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A number of well known results in combinatorial optimization, such as Hoffman’s circulation theorem and the matching theorems of
Hall and Tutte, can be interpreted as stating that either a certain linear system has a solution or there exists a simple combinatorial
reason why it is infeasible. We give a characterization of total dual integrality in terms of such infeasibility results. This leads to a
method for testing total dual integrality which is tractable for small linear systems. In particular, a computer implementation of the

method settled a conjecture of Barahona and Mahjoub concerning feedback sets in directed graphs.
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1. Introduction

A rational linear system Ax < b is called fotally
dual integral when the minimum in the linear
programming duality equation

max{wx: Ax<b}=min{ yb: yA=w, y >0}

ey

can be achieved by an integral solution for all
integral vectors w for which the optima exist.
Hoffman [11] and Edmonds and Giles [6] showed

-that if AX<b is totally dual integral and b is

integral, then the maximum in (1) can also be
achieved by an integral solution for all vectors w
for which the optima exist. Total dual integrality
is: a. matural framework for the study of min-max
relations in combinatorial optimization.

It is often the case that a class of totally dual
integral systems is associated with a well known
theorem stating that if a given system has no

solution, then this can be explained by a simple
combinatorial argument. Examples of such results
are Hoffman’s circulation theorem [11], the match-
ing theorems of Hall and Tutte [14], and Frank’s
submodular-flow theorem [8]. In the next section,
we give a characterization of total dual integrality
in terms of such ‘integral infeasibility’ results.
Then in Section 3 we show how this characteriza-
tion can be used to improve the test for total dual
integrality given in Cook, Lovasz, and Schrijver
[5], and in Section 4 we report on the solution of a
problem of Barahona and Mahjoub concerning
feedback sets in directed graphs.

2. Integral infeasibility

For a system Ax <b of m linear inequalities
and aset TC{l,...,m}, we let

ATx = bT? ATx < bf (2)
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denote the system obtained by setting each in-
equality in T to equality while keeping each in-
equality in T= {1,...,m}\T as an inequality.
Suppose (2) has no solution for some specified set
T. Although it may be far from obvious that this
system really does have no solution, with the help
of Farkas’ lemma this fact can be readily verified.
Indeed, by exhibiting a vector ( y,, yz) such that

yrbr+yrbz <0,
yrAr+yzA7=0, (3)
y7=0,

we prove the infeasibility of the system. Due to
the equality constraints, the vector y, might nec-
essarily have some negative components. Notice,
however, that we may scale (y,, y7) so that it
satisfies

Yrbr+yzbz <0,

yrAr+yzrAz=0, (4)
)’7-> _1’ yT;O-

Now (3) necessarily has an integral solution (since
it has a rational solution), but (4), although solva-
ble, may not be solvable in integers. We say that
the infeasibility of (2) can be proven integrally if
(4) does in fact have an integral solution. (Note
that (4) slightly generalizes the classic form of
integral infeasibility since y, can be negative.)

A set of vectors {hy,..., h, } is called a Hilbert
basis if each integral vector in the cone {Ah;
+ooc HA A X 20,i=1,..., k} can be written
as a nonnegative integral combination of k..., h,
(see Giles and Pulleyblank [9]).

Theorem 1. Let A be an integral matrix and b a
rational vector such that the linear system Ax <b
has at least one solution. Then Ax < b is totally dual
integral if and only if

(i) the rows of A form a Hilbert basis and

(ii) for each subset T of inequalities from Ax < b,
if (2) is infeasible, then this can be proven inte-
grally.

