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Abstract Bonnington and Richter defined the cycle space of an infinite
graph to consist of the sets of edges of subgraphs having even degree at every
vertex. Diestel and Kühn introduced a different cycle space of infinite graphs
based on allowing infinite circuits. A more general point of view was taken
by Vella and Richter, thereby unifying these cycle spaces. In particular,
different compactifications of locally finite graphs yield different topological
spaces that have different cycle spaces.

In this work, the Vella-Richter approach is pursued by considering cycle
spaces over all fields, not just Z2. In order to understand “orthogonality”
relations, it is helpful to consider two different cycle spaces and three differ-
ent bond spaces. We give an analogue of the “edge tripartition theorem” of
Rosenstiehl and Read and show that the cycle spaces of different compacti-
fications of a locally finite graph are related.

1 Introduction

Diestel and Kühn developed a theory of cycle spaces for the Freudenthal
compactification of a locally finite graph [3]. Thinking of the graph as a
1-dimensional cell complex and adding the “ends”, the resulting topological
space has embeddings of the unit circle, and these are permitted to cover all
the edges in two rays (or 1-way infinite paths) having the same origin, but
otherwise disjoint, that are in the same end, since the union of these two
rays, plus their common end, is a homeomorph of a circle. The cycle space
is then taken as the space generated by special, possibly infinite, symmetric
differences of the edge sets contained in circles. They prove that the fun-
damental cycles of an end-faithful spanning tree generate this cycle space.
In the later work [4], this is extended to a certain more general topological
space G̃ that can be obtained from some slightly more general infinite graph
G. Vella and Richter [7] show that these results are special cases of a more
general theory that includes, for locally finite graphs, the cycle space notion
of Bonnington and Richter [1], in which a set of edges of a locally finite graph
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is in this new cycle space if every vertex is incident with an even number of
edges in the set. This cycle space is larger than the Diestel-Kühn space for
a locally finite graph having more than one end. It is implicit in all of these
works that the cycle space is a vector space over the field Z2.

In this work, we do three things. First, and principally, we pursue the
Vella-Richter approach to allow any field. Thus, along with other basic re-
sults, we show the “directed” fundamental cycles generate the “directed”
cycle and bond spaces. This parallels the fact that cycle and bond spaces
of finite graphs exist over any field. Over an arbitrary field, we establish
various orthogonality relations between cycle spaces and bond spaces. The
main new technical tool is Theorem 4.3, which gives a sufficient condition for
a subspace U to satisfy the orthogonality relation (U⊥)⊥ = U . Secondly, we
conjecture a generalization, for any compactification of a locally finite graph,
of the Rosenstiehl-Read Edge Tripartition Theorem that says (for Z2) every
edge of a finite graph is either in a set of edges that is simultaneously in
the cycle space and in the bond space, or is the sum of an element of the
cycle space with an element of the bond space. We prove an analogue of this
result for compactifications of locally finite graphs; this turns out to be a
simple application of Theorem 4.3. Finally, in pointing toward future work,
we show that if f : X → Y is a continuous function that is a bijection on the
edges, then the cycle space of X is contained in the cycle space of Y . This
is especially interesting when X and Y are different compactifications of the
same locally finite graph and focuses attention to the problem addressed in
[1], which, in a very special case, shows how to find a basis for the quotient
of the two cycle spaces.

The topological spaces considered by Vella and Richter are “compact,
weakly Hausdorff edge spaces”. A space X is weakly Hausdorff if, for any
x, y ∈ X, there are open sets Ux and Uy containing x and y, respectively, so
that Ux∩Uy is finite. An edge space is a pair (X, E) consisting of a topological
space X together with a subset E of open singletons in X, each having
at most two boundary points. Every graph G = (V, E) can be converted
into a weakly Hausdorff edge space (V ∪ E, E) by defining the basic open
sets as follows: for each edge e, {e} is open, while for each vertex v, the
set consisting of v and its incident edges is open. Other variants include
allowing additional points to make the space compact. Specific examples
are the 1-point compactification and the Freudenthal compactification of a
locally-finite graph. In [1], the closure of an embedding of a locally finite
graph into the sphere is considered. See [7] for details.
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The study of infinite cycles in graphs has received substantial attention
lately and many theorems for finite graphs have been successfully generalized
to this setting. Diestel surveys many of these in [2].

2 Cycles and Bonds

In this short section, we review a few results from [7] that are central to the
theory of cycle and bond spaces. An edge space (X, E) is an edge cycle if: (i)
X is connected; (ii) for each e ∈ E, X − e is connected; and (iii) for distinct
e, f ∈ E, X − {e, f} is not connected. A cycle is the set of edges of an edge
cycle. A spanning tree of (X, E) is a connected subspace T of X containing
X \E such that, for all e ∈ T ∩E, T − e is not connected. To define a bond,
let (A, B) be a partition of X \E into closed sets. The bond δ(A) = δ(B) is
the set of edges e having one boundary point in A and other in B.

