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Abstract: We develop a general model of edge spaces in order to generalize,
unify, and simplify previous work on cycle spaces of infinite graphs. We
give simple topological criteria to show that the fundamental cycles of a
(generalization of a) spanning tree generate the cycle space in a connected,
compact, weakly Hausdorff edge space. Furthermore, in such a space, the
orthogonal complement of the bond space is the cycle space. This work
unifies the two different notions of cycle space as introduced by Diestel
and Kühn (Combinatorica 24 (2004), 68–89 and Europ. J. Combin. 25
(2004), 835–862) and by Bonnington and Richter (J. Graph Theory 44
(2003), 132–147).

1. Introduction

In [1], Bonnington and Richter introduce the cycle space of a locally finite
graph as the set of edge-sets of subgraphs in which every vertex has even degree.
Motivated by this work, Richter asked when the cycle space of an infinite graph
is generated by fundamental cycles. In response, Diestel and Kühn [8] introduced
a different notion of cycle space of a locally finite graph.

In an infinite graph G, two rays (or 1-way infinite paths) in G are equivalent
if, for every finite set W of vertices, the tails of the two rays are in the same com-
ponent of G−W . An end of G is an equivalence class of rays. The Freudenthal
compactification F(G) is the topological space obtained from the 1-dimensional
cell complex on G by adding a point for each of the ends of G. A basic neigh-
bourhood of an end ω is the topological component of G−W (for a finite subset
W of V (G)) containing rays in ω, plus all the other ends with rays in this same
component. If G is locally finite, then F(G) is compact, justifying the name ([6]
Prop. 8.5.1).

In [8], Diestel and Kühn consider a locally finite graph G and focus on home-
omorphs of circles in F(G). For example, if two rays in the same end have a
common origin but are otherwise disjoint, then, in F(G), the union of the two
rays plus their common end point is a homeomorph of a circle. If C1, C2, . . . is a
possibly infinite sequence of edge-sets of homeomorphs of circles such that each
edge is in only finitely many of the Ci, then

∑
i≥1 E(Ci) can be defined to be the
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symmetric difference of all the Ci – an edge is in
∑

i≥1 Ci if and only if it is in
an odd number of the Ci. The cycle space of Diestel and Kühn is the set of all
such sums.

Intriguingly, one can view the cycle space of Bonnington and Richter as the
Diestel-Kühn cycle space of the Alexandroff, or 1-point, compactification A(G)
of the locally finite graph G. That is, if C1, C2, . . . is a possibly infinite sequence
of edge-sets of homeomorphs of circles in A(G) such that every edge is in finitely
many of the Ci, then

∑
i≥1 E(Ci) has each vertex incident with an even number

of its edges. Conversely, the edge-set of any subgraph having even degree at
every vertex can be expressed as such a sum (this will follow from the results in
this work and was also proved in [1]). This connection was a principal motivation
for our researches.

With these two particular cases in mind, one realizes that there are many
other candidate spaces. Any compactification of a locally finite graph, such
as the closure of an embedding in a compact surface (the sphere in particular
was considered in [1]), has its own cycle space. An intriguing possibility, whose
exploration is begun in [3], is to show that these cycle spaces have natural rela-
tionships: if f : C1 → C2 is a continuous surjection of one compactification C1 of
a locally finite graph G to another compactification C2 of G, then the cycle space
of C1 is a subspace of the cycle space of C2. These connections merit further
study, since it is not yet clear what a basis for the quotient space looks like –
this was one of the questions studied in [1] for graphs embedded in the sphere,
but the general case is wide open.

We adopt a topologically biased approach to cycle space questions. In Section
2, we introduce the notion of an edge space and in Section 3 describe topological
properties of the edge space that are used to prove the cycle space is the space
orthogonal to the bond space. Also in this section is the fact that elements of
the cycle space partition into cycles. In Section 4, we show that the fundamental
cycles of any (generalization of a) spanning tree generate the cycle space. In
Section 5, we shall describe a general quotient construction which turns “spaces
with edges” into edge spaces, i.e., so that the edges are singletons. In cases
of interest, this quotient preserves the cycle space. We then show in Section 6
that our results imply the Diestel-Kühn results related to cycle spaces in a more
general setting than locally finite graphs. Thus, a substantial goal of this work
is realized, namely to show that the reliance on homeomorphs of circles is not
necessary. We conclude with a short section explaining how the context may be
generalized to allow infinite sets of parallel edges.

Our starting point, from which the theory presented here developed, was that
of trying to reconcile graph-connection with topological connection. If G =
(V, E) is a graph, then there is a natural edge space (a general definition will
follow shortly) (V ∪ E, E) associated with G, whereby the basic open sets are
the singletons {e}, for e ∈ E, and the sets N(v), consisting of a vertex v and
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all its incident edges. We call this topology the classical topology .1 Note that
the classical topology is Alexandroff discrete, that is, the arbitrary intersection
of open sets is open (see [12]).

It is an easy exercise to show that G is connected in the graph-theoretic sense
if and only if the classical topology on V ∪E yields a space connected in the sense
of point-set topology. It will turn out that, for the cycle space theory, it is in
some sense only the edges that really matter. This is perhaps not so surprising,
in view of the fact that matroid theory successfully generalizes cycle spaces of
finite graphs. Thus, we will generalize the topological context even further to
emphasize this fact.

We find it interesting that we can deal directly with topologies on graphs in
which the edges are taken to be open singletons. The closure of an edge is just
the edge and its incident vertices. In this version, the topological spaces are not
Hausdorff, but we will be dealing with natural extensions of this property suitable
to the context. We believe that the structural simplicity gained in this model for
cycle space problems outweighs the small price paid in having to rework a few
topological theorems in this new setting.

We now describe the two topological concepts that we need for our main
theorems. A topological space X is weakly Hausdorff if, for any two points x
and y of X, there are open sets Ux and Uy, containing x and y, respectively,
such that Ux ∩ Uy is finite. If G is a possibly infinite simple graph with the
classical topology, then G is weakly Hausdorff but, as soon as some two vertices
are adjacent, not Hausdorff.

An edge space (X,E) is a topological space X and a subset E ⊆ X consisting
of points e such that {e} is open but not closed and the boundary of {e} has
at most two points. Henceforth we do not always distinguish between a point
and the corresponding singleton; in particular we refer to “open” (or “closed”)
points, and write X \ e for X \ {e}. The elements of E are edges and any
point of X \ E is a vertex . Notice that a vertex need not be a closed singleton,
nor need it be isolated from other vertices; indeed, X \ E can have non-trivial
components. A vertex v is incident with an edge e if v ∈ Cl(e). Because e is
open and not closed, it has at least one incident vertex.

In the theory of minors of graphs, a graph H is a minor of G if there is a
set {Kv | v ∈ V (H)} of disjoint connected subgraphs Kv of G and an injection
f : E(H) → E(G) so that, if e ∈ E(H) has ends u and v, then the ends of f(e)
are in Ku and Kv. Then (G, f(E(H))) is an edge space that “represents” the
graph H — H is obtained by contracting each subgraph Kv to single vertex. The
edge space version has the nice feature that it does not require actually changing
the ambient space (i.e., G) in order to discuss properties of H. We use this idea
in Corollary 20.

1Note that this differs from the usual topology of a one-dimensional cell-complex associated
with a graph. It is “classical” in the sense that it strictly preserves the graph-theoretical notion
of connectedness.
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One of our main results (Corollary 5 and Theorem 18) is the following.

Theorem 1. Let (X, E) be a connected, compact, weakly Hausdorff edge space.
There is a minimal connected subset of X containing X\E and the fundamental
cycles of such a subset generate the cycle space.

At this point, the reader does not really know what the cycle space is or what a
fundamental cycle is, but we hope the idea of what we are aiming for is clear. We
point out here, and show in Section 6, that these theorems subsume essentially
all the cycle space theory developed by Diestel and Kühn (although not that of
later works by Diestel and his students, especially [2], but see also [7]).

This work is based on part of the first author’s Ph.D. dissertation written
under the supervision of the second author.

2. Edge Spaces

In this section we provide some technical background about edge spaces that
we will need in this work. The important point that we prove is Theorem 3,
which proves the existence of certain minimal connecting sets. This is used to
provide “spanning trees” and “fundamental cycles”.

One of the advantages of edge spaces is that we do not need to work only with
the classical topology. Indeed, Diestel and Kühn make it clear that there are
good reasons for considering other possibilities. In particular, they suggest there
are legitimate reasons for thinking an end should be a point treated on a par
with the vertices and edges of the graph.

Many basic facts from elementary topology about Hausdorff spaces have nat-
ural analogues for weakly Hausdorff spaces. For one that is of use to us, we
need an additional notion. A topological space X is weakly normal if, for any
two disjoint closed sets C and D in X, there are open sets UC and UD in X,
containing C and D, respectively, such that UC ∩UD is finite. The following fact
is proved in the standard way.

Lemma 2. Let X be a compact, weakly Hausdorff space. Then X is weakly
normal.

The following theorem, the main result of this section, gives us our “spanning
trees” and “fundamental cycles”. This is a variation of a standard fact [4, Ch.
3, Ex. G 9].

Theorem 3. Let X be a connected, compact, weakly Hausdorff space and let
A ⊆ X. Then there is a minimal closed connected subset C of X such that
A ⊆ C.

Proof. In order to apply Zorn’s Lemma, we let C be a chain of closed connected

subsets of X containing A, ordered by inclusion. Let Ĉ =
⋂
C. Evidently Ĉ is

closed and contains A, so it suffices to show Ĉ is connected.

