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Abstract

The crossing number of Kn is known for n 6 10. We develop several
simple counting properties that we shall exploit in showing by computer
that cr(K11) = 100, which implies that cr(K12) = 150. We also determine
the numbers of non-isomorphic optimal drawings of K9 and K10.

1 Introduction

Guy [4] conjectured that the crossing number cr(Kn) of the complete graph Kn

is equal to
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He proved this for n 6 10 and also determined that, for n = 4, 5, 6, 7, 8, the
number of optimal drawings of Kn is 1, 1, 1, 1, 5, 3, respectively.

In general, we know that .8594 Z(n) ≤ cr(Kn) ≤ Z(n). The latter inequality
follows from the existence of a drawing (see [8] for one example) and the former
is proved in [2].

In this paper we use some simple counting properties to provide the ba-
sis of an algorithm which we programmed to show that cr(K11) = Z(11). In
particular, we determine that K9 and K10 have 3080 and 5679 optimal draw-
ings, respectively. Along the way, we answer affirmatively an open question of
Brodsky, Durocher and Gethner [1] by showing that every good drawing (to be
defined in the next section) of Kn induces a 3-connected planar graph.

2 Theory

In this section, we provide the simple theoretical background required for our
algorithm.
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A drawing of a graph G consists of a set of distinct points of the sphere, one
for each vertex, and a simple curve for each edge, joining the points representing
the ends of the edge, without any vertex-point in its interior. Two drawings are
isomorphic if there is a homeomorphism of the sphere to itself mapping the
image of one drawing to the image of the other such that vertex-points are
mapped to vertex-points.

A crossing in a drawing D of a graph G is an ordered pair (x, {e1, e2})
consisting of a non-vertex-point x of the sphere and distinct edges e1, e2 of G
whose representing curves both contain x. The crossing number cr(D) is the
number of crossings of D. Choosing the vertex-points as the corners of a convex
polygon and using line-segments for the edges shows that G has a drawing
with finitely many crossings. We shall only be concerned with drawings having
finitely many crossings. The crossing number of a graph G, denoted by cr(G),
is the minimum cr(D), taken over all drawings D of G. A drawing is optimal if
its number of crossings achieves the minimum.

A drawing is satisfactory if two edges share at most one common point,
including endpoints, and each non-vertex intersection between two edges is a
transverse crossing. It is an easily proved folklore fact that every optimal draw-
ing is satisfactory. A satisfactory drawing is good if no non-vertex point of the
plane is in three edge-representing arcs. Likewise, it is an easy and well-known
fact that if D is a satisfactory drawing of a graph G, then there is a good draw-
ing D′ of G having the same number of crossings. In particular, some optimal
drawing of G is good.

The main theoretical result we need is the following.

Theorem 1.

1) For n 6 8, every optimal drawing of Kn contains an optimal drawing of
Kn−1.

2) A good optimal drawing of K9 contains a good drawing of K8 with at most
20 crossings. Any good drawing of K8 with at most 20 crossings contains
an optimal drawing of K7.

3) A good drawing of K11 with fewer than 100 crossings contains a good
drawing of K10 with at most 62 crossings. Any good drawing of K10 with
at most 62 crossings contains an optimal drawing of K9.

We need the following facts to prove Theorem 1; the first is due to Kleitman
[5], while the other two are standard counting results.

Lemma 2. If n is odd, then the number of crossings in any good drawing of
Kn has the same parity as Z(n).

Deleting a vertex of a good drawing of Kn produces a drawing of Kn−1. Any
crossing occurs in n− 4 of these n subdrawings. That is,
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Lemma 3. For n > 5,

cr(Kn) >

⌈
n

n− 4
· cr(Kn−1)

⌉
.

The responsibility of a vertex v in a drawing is the total number of edge
crossings of edges incident with v. Notice that the sum of all the responsibilities
counts every crossing four times. That is,

Lemma 4. Let G be a graph with n vertices and let D be a good drawing of G
with cr(D) crossings. Then there is a vertex v of G with responsibility at least
d4cr(D)/ne.

Proof of Theorem 1. In every case, we compute d4cr(D)/ne. For (1), it is easy
to verify that, for n 6 8, d4cr(Kn)/ne = Z(n)−Z(n−1), while d4cr(K9)/9e = 12
yields the first part of (2). For the second part of (2), d4 · 20/8e = 10 shows
that every good drawing of K8 with at most 20 crossings has a drawing of K7

with at most 10 crossings. Now Lemma 2 implies any such drawing has in fact
at most 9 crossings.