The following facts are [7, Cor. 5 andThm. 12], respectively.

Theorem 2.1 Every connected, compact, weakly Hausdorff edge space has a
spanning tree.

Theorem 2.2 Every bond in a compact, weakly Hausdorff edge space is fi-
nite.

Let T be a spanning tree in a connected, compact, weakly Hausdorff edge
space (X, E) and let e ∈ E \ T . It is a consequence of [7, Thm. 3] that
T + e contains an edge cycle containing e (use e together with the edge set
of a minimal, closed, connected set in T containing the ends of e) – the
corresponding cycle is the fundamental cycle CT (e). For e ∈ T ∩ E, T − e
has precisely two components A and B. Both A \ E and B \ E are closed,
so δ(A) is a bond – this is the fundamental bond BT (e). The following is [7,
Lemma 16].

Lemma 2.3 Let T be a spanning tree in a compact, weakly Hausdorff edge
space (X, E), let e ∈ E \ T and let f ∈ T ∩ E. Then e ∈ BT (f) if and only
if f ∈ CT (e).

A central property that makes everything work follows immediately from
Theorem 2.2 and Lemma 2.3. A set S of subsets of a set A is thin if every
element of A is in only finitely many sets in S.

Theorem 2.4 Let T be a spanning tree of a compact, weakly Hausdorff edge
space (X, E). The set {CT (e) | e ∈ E \ T} of fundamental cycles is thin.
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3 Cycle and Bond Spaces

In this section we introduce the cycle and bond spaces of a compact, weakly
Hausdorff edge space (X, E), over any field F. We start by choosing an
arbitrary, but fixed, orientation for each edge in E. The space FE consists of
all formal linear combinations

∑
e∈E αee, with all αe being in F. It may at

times be convenient to view FE as the set of vectors (αe) indexed by E, or
as the set of functions f : E → F.

It is a triviality that FE is a vector space (with addition and scalar multi-
plication defined component-wise), but this is not so relevant for us. The sup-
port ξ(

∑
e∈E αee) of an element

∑
e∈E αee of FE is the set {e ∈ E | αe 6= 0}.

We extend the notion of “thinness” to subsets of FE as follows: a subset S
of FE is thin if, for each e ∈ E, the set {s ∈ S | e ∈ ξ(s)} is finite.

For a subset S of FE, we can identify three subsets of FE “generated by
S”. First, the weak span W(S) is the set of all finite linear combinations of
the elements of S. Next, the algebraic span A(S) is the set of all (possibly
infinite) linear combinations of all thin subsets S ′ of S. Note that such sums
make sense, since

∑
s∈S′ αss may be defined to be

∑
e∈E(

∑
s∈S′ αsse)e, where

s =
∑

e∈E see. The set S is algebraically closed if A(S) = S. The strong
span S(S) is the intersection of all algebraically closed sets W ⊆ FE such
that S ⊆ W .

An example may be helpful. Let E = {e1, e2, . . .}, let F = Z2, let D be
the set of all pairs from E, and let D1 = {{e1, ei} | i ≥ 2}. Then D1 is not
thin – the only thin subsets of D1 are the finite subsets. The sets W(D) and
A(D1) consist of all the finite subsets of {e1, e2, . . .} having an even number
of edges. But S(D) = S(D1) consists of all subsets of {e1, e2, . . .} and in this
case S(D1) = A(A(D1)) = A(D), while, for any set S, W(W(S)) = W(S).

For each cycle C of (X, E), there is an edge cycle C̄ whose edge set is
C. As shown in [8], Theorem 5.1.6 (see also, [7], Lemma 7 and Corollary
9), there is a natural cyclic orientation of the edges, which obviously extends
to include their incident vertices, so that if e is any edge of C with ends u
and v, u, e, v are consecutive (either in that or its inverse order). In this
cyclic orientation, if the edges e1, e2, e3, e4 occur in this order, then e2 and
its incident vertices are in one component of C̄ \ {e1, e3} and e4 and its
incident vertices are in the other. There are two such orientations. In order
to proceed, we arbitrarily fix D to be one of these orientations. Each edge
e of C has its original orientation either in agreement with D – we say e is
positive in this case – or it does not – in which case e is negative. We set D+

4



and D− to be the sets of positive edges and negative edges, respectively, in
C. Then D gives rise to the following element of FE:

zD =

(∑
e∈D+

e

)
−

(∑
e∈D−

e

)
.

Notice that if D′ is the other orientation of C, then zD′ = −zD.
In particular, if C is the fundamental cycle CT (e), then we also use the

label CT (e) for zD, where D is the orientation of C chosen to have e positive.
This abuse of notation should not cause any confusion, since we will no longer
have use for the unoriented fundamental cycle.