Suppose to the contrary that Ĉ has a separation (K1, K2). Both Ki are closed
in X. Since X is, by Lemma 2, weakly normal, there are open sets U1 and U2
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containing K1 and K2, respectively, such that |U1 ∩ U2| is finite. Because the
Ki are closed, we may assume that U1 ∩K2 and U2 ∩K1 are both empty. This

implies that U1 ∩ U2 is disjoint from Ĉ. Since U1 ∩ U2 is finite, there is a C1 ∈ C
such that U1 ∩ U2 is disjoint from C1.

Suppose C1 6⊆ U1 ∪ U2. For each x ∈ C1 \ (U1 ∪ U2), x /∈ Ĉ, so there is a
Cx ∈ C such that x /∈ Cx. Since Cx is closed, there is an open set Ux containing
x and disjoint from Cx. The open sets Ux, for x ∈ C1 \ (U1 ∪ U2), cover the
closed and compact set C1 \ (U1 ∪ U2). Therefore, there is a finite subcover, say
{Ux | x ∈ J}.

For each x ∈ J , Ux is disjoint from Cx. There are only finitely many such x,
so that there is a C2 ∈ C disjoint from all the sets Ux, for x ∈ J . This implies
that C2 ⊆ C1 and, furthermore, C2 is disjoint from C1 \ (U1 ∪ U2). This implies
that C2 ⊆ U1 ∪ U2.

We conclude that, in every case, there is a C2 ∈ C such that C2 ⊆ C1 and
C2 ⊆ U1 ∪ U2. It follows immediately that (U1 ∩ C2, U2 ∩ C2) is a separation of
C2, contradicting the fact that C2 is connected.

Given edge spaces (X, E), (Y, F ), the latter is an edge subspace of the former
if Y is a (topological) subspace of X, F = E ∩Y and, for all e ∈ F , ClX(e) ⊆ Y .
Note that, if C ⊆ X is closed, (C, E ∩ C) is an edge subspace of (X, E). Hence
we have the following corollaries.

Corollary 4. Let (A, F ) be an edge subspace of a connected, compact, weakly
Hausdorff edge space (X, E). Then there is a minimal closed, connected edge
subspace (C, G) of X such that (A, F ) is an edge subspace of (C, G).

Corollary 5. Let (X, E) be a connected, compact, weakly Hausdorff edge space.
Then there is a minimal subset E ′ of E such that (X\E) ∪ E ′ is connected.

The set (X\E)∪E ′ is a generalization of a classical spanning tree; it includes
all the non-edges of X and it keeps just enough edges to retain connection. We
shall refer to the sets (X\E) ∪ E ′ whose existence is guaranteed by Corollary 5
as minimal connected spanning sets for (X, E).

In fact, we can prove Corollary 5 for weakly normal edge spaces (even if the
edges have any number of boundary points) that are not compact.

There are three interesting examples related to Theorem 3. Two are based on
the Knaster-Kuratowski example of a subset K of the plane R2 which is con-
nected, but for which there is a point p such that K \{p} is totally disconnected.
Specifically, let C denote the Cantor set situated on [0, 1] × {0} in R2; thus,
(x, 0) ∈ C if x has a (possibly infinite) ternary representation that does not use
a 1. Let D ⊆ C consist of those points having a finite ternary expansion (possibly
using a 1), let F = C \D and let p be the point (1

2
, 1). For each c ∈ R×{0}, let

Sc denote the straight segment joining p and c. The Knaster-Kuratowski space
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K is the union of the sets

Lc =

{{
(x, y) ∈ Sc | y ∈ Q

}
, c ∈ D{

(x, y) ∈ Sc | y /∈ Q
}
, c ∈ F.

The following facts are relevant [17]: D is dense in C; K is connected; K \ {p}
has only trivial components; and the quasi-components of K \ {p} are the sets
Lc, c ∈ C.

In the first version, Example 4.2.9 in [19], we start with Y = K \ {p} and let
G be a graph with vertex set Y ∪{∞}, where ∞ is any point not in Y . The only
edges we allow in G will have ∞ as one end. Let N(G) denote the neighbours of
∞, and let Z(G) denote the c ∈ C such that N(G) ∩ Lc 6= ∅. Proposition 4.2.8
in [19] shows that G is connected if and only if Z(G) is dense in C.

Our specific example is obtained as follows. Let d1, d2, . . . be an enumeration
of D. For each i, let vi be that point (x, y) of Ldi

such that y = 1− 1
2i . Taking

v1, v2, . . . for the neighbours of ∞, G is a connected weakly Hausdorff space
(actually “weakly regular”) and yet has no minimal connected spanning set. This
shows (not surprisingly) that some additional hypothesis, such as compactness
or weak normality, is required.

The second example is K itself. No two points of K are contained in a minimal
closed connected subset of K, yet the edge space is weakly normal. In the context
of trying to find fundamental cycles in a superspace having additional edges, such
pairs present difficulties.

The third example is an edge space (X, E) for which X\E consists of three
closed points u, v, w. There are denumerably many edges in E, all having {u, v}
for boundary. The basic open sets containing w consist of w and all but finitely
many edges. (They do not contain either u or v.) Such a space is connected
and compact, but has no minimal connected spanning set. It is not weakly
Hausdorff—any neighbourhood of u will contain each of the infinitely many edges,
so u, w cannot be finitely separated by open sets.

We shall need the following fact throughout this work.

Lemma 6. Let H be a compact weakly Hausdorff space. Then, for any two
components K and L of H, there is a separation (A, B) of H such that K ⊆ A
and L ⊆ B.

Kuratowski [14] (Section 47, Theorems 1 and 2) proves this for compact Haus-
dorff spaces. His proof applies in our context, but with some small modifications.
One relevant point for the modification to weakly Hausdorff spaces is that, if K
is a component of H, then the intersection of all the open sets in H containing
K is just K. Details are given in [19], Lemma 4.3.2 and Theorem 4.3.3.

3. Cycle Spaces

In this section, we introduce cycles in an edge space, the cycle and bond spaces
of an edge space and prove that, for every compact weakly Hausdorff edge space:
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(1) every element of the cycle space is the edge-disjoint union of cycles; and (2)
the space orthogonal to the bond space is the cycle space. The precise meanings
of the ingredients of these theorems will be made clear through the rest of this
section.

A cycle is a connected edge space (X, E) such that E 6= ∅ and, for every e ∈ E,
X\e is connected, but, for every distinct e, f ∈ E, X \ {e, f} is not connected.

This surprisingly simple definition is clearly a characterization of classical cy-
cles in graphs. It gives a very combinatorial flavour to the meaning of cycle, and
so at least provides some kind of answer to the problem posed by Diestel and
Kühn to find a combinatorial meaning for cycles.

The following lemmas may reassure the reader that our cycles have properties
comparable to cycles in graphs. Corollary 9 perhaps does so even more. As we
do not need the corollary in this work, its proof is omitted.

Lemma 7. Let (X, E) be a cycle and let F ⊆ E be finite and non-empty. Then
X \ F has |F | components and there is a cyclic order (K1, · · · , K|F |) on these
components so that, for each i = 1, 2, . . . , |F |, there is an edge of F with an
incident vertex in each of Ki and Ki+1 (indices taken modulo |F |).

The proof requires the following, expected, fact. As it is basic to the theory,
we provide its proof.

Lemma 8. Let (X,E) be an edge space, let e ∈ E and let K be the component
of X containing e. Then K\e has at most two components. If K\e has precisely
two components, then each contains a vertex incident with e.

Proof. Suppose (A, Ā) is a separation of K\e and that A contains no vertex
incident with e. Then (A, Ā ∪ {e}) is a separation of K, a contradiction. If A
has a separation (A′, A′′), then A′, say, cannot have a vertex incident with e and
(A′, A′′ ∪ Ā ∪ {e}) is a separation of K, a contradiction.

Proof of Lemma 7. We proceed by induction on |F |. The case |F | = 1 is
trivial; we need separately the case |F | = 2.

In this case, let e, f ∈ F . The definition of cycle and Lemma 8 tell us that
X\e is connected, X \ {e, f} has precisely two components and each of e and f
has an incident vertex in each of the components.

If |F | ≥ 3, delete an edge e from F to get F ′. Then X \ F ′ has m = |F ′|
components and a cyclic order (K1, . . . , Km) of them. For i = 1, 2, . . . ,m, there
is an ei ∈ F ′ having incident vertices in both Ki and Ki+1. We may assume
e ∈ Km.

The definition tells us that X \ {e, em} is disconnected; it has precisely two
components L and M . Let L′ be the component of Km\e containing a vertex
incident with em−1. Since Y = (K1 ∪ · · · ∪ Km−1) ∪ L′ ∪ {e1, · · · , em−1} is a
connected subset of X \{e, em}, it must be contained in L, say. Thus, M ⊆ Km.

It follows that Km\e has components L′ and M . We know that em has an
incident vertex in each of M and K1. It follows that (K1, · · · , Km−1, L

′, M) is a
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cyclic sequence of the |F | components of X\F , such that consecutive components
are joined by an edge of F .

Corollary 9. Let (X, E) be a connected edge space with |E| ≥ 4. The following
are equivalent:

(1) (X, E) is a cycle; and
(2) there is a cyclic order on E such that, if (w, x, y, z) is a cyclic subsequence,

then x and z separate w and y.

Let (X, E) be an edge space. An edge cycle in (X, E) is a subset F of E for
which there is an edge subspace (Y, F ) of (X, E) that is a cycle. (Recall this
implies F = Y ∩ E, and, for every e ∈ F , ClX(e) ⊆ Y .)

