Chapter 7

Product Measures

7.1 The Product Measure Theorem

Problem 7.1.1. Let \((X, A)\) and \((Y, B)\) be measurable spaces. Is there a natural way to define a measure on the space \(X \times Y\) which reflects the structure of the original measure space?

Definition 7.1.2. Let \((X, A)\) and \((Y, B)\) be measurable spaces. A measurable rectangle is a set of the form \(A \times B\), where \(A \in A\) and \(B \in B\). Let \(Z = X \times Y\) and

\[
Z_0 = \left\{ \prod_{i=1}^{n} A_i \times B_i \mid A_i \in A, B_i \in B \right\}
\]

Lemma 7.1.3. \(Z_0\) is an algebra in \(\mathcal{P}(Z)\).

Let \(Z\) be the \(\sigma\)-algebra generated by \(Z_0\). We write \(Z = \mathcal{A} \times \mathcal{B}\). Assume that \((X, A, \mu)\) and \((Y, B, \lambda)\) are measure spaces. A measure \(\pi\) on \((Z, Z)\) is called a product measure if \(\pi(A \times B) = \mu(A)\lambda(B)\).

Theorem 7.1.4 [Product Measure Theorem]. Let \((X, A, \mu)\) and \((Y, B, \lambda)\) be measure spaces. Then there exists a measure \(\pi\) on \((X \times Y, \mathcal{A} \times \mathcal{B})\) such that \(\pi(A \times B) = \mu(A)\lambda(B)\). Moreover, if \(\mu\) and \(\lambda\) are \(\sigma\)-finite, then \(\pi\) is unique and \(\sigma\)-finite.

In the case where \(\mu\) and \(\lambda\) are \(\sigma\)-finite, we denote the uniquely obtained measure by

\[
\pi = \mu \times \lambda
\]

and call the measure the product of \(\mu\) and \(\lambda\).

Proof. Suppose that \(A \times B\) can be written as \(\sum_{i=1}^{\infty} A_i \times B_i\), where each of the measurable rectangles \(A_i \times B_i\) are disjoint. Then

\[
\chi_A(x)\chi_B(y) = \chi_{A \times B}(x, y) = \sum_{i=1}^{\infty} \chi_{A_i}(x)\chi_{B_i}(y)
\]

for all \(x \in X\) and \(y \in Y\). Fix \(x\) and integrate with respect to \(\lambda\).
\[\int_Y \chi_{A \times B} (x, y) \, d\lambda(y) = \int_Y \sum_{i=1}^{\infty} \chi_{A_i} (x) \chi_{B_i} (y) \, d\lambda(y) \]

\[\int_Y \chi_A (x) \chi_B (y) \, d\lambda(y) = \sum_{i=1}^{\infty} \chi_{A_i} (x) \int_Y \chi_{B_i} (y) \, d\lambda(y) \]

Further integrating with respect to \(\mu \) yields (again by MCT)
\[\mu(A) \lambda(B) = \sum_{i=1}^{\infty} \mu(A_i) \lambda(B_i) \quad (\ast). \]

Define \(\pi_0 \) on \(Z_0 \) by \(\pi_0(\cup_{i=1}^{n} A_i \times B_i) = \sum_{i=1}^{n} \mu(A_i) \lambda(B_i) \). Then \(\pi_0 \) is a measure on \(Z \) by (\ast) (the only nontrivial issue to check was countable additivity). Caratheodory’s Extension Theorem gives us a measure \(\pi \) defined on at least \(Z \) that extends \(\pi_0 \). If \(\mu \) and \(\lambda \) are \(\sigma \)-finite, then \(\pi_0 \) is \(\sigma \)-finite, so Hahn’s Extension Theorem tells us that \(\pi \) is unique.

Definition 7.1.5. Let \(E \subseteq Z = X \times Y \). An \(x \)-section of \(E \) is the set \(E_x = \{ y \in Y | (x, y) \in E \} \). A \(y \)-section is \(E^y = \{ x \in X | (x, y) \in E \} \). Let \(f : Z \rightarrow [-\infty, \infty] \) and \(x \in X \). The \(x \)-section of \(f \) is \(f_x(y) = f(x, y) \). For \(y \in Y \), the \(y \)-section of \(f \) is \(f^y(x) = f(x, y) \).

Lemma 7.1.6. If \(E \subseteq Z \) is measurable in the product measurable space \((Z, \mathcal{Z} = A \times B) \).