The cycle space Zt of the compact, weakly Hausdorff edge space (X, E)
is the strong span of the set of zD. The finite cycle space Zf is the set of all
elements

∑
αee of Zt having finite support.

As with finite graphs, there is a dual way to think about Zt. For a bond
δ(A), let δ+(A) denote the set of edges e ∈ δ(A) whose head is in A (is
pointed in to A) and let δ−(A) denote the set of edges e ∈ δ(A) whose tail is
in A (is pointed out from A). If (A, B) is a partition of X \E into two closed
sets, then δ+(A) = δ−(B). We again abuse notation and use the symbol δ(A)
for
∑

e∈δ−(A) e−
∑

e∈δ+(A) e. We will also call this a bond – we will no longer
have much need for the unoriented object, so again no confusion should arise.
The finite bond space Bf is the weak span of the set of bonds δ(A).

For two vectors a =
∑

αee and b =
∑

βee in FE, we define a ◦ b to be
the sum

∑
e∈E αeβe. We note that this sum is not always defined, but, for

the moment, we are concerned only with the case that a has finite support –
i.e., only finitely many αe are non-zero. We note the following easy fact.

Lemma 3.1 Let B be a thin subset of FE and let a ∈ FE have finite support.
Then a ◦

∑
b∈B b =

∑
b∈B a ◦ b.

The set B⊥f consists of all vectors a ∈ FE such that, for all b ∈ Bf , a◦b = 0.

Lemma 3.1 shows that B⊥f is closed under thin sums.
A set S is an algebraic basis for a set T if it algebraically spans, i.e.,

T = A(S), and is algebraically independent , i.e., whenever S ′ is a thin subset
of S and

∑
s∈S′ αss = 0, then all the αs are 0. Note that any linearly spanning

set algebraically spans, but not always conversely, and that any algebraically
independent set is linearly independent, but not always conversely. We have
the following version of a standard result for finite graphs; this is the first of
our orthogonality relations.
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Theorem 3.2 Let (X, E) be a compact, connected, weakly Hausdorff edge
space. Then Zt = B⊥

f . Furthermore, the set of fundamental cycles for any
spanning tree form an algebraic basis for Zt.

Proof: We first show that B⊥
f is algebraically closed. Let a =

∑k
i=1 αiδ(Ai)

be any element of Bf . Let S ⊆ B⊥
f be thin. Lemma 3.1 implies a ◦

∑
s∈S s =∑

s∈S a ◦ s. Each term in the latter sum is 0, as required.
To show Zt ⊆ B⊥

f , we extract the following observation.

Lemma 3.3 Let D be an orientation of a cycle C and let b ∈ Bf . Then
zD ◦ b = 0.

Proof: By Lemma 3.1, we may assume that b = δ(A), for some partition
(A, B) of X \E into closed sets. Then C \ (δ(A)∩C) has |δ(A)∩C| compo-
nents, which are cyclically joined by the edges of δ(A)∩C. Let e1, e2, . . . , ek

denote the cyclic order of the edges of δ(A) ∩ C. Then k is even. The cru-
cial observation to show that ei and ei+1 contribute cancelling values is the
following: if ei and ei+1 are both in D+ or both in D−, then one is in δ+(A)
and the other is in δ−(A), while if they are in different ones of D+ and D−,
then either both are in δ+(A) or both are in δ−(A). The various possibilities
are now easily dismissed.

This lemma shows that each zD is in B⊥
f . Thus, B⊥

f is an algebraically

closed set containing all the zD, i.e., Zt ⊆ B⊥
f .

For the reverse inclusion, let c =
∑

αee ∈ B⊥
f . Choose any spanning tree

T of (X, E), and let z = c−
∑

e/∈T αeCT (e). Since the fundamental cycles are
thin,

∑
e/∈T αeCT (e) ∈ B⊥

f from the first part of the proof and Lemma 3.1.

Thus, z ∈ B⊥
f . Furthermore, the support of z is contained in T . Now let

e ∈ T . Recall that ξ(BT (e)) ∩ T = {e}. Since z ◦ BT (e) = 0, it follows that
e /∈ ξ(z). Thus, z = 0, i.e., c ∈ Zt, as required. Furthermore, this proves
that the fundamental cycles algebraically span the cycle space.

It remains to show algebraic independence, so suppose
∑

e/∈T αeCT (e) = 0.
For e /∈ T , CT (e) is the only fundamental cycle whose support contains e.
Thus, when we write

∑
e/∈T αeCT (e) in the form

∑
f∈E βff , we must have,

for each e /∈ T , βe = αe. Thus, every αe is 0, as required.

As a particular instance, for a locally finite graph G, consider the elements∑
αee of FE having the property that, for every vertex v of G,

∑
e∈δ+(v) αe =
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∑
e∈δ−(v) αe. (This is the Bonnington-Richter cycle space, but now for a

general field.) This is precisely B⊥
f , and so Zt, for the Alexandroff (or 1-

point) compactification of G. This is a larger space than the cycle space of
the Freudenthal compactification of a locally-finite G having more than one
end.