For (3), Lemma 3 implies that any good drawing D of K11 has at least 95
crossings. Lemma 2 implies cr(D) is even. So cr(D) < 100 implies cr(D) ∈
{96, 98}. If cr(D) = 96, then d4 · 96/11e = 35, so some K10 is drawn in D
with at most 96 − 35 = 61 crossings. If cr(D) = 98, then d4 · 98/11e = 36, so
some K10 is drawn in D with at most 98 − 36 = 62 crossings. Finally, if D is
a drawing of K10 with cr(D) ∈ {60, 61, 62}, then cr(D)− d4cr(D)/10e is either
60 − 24 = 36 or 61 − 25 = 36 or 62 − 25 = 37. Thus, some subdrawing of K9

has at most 37 crossings; by Lemma 2 it has at most 36. �

3 Algorithm

In this section, we describe our algorithm for showing cr(K11) > 100. It is based
on extending good drawings of Kn−1 to good drawing of Kn.

A face of a drawing D of a graph G in the sphere S is a component of S \D.
If cr(D) < ∞ and G is connected, then each face is homeomorphic to an open
disc. The induced planar graph of D, denoted as GD, is the graph with vertices
V (GD) = V (G)∪{crossings}, where the edges are the components of D\V (GD)
and v is incident to e if and only if v is in the closure of e. Any vertex in V (G)
is a non-crossing (vertex) of GD, and any crossing of D is a crossing (vertex) of
GD. We define the dual graph of a good drawing D to be the dual graph of the
induced planar graph GD.

Let D be a set of good drawings. In this section we shall use the following
notation:
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cr(D) : the minimum number of crossings over all the drawings in D;
D+

F : the set of all good drawings obtained by inserting a new vertex v
in a face F of a good drawing D, and drawing new edges from v to
all vertices of D;

D+ : the set of all good drawings so that deleting some vertex and its
incident edges leaves a drawing in D;

Kc
n : the set of all good drawings of Kn with c crossings;

K6c
n : the set of all good drawings of Kn with at most c crossings.

Obviously, D+ =
⋃

D∈D

( ⋃
F∈F(D)

D+
F

)
, where F(D) denotes the set of faces of a

drawing D.

3.1 Idea

Given a good drawing D of Kn with vertices vi, i = 1, 2, · · · , n, and a face
F ∈ F(D), let d(F, vi) be the minimum distance in the dual graph from F to
the faces incident to vi. Then cr(D) +

∑n
i=1 d(F, vi) is a lower bound Lb(D,F )

for cr(D+
F ). Therefore, letting Lb[D] = min{Lb(D,F ) | D ∈ D, F ∈ F(D)},

cr(D+) > Lb[D]. (1)

Here is how we will show cr(K11) > 100. Theorem 1(3) saysK699
11 ⊆

(
K662

10

)+

,

so if K699
11 6= ∅, then Inequality (1) implies that

99 > cr(K699
11 ) > Lb

[
K662

10

]
.

The algorithm will show that Lb
[
K662

10

]
> 100, giving a contradiction. Thus

K699
11 = ∅, i.e., cr(K11) > 100.

We give an algorithm for generating all the drawings in K662
10 as follows.

Input: a set D of good drawings of Kn (n > 4), and an integer δ ∈ {0, 1, 2}.
Output: all the drawings in D+ having at most cr(Kn+1) + δ crossings.

Applying the following inputs (D, δ), one after the other, to the algorithm:

(K0
4, 0), (K1

5, 0), (K3
6, 1), (K9

7, 2), (K620
8 , 0) , (K36

9 , 2),

by Theorem 1, we shall get the sequence of sets of drawings:

K1
5, K3

6, K9
7, K

620
8 , K36

9 , K662
10 .
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3.2 Generating Drawings

For each D in the input (D, δ) and each face F in F(D), a good drawing in
D+

F consists of D plus the new vertex and curves joining the new vertex to the
vertices in D. In general, these curves correspond to walks in the dual graph.
Claim 1 below shows that, in our context, it suffices to consider paths.

The algorithm first adds a new vertex v in F , then searches for all the paths
in the dual graph from v to a face incident to vi with length at most d(F, vi)+2.
Denote such a set of paths by Si. The algorithm then checks each combination
(P1, P2, · · · , Pn), where Pi ∈ Si. For each combination (P1, P2, · · · , Pn), if

1) any two new edges can been drawn without crossing each other,

2) any new edge can be drawn by crossing each edge in D at most once, and

3) the total length is no more than cr(Kn+1) + δ − cr(D),

then (P1, P2, · · · , Pn) determines a way to add new edges to D so that the new
drawing of Kn+1 is valid for output.

The following claim shows that it is sufficient to search for paths in the dual
graph.

Claim 1. Let D be a set of good drawings of Kn, let δ ∈ {0, 1, 2}, let D ∈
(D, δ), and let F ∈ F(D). Let D′ ∈ D+

F , let v be the new vertex and let
(W1,W2, · · · ,Wn) be the dual walks in D corresponding to the curves incident
with v. Then each Wi is a path.

We first prove a lemma, which answers affirmatively an open question in [1].

Lemma 5. For n ≥ 4, the induced planar graph GD of a good drawing D of
Kn is 3-connected.

