there are only two good drawings of K_4 ; one is optimal and the other has a unique crossing. The corresponding induced planar graphs are K_4 and a 4-wheel, which are both 3-connected.

For $n \ge 5$ suppose otherwise there is a separating set $S \subseteq V(G_D)$ with size at most 2. Then there is a partition C_1, C_2 of $V(G_D) \setminus S$ into nonempty sets so that there is no edge of G_D between C_1 and C_2 .

Let m_i be the number of non-crossings in C_i , i = 1, 2, and m_0 be the number of non-crossings in S. Then $m_1 + m_2 + m_0 = n$. First we prove that $m_1 > 0$ and $m_2 > 0$. Suppose $m_1 = 0$. Let v be a crossing in C_1 . Then in G_D there are four internally disjoint paths from v to four non-crossings $u_j \in S \cup C_2$, j = 1, 2, 3, 4. Hence each of these paths goes through a vertex in S. However, $|S| \leq 2$, a contradiction. So $m_1 > 0$. Similarly $m_2 > 0$.

Let u_1, u_2, \dots, u_{m_1} be non-crossings in C_1 , and v_1, v_2, \dots, v_{m_2} be noncrossings in C_2 . Then, for each $j \in \{1, 2, \dots, m_1\}$ and $k \in \{1, 2, \dots, m_2\}$, there is $\{u_j, v_k\}$ -path P_{jk} in G_D going through only crossings. Since D is a good drawing, $P_{j1}, P_{j2}, \dots, P_{jm_2}$ are internally disjoint for any fixed j. So $m_2 \leq |S| - m_0 \leq 2 - m_0$. Similarly $m_1 \leq 2 - m_0$. Thus $n = m_1 + m_2 + m_0 \leq 4 - m_0 \leq 4$, which contradicts the assumption that $n \geq 5$.

Proof of Claim 1. For the drawing D of K_n in the input (\mathcal{D}, δ) , let D' be the good drawing of K_{n+1} determined by the combination of walks (W_1, \dots, W_n) . Since D is a good drawing, G_D is a simple graph and, since D' is good, no W_i can have one face F both immediately preceded and succeeded by the same face F'. By Lemma 5, G_D is 3-connected. It is well known that the dual graph of any simple and 3-connected graph is simple and 3-connected (for example, see Theorem 2.6.7 in [7]), so the dual graph of G_D , i.e., the dual graph of D, is also simple and 3-connected.

Suppose some walk W_i is not a path. Then there is a subsequence $(F_j, F_{j+1}, \dots, F_{j+k})$ in W_i such that $F_j = F_{j+k}$. Removing the subsequence $(F_{j+1}, \dots, F_{j+k})$ from W_i gives a new walk W'_i . Replacing W_i with W'_i gives a different new drawing D'' of K_{n+1} . By our earlier remark, $k \ge 3$. If D'' remains a good drawing, $D'' \in \mathcal{D}^+$. Then

$$cr(D'') \leq cr(D) - k \leq cr(\mathcal{D}_n^+) + \delta - 3 < cr(\mathcal{D}_n^+),$$

which contradicts that $D'' \in \mathcal{D}^+$. In D'' there may be crossings between new edges. These are easily eliminated to give a good drawing $D''' \in \mathcal{D}^+$, which also leads to a contradiction by a similar argument.

3.3 Checking Isomorphism

To determine the number of non-isomorphic drawings, we need to tell a computer how to check drawing isomorphism. For any two good drawings D^1 , D^2 of K_n , $n \ge 5$, by Lemma 5, their induced planar graphs G_{D^1} , G_{D^2} are 3-connected, and obviously simple. According to Whitney's Theorem (e.g., see Theorem 4.3.2 in [3], page 96), a planar graph has a unique drawing, up to isomorphism, if it is simple and 3-connected. Then the problem is reduced to checking graph isomorphism.

In our code we use **nauty** (no **aut**omorphisms, **y**es?), created by McKay [6], to determine graph isomorphism. **nauty** is a set of very efficient programming procedures for calculating the automorphism group of a vertex-colored graph. It can be used to test graph isomorphism.

3.4 Results

The results from our code show that, for n = 5, 6, 7, 8, the number of nonisomorphic drawings of K_n is indeed 1, 1, 5, 3 respectively. Our results also show that there are 3080 optimal drawings of K_9 and 5679 optimal drawings of K_{10} , up to isomorphism.

With all the drawings in $\mathcal{D}_{10}^{\leq 62}$, $Lb\left[\mathcal{D}_{10}^{\leq 62}\right]$ can be calculated straightforwardly by applying any shortest path algorithm. The value is 100 from our results. Therefore, $cr(K_{11}) \ge 100$, and so $cr(K_{11}) = 100$.

Moreover, by Lemma 3, it is easy to show that, for any odd n, $cr(K_n) = Z(n)$ implies $cr(K_{n+1}) = Z(n+1)$. Therefore $cr(K_{12}) = Z(12) = 150$.

We also found that there are many optimal drawings of K_9 which generate no optimal drawing of K_{10} . It was known that not every optimal drawing of K_n contains some optimal drawing of K_{n-1} (see [4] for an example). Now we also know that not every optimal drawing of K_n is contained in some optimal drawing of K_{n+1} .

Our code can be downloaded at

www.math.uwaterloo.ca/~brichter/pubs/publications.html.

References

- A. Brodsky, S. Durocher, and E. Gethner. The rectilinear crossing number of K₁₀ is 62. *eprint arXiv:cs.DM/0009023/*, September 2000.
- [2] E. de Klerk, D.V. Pasechnik, A. Schrijver, Reduction of symmetric semidefinite programs using the regular *-representation, Mathematical Programming Series B, to appear.
- [3] R. Diestel, Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Berlin · Heidelberg, 3rd edition, 2005.
- [4] R. K. Guy. Crossing numbers of graphs. In Graph Theory and Applications, volume 303 of Lecture Notes in Mathematics, pages 111–124. Springer-Verlag, Berlin · Heidelberg · New York, May 1972.
- [5] D. J. Kleitman. A note on the parity of the numbers of crossings of a graph. J. Combin. Theory, Ser. B, 21:88–89, 1976.
- [6] B. D. McKay. The nauty page. http://cs.anu.edu.au/~bdm/nauty/.
- [7] B. Mohar and C. Thomassen. *Graphs on Surfaces*. The Johns Hopkins University Press, Baltimore and London, 2001.
- [8] R. B. Richter and C. Thomassen. Relations between crossing numbers of complete and complete bipartite graphs. *Amer. Math. Monthly*, 104(2):131– 137, 1997.