4 More on orthogonality

In the previous section, we showed that B⊥
f = Zt. In general Z⊥

t is not Bf .

It is the purpose of this section to determine Z⊥
t . While we are at it, let ∆

denote the set of all the bonds δ(A) and let Bt = A(∆). For a locally finite
graph, we show that B⊥

t = Zf and Z⊥
f = Bt; it is interesting to note that

Zf and Bt depend only on the graph and not on the compactification.
In order to determine Z⊥

t , it is necessary to reconsider the meaning of
a ◦ b. By definition, this should be

∑
e∈E αeβe, where a =

∑
e∈E αee and

b =
∑

e∈E βee. Which sums
∑

e∈E γe are to be permitted? In the proofs that
follow, we will need to be able to add such sums, to rearrange the terms
without changing the value of the sum, along with other natural operations.
For a finite field, the only possibility that makes sense in this context is
finite sums. However, for an infinite field, the absolutely convergent sums
also make sense. Thus, for these fields, we shall have a choice: allow only
finite sums or allow absolutely convergent sums. Since both of these options
make sense, we let C denote the set of allowed sums. We shall use without
comment the properties we require of C; the reader may note along the way
that both the set of finite sums and the set of absolutely convergent sums
satisfy all the properties we use.

The function ◦ is then dependent on C and a ◦ b is only defined if the
sum

∑
αeβe is in C. For a subset S of FE, we define S⊥ = {a ∈ FE | ∀ s ∈

S, a ◦ s ∈ C, a ◦ s = 0}. It is a triviality to show that S ⊆ (S⊥)⊥ and that
if U ⊆ V , then V ⊥ ⊆ U⊥. It is in general not true that (S⊥)⊥ = S; we will
see that, at least in some cases, Bf 6= (B⊥

f )⊥.
A simple example will help to illustrate. Let G be a 2-way infinite path,

every edge oriented from one end of G towards the other end and let X be
the 1-point compactification of G. If F is the real numbers, then Zt consists
of all the real multiples of the vector z of all 1’s. Fix some vertex v of G to be
the “midpoint” of G. Let a be a vector in FE(G) obtained by putting 1/(2i)
and −1/(2i) on the edges at distance i from v. The entries in a make an
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absolutely convergent series, and a ◦ z = 0, so if C consists of the absolutely
convergent sums, then a ∈ Z⊥. However, if C consists only of the finite sums,
then a /∈ Z⊥, since a ◦ z /∈ C.

The following is easy and well-known.

Lemma 4.1 Let E be any set, let F any field, and let A and B be subsets of
FE. Then (A + B)⊥ = A⊥ ∩B⊥.

We shall see two sufficient conditions to ensure that (A⊥)⊥ = A. The first
is quite simple and general, while the second relates specifically to algebraic
generation.

Lemma 4.2 Let A be a subset of FE. Then A = (A⊥)⊥ if and only if there
is a B so that A = B⊥.

Proof: This is a special case of a general fact. Suppose f is a function
mapping subsets of FE to subsets of FE satisfying: (i) for all A, A ⊆ f(f(A));
and (ii) for all A ⊆ B, f(B) ⊆ f(A). Then, for every A, f(A) = f(f(f(A))).
To see this, note by (i) f(A) ⊆ f(f(f(A))). Also by (i), A ⊆ f(f(A)),
so by (ii) f(f(f(A))) ⊆ f(A). To finish the proof of the lemma, observe
that if A = f(B), then f(f(A)) = f(f(f(B))) = f(B) = A. Conversely, If
A = f(f(A)), then, for B = f(A), A = f(B).

This simple lemma and Theorem 3.2 already show that (Z⊥
t )⊥ = Zt.

The next result will combine with Theorem 3.2 to do this in a different way.
However, the next result will be used later to get our analogue of the edge
tripartition theorem.

Theorem 4.3 Let U be a subspace of FE. If U is algebraically generated by
a thin set, then (U⊥)⊥ = U .

This is a simple consequence of the following result that generalizes Fred-
holm’s Theorem of the Alternative for finite systems of linear equations to
systems of equations in which each equation has only finitely many non-zero
terms. Our thanks to Christian Delhommé for the argument, which is much
simpler than our original.