Lemma 10. Let (X,E) be a connected, compact, weakly Hausdorff edge space.
Then, for every edge e ∈ E, either X \ e is disconnected or else there exists an
edge cycle of X containing e, but not both.

Proof. Given any edge e, the subset X \ e can only be disconnected if e has
two incident vertices, which are in distinct components after deleting e. Since an
edge cycle containing e arises from a cycle C containing both vertices incident
with e, and since C \ e is a connected subset of X \ e, the two assertions cannot
hold simultaneously.

If e is incident with only one vertex, then Cl(e) is the required cycle. Otherwise,
let u, v be the vertices incident with e, and assume that X \e is connected. Then
by Corollary 4 it contains a minimal closed connected edge subspace P containing
{u, v}. We claim that, if f ∈ E ∩P , then u and v are in different components of
P \ f . Otherwise, let K be the component of P \ f containing u and v. Since f
is open, P \ f is closed in X, so K is closed in X, contradicting minimality. It
follows that P ∪ e is the required cycle.

We are now almost prepared to introduce the cycle space. A family E of subsets
of a set E is thin if each element of E occurs in only finitely many elements of
E . The point is that if E is thin, then the symmetric difference D of the sets in
E is well-defined: an element e of E is in D if and only if e is in an odd number
of elements of E .

We have the following sets of subsets of E generated by a family E of subsets
of E (thin or not):

(1) the weak span W(E) of E is the set of all symmetric differences of finitely
many elements of E ;

(2) the algebraic span A(E) of E is the set of all symmetric differences of thin
subsets of E ; and

(3) the strong span S(E) is the smallest subset of the power set of E that
contains E and is closed under symmetric differences of thin families.

Obviously we have W(E) ⊆ A(E) ⊆ S(E). As a simple example, let E =
{e1, e2, . . . } be a countably infinite set and let E consist of the pairs {e1, ei},
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i = 2, 3, . . . . Then W(E) = A(E) consists of all finite even subsets of S, while
S(E) = A(A(E)) consists of all subsets of S, while (for any E)W(W(E)) = W(E).

The cycle space Z = Z(X, E) of an edge space (X, E) is the strong span of the
edge cycles of (X, E). We shall see in Corollary 15 that, when X is compact and
weakly Hausdorff, the cycle space is also the algebraic span of the edge cycles of
(X, E); this is not obvious and is an important part of the statement of Theorem
14. (We note that Diestel and Kühn define their cycle space as the algebraic span
of the edge sets of circles. Corollary 15 shows the two definitions are equivalent.
Their version of this corollary is that the cycle space is closed under sums of thin
families of elements of the cycle space.) The reader should also note that, for
a finite graph with the classical topology, an edge cycle is the set of edges of a
cycle and therefore the cycle space as defined here is the standard cycle space.

Notice that if G is a graph (not necessarily locally finite), and R and S are rays
in the same end of G and have common origins, then the symmetric difference
R4S of R and S is the symmetric difference of a thin family of finite cycles.
Thus, for both definitions of the cycle space, R4S is in the cycle space. In
fact, for any space X containing G, R4S is in the cycle space of X. For more
complicated elements of the cycle space of F(G), however, it is not clear whether
they are elements of the cycle space of, say, the Stone-Čech compactification of
G. Our theory applies equally well to the latter, but examples seem to be ex-
tremely difficult to analyze, since the Stone-Čech compactification is very poorly
understood. We do not even know in detail what this compactification is for the
natural numbers.

It seems that in order to study cycles, we must also study edge cuts. Let A
and Ā partition X\E into two closed sets. Then the set δ(A) of edges having
one end in A and one end in Ā is an edge cut . It is not obvious that, when X is
connected, edge cuts are cutsets; in fact, the third example in Section 2 (which
is not weakly Hausdorff) provides a counterexample to this—namely the edge
cut δ(w), which is empty. We shall show that edge cuts are cutsets in Section
5 (Corollary 25), at a level of generality which extends that of compact weakly
Hausdorff edge spaces. This is why we insist that both A and Ā be closed: we
want to ensure that X \ δ(A) is not connected.

The following is a basic proposition that is not trivial in this context.

Lemma 11. Let (X, E) be a compact, weakly Hausdorff edge space. Let Z be an
edge cycle of (X, E) and let B be an edge cut of (X, E). Then |Z ∩ B| is finite
and even.

We need the following crucial fact.

Theorem 12. Every edge cut in a compact weakly Hausdorff edge space is finite.

Proof. Let (X,E) be the given edge space and let A and Ā partition X\E into
two closed sets. Since X is compact, Lemma 2 implies X is weakly normal and,
therefore, there are open sets UA and UĀ in X, containing A and Ā, respectively,
such that UA ∩ UĀ is finite. But δ(A) ⊆ UA ∩ UĀ, so δ(A) is finite.



10

Proof of Lemma 11. By Theorem 12, B is finite, so Z ∩B is finite. Let (Y, Z)
be a cycle. By Lemma 7, Y \ (Z ∩ B) has finitely many components, joined
cyclically in the order K1, K2, . . . , Kr by the edges of Z ∩ B. Let (A, Ā) be a
partition of X\E into closed sets such that B = δ(A).

Every edge of Z∩B has one incident vertex in A and the other in Ā. Applying
Lemma 7, the sets Ki \ E are alternately contained in A and contained in Ā.
Therefore r is even, as required.

It is interesting to compare this with earlier studies of cycle spaces for infinite
graphs. In those cases, a cycle Z is necessarily finite, while the cuts B may be
infinite. Of course |Z ∩ B| is even. In our context, it is the cycles that may be
infinite, while the cuts are finite and we also have |Z ∩B| even.

The bond space B = B(X, E) of an edge space (X, E) is the set of all cuts. It is
very easy to see that, given separations (A1, Ā1), (A2, Ā2) of X\E (so Ai, Āi are
complementary and both simultaneously open and closed in X\E, for i = 1, 2),
we have that δ(A14A2) = δ(A1)4 δ(A2). It follows that the bond space is a
vector space over Z2.

Furthermore, Theorem 12 implies that B is the weak span of the inclusion-
wise minimal edge cuts, which, when X is a finite graph, are often called bonds ,
whence the name “bond space” for B.

For any set A of subsets of a set S, the set A⊥ is defined to be the set of
subsets C of S such that, for every C ′ ∈ A, |C ∩ C ′| is even. Throughout this
article, whenever we consider A⊥ for a set A whose elements are sets of edges of
an edge space, S will tacitly be assumed to be the set of all edges (and nothing
more).

Corollary 13. If (X, E) is a compact weakly Hausdorff edge space, then Z ⊆ B⊥
and B ⊆ Z⊥.

Proof. The two claims are trivially equivalent. To prove the first, it suffices
to show that every edge cycle is in B⊥ and that B⊥ is closed under sums of thin
families. The former is the content of Lemma 11. For the latter, suppose A ⊆ B⊥
is a thin family and that b ∈ B. The set A is thin and, by Theorem 12, b is finite,
so the set A′ = {a ∈ A | a ∩ b 6= ∅} is finite. Clearly b ∩ (4A′) = b ∩ (4A).
Since A′ is finite, |b∩ (4A′)| ≡

∑
a∈A′ |b∩a| (mod 2). Since every |b∩a| is even,

|b ∩ (4A)| is even, as required.

We are now ready to prove our first main result.

Theorem 14. Let (X, E) be a compact, weakly Hausdorff edge space. Then:

(1) B⊥ = Z; and
(2) every element of the cycle space is the disjoint union of edge cycles.

Proof. For both of these, it suffices to prove that every element of B⊥ is the
disjoint union of edge cycles. From this (1) follows, since it obviously implies
B⊥ ⊆ Z and Corollary 13 is the reverse inclusion. Conclusion (2) is now imme-
diate from the two preceding sentences.
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So let F ∈ B⊥ and let P denote the set of all sets of pairwise disjoint edge
cycles contained in F . That is, an element of P is a set of pairwise disjoint edge
cycles, each contained in F . The union of any chain of elements of P is trivially
again an element of P , so Zorn’s Lemma implies P has a maximal element P .

Let F ′ = ∪C∈P C. Corollary 13 implies that F ′ ∈ B⊥. Hence F ′4F = F \F ′ ∈
B⊥.

Now suppose, by way of contradiction, that F ′4F has an edge e, and let
X ′ = (X\E) ∪ (F ′4F ). Let K be the component of X ′ containing e. If K\e is
connected, then by Lemma 10 e is in an edge cycle C of X ′, which is necessarily
contained in F ′4F . Since F ′4F = F \ F ′, P ∪ {C} is a set of pairwise disjoint
edge cycles, all contained in F , contradicting the maximality of P .

Thus, we may assume that K\e is not connected. We claim that {e} is an
edge cut of X ′. To see this, let W = X ′\e. Then by Lemma 8 K has turned into
two components K1 and K2 of W . From Lemma 6 there is a separation (A, Ā)
of W such that K1 ⊆ A and K2 ⊆ Ā. Since W = X ′\e, {e} is an edge cut of X ′,
as required.

Since W contains all of X\E, (A, Ā) gives an edge cut of X, which is finite by
Theorem 12. Only finitely many edge cycles in P can meet δ(A), and each one
does so in an even number of edges. Thus, F ′∩ δ(A) is even. On the other hand,
F has only one more edge in δ(A), namely e, so F ∩ δ(A) is odd, contradicting
the assumption that F is orthogonal to every cut.

Corollary 15. Let (X, E) be a connected, compact, weakly Hausdorff edge space.
Then the cycle space is the algebraic span of the edge cycles.