1. \(E_x, E^y \) are measurable in the factors for each \(x \in X \) and \(y \in Y \).
2. If \(f : Z \rightarrow \mathbb{R}^* \) is \(\mathcal{Z} \)-measurable, then \(f_x, f^y \) are measurable in each factor for every \(x \in X, y \in Y \).

Proof. i) First observe that it is a routine exercise to show that the set

\[S = \{ E \in \mathcal{Z} | E_x \text{ is measurable} \} \]

is a \(\sigma \)-algebra. However if \(E = A \times B \) where \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \), then

\[E_x = \begin{cases} B & \text{if } x \in A, \\ \emptyset & \text{if } x \notin A \end{cases} \]

so \(A \times B \in S \) and hence \(S = \mathcal{Z} \).

A similar argument works for the sections \(E^y \).

**Proof: ii) Let \(f : Z \rightarrow \mathbb{R}^* \) be measurable, \(x \in X \) and \(\alpha \in \mathbb{R} \). Then

\[\{ y \in Y | f_x(y) > \alpha \} = \{ y \in Y | f(x, y) > \alpha \} = \{ (w, y) \in X \times Y | f(w, y) > \alpha \} \]

which is measurable by i).

A similar argument shows that \(f^y \) is measurable.

7.2 The Fubini’s Theorem

Definition 7.2.1. A monotone class is a non-empty collection \(M \subseteq \mathcal{P}(X) \) such that

1. If \(\{ E_n \}_{n=1}^{\infty} \subseteq M \) with \(E_n \subseteq E_{n+1}, \) then \(\bigcup_{n=1}^{\infty} E_n \in M. \)
2. If \(\{ E_n \}_{n=1}^{\infty} \subseteq M \) with \(E_n \supseteq E_{n+1} \), then \(\bigcap_{n=1}^{\infty} E_n \in M. \)
Every σ-algebra is a monotone class. If $A \subseteq \mathcal{P}(X)$ is any collection of subsets, then there is a smallest monotone class $M(A)$ that contains A. Simply take the intersection of all monotone classes that contain A. With this in mind, it is clear that $M(A) \subseteq \sigma(A)$, the smallest σ-algebra that contains A. In fact, the reverse inclusion also holds when A is an algebra.

Lemma 7.2.2 [Monotone Class Lemma]. If $A \subseteq \mathcal{P}(X)$ is an algebra, then $M(A) = \sigma(A)$.

Proof. We need only show that $M = M(A)$ is an algebra, since this combined with the fact that M is closed under countable unions implies that M is closed under countable unions. For $E \in M$ define $M(E) = \{ F \in M | E \setminus F, E \cup F, F \setminus E \in M \}$. Then $\emptyset \in M(E)$ and $E \in M(E)$. Further, if $F \in M(E)$ then $E \in M(F)$ by the symmetry of the definition. $M(E)$ is a monotone class since complementation, union, and intersection play nicely together.

Suppose that $E \in A$. Then since A is an algebra, $A \subseteq M(E)$. But $M(E)$ is also a monotone class, so $M \subseteq M(E) \subseteq M$ and $M = M(E)$. It follows that $A \subseteq M(F)$ for every $F \in M$, and again we have $M = M(F)$. But $\emptyset, X \in A \subseteq M(E)$, so this implies that M is closed under intersections and finite unions.

Lemma 7.2.3. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ-finite. If $E \in Z = A \times B$, then $f(x) = \lambda(E_x)$ and $g(y) = \mu(E^y)$ are measurable and

$$\int_X f \, d\mu = \pi(E) = \int_Y g \, d\lambda$$

Proof: **Case 1** Assume that μ and λ are finite.

Let M denote the collection of all such E for which the lemma holds. We claim that M is a monotone class containing Z_0 and that as such $M = Z$.

Let $E = A \times B$ where $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Then

$$f(x) = \chi_A(x)\lambda(B) \quad \text{and} \quad g(y) = \mu(A)\chi_B(y)$$

so

$$\int_X f \, d\mu = \mu(A)\lambda(B) = \int_Y g \, d\lambda.$$

Since Z_0 consists of disjoint unions of such sets, $Z_0 \subseteq M$.