Lemma 4.4 Let Ax = b be a system of equations in which every equation
has only finitely many non-zero coefficients. If every finite set of equations
from Ax = b has a solution, then Ax = b has a solution.
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Proof: Given two systems of equations S1 : A1x = b1 and S2 : A2x =
b2, we say S1 ≤ S2 if every equation in S1 is an equation in S2. (The
exact same equation should not be repeated.) If {Si} is a chain of systems
of equations, every one of which has the property that every finite set of
equations has a solution, then ∪iSi is a system of equations with the same
property. Therefore, Zorn’s Lemma implies there is a maximal system A′x =
b′ of equations, containing Ax = b, so that every finite subsystem of A′x = b′

has a solution.
Suppose xτ is one of the variables and let c be an element of the field. If

xτ = c is not one of the equations of A′x = b′, then add it to the system.
Since this new system properly contains A′x = b′, it must be that some finite
subsystem A′

F x = b′F of A′x = b has a solution, but for no solution is xτ = c.
We claim that this implies that there is a value a in the field so that,

for any solution x to A′
F x = b′F , xτ = a. For if this not the case, let

A′′
F x = b′′F be the reduced row echelon form of A′

F x = b′F . There are only
finitely many variables that correspond to leading 1’s (i.e., are dependent) in
A′′

F x = b′′F ; the remainder are independent. If xτ is independent, then setting
all other independent variables to 0 and xτ to c yields a solution, which is
a contradiction. Thus, xτ must be dependent. The corresponding equation
in A′′

F x = b′′F must be xτ = a, with no independent variables occurring with
non-zero coefficient, since otherwise we may again find a solution with xτ = c.

The conclusion is that, for every τ , the value of xτ is determined by some
finite set of equations in A′x = b′. Using these values, in particular, yields
a solution to A′x = b′, since no two finite sets of equations can determine
distinct values for any xτ .

Our second orthogonal pair is given in the next result. A compactifi-
cation of a locally finite graph G is a topological space X ⊇ G for which
there is a continuous, surjective map f : F(G) → X from the Freudenthal
compactification F(G) of G to X that is the identity on G. Lemma 19.8 in
[9] shows this implies f(F(G) \ G) = (X \ G). Roughly, a compactification
of G is obtained from F(G) by identifying some of the ends. (One could
allow more general compactifications than the Freudenthal compactification
here. If R and R′ are rays in the same end of G, then the edges occurring
once in the 2-way infinite walk R−1R′ make a set that is the edge-disjoint
union of finite cycles of G and so is in every cycle space that allows sums
of thin families and contains all finite cycles. However, it is not clear that
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this implies that the cycle space of the Freudenthal compactification is the
same as that of, say, the Stone-Čech compactification. Our interest in the
context of graphs has principally been devoted to images of F(G) because
the Stone-Čech compactification is not concretely understood. In particular,
the Stone-Čech compactification of the positive integers does not yet have
an alternative description.)

Theorem 4.5 Let X be a compactification of a connected locally finite graph.
Then B⊥

t = Zf and Z⊥
f = Bt. Furthermore, the set of vertex bonds δ(v), less

any one, is an algebraic basis for Bt.

Proof: For each vertex u of G, δ({u}) ∈ Bf . If z ∈ Zt, then δ({u})◦z = 0
by Theorem 3.2. In particular, ξ(z) cannot have just one edge incident with
u, so, for z ∈ Zf , ξ(z) induces a finite subgraph in which no vertex has
degree 1. An easy induction on |ξ(z)| now shows that every element of Zf

is the finite sum of finite cycles of G. Now Lemmas 3.1 and 3.3 show that
any element of Zf is orthogonal to any element of Bt. Thus, Zf ⊆ B⊥

t and
Bt ⊆ Z⊥

f .

Let z =
∑

αee ∈ B⊥
t . Since Bf ⊆ Bt, we have B⊥

t ⊆ B⊥
f = Zt, so it

suffices to show z has finite support. Otherwise, there is an infinite set U of
pairwise non-adjacent vertices each incident with an edge in the support of
z. For each u ∈ U , let eu be an edge incident with u such that αeu 6= 0. Set
b =

∑
u∈U α−1

eu
δ(u). Clearly b ∈ Bt. But now z ◦ b is a sum with infinitely

many 1’s or −1’s, which is impossible, contradicting the assumption that
z ∈ B⊥

t . Thus, B⊥
t ⊆ Zf , so B⊥

t = Zf .
Now suppose b =

∑
βee ∈ Bt. We shall determine b′ =

∑
v∈V (G) αvδ(v) so

that b′ = b. This shows that Bt is algebraically generated by the thin family
{δ(v) | v ∈ V (G)}, so Theorem 4.3 implies (B⊥

t )⊥ = Bt, i.e., Z⊥
f = Bt.

Let v0 be an arbitrary vertex of G and let T be a breadth-first search
spanning tree of G rooted at v0 – this is independent of X, and T need not
be a spanning tree of X. Set αv0 = 0. Let v be any other vertex of G
and let w be the unique neighbour of v closer to v0 in T . If the edge vw
is oriented from w to v, then set σvw = 1, while if vw is oriented from v
to w, then set σvw = −1. Set αv = αw + σvwβvw. Suppose that vw is an
edge of T with v further from v0 than w is. If vw is oriented from v to w,
then αw − αv = −σvwβvw = βvw, while if vw is oriented from w to v, then
αv − αw = σvwβvw = βvw.