4. Fundamental Cycles

In this section, we shall show that the fundamental cycles of a connected,
compact, weakly Hausdorff edge space (X, E) algebraically generate the cycle
space. Let T be a minimal connected spanning set for X, as guaranteed by
Corollary 5, let E ′ = E ∩ T , and let e∗ ∈ E \ E ′ have incident vertices u and v.
Then u, v ∈ T and T ∪e∗ is a closed subset of X, whence Y := (T ∪e∗, E ′∪e∗) is
another connected, compact, weakly Hausdorff edge space. Since T is connected,
Lemma 10 implies that there exists an edge cycle F ⊆ E of Y (and therefore of
(X, E)) containing e∗.

An easy argument similar to the one in the proof of Lemma 10 shows that, for
any edge e ∈ T ∩ F , the subset T\e is disconnected and u and v are in different
components of T\e. Therefore, the set F \ e∗ is precisely the set of edges of T
that separate u and v (in T ). Hence the edge cycle F is uniquely determined by
e∗.2 We refer to F as the fundamental cycle of e∗ with respect to T , and denote
it by Ce∗ .

Our next goal is to show that the set of fundamental cycles is thin. This
is done by considering the fundamental bonds: for each edge e ⊆ T , T\e has

2Although the same cannot be said of the cycle that determines F , i.e., the subset C such
that (C,F ) is a cycle and an edge-subspace of Y .
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precisely two components, which induce an edge cut Be containing e. (In fact
this edge cut is minimal, i.e., is a bond.) By Theorem 12, |Be| is finite.

The following generalizes classical results and has a very simple proof, needing
only that, if e ∈ T ∩ E, then T \ e has two components.

Lemma 16. Let (X,E) be a connected, compact, weakly Hausdorff edge space.
Let T be a minimal connected spanning set for (X, E), e an edge in T and f an
edge not in T . Then e ∈ Cf if and only if f ∈ Be.

Theorem 17. Let (X, E) be a connected, compact, weakly Hausdorff edge space.
For any minimal connected spanning set T , the set of fundamental cycles is thin.

Proof. If the edge e is not in T , then e is only in Ce. If e ∈ T is in Cf , then
f ∈ Be and, since |Be| is finite, there are only finitely many such Cf containing
e, as required.

And now we have one of our main theorems.

Theorem 18. Let (X, E) be a connected, compact, weakly Hausdorff edge space.
Let T be any minimal connected spanning set. If z ∈ Z(X, E), then

z = 4e∈z\T Ce .

That is, the fundamental cycles algebraically generate the cycle space.

Proof. By Theorem 17, the set z′ = 4e∈z\T Ce is defined and is in the cycle
space. Since the cycle space is closed under symmetric difference, z4z′ is in the
cycle space. By definition of z′, if e is not in T , then e /∈ z4z′, so z4z′ ⊆ T . By
Theorem 14 (2), if z4z′ 6= ∅, there is an edge cycle C ⊆ z4z′. Thus, there is a
cycle (Y, C) in (X, E). But Y ⊆ T and deleting any edge of T disconnects T , a
contradiction.

We conclude this section with the following result, for which no analogue
appears in the Diestel-Kühn works. A connected edge space (X, E) is 2-edge-
connected if, for every e ∈ E, X\e is connected.

Theorem 19. Let (X,E) be a 2-edge-connected, compact, weakly Hausdorff edge
space. Then Z⊥ = B.

Proof. We have from Corollary 13 that B ⊆ Z⊥. Let T be a minimal connected
spanning set for (X, E) and let F be the set of fundamental cycles with respect
to T .

Let A ∈ Z⊥. We claim that A is finite. By way of contradiction, suppose not.
Let G be the simple bipartite graph with bipartition (A,F) and an edge between
a ∈ A and F ∈ F if a is an edge of F .

Notice that every F ∈ F has finite even degree in G, since A ∈ Z⊥. Since F
is a thin family, for every e ∈ E, and so, in particular, for every e ∈ A, e is in
finitely many members of F . Thus, every vertex in A has finite degree in G.

Since (X, E) is 2-edge-connected, by Lemma 10 every e ∈ E is in some edge
cycle and, therefore, in some element of F . By assumption, A is infinite, so the
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preceding sentence and paragraph imply F is infinite. It follows easily that there
is an infinite subset F ′ of F such that, if F and F ′ are distinct elements of F ′,
F ∩ A and F ′ ∩ A are disjoint and not empty.

Since F is thin, so is F ′. Thus, the set z = 4F∈F ′F is in Z. The definition
implies A ∩ z is even; in particular it is finite. But F ′ was selected so that no
two elements of F ′ have any elements of A in common. So z contains all the
elements of A contained in some member of F ′. Since every element of F ′ has
an element of A and there are infinitely many elements of F ′, z has infinitely
many elements of A, a contradiction.

So A is finite. Let H be the graph whose vertices are the finitely many compo-
nents of X\A and whose edges are the edges in A, having as ends the components
containing their ends in X. It is easy to use Lemma 7 and Theorem 3 to trans-
form graphical cycles (i.e., classical cycles in finite graphs) in H to edge cycles
in (X, E). If the cycle in H has k edges, then the corresponding edge cycle D in
(X, E) has |D ∩A| = k. Since A ∈ Z⊥, we conclude that k must be even. Thus,
H has only even cycles, i.e., H is bipartite.

Let K1 be the union of components of X\A on one side of the bipartition of the
vertices of H and let K2 be the union of the remaining components of X\A. Then
(K1\E, K2\E) is a partition of X\E into two closed sets, and A = δ(K1\E), as
required.

A simple, relevant example is the Freudenthal compactification of a ray, which
consists of a ray plus one additional point. This space is connected, compact and
weakly Hausdorff. However, Z = {∅}, B is the set of finite sets of edges, while
Z⊥ is the set of all subsets of edges. The following corollary shows that having
infinitely many cut edges is the only time that Z⊥ is not B.

Corollary 20. Let (X, E) be a connected, compact, weakly Hausdorff edge space.
Let E ′ = {e ∈ E | X\e is disconnected}. Then Z⊥ = B(X, E \ E ′)⊕ 2E′

.

Here, the ⊕ means that every set in Z⊥ is the disjoint union of a set in
B(X,E \ E ′) and a set in 2E′

, which is the set of all subsets of E ′. The proof is
interesting in that it uses the freedom we have to declare which edges we consider.
In this case, it is the cut-edges we ignore. The reader should realize that this is
contraction of edges. A feature of our model, however, is that we do not have to
change the space, just the set of “recognized” edges.

Proof. If Z ∈ Z, then Z ∩ E ′ = ∅, so every subset of E ′ is in Z⊥. More
generally, Z⊥ is of the form X ⊕ 2E′

, where every element of X is contained in
E \ E ′.

Furthermore, Z(X, E) = Z(X, E \E ′). Since (X,E \E ′) is 2-edge-connected,
Theorem 19 implies [Z(X, E\E ′)]⊥ = B(X, E\E ′). Putting these two paragraphs
together, the result follows.
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5. More general edges

In studying embeddings of graphs in surfaces, the graph is identified with a
subspace of the surface in which each edge corresponds to an open arc having
two points in its boundary. This is, of course, the 1-dimensional cell complex
associated with the graph. In the literature on continuum theory, a closed subset
V of a continuum X is a T-set if the components of X \ V are open sets having
precisely two boundary points. If V is a T -set in a continuum X, then (X,X \V )
has a structure quite analogous to an edge space.

In this section, we provide a general quotient operation that turns a compact,
weakly Hausdorff space with connected open sets as “edges”, such as (X,X \V )
in the preceding paragraph, into a compact, weakly Hausdorff edge space. The
main point is that the cycle spaces of the two spaces are isomorphic and the
cuts are in 1-1 correspondence. Thus, the theory developed in Sections 3 and 4
extends to include such spaces. This will not be quite enough to show that the
Diestel-Kühn cycle space is the same as ours—we will also have to show that
their circles correspond to our cycles.

Our quotient operation will not only produce an edge space (X, E), which
means the elements of E are open singletons, but the components of X \ E will
also be singletons. We will see an example in Section 6 in which this point is
instructive.

There is a second example of this type. The binary tree has a compactification
in which the ends form an interval (there is a continuous function from the Cantor
set to the unit interval). The quotient operation applied to this compactification
is the Alexandroff compactification of the binary tree.

A generalized edge space is a pair (X, E) consisting of a topological space X
together with a set E of pairwise disjoint, connected, open, but not closed, subsets
of X, each having at most two additional points in its closure. We denote the
subspace X \ (∪e∈Ee) by X −E . The concepts of edges, edge cycles, cycles, cycle
spaces, fundamental cycles, cuts, bonds and bond spaces extend in the obvious
way to their “generalized” version.

Let (X, E) be a generalized edge space. The edge-vertex decomposition D of X
is the partition of X into the connected open sets in E and the connected closed
sets that are the components of X − E . The simplification of (X, E) is the pair
(Y, F ), where Y is the topological quotient X/D whose points are the sets in D,
and F ⊆ Y being precisely the parts from E .

The crucial relationships are given in the following theorem, the first main
point of this section. Recall that, for a partition P of a topological space X:

(1) a set Y ⊆ X is saturated if Y is the union of sets in P ; and
(2) P is upper semicontinuous if, for every part P and every open set U of

X for which P ⊆ U , then there is a saturated open set V such that
P ⊆ V ⊆ U .

Theorem 21. Let (X, E) be a compact, weakly Hausdorff generalized edge space.
Then the decomposition of X − E into components is upper semicontinuous. If
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(Y, F ) is the simplification of (X, E) and p : X → Y is the associated quotient
map, then:

(1) (Y, F ) is a compact, weakly Hausdorff edge space; and
(2) if A ⊆ Y , then A is connected in Y if and only if p−1(A) is connected in

X.