Proof. For n = 4, there are only two good drawings of K4; one is optimal and
the other has a unique crossing. The corresponding induced planar graphs are
K4 and a 4-wheel, which are both 3-connected.

For n > 5 suppose otherwise there is a separating set S ⊆ V (GD) with size
at most 2. Then there is a partition C1, C2 of V (GD) \S into nonempty sets so
that there is no edge of GD between C1 and C2.

Let mi be the number of non-crossings in Ci, i = 1, 2, and m0 be the number
of non-crossings in S. Then m1 +m2 +m0 = n. First we prove that m1 > 0 and
m2 > 0. Suppose m1 = 0. Let v be a crossing in C1. Then in GD there are four
internally disjoint paths from v to four non-crossings uj ∈ S ∪ C2, j = 1, 2, 3, 4.
Hence each of these paths goes through a vertex in S. However, |S| 6 2, a
contradiction. So m1 > 0. Similarly m2 > 0.

Let u1, u2, · · · , um1 be non-crossings in C1, and v1, v2, · · · , vm2 be non-
crossings in C2. Then, for each j ∈ {1, 2, · · · ,m1} and k ∈ {1, 2, · · · ,m2},
there is {uj , vk}-path Pjk in GD going through only crossings. Since D is a
good drawing, Pj1, Pj2, · · · , Pjm2 are internally disjoint for any fixed j. So
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m2 6 |S| −m0 6 2−m0. Similarly m1 6 2−m0. Thus n = m1 + m2 + m0 6
4−m0 6 4, which contradicts the assumption that n > 5. �

Proof of Claim 1. For the drawing D of Kn in the input (D, δ), let D′ be the
good drawing of Kn+1 determined by the combination of walks (W1, · · · ,Wn).
Since D is a good drawing, GD is a simple graph and, since D′ is good, no Wi

can have one face F both immediately preceded and succeeded by the same face
F ′. By Lemma 5, GD is 3-connected. It is well known that the dual graph of
any simple and 3-connected graph is simple and 3-connected (for example, see
Theorem 2.6.7 in [7]), so the dual graph of GD, i.e., the dual graph of D, is also
simple and 3-connected.

Suppose some walk Wi is not a path. Then there is a subsequence
(Fj , Fj+1, · · · , Fj+k) in Wi such that Fj = Fj+k. Removing the subsequence
(Fj+1, · · · , Fj+k) from Wi gives a new walk W ′

i . Replacing Wi with W ′
i gives a

different new drawing D′′ of Kn+1. By our earlier remark, k > 3. If D′′ remains
a good drawing, D′′ ∈ D+. Then

cr(D′′) 6 cr(D)− k 6 cr(D+
n ) + δ − 3 < cr(D+

n ),

which contradicts that D′′ ∈ D+. In D′′ there may be crossings between new
edges. These are easily eliminated to give a good drawing D′′′ ∈ D+, which also
leads to a contradiction by a similar argument. �

3.3 Checking Isomorphism

To determine the number of non-isomorphic drawings, we need to tell a com-
puter how to check drawing isomorphism. For any two good drawings D1, D2 of
Kn, n > 5, by Lemma 5, their induced planar graphs GD1 , GD2 are 3-connected,
and obviously simple. According to Whitney’s Theorem (e.g., see Theorem 4.3.2
in [3], page 96), a planar graph has a unique drawing, up to isomorphism, if
it is simple and 3-connected. Then the problem is reduced to checking graph
isomorphism.

In our code we use nauty (no automorphisms, yes?), created by McKay [6],
to determine graph isomorphism. nauty is a set of very efficient programming
procedures for calculating the automorphism group of a vertex-colored graph.
It can be used to test graph isomorphism.

3.4 Results

The results from our code show that, for n = 5, 6, 7, 8, the number of non-
isomorphic drawings of Kn is indeed 1, 1, 5, 3 respectively. Our results also
show that there are 3080 optimal drawings of K9 and 5679 optimal drawings of
K10, up to isomorphism.

With all the drawings in D662
10 , Lb

[
D662

10

]
can be calculated straightfor-

wardly by applying any shortest path algorithm. The value is 100 from our
results. Therefore, cr(K11) > 100, and so cr(K11) = 100.
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Moreover, by Lemma 3, it is easy to show that, for any odd n, cr(Kn) = Z(n)
implies cr(Kn+1) = Z(n + 1). Therefore cr(K12) = Z(12) = 150.

We also found that there are many optimal drawings of K9 which generate
no optimal drawing of K10. It was known that not every optimal drawing of
Kn contains some optimal drawing of Kn−1 (see [4] for an example). Now we
also know that not every optimal drawing of Kn is contained in some optimal
drawing of Kn+1.

Our code can be downloaded at
www.math.uwaterloo.ca/˜brichter/pubs/publications.html.
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