Now consider an edge vw ∈ E(G) \ E(T ). There is an orientation D =
(w0, e0, w1, e1, . . . , wr, er, w0) of the unique cycle in T + vw, with w = w0 and
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v = wr, so that the orientation of vw is from v to w. Then zD ∈ Zf = B⊥
t ,

so b ◦ zD = 0. Now, if zD =
∑r

i=0 γiei, then
∑r

j=0 γiβei
= 0. Now γi = 1 if ei

is oriented from wi to wi+1 (indices being read modulo r + 1) and γi = −1
otherwise. Thus, for 0 ≤ i < r, γiβei

= αwi+1
− αwi

. So
∑r−1

i=0 γiβei
=

αwr − αw0 . Since γr = 1, it follows that βer = αw0 − αwr = αw − αv.
Therefore, b =

∑
v∈V (G) αvδ(v), as claimed.

To show that all but one of the vertex bonds make an algebraic basis is
easy: the preceding shows Bt is the span of the vertex bonds other than δ(v0).
On the other hand, suppose a =

∑
v∈V (G) αvδ(v). Since a =

∑
e∈E(αh(e) −

αt(e))e, where h(e) and t(e) are the head and tail of e, respectively, we see
that if a = 0, then αh(e) = αt(e), for every e. Since G is connected, all the αv

are the same, which proves the claim.

It would be interesting to determine whether Theorem 4.5 holds for gen-
eral compact, weakly Hausdorff edge spaces. The remainder of this section
is devoted to showing, for edge spaces, that Z⊥

t is the space Bw, which we
introduce next.

Let (X,E) be a compact, weakly Hausdorff edge space, let F be a field,
let C be the set of sums allowed, and let T be a spanning tree of (X, E).
The set Bw consists of those elements b of FE that may be expressed in the
form

∑
e∈E′ αeBT (e), where E ′ ⊆ E ∩ T is such that

⋃
e∈E′ [ξ(BT (e)) \ {e}]

is finite, and, for F = {e ∈ E ′ | ξ(BT (e)) 6= {e}},
∑

e∈F αe ∈ C. Note
that, in the case C is not just the finite sums, an element of Bw is not
necessarily the sum of a thin family of BT (e). However, for f ∈ E \ T ,
the coefficient of f in

∑
e∈E′ αeBT (e) is

∑
e∈E′ αeµ(e, f), where µ(e, f) is 0 if

f /∈ BT (e), 1 if the coefficients of e and f in BT (e) have the same sign, and −1
otherwise. The sign of µ(e, f) does not affect whether

∑
e∈E′,f∈BT (e) αeµ(e, f)

is in C. Since
∑

e∈F αe is in C, so is
∑

e∈E′ αeµ(e, f), i.e., the coefficient of f
in
∑

e∈E′ αeBT (e) is well-defined.
The main theorem of this section is the following. In particular, this

shows that Bw is independent of T , which is not at all obvious from the
definition. Also not obvious from the definition, at least in the case C consists
of absolutely convergent series, is that Bw ⊆ Bt. It would be of interest to
define Bw without reference to a spanning tree.

Theorem 4.6 Let (X, E) be a connected, compact, weakly Hausdorff edge
space. Then Z⊥

t = Bw, B⊥
w = Zt and Bf ⊆ Bw, and, if (X, E) is a compact-

ification of a locally finite graph, then Bw ⊆ Bt.
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Proof: Let T be a spanning tree of (X, E). We begin by showing that if
b ∈ Bw and z ∈ Zt, then b ◦ z = 0.

First of all, Theorem 2.2 implies

b =
∑
e∈E′

αeBT (e) =
∑
e∈E′

αee +
∑
f∈S

(∑
e∈E′

αeµ(e, f)

)
f ,

for S =
⋃

e∈E′ [ξ(BT (e)) \ {e}].
On the other hand, Theorem 3.2 and Lemma 2.3 show that, for some γe,

z =
∑
e/∈T

βeCT (e) =
∑
f∈S

βff +
∑
e∈E′

∑
f /∈T

βfν(e, f)

 e +
∑

e/∈(S∪E′)

γee ,

where ν(e, f) = 0 if e /∈ ξ(CT (f)), ν(e, f) = 1 if e and f have the same
direction in CT (f), and ν(e, f) = −1 if e and f have different directions in
CT (f). We note that ν(e, f) = −µ(e, f).

Obviously,

b ◦ z =
∑
e∈E′

αe

(∑
f∈S

βfν(e, f)

)
+
∑
f∈S

βf

(∑
e∈E′

αeµ(e, f)

)
.