In general, it is not true that the edge-vertex decomposition of an edge space
(X, E) is upper semicontinuous. When X is a compact metric space, that the
decomposition of X − E is upper semicontinuous is [4, Th. 8.F.14]. The proof is
readily adapted to compact weakly Hausdorff spaces [19, Thm. 4.3.16].

Intermediate between the generalized edge space (X, E) and its simplification
(Y, F ) is the edge simplification (Y ′, F ′), in which each element of E is reduced
to a single point. Thus, the components of Y ′ \ F ′ and X \ E are the same, and
the edges in F and F ′ can be interpreted as being the same. The two statements
in Theorem 21 concerning (Y, F ) also apply (rather more easily) to (Y ′, F ′).

In order to prove the rest of Theorem 21, we need some preliminaries.

Lemma 22. Let (X, E) be a compact generalized edge space and (A1, A2) a sepa-
ration of X−E. For i = 1, 2, let Ui be an open set containing Ai and disjoint from
A3−i. Let M and N denote the sets of generalized edges {e ∈ E | e\(U1∪U2) 6= ∅}
and {e ∈ E | Cl(e)∩U1 6= ∅ and Cl(e)∩U2 6= ∅} respectively. Then M is finite,
and if U1 ∩ U2 is finite, then so is N .

Proof: Suppose first that the set M is infinite, and for every e ∈ M choose
xe ∈ e \ (U1 ∪ U2). Since X is compact, the set {xe}e∈M has an accumulation
point x. Since the (generalized) edges are open and pairwise disjoint, x is not
in any edge, that is, x ∈ X − E . Thus, for some i ∈ {1, 2} x ∈ Ai. Then Ui is
an open set containing x, but no xe is in Ui, contradicting the fact that x is an
accumulation point for {xe}e∈E .

Hence M is finite. Suppose now that U1 ∩ U2 is finite. It is sufficient to
show that L := N \M is finite. For any edge e and i = 1, 2, since Ui is open,
Cl(e) ∩ Ui 6= ∅ implies that e ∩ Ui 6= ∅. So for e ∈ L we have that e ⊆ (U1 ∪ U2),
e ∩ U1 6= ∅ 6= e ∩ U2. Since e is connected, (U1 ∩ e, U2 ∩ e) is not a separation of
e, that is, deleted (e ∩ U1 ∩ U2) 6= ∅. Since U1 ∩ U2 is finite and the generalized
edges are disjoint, L is finite.

In the next result, for a separation (A1, A2) of X − E , δ(A1) denotes the
generalized cut consisting of all the edges such that (Cl(e)∩A1) 6= ∅ and (Cl(e)∩
A2) 6= ∅.

Corollary 23. Let (X, E) be a compact weakly Hausdorff generalized edge space,
and let (A1, A2) be a separation of X − E. Then δ(A1) is finite.

Proof: Since X is weakly normal, there are open sets U1 and U2 in X containing
A1 and A2, respectively, such that U1 ∩U2 is finite. Furthermore, A1 and A2 are
closed in X, so we may assume U1 ∩ A2 = ∅ and U2 ∩ A1 = ∅. Then the set N ,
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as defined in Lemma 22 is finite (by the same lemma). But δ(A1) ⊆ N . Hence
δ(A1) is finite.

Our next lemma gives a relationship between the topology on X − E and
X. For a set A that is open and closed in X − E , we set A2 to be the set
A ∪ {e ∈ E | Cl(e) ∩ A 6= ∅}.

Lemma 24. Let (X, E) be a compact, weakly Hausdorff generalized edge space
and let A ⊆ X − E be both open and closed in X − E. Then A2 is open in X.

In fact, we can describe the technical property that is required for Lemma 24.
Let (X, E) be an edge space and let E ′ ⊆ E. A set W ⊆ X is a transversal of E ′

if every edge in E ′ has an end in W . The edge space (X, E) is quasi-regular if,

for any E ′ ⊂ E and any transversal W of E ′, Cl(
⋃

e∈E′

e) \ (
⋃

e∈E′

Cl(e)) ⊆ Cl(W ).

Theorem 3.4.3 in [19] shows that Lemma 24 holds if (X, E) is a quasi-regular
edge space. It is also true that any weakly normal edge space is quasi-regular.
We do not prove either of these facts here.

Proof of Lemma 24: Let A′ be the complement of A in X−E . As in the proof
of Corollary 23, there exist open sets U,U ′ containing A, A′ and disjoint from
A′, A, respectively. We partition E into the three (possibly empty) sets F1,F2

and F3, where F1 is the set of edges e ∈ E such that e 6⊆ U ∪ U ′, and F2 the set
of edges e such that e ⊆ U ∪ U ′ and Cl(e) ∩ U 6= ∅ 6= Cl(e) ∩ U ′. By Lemma 22
F1 and F2 are finite.

Note that any edge of F3 is entirely contained in precisely one of U , U ′ (and is
disjoint from the other), according to whether its ends are in A or A′ respectively.
Thus, every such edge is in A2 if and only if it is contained in U . As for the
edges in F1 ∪ F2, we observe that if such an edge e is not (entirely) in A2, then
Cl(e) is disjoint from A2. Hence

A2 =

(
U ∪

⋃
e∈F1∪F2 : e⊆A2

e

)
\

( ⋃
e∈F1∪F2 : e6⊆A2

Cl(e)

)
.

Since F1 ∪ F2 is finite, A2 is open.

Here is the fact that cuts disconnect the space, promised preceding Lemma 11.

Corollary 25. Let (X, E) be a compact weakly Hausdorff generalized edge space.
If F is an edge cut, then X −F is disconnected.

Proof: If F = δ(A1) = δ(A2) for some separation (A1, A2) of X − E , then
(A2

1 −F , A2
2 −F) is a separation of X −F .

The following gives the final ingredient for the proof of Theorem 21.

Lemma 26. Given (X, E), (Y, F ) and p : X → Y as in Theorem 21, for every
f ∈ F, u ∈ Y \ F we have that u ∈ Cl(f) if and only if there exists some point
v ∈ X such that p(v) = u and v ∈ Cl(p−1(f)).
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Proof: One direction holds simply by virtue of the continuity of p. For the
other direction, suppose that u ∈ Cl(f). Let e ∈ E be such that p(e) = f and
let K be the component of X − E such that p(K) = u. It suffices to show that
Cl(e) ∩K 6= ∅.

Suppose not. Let W be a component of X − E such that Cl(e) ∩ W 6= ∅.
By Lemma 6, there is a separation (AW , A′

W ) of X − E such that K ⊆ AW and
W ⊆ A′

W . There are at most two such W , so there is an open and closed (in
X−E) set A containing K and disjoint from every component containing an end
of e.

Lemma 24 implies A2 is open in X. Since A2 is the union of parts of D, p(A2)
is open in Y . But this is an open set in Y containing u = p(K) and disjoint from
f , contradicting the assumption that u ∈ Cl(f).

Proof of Theorem 21: We have already seen that the decomposition of X − E
into components is upper semicontinuous.

Let D be the edge-vertex decomposition of X. Since p is continuous, Y = X/D
is compact.

The points of F are open in Y and the points in Y \ F are closed in Y . To
show that (Y, F ) is an edge space, we must show that each f ∈ F has one or two
additional points in its closure; this follows immediately from Lemma 26 (note
that no point in F can be in the closure of any other point).

Next, we show Y is weakly Hausdorff. Let u1, u2 be distinct points in Y . If
ui is open in Y , then trivially {ui} and Y are open sets, containing ui and u3−i,
respectively, such that {ui} ∩ Y is finite. So we can assume both u1 and u2 are
closed. For i = 1, 2, let Ki be the component of X − E such that p(Ki) = ui.

Since K1 and K2 are disjoint components of X − E , Lemma 6 implies there is
a separation (A1, A2) of X − E such that, for i = 1, 2, Ki ⊆ Ai. Again, p(A2

i ) is
open in Y and p(A2

1 )∩p(A2
2 ) consists of precisely those edges f such that p−1(f)

is a generalized edge in δ(A1). By Corollary 23 δ(A1) is finite. Therefore, Y is
weakly Hausdorff.

Finally, if p−1(A) is connected, then the continuity of p implies A is connected.
Conversely, suppose A is connected and (U, V ) is a separation of p−1(A). Let
U ′, V ′ be open in X such that U = U ′ ∩ p−1(A) and V = V ′ ∩ p−1(A).

Since the decomposition of X − E into components is upper semicontinuous,
for each component K of X − E , if K ⊆ U ′, then there is an open set UK ⊆ U ′

of X containing K and every component of X − E that UK meets. Let U ′′ be
the union of the UK , over all components K contained in U ′. Similarly, obtain
V ′′ from the components of X − E contained in V ′.

If e is an edge of A, then, since p−1(e) is connected, it is contained in one of
U and V . Let U∗ be the set obtained from U ′′ by adding all the edges of X
which have non-empty intersection with U ′′, and similarly obtain V ∗ from V ′′.
Then U∗ and V ∗ are open (being the union of open sets) and U∗ ∩ p−1(A) and
V ∗ ∩ p−1(A) are disjoint. Moreover, for any edge e ∈ A, unless A = {e}, since
A is connected A must contain an end of e, whence p−1(A) contains an end of
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p−1(e), which is contained in one of U, V , and therefore one of U ′′ or V ′′. Hence
p−1(e) ⊆ U∗ ∪ V ∗. So U∗, V ∗ together cover p−1(A), p(U∗) and p(V ∗) are open
in Y and (p(U∗) ∩ A, p(V ∗) ∩ A) is a separation of A, a contradiction.