Proof. Let Ax <b be a totally dual integral sys-
tem which has at least one solution. The validity
of (i) follows directly from the definition of total
dual integrality. To check (ii), suppose (2) has so
solution for some specified set 7. We must show
that the dual system (4) has an integral solution.
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To this end, let (y*, y#) be an integral optimal
solution to the linear programming problem

Hﬁn{)’rbr+)’7_"b7_'5 yrAr+yrAz=1-Ap,
yr=0, )’7—'>O}’ (5)

where 1- A4, denotes the vector obtained by sum-
ming the rows in 4;.. We claim that (y; — 1, yZ)
is a solution to (4). Indeed, by the choice of
right-hand-side, we only need to prove that

(y7 = 1)br+yFbz <0,

and this can be seen as follows: Letting (¥, y7)
be a solution to (4) (which exists, via Farkas’
lemma) we have that (y,+1, y7) is a feasible
solution to (5). Therefore,

U%‘ = 1)br+ Y£bs < yrbr+ yzb7r < 0.
For the other direction, suppose Ax < b has a
solution and (i) and (ii) hold. Let w be an integral

vector such that the optima in (1) exist. We need
to show that

min{ yb: yA=w, y >0} (6)

has an integral optimal solution. So let y* be an
integral solution to (6) having y*b as small as
possible. (By condition (i), we know such an in-
tegral solution exists.) Now let T consist of those
inequalities a,x < b; such that y* is positive. If
the system A;x = by, A7 < b5 is feasible, then by
complementary slackness y* is an optimal solu-
tion. Otherwise, by (ii), there exists an integral
solution y to (4). But since y* >0, y*+7 is a
solution to (6) and (y* + )b < y*b, a contradic-
tion. O

This characterization is used by Ervolina and
McCormick [7] to give a new proof of the total
dual integrality of submodular-flow systems. When
condition (ii) is satisfied, they say that 4x < b has
an Integral Infeasibility Theorem.

3. Testing for total dual integrality

A polynomial-time test for total dual integrality
in fixed dimension is given in Cook, Lovasz and
Schrijver [5] (see also Chandrasekaran and Shirali
[4]). The core of the algorithm is a method for
testing if a given set of integer vectors is a Hilbert
basis. The general problem is easily reduced to
this by the observation that a system Ax<b is
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totally dual integral if and only if for each minimal
face F of {x: Ax < b}, the set of active rows of 4
for F (those for which a,x=b, for all x € F),
form a Hilbert basis. (This geometric interpreta-
tion of total dual integrality was first used in Giles
and Pulleyblank [9].) The routine which tests for a
Hilbert basis makes repeated use of Lenstra’s in-
teger programming algorithm [13] (the number of
times is an exponential function of the dimension).
Therefore, to obtain a practical method for testing
small linear systems it is important to avoid Hil-
bert basis tests whenever possible. The following
consequence of the proof of Theorem 1 helps in
certain cases:

Theorem 2. Let A be an m X n integral matrix and
b a rational vector such that Ax < b has at least one
solution. Then Ax < b is totally dual integral if and
only if

(i) the rows of A form a Hilbert basis, and

(ii) for each subset T of at most n inequalities
from Ax < b, the linear programming problem

min{ yb: yA=1-A;, y>0}

has an integral optimal solution. O

The improvement comes about in two ways.
First, integer programming problems of the form

min{ yb: yA=w, y >0}

for a totally dual integral system Ax < b (with 4
integral) and integral vector w can be solved in
polynomial time (even for varying dimension) by a
sequence of linear programming problems and
linear diophantine equation problems (Chandra-
sekaran [3], see also Schrijver [16]). Second, in
some cases condition (i) can be checked without
resorting to the method of Cook, Lovasz and
Schrijver.

Example 1. If {x: Ax<b} is bounded, then (i)
can be verified by checking that, for each j=
1,..., m, both the j-th unit vector and its negative
can be written as a nonnegative integer combina-
tion of the row of 4. This can again be done in
polynomial time (even for varying dimension) by
the algorithm of Chandrasekaran.

Example 2. If the system is of the form Ax > b,
x>0, with A4 nonnegative, then (i) is trivially
satisfied. Furthermore, in this case the algorithm
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of Chandrasekaran reduces to just a sequence of
linear programming problems (see Schrijver [16]).