The first of the two sums has terms of the form αe

∑
f∈S βfν(e, f). For

each f ∈ S, the sum
∑

e∈E′ αeν(e, f) =
∑

e∈F αeν(e, f) is in C (because∑
e∈F αe ∈ C), and, since |S| < ∞,

∑
f∈S βf

(∑
e∈E′ αeν(e, f)

)
is in C and is

equal to
∑

e∈E′ αe

(∑
f∈S βfν(e, f)

)
, so the latter is in C, as required. The

second of the two sums in b ◦ z has finitely many terms, each of which is of
the form βf

∑
e∈E′ αeµ(e, f), which is in C by the assumption b ∈ Bw. From

these remarks, the first and second sums are both in C and their sum is 0
(recall ν(e, f) = −µ(e, f)), as required.

We have shown Bw ⊆ Z⊥
t and Zt ⊆ B⊥

w . Next we show Z⊥
t ⊆ Bw; to this

end, let b =
∑

e∈E αee ∈ Z⊥
t . By way of contradiction, suppose that⋃
e∈T∩ξ(b)

ξ(BT (e)) \ {e}

is infinite. We shall recursively select edges e1, e2, . . . and f1, f2, . . . . If we
have selected e1, . . . , ei−1 and f1, . . . , fi−1, then pick ei ∈ T ∩ ξ(b) so that

12



BT (ei) has an edge fi not in T ∪
⋃

j<i BT (ej). By Theorem 2.2 each BT (ej)
is finite, so our assumption shows this is possible. Define

βi = ν(ei, fi)

α−1
ei
−

∑
j<i; fj∈BT (ei)

βjν(ei, fj)

 .

Now set z =
∑∞

i=1 βiCT (fi). Since this is a sum of fundamental cycles,
Theorem 2.4 implies this is in Zt. Because b ∈ Z⊥

t , we should have b ◦ z = 0.
However, the coefficient of ei in z is

∑∞
j=1 βjν(ei, fj) , which is a finite sum,

since the CT (fi) make a thin family. Thus, in b ◦ z we find, for each ei, the
term

αei

∞∑
j=1

βjν(ei, fj) = αei
βiν(ei, fi) + αei

∑
j 6=i

βjν(ei, fj)

= 1− αei

∑
j<i

βjν(ei, fj) + αei

∑
j 6=i

βjν(ei, fj)

= 1− αei

∑
j>i

βjν(ei, fj) .

However, if j > i, then fj is not in ξ(BT (ei)), so ν(ei, fj) = 0. Thus, for each
ei, z ◦ b has a 1 in the sum, so the sum is not in C. Therefore,⋃

e∈T∩ξ(b)

ξ(BT (e)) \ {e}

must be finite.
Set E ′ = T ∩ ξ(b) and F = {e ∈ T | ξ(BT (e)) 6= {e} }. We would like to

show that
∑

e∈F αe is in C. For each f ∈ ∪e∈E′ξ(BT (e)) \ {e} (of which there
are only finitely many), observe that b◦CT (f) = 0, so that

∑
e∈E′ αeµ(e, f) is

in C. But this implies
∑

e∈E′,f∈ξ(BT (e)) αe is in C. Now let
⋃

e∈E′ ξ(BT (e))\{e}
be {e1, e2, . . . , ek} and, for i = 1, 2, . . . , k, let E ′

i = {e ∈ E ′ | ei ∈ ξ(BT (e))}.
Then each of the sums, for 1 ≤ i ≤ k,

∑
e∈Ei\∪j<iEj

αe is in C. Since there

are finitely many of them, this implies
∑

e∈E′ αe is in C.
The preceding two paragraphs show b′ =

∑
e∈E′ αeBT (e) ∈ Bw. Thus,

b−b′ ∈ Z⊥
t . Since ξ(b−b′) ⊆ E \T , and, for every f /∈ T , (b−b′)◦CT (f) = 0,

we see that b − b′ = 0, i.e., b = b′ ∈ Bw, as required. Hence Z⊥
t = Bw.

Furthermore, since Zt is generated by the thin family of fundamental cycles,
Theorem 4.3 implies (Z⊥

t )⊥ = Zt, whence B⊥
w = Zt.

13



Finally, Bf ⊆ (B⊥
f )⊥ = Z⊥

t = Bw and, when (X, E) is a compactification

of a locally finite graph, Bw = Z⊥
t ⊆ Z⊥

f = Bt.

5 An edge tripartition theorem

To us, the most natural analogue of the Rosenstiehl-Read Edge Tripartition
Theorem [6] would be the following.

Conjecture 5.1 Let (X, E) be a compact, weakly Hausdorff edge space. Then,
for every e ∈ E, exactly one of the following holds:

1. there is a b ∈ Bw ∩ Zt with e ◦ b = 1;

2. there is a b ∈ Bw such that e ◦ b = 1 and b− e ∈ Zt; and

3. there is a z ∈ Zt such that e ◦ z = 1 and z − e ∈ Bw.

We were not able to prove this, but were able to prove the following
analogue.