Notice that, if (X, E) is a compact, weakly Hausdorff generalized edge space,
with simplification (Y, F ), then Theorem 21 implies that, for every cycle (C, F ′)
in (Y, F ), (p−1(C), p−1(F ′)) is a cycle in (X, E). However, it is not generally
true that if (C, E ′) is a cycle in (X, E), then (p(C), p(E ′)) is a cycle in (Y,F).
Consider, for example, an edge space (X, E) consisting of two edges and one large
component (say a disc) of X − E . We can get a cycle using both edges and arcs
in the disc joining appropriately the ends of the edges, but the quotient of such
a cycle is not a cycle in the simplification.

The other main point of this section is the following. Of course an analogous
theorem holds for the edge simplification.

Theorem 27. Let (X, E) be a compact, weakly Hausdorff generalized edge space
and let (Y, F ) be its simplification, with quotient map p : X → Y . Let p̂ : 2E → 2F

be defined by p̂(E ′) = {p(e) | e ∈ E ′}. Then p̂ : Z(X, E) → Z(Y, F ) and
p̂ : B(X, E) → B(Y, F ) are isomorphisms.

Proof: Part (2) of Theorem 21 and Corollary 25 together imply that p̂ maps
the edge cuts of (X, E) bijectively onto those of (Y, F ), and, as observed above,
if C ⊆ F is an edge cycle in (Y, F ), then p̂−1(C) is an edge cycle in (X, E). We
complete the proof by showing that, if D ⊆ E is an edge cycle in (X, E), then
p̂(D) is in the cycle space of (Y, F ). By part (1) of Theorem 21, (Y, F ) satisfies
the assumptions of Theorem 14. It is therefore sufficient to show that, for every
edge cut A = δ(M) of (Y, F ), p̂(D) ∩ A is finite and even.

By Lemma 26 p̂−1(A) is the edge cut δ(p−1(M)). By Corollary 23 D ∩ p̂−1(A)
is finite. We now observe that Lemma 7 (as well as Lemma 8, upon which it
depends) holds for generalized edges—the proofs carry over simply by inserting
“generalized” in front of “edges” throughout. It now follows, just as in the proof
of Lemma 11, that D ∩ p̂−1(A) is even. We conclude that p̂(D) ∩A is finite and
even.

6. Remarks about the Diestel-Kühn space G̃

In this section, we show that the most general graphs considered by Diestel
and Kühn are actually examples of our theory, that is, the corresponding edge
simplifications are compact and weakly Hausdorff and the two notions of cycle
space coincide.

Let G be a graph, let v be a vertex of G and let ω be an end of G. Then v
dominates ω if, for some (and hence every) ray R in ω, there are infinitely many
vR-paths, disjoint except for their common end v. If G has the property that

no end is dominated by more than one vertex, then G̃ is the topological space
obtained from F(G) by identifying each end with any vertex that dominates it.
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In their theory of cycle spaces, the most general kind of graph G that Dies-
tel and Kühn consider is one in which no two vertices are joined by infinitely
many internally disjoint paths [10] and they develop their cycle space theory for

the corresponding space G̃. (One or two technical theorems along the way are
proved for more general graphs, but their cycle space theory seems to require
this assumption.)

A graph G is finitely connected if, for every pair of vertices u and v of G, there
is no set of infinitely many internally disjoint uv-paths in G.

The main results in this section are the following theorems, which show that

our theory applies to the Diestel-Kühn spaces. Let G and Ĝ denote the edge

simplifications of F(G) and G̃, respectively, obtained by replacing each edge with
an open singleton.

Theorem 28. If G is finitely connected and 2-connected, then G̃ and Ĝ are
compact.

Theorem 29. If G is finitely connected and 2-connected, then G̃ is Hausdorff

and Ĝ is weakly Hausdorff.

Theorem 30. If G is finitely connected and 2-connected, then the cycle spaces

of G̃ and Ĝ are the same.

In the last of these, the assumption of 2-connectedness may be omitted by the

expedient of considering each block of G and noting that the cycle spaces of G̃

and Ĝ are direct sums of the cycle spaces arising from all the blocks. For G̃,
Theorem 29 is a special case of Theorem 4.7 in [10]; we shall give a much shorter
proof here for finitely connected graphs.

We first consider compactness. The proof of compactness in [5] is easily
adapted to a more general situation. Following Diestel and Kühn, we define
a direction of a topological space X to be a function d which assigns, to every
closed compact set K, a component of X \K, in such a way that K ⊆ K ′ implies
that d(K) ⊇ d(K ′). (Diestel and Kühn consider only Hausdorff spaces, in which
all compact sets are closed.)

Directions were introduced in [11] as a topological concept which is defined
for arbitrary Hausdorff spaces and which, for arbitrary graphs, corresponds pre-
cisely to that of a graph-theoretic end (in the sense of Halin), as opposed to
Freudenthal’s original (topological) concept of an end, which is only equivalent
to that of an undominated end. Freudenthal’s concept is defined in terms of
decreasing sequences of open connected subsets with compact frontier. Under
appropriate assumptions, for example if the space is locally connected, such sets
can equivalently be thought of as components of complements of closed compact
subsets, as pointed out by Diestel and Kühn (although the possibility of non-
locally-connected spaces, where this can fail, seems to have been overlooked).

We construct the direction extension D(X) of X by emulating the construction
of F(G), using directions instead of ends (this space was not considered in [11]).



20

Instead of local connectedness, we assume now that the complement of any closed
compact set consists of finitely many components; this ensures in particular that
these components are open. Let Ω be the set of directions. We define a topology
on D(X) = X ∪ Ω by keeping the same basic neighbourhoods of the points of
X and, for each point d ∈ Ω, and for each closed compact set K in X, we have
the basic neighbourhood consisting of the component d(K) and all directions f
such that f(K) = d(K). Evidently, X is a subspace and, when X is a graph,
D(X) = F(X).

The reader should have no difficulty adapting [5] to prove the following.

Theorem 31. Let X be a topological space such that the complement of any
closed compact subset consists of finitely many components. Then D(X) is com-
pact.

When X is either a graph equipped with the classical topology, or the usual
cell-complex associated with the graph, we may take the closed compact subsets
to be simply finite subsets of vertices. Notice that the assumption that the
complement has only finitely many topological components implies that each
pair of points in X \ E has at most finitely many edges joining them.

Also, for graphs with the classical or the cell-complex topology, the fact that
deleting finitely many vertices leaves finitely many components is a necessary
condition for F(G) to be compact – if, for some finite set W of vertices, X \W
has infinitely many components, then each component of X \ W is open and
this is most of an open cover of X that has no finite subcover. (In the classical
case, infinitely many components should contain a vertex. For example, the
graph consisting of two vertices joined by infinitely many edges is compact in
the classical topology.) In particular, for a graph G, F(G) is compact if and
only if, for every finite set W of vertices of G, G − W has only finitely many
components. The following shows then that if G is finitely connected and 2-

connected, then G̃ is compact.

Lemma 32. If G is a finitely connected 2-connected graph, then G is countable
and, for every finite subset W of V (G), G−W has only finitely many components.

Proof: We first show that if U is any infinite set of vertices in G, then there
is a ray R and infinitely many disjoint UR-paths. The relevance is the following
easy fact, whose proof is omitted.

Lemma 33. For any graph G, the following are equivalent.

(1) For every finite subset W of V (G), G−W has finitely many components.
(2) For any infinite set U of vertices in G, there is a ray R in G and infinitely

many disjoint UR-paths.

By Lemma 8.2.2 in [6], the alternative is that there is a vertex u with infinitely
many uU -paths, disjoint except for u. Let U ′ be the infinite set of terminal
vertices in U of such a set of paths. But G− u is connected, so the same lemma
implies that either the desired ray exists (for U ′ and, therefore, for U) or there
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is a vertex v and infinitely many vU ′-paths in G − u, disjoint except for v. If
the latter occurs, then u and v are joined by infinitely many internally disjoint
paths, contradicting the assumption that G is finitely connected.

For countability, it suffices to show every vertex has countable degree, so sup-
pose u is a vertex of G with uncountable degree. Because G is 2-connected, G−u
is connected. There is a minimal tree T in G − u containing all the neighbours
of u. Since T is uncountable, it has a vertex v of uncountable degree. By mini-
mality, each component of T − v must contain a neighbour of u, so u and v are
joined by uncountably many internally disjoint paths, a contradiction.

An immediate consequence of Theorem 31 and Lemma 32 is the following.

Corollary 34. If G is finitely connected and 2-connected, then F(G), G, G̃, and

Ĝ are compact.

We now consider the Hausdorff properties.

Proof of Theorem 29. Let E and F be distinct parts in F(G). If E is just
a point in the interior of an edge, then E has a basic neighbourhood whose
closure is disjoint from F . So we consider distinct points x, y ∈ V (G)∪Ω, where
Ω = F(G) \G is the set of ends of G. The crucial point that remains is that, if
(and in fact only if) x and y are in different parts, then there is a finite set S of
vertices, plus a point from each edge joining x and y, such that x and y are in
different topological components of F(G) \ S. It is then easy to see (replacing x
and y with vertex-representatives of their equivalence classes, if necessary) that S
is disjoint from these two equivalence classes, so Lemma 39 provides the desired
open sets.

We note that this also proves that Ĝ is weakly Hausdorff.

The reduction of the Diestel-Kühn theory to ours is completed by showing
that the two cycle spaces coincide, i.e., proving Theorem 30. One simple way

to see this is as follows. If T is a pre-tree of G̃ (pre-trees are discussed on pp.