4. Feedback sets

Barahona and Mahjoub (see [1], as well as
Junger [12]) posed the problem of determining
whether or not the linear system

Y{x.:e€C}>1
for each directed circuit C of D, (7
x,>0 for each arc e of D,

is totally dual integral for D,, the complete sym-
metric directed graph on 5 nodes (that is, the
directed graph having nodes 1,...,5 and arcs ij
and ji for all i #j). As described below, a com-
puter implementation of the check for condition
(ii) in Theorem 2 (for systems of the form given in
Example 2) showed that the system is indeed
totally dual integral.

A 0-1 solution of (7) corresponds to a subset of
arcs which meets every directed circuit in the
directed graph D. Such a subset of arcs is called a
feedback set. An elegant theorem of Lucchesi and
Younger [15] states that in a planar directed graph
the minimum number of arcs in a feedback set is
equal to the maximum number of pairwise arc-dis-
joint directed circuits. The motivation for proving
that (7) is totally dual integral for D is that it
provides the last step in an extension of the Luc-
chesi-Younger theorem to the class of directed
graphs having no K;; minor (see Barahona and
Mahjoub [1}).

Note that D; has 84 directed circuits, which
leads to far too- many inequalities to be able to
check condition (ii) directly. We need the follow-
ing lemma of Barahona and MahJoub [1] to cut
down the size of Dj:

Lemma 3. Suppose that D is a directed graph with
arcs ij and ji, that D; is D with ji deleted, and that
D, is D with ij deleted. Then if (7) is totally dual
integral for both D, and D,, it is totally dual
integral for D.

Proof. Let
w={w,: e an arc of D}

be an integral objective vector for (7). We can
assume that w,; > w; > 0. Now solve the problem
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on D, with w'=w,;~w, If jj is not in the
optimal feedback set in D,, then add i to get a
feedback set for D; the primal objective increases
by w;, but we can feasibly increase the dual
objective by setting the dual variable on the two-
arc circuit using i and ji to w;. If §j is the
optimal feedback set in D, then the same feed-
back set is feasible for D (the only uncovered
circuits must use ji; but i being in a minimal
feedback set in D, implies that there is a directed
circuit C covered only by ij; now C together with
the uncovered ji circuit gives an uncovered di-
rected walk in D,, a contradiction). Once again,
the primal objective goes up by w;;, but we again
compensate by setting the dual variable on the
two-arc circuit to w;;. O

Thus (7) is totally dual integral for Dy if and
only if it is totally dual integral for each orienta-
tion of K (that is, for each directed graph ob-
tained from the complete undirected graph on 5
nodes by orienting its arcs). This reduces the num-
ber of directed circuits from 84 to a maximum of
12 for any orientation of K.

To reduce the number of orientations of Kj
that need to be checked we make use of the
following lemma of Barahona and Mahjoub:

Lemma 4. Let D be an orientation of K. Then if
either some node of D meets all directed circuits or
some arc is in no directed circuit, (7) is totally dual
integral for D.

Proof. The first case follows from the max flow-
min cut theorem, while the second case follows
from the Lucchesi—Younger theorem. 0O

Checking for isomorphisms, we determined that
there are only 3 distinct orientations of K that
cannot be eliminated by Lemma 4. These 3 di-
rected graphs have 12, 10, and 9 directed circuits
respectively, and are given in Table 1 where a 0
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indicates that the arc is directed from i to j and a
1 indicates j to i.

We checked the total dual integrality of the
systems on a Sun 3-60 workstation, using R.E.
Bixby’s LOPT 3.0 linear programming package [2]
to solve the linear programming problems that
arose. For each of the three orientations, and for
each subset T of inequalities in (7), the linear
program had an integral optimal solution, thus
proving Barahona and Mahjoub’s conjecture.

The times for the three runs, in hours: minutes:
seconds, were
D(12) 14:33:21,

D(10) 2:52:07,

D(9) 1:06:03.

In the computations we took advantage of the fact
that if we encounter a linear programming prob-
lem where one or more of the variables has a
coefficient of 0 in the objective function, then the
dual problem has an integral optimal solution.
(This follows from Lemma 4.) This type of savings
is typical for systems involving problems that are
minimal in the sense that any smaller problem (of
the given type) is known to be totally dual in-
tegral.
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