Theorem 5.2 Let (X,E) be a compactification of a locally finite graph.
Then, for every e ∈ E, at least one of the following holds:

1. there is a b ∈ Bf ∩ Zf with e ◦ b = 1;

2. there is a b ∈ Bt such that e ◦ b = 1 and b− e ∈ Zt; and

3. there is a z ∈ Zt such that e ◦ z = 1 and z − e ∈ Bt.

If 1 holds, then neither (2) nor (3) holds.

As stated this result almost generalizes the Rosenstiehl-Read theorem,
which asserts that, for finite graphs, EXACTLY one of the three holds (in
that case, Zf = Zt and Bf = Bt). Since it can happen that both (2) and
(3) hold simultaneously, our theorem does not have this feature. This is
essentially because we require Bt rather than Bw = Z⊥

t .

Proof of Theorem 5.2: Note that Bt+Zt has a thin generating set, namely
the union of the separate thin generating sets. Therefore, Theorem 4.3 im-
plies ((Bt+Zt)

⊥)⊥ = Bt+Zt. But Lemma 4.1 implies (Bt+Zt)
⊥ = B⊥

t ∩Z⊥
t .
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Theorem 4.5 implies B⊥
t = Zf , while Theorem 4.6 implies Z⊥

t = Bw. Since
Bw ∩ Zf = Bf ∩ Zf , the result follows.

In a personal communication, Henning Bruhn informs us that he has
proved the following.

Theorem 5.3 Let (X,E) be a compactification of a locally finite graph.
Then, for every e ∈ E, exactly one of the following holds:

1. there is a b ∈ Bt ∩ Zt with e ◦ b = 1;

2. there is a b ∈ Bf such that e ◦ b = 1 and b− e ∈ Zf ; and

3. there is a z ∈ Zf such that e ◦ z = 1 and z − e ∈ Bf .

This form is different from ours; it regains the “EXACTLY” one feature
of the Rosenstiehl-Read theorem, but it is unsatisfying in another way (which
is also unsatisfying about our version): it requires more than one version of
each of the cycle and bond spaces.

6 Cycle spaces in different edge spaces

Let C1 and C2 be compactifications of a topological space X. Then C2 ≤ C1

if there is a continuous function f : C1 → C2, with f being the identity on X.
It is well-known that, with this relation, the compactifications of a Hausdorff
space make a lattice [5]. For Hausdorff spaces, such an f is necessarily
surjective. This is not generally true for weakly Hausdorff spaces, so some
adjustment will be necessary for compactifications of edge spaces, such as
assuming the compactifications are also edge spaces. The following simple
theorem shows that compactifications related in this way have corresponding
relations on their cycle spaces.

Theorem 6.1 Let (X, E) and (Y, F ) be compact weakly Hausdorff edge spaces
and let h : X → Y be a continuous function so that h : E → F is a bijection,
h(X \E) = Y \F , and, if e ∈ E is directed from u to v, then h(e) is directed
from h(u) to h(v). Then, identifying each edge e ∈ E with h(e) ∈ F :

1. Bf (Y, F ) ⊆ Bf (X, E);
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2. Zt(X, E) ⊆ Zt(Y, F );

3. if T is a spanning tree of Y , then there is a spanning tree of X con-
taining h−1(T ∩ F ).

Proof: Let b ∈ Bf (Y, F ). Then b =
∑n

i=1 αiδ(Ai), for some partitions
(A1, B1), . . . , (An, Bn) of Y \ F into pairs of closed sets. For each i =
1, . . . , n, (h−1(Ai), h

−1(Bi)) is a partition of X \ E into closed sets. Clearly
h(δ(h−1(Ai))) = δ(Ai). Thus b =

∑n
i=1 αih(δ(h−1(Ai))) ∈ Bf (X, E), as

required for (1). Since Zt = B⊥
f (Theorem 3.2), the fact that A ⊆ B implies

B⊥ ⊆ A⊥ immediately yields (2).
Finally, if T is a spanning tree of (Y, F ), then T is closed in Y , so h−1(T )

is closed in X. By [7, Thm. 3], there is a minimal connected subset S of
X containing h−1(T ). If e ∈ S ∩ E is such that S − e is connected, then
minimality of S implies e ∈ h−1(T ). Let T1 and T2 be the components of
T − e; then h−1(T1) and h−1(T2) are non-empty and partition S − e into
closed sets. Thus, for i = 1, 2, h−1(Ti) ∪ {e} is an open set in S, showing
S − e is not connected, a contradiction. Therefore, if e ∈ S ∩E, S − e is not
connected, i.e., S is a spanning tree of (X, E).

We hope in a further work to investigate the question of how to find a
basis for Z(Y, F )/Z(X,E). In [1], for a locally-finite graph embedded in the
sphere with k < ∞ accumulation points, the closure of the embedded graph
yields one edge space (X, E) and this was compared with the Alexandroff
compactification (Y, E). In this special case, a basis for Z(Y, F )/Z(X, E),
with F = Z2, was found.
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