856–857 of [10]), then there is a minimal connected spanning set of Ĝ with the
same edges as T . It is easy to see that the fundamental cycles are the same
in the two cases. Since these fundamental cycles generate the two cycle spaces
algebraically in the same way, the two cycle spaces coincide.

Diestel and Kühn give an interesting example. It is shown here in Figure 1,
which is essentially Figure 5 from [10]. (The line segment through all the vertices
from x to y is not part of the graph, except for the dyadic points, which are the
vertices of the graph.) This graph is constructed as follows. We start with two
vertices x and y, joined by an edge. At each iteration of its construction, each
consecutive pair of vertices has a new vertex placed between them and this is
made adjacent to both members of the consecutive pair. This graph has a set
P of infinitely many edge-disjoint paths joining the vertices x and y. No two
vertices are joined by infinitely many internally-disjoint paths. We may take one
member of P to be the edge joining x and y.
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x y

Figure 1

If Q,R ∈ P , then Q∪R is the edge-disjoint union of finitely many finite cycles
in G and, therefore, E(Q∪R) is in the cycle space. By letting P = P1, P2, . . . be
an infinite sequence of distinct paths in P , we see that E(P ) is the symmetric
difference of E(P1 ∪ P2), E(P2 ∪ P3), E(P3 ∪ P4), . . . . Thus E(P ) is in the cycle
space.

However, this is not the only reason E(P ) is in the cycle space. In fact, it

is a cycle of G̃! It is not completely obvious, but the set of non-edges of G̃ is
homeomorphic to [0,1], with x and y corresponding to 0 and 1. (This is the line
segment joining x and y in Figure 1.) Each vertex dominates precisely two rays,
except x and y dominate one each. Thus P ∪ V has the property that deleting
any one edge will not disconnect this set, but, vacuously, deleting any two edges
will. The ends are “hiding” the fact that the connection in the space is much
richer than provided for by just considering the edges. This is where the “extra”
cycles come from – even extra finite cycles.

By Theorem 27, the cycle space is the same as for the space obtained by con-
tracting the one component of vertices and ends to a single point. In particular,
in this contracted space, every edge is a loop and so obviously is in the cycle
space.

In general, any circle C in G̃ is a cycle and, being a compact subset of a
Hausdorff space, is necessarily closed. Conversely, it is not hard to show (using

the fact that every closed subset of G̃ is arcwise connected [10, Thm. 5.3]) that

if C is a closed cycle in G̃, then there is a circle C ′ in G̃ so that E ∩C ′ = E ∩C.
In Figure 2, the line segment L between x and z consists of nonedge points

of the weakly Hausdorff space X; the solid segments are the edges. The set of
all edges is an edge cycle, but there is no closed cycle containing all the edges.
Thus, although the cycle spaces are the same for finitely connected G, our cycles
are not guaranteed to correspond to circles. We shall however establish that
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Figure 2. A non-closed cycle

this correspondence does occur if G is a finitely edge-connected graph (no two
vertices are joined by infinitely many edge-disjoint paths). Diestel and Kühn
consider such graphs in order to guarantee the existence of topological spanning
trees [10, Thm. 5.2].

The following result shows the a cycle that is not closed can only occur if some
of the components of X \ E are not trivial. Our proof relies on a recent result
of Thomassen and Vella [18, Cor. 2.3], which requires the additional assumption
that X is metric. For our purposes, this is not a major addition, since, for

example, we shall see in the next section that G̃ is metric when G is finitely
connected.

Theorem 35. Let (X, E) be a compact, connected, metric generalized edge space
such that every edge is a 1-cell. If X − E is totally disconnected, then a subset
of X is a cycle if and only if it is a circle. In particular, all cycles are closed.

Proof: Let C be a cycle in X and let e0 be an edge of C with ends a, b. If e0 is
a loop, then C = Cl(e0) is a circle. Hence we may assume that a 6= b. It suffices
to prove that P = C \ e0 is an arc (a homeomorph of [0, 1]). The proof consists
of showing P is an ab-path in the following sense: if a and b are the ends of e0,
then P is a connected set containing a and b and, for every other point x of P , a
and b are in different components of P \ x. By the comment following Corollary
2.3 in [18], P is locally connected. (A compact totally disconnected space, such
as X − E, is 0-dimensional [4, Thm. 4.A.11], so (X, E) is a graph-like space as
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defined in [18].) By Theorem 2.3.17 of [19], P is compact (the ab-prepaths in
[19] are the ab-paths as defined here). Since X is metric, P is an arc [20, Thm.
28.13]. Moreover, since C is compact, C is closed.

So it suffices to show that P is an ab-path. It is clear that if e is an edge of P ,
then P \ e has precisely two components Ka,e and Kb,e, the former containing a
and the latter containing b.

The main point in the proof is to show that if x, y ∈ P − E, then there is an
edge e of P so that x and y are in different components of P \ e. So suppose
there is an x ∈ P − E so that some other y ∈ P − E is such that, for every
e ∈ E, x and y are in the same component of P \ e. Since X is Hausdorff and
P is locally connected, x and y have disjoint connected open neighbourhoods Ux

and Uy, respectively.
Since X −E is 0-dimensional and P is connected, the edges of P are dense in

P . That is, there is an edge e of P such that e ∩ Ux 6= ∅. Since Ux is connected,
some end of e is in Ux. The component Ke of P \ e containing x also contains y.
Thus, e∩Uy = ∅, so Uy is contained in Ke. Then P \Ke is an open subset of P
containing e, and we set

U ′
x = Ux ∪

 ⋃
e∩Ux 6=∅

(P \Ke)

 .

This is a connected open set containing x and disjoint from Uy.
We claim U ′

x contains precisely one of a and b. Let e∗ be a fixed edge inter-
secting Uy and let K∗ be the component of P \ e∗ not containing x and y. Then
K∗ ∪ e∗ ∪ Uy is a connected set disjoint from Ux and contains precisely one of a
and b. Now if e is any edge so that e ∩ Ux 6= ∅, then P \ e has a component K
containing x, y, and precisely one of a and b. Since K∗ ∪ e∗ ∪ Uy is connected
and disjoint from e, it is contained in K, so K contains the one of a and b in K∗.

It follows that U ′
x is a connected open set in P , disjoint from Uy, and contains

one of a and b. Likewise, we can construct U ′
y, containing Uy, disjoint from U ′

x,
and containing the other of a and b. Thus there is no other z ∈ P − E not
separated from x in P by some e ∈ E (only one of U ′

x, U ′
y, U ′

z contains a, only
one contains b, and each contains at least one of a and b).

We aim for a contradiction by showing that P = U ′
x ∪ U ′

y, since then U ′
x, U

′
y

is a separation of P , showing P is not connected. It is clear that if e is an edge
and e ∩ (U ′

x ∪ U ′
y) 6= ∅, then e ⊆ U ′

x ∪ U ′
y. So suppose there is an edge e so that

e 6⊆ U ′
x∪U ′

y. Then e∩ (U ′
x∪U ′

y) = ∅ so U ′
x and U ′

y are each in a single component
of P \e. Since x and y are in the same component of P \e by assumption, U ′

x∪U ′
y

is in the same component of P \ e, putting a and b in the same component of
P \ e, a contradiction. Thus, every edge of P is in U ′

x ∪ U ′
y.

It remains to show that if z is a vertex other than x or y, then z ∈ U ′
x ∪ U ′

y.
Choose the labelling so that a ∈ U ′

x and b ∈ U ′
y. There is an edge e such that z

is in one component K of P \ e and x and y are in the other component. For
sake of definiteness, we assume e ⊆ U ′

x. Then e ⊆ P \ Ke′ , for some edge e′



25

such that e′ ∩ Ux 6= ∅. Now U ′
y ⊆ Ke′ , so b ∈ Ke′ and, therefore, a ∈ P \ Ke′ .

Consequently, K ⊆ P \Ke′ , so z ∈ U ′
x.

Thus, any two points of P−E are separated by some edge. For x ∈ P−E, x /∈
{a, b}, let Ea be the set of edges e such that x is not in the component Ke of P \e
containing a and let Eb be the set of edges e such that x is not in the component
Ke of P \ e containing b. Clearly E = Ea ∪ Eb and P \ x =

⋃
e∈E(Ke ∪ e). The

latter shows that a and b are in different components of P \ x, as required.

When G is finitely edge-connected, we aim to use Theorem 35 to show that

cycles are circles in G̃. Theorem 28 shows that each block of G is compact. In

the next section, we show – even when G is only finitely connected – that G̃ is
metric. Here we show the remaining hypothesis of Theorem 35 holds.

Lemma 36. If G is a finitely edge-connected graph, then G̃−E is 0-dimensional.

Proof: Given arbitrary p1, p2 ∈ G̃−E, we require a separation of G̃−E with
p1, p2 on different sides. It is sufficient to find a finite set F of edges in F(G)
such that the equivalence classes p1, p2 of F(G) belong to distinct components
of F(G) − F . All such components are necessarily saturated as well as closed,

so that their images are closed in G̃. Note moreover that the (finitely many)
components of F(G)− F are simply the closures of the components of G− F .

Since no end of G is dominated by more than one vertex, each equivalence
class in F(G) either consists of an undominated end, or else has a unique vertex
representative. Let p′i be a representative of pi, chosen to be a vertex if possible,
and suppose first that both p′1 and p′2 are vertices. Since they are not joined by
infinitely many edge-disjoint paths in G, they are separated in G by a finite set
F of edges. Suppose next that p′1 is a vertex but p′2 is an end. Since the vertex
p′1 does not dominate the end p′2, there exists a finite set S of vertices separating
p′1 from p′2 in G. From the preceding remarks, each of the vertices in S can be
separated in G from p′1 by a finite edge cut, and we may take F to be the union of
these finite edge cuts. Finally, suppose p′1, p

′
2 are both undominated ends. Then

they are separated by a finite set S of vertices. For any v ∈ S, since v does not
dominate p′1, by the previous argument v can be separated in G from p1 by a
finite set of edges Tv, and we may take for F the union of Tv over v ∈ S.