Let $\{E_n\} \subseteq M$ with $E_n \subseteq E_{n+1}$ and let

$$E = \bigcup_{n=1}^{\infty} E_n.$$

Then

$$f_n(x) = \lambda((E_n)_x) \quad \text{and} \quad g_n(y) = \mu((E_n)^y)$$

are measurable with

$$\int_X f_n \, d\mu = \pi(E_n) = \int_Y g_n \, d\lambda.$$

If

$$f(x) = \lambda(E_x) \quad \text{and} \quad g(y) = \mu(E^y),$$

then $f_n \nearrow f$ and $g_n \nearrow g$ so the Monotone Convergence Theorem and continuity from below for π shows that

$$\int_X f \, d\mu = \pi(E) = \int_Y g \, d\lambda.$$

Given that π is finite, we can argue in much the same way using the continuity from above for π and the Lebesgue Dominated Convergence Theorem that if $\{E_n\} \subseteq M$ with $E_{n+1} \subseteq E_n$ and

$$E = \bigcap_{n=1}^{\infty} E_n,$$

104
Case 2) If the measures are σ-finite, we let

$$Z = \bigcup_{n=1}^{\infty} Z_n$$

where $Z_n \subseteq Z_{n+1}$ and $\pi(Z_n) < \infty$. We then apply Case 1) to $E \cap Z_n$ and derive the final result from the MCT.

Theorem 7.2.4 [Tonelli’s Theorem]. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ-finite. Let $F : Z = X \times Y \to [0, \infty]$ be measurable. Then the functions defined by $f(x) = \int_Y F(x, y) \, d\lambda$ and $g(y) = \int_X F(x, y) \, d\mu$ are measurable and

$$\int_X f \, d\mu = \int_Z F \, d\pi = \int_Y g \, d\lambda,$$

where $\pi = \mu \times \lambda$. This is to say that

$$\int_X \left(\int_Y F(x, y) \, d\lambda(y) \right) \, d\mu(x) = \int_Z F \, d\pi = \int_Y \left(\int_X F(x, y) \, d\mu(x) \right) \, d\lambda(y).$$

Proof. If $F = \chi_E$ for some $E \in Z = \mathcal{A} \times \mathcal{B}$, then the theorem is exactly the previous lemma. It follows immediately that the theorem holds for all non-negative measurable simple functions. If F is arbitrary, we can find a sequence $\{\Phi_n\}_{n=1}^{\infty}$ of non-negative simple functions such that $\Phi_n \uparrow F$. Let $\varphi_n(x) = \int_Y (\Phi_n)_x \, d\lambda$ and $\psi_n(y) = \int_X (\Phi_n)_y \, d\mu$. Then φ_n and ψ_n are measurable and monotonic in n. By the Monotone Convergence Theorem,

$$\lim_{n \to \infty} \varphi_n(x) = f(x) \quad \text{and} \quad \lim_{n \to \infty} \psi_n(y) = g(y).$$

Again, by the Monotone Convergence Theorem,

$$\int_X f \, d\mu = \lim_{n \to \infty} \int_X \varphi_n \, d\mu = \lim_{n \to \infty} \int_Z \Phi_n \, d\pi = \int_Z F \, d\pi$$

and similarly, $\int_Y g \, d\lambda = \int_Z F \, d\pi$.

Theorem 7.2.5 [Fubini’s Theorem]. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ-finite and let $\pi = \mu \times \lambda$. If F is integrable with respect to π on $Z = X \times Y$, then the extended real valued functions defined almost everywhere by $f(x) = \int_Y F(x, y) \, d\lambda$ and $g(y) = \int_X F(y, x) \, d\mu$ have finite integrals and

$$\int_X f \, d\mu = \int_Z F \, d\pi = \int_Y g \, d\lambda.$$

That is to say,

$$\int_X \left(\int_Y F(x, y) \, d\lambda(y) \right) \, d\mu(x) = \int_Z F \, d\pi = \int_Y \left(\int_X F(x, y) \, d\mu(x) \right) \, d\lambda(y).$$

Proof. Since F is π-integrable, so are F^+ and F^-. Apply Tonelli’s Theorem to establish that f^+ and f^- have finite integrals and hence are finite almost everywhere. Therefore $f = f^+ - f^-$ is defined almost everywhere and $\int_X f \, d\mu = \int_Z F \, d\pi$. Similarly, we can show that $g = g^+ - g^-$ is defined almost everywhere and $\int_Y g \, d\lambda = \int_Z F \, d\pi$.

105