7. Aside: G̃ is a Peano space

In [16], Sprussel asks: is G̃ a metric space? We prove the following more
general fact.

Theorem 37. If G is a 2-connected, finitely connected graph, then G̃ is a Peano
space.

We remind the reader that a Peano space is a compact, connected, locally

connected, metric space. We are fortunate here to have already proved that G̃ is
compact (Corollary 34) and Hausdorff (Theorem 29). It is obviously connected
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and, being a quotient of the locally connected space F(G), it is locally connected.
A standard theorem says a compact space is metric if and only if it is Hausdorff
and second countable [13, Ch. 4, Thm. 16]. (A topological space is second-
countable if its topology has a countable base.) Note that Lemma 32 implies

that G̃ is second-countable. A Peano space is always arcwise connected.
The following is a useful result [13, Ch. 5, Thm. 20].

Lemma 38. If P is an upper semicontinuous partition of a second countable
space X so that the members of P are compact, then the quotient space with
pointset P is second countable.

For us, this means that we need only show that the sets in F(G) consisting of
a vertex and its dominated ends are closed (since F(G) is compact by Corollary
34 and a closed subset of a compact set is compact) and that the partition into
these closed sets is upper semicontinuous. The first is done in [10], being the
easy Lemma 4.1.

For the remainder of this section, P is the partition of F(G) in which each
part is either a vertex and all ends it dominates or a singleton from an edge, or
a singleton consisting of an undominated end.

Lemma 39. Let G be a finitely connected graph and let S be a finite subset of
V (G). For each s ∈ S, let Es be the part in P containing s. Let K be any
topological component of F(G) \ S. Then K \ (∪s∈SEs) is open and saturated in
F(G).

Proof. We have that K is open by definition. As mentioned above, from [10]
we know each Es is closed. Since S is finite, we see that K \ (∪s∈SEs) is open.

To see that K \ (∪s∈SEs) is saturated, let E be any part such that E ∩ (K \
∪s∈SEs) 6= ∅. If E is degenerate, then it is trivial that E ⊆ K \ (∪s∈SEs).
Otherwise, let v be the unique vertex in E. If v /∈ S, then v and any end it
dominates must be in the same component of G− S. Hence E ⊆ K \ (∪s∈SEs).
If v ∈ S, then E = Ev and E ∩ (K \ (∪s∈SEs)) = ∅.
Lemma 40. Let G be a finitely connected graph. Then P is an upper semicon-
tinuous decomposition.

Proof. Let U be open in F(G) and let E be a part contained in U . When
E is a point in the interior of an edge, that there is a saturated open set V
containing E and contained in U is trivial. If E is just a vertex, then some basic
neighbourhood of v is contained in U and all such neighbourhoods are saturated.

So we can assume E contains an end ω. Since U is open, there is some finite set
S of vertices such that the component K of F(G)− S containing ω is contained
in U . If ω is not dominated by any vertex in S, then Lemma 39 gives the
desired saturated open subset of U . If ω is dominated by a vertex v ∈ S, then
U contains a basic neighbourhood N of v. In this case, N ∪ (K \ (∪s∈S\{v}Es))
is open, saturated, and contained in U .

As mentioned just before Lemma 36, we now have the following.
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Corollary 41. If G is a finitely-edge-connected graph, then a subset of G̃ is a
cycle if and only of it is a circle.

Lemma 36, Theorem 37, and [18, Cor. 2.3] imply that G̃ is hereditarily locally
connected. This in turn implies [10, Thm. 5.3]: if G is finitely edge-connected,

then every closed connected subset of G̃ is arcwise connected.

8. Remarks about the Bonnington-Richter Cycle Space

If G is a locally finite graph, then the Alexandroff compactification A(G) of G
is obtained from F(G) by identifying all the points in F(G) \G to a single point.
It is easy to see that A(G) is compact and that the edge set of any connected
2-regular subgraph is an edge cycle. Thus, the cycle space of A(G) is precisely
the one introduced in [1].

In that work, an embedding of a locally finite graph G in the sphere is consid-
ered. If there are only finitely many accumulation points, then the closure of G
in the sphere is a compactification K of G and also has a cycle space, which is
contained in the cycle space of A(G). A main result of [1] is finding a basis for
the quotient of these two cycle spaces. This very naturally leads one to wonder
about the relationships between the cycle spaces of different compactifications of
a locally finite graph G. This work is begun in [3], where it is shown that if (X, E)
and (Y, F ) are compact weakly Hausdorff edge spaces and f : X → Y is a con-
tinuous function such that f : E → F is a bijection and f : (X \ E) → (Y \ F ),
then, identifying e and f(e), the cycle space of (X, E) is contained in that of
(Y, F ). Still open is the general question of how to find a basis for the quotient
space.

9. Feebly Hausdorff Spaces

In the context of edge spaces, any open set containing a vertex must also
contain all the edges incident with that vertex. Thus, if we are trying to separate
two vertices u and v by open sets, the intersection must contain all the edges
incident with both u and v. In the preceding sections, we were required, in
particular, to forbid infinite sets of parallel edges between two vertices – their
basic neighbourhoods have infinitely many edges in common. It is the purpose
of this section to show how to relax the “weakly Hausdorff” condition to allow
more general situations, including infinitely many parallel edges.

Let X be a topological space and let v ∈ X. We set v� to be the intersection
of all the open sets containing v (so a topological space is Alexandroff discrete if
and only if, for every point x, the set x� is open). The space X is feebly Hausdorff
if, for any two points u, v ∈ X, there exist open sets Uu and Uv containing u and
v, respectively, such that Uu ∩ Uv ⊆ u� ∩ v�. That is, there are open sets which
intersect just in those points that they must contain, as the intersection of any
pair of neighbourhoods contains these points. (Thus, we could replace ⊆ by =.)



28

A simple example of a feebly Hausdorff space which is not weakly Hausdorff is
given by the graph with two vertices joined by infinitely many edges, equipped
with the classical topology. Note that this space is compact, but replacing the
edges with arcs, to obtain a Hausdorff space, gives a non-compact topology.

It turns out, and the theory is developed fully in [19], that we can extend many
of our arguments to the case of connected, compact feebly Hausdorff edge spaces
(X, E). The proofs are typically quite a bit more involved and the statements
are not so clean. In particular, in this context we need to define the bond space
to be the weak span of the finite bonds (equivalently, the space of all finite edge
cuts). Note that, for weakly Hausdorff spaces, this definition is equivalent to the
one we used previously. Here we only wish to indicate the flavour of the theory.

Firstly, there still exist minimal connected spanning subsets and the appropri-
ate analogue of Lemma 3 holds, so that we may obtain, as before, fundamental
cycles Ce, with respect to any minimal connected spanning set. Secondly, it is
still true that the fundamental cycles strongly generate the cycle space.

In order to deal with orthogonality, the main tool used is to express the cycle
space of a compact feebly Hausdorff edge space (X, E) in terms of that of a
certain quotient (Y, F ). In this case, we construct an intermediate edge space
(X, F ), where F ⊆ E consists precisely of the edges whose parallel class is finite,
that is, edges which do not share two ends with infinitely many other edges. The
edge space (Y, F ) is the simplification (as in Section 5) of (X, F ) (since edges
are points, we do not distinguish between the edges of (X, F ) and their formally
distinct images in the quotient). We show that (Y, F ) is weakly Hausdorff, and
that the bond spaces in all three edge spaces are the same. Moreover, the edge
sets of the minimal spanning sets, and the corresponding fundamental cycles,
are precisely the same in (X, F ) and (Y, F ). Hence, as a corollary of the fact
that the fundamental cycles strongly generate the cycle space, we have that the
corresponding cycle spaces are isomorphic (as in Section 5, although the proof
is different). In order to bridge the gap between the cycle spaces of (X, E) and
(X, F ), we take a minimal spanning set of T of (X,F ), which we then consider as
an edge subspace T ′ := (T, T ∩E) of (X, E). Finally we use a minimal spanning
set of T ′ to extend the fundamental cycles of (X, F ) to fundamental cycles of
(X, E).

Theorem 42. ([19], Thm. 5.4.6) Let (X, E) be a connected compact feebly Haus-
dorff edge space. With Y and F as in the preceding paragraph, the cycle space
of (X, E) is Z(Y, F )⊕ 2E\F . For any minimal connected spanning set of (X, E),
the set F of fundamental cycles is such that A2(F) is the cycle space of (X, E).

We remark that, as can be seen in the above discussion, the arguments depend
heavily on the fact that we are free to declare what the edges are, that is, we
need not include all the open singletons in the edge set of an edge space.

Theorem 43. ([19, Thm. 5.4.8]) Let (X, E) be a connected compact feebly Haus-
dorff edge space, with cycle space Z(X,E) and bond space B(X,E). Then
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B(X,E)⊥ = Z(X, E) and, letting E ′ = {e ∈ E | X\e is connected}, Z(X,E)⊥ =
B(X,E ′)⊕ 2E\E′

. In particular, if (X, E) is 2-edge-connected, then Z(X,E)⊥ =
B(X,E).

Again, the flexibility to ignore the edges in E\E ′ makes for a cleaner statement
and simplifies the arguments.
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