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Right Angle Trigonometry

sin θ =
opposite

hypotenuse cos θ =
ad jacent

hypotenuse tan θ =
opposite
ad jacent

csc θ = 1
sin θ sec θ = 1

cos θ cot θ = 1
tan θ

Radians

The angle θ in
radians equals the
length of the directed
arc BP, taken positive
counter-clockwise and
negative clockwise.
Thus, π radians = 180◦

or 1 rad = 180
π

.

Definition of Sine and Cosine

For any θ, cos θ and sin θ are
defined to be the x− and y−
coordinates of the point P on the
unit circle such that the radius
OP makes an angle of θ radians
with the positive x− axis. Thus
sin θ = AP, and cos θ = OA.

The Unit Circle
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Trigonometric Identities

Pythagorean cos2 θ + sin2 θ = 1

Identity

Range −1 ≤ cos θ ≤ 1

−1 ≤ sin θ ≤ 1

Periodicity cos(θ ± 2π) = cos θ

sin(θ ± 2π) = sin θ

Symmetry cos(−θ) = cos θ

sin(−θ) = − sin θ

Sum and Difference Identities

cos(A + B) = cos A cos B − sin A sin B

cos(A − B) = cos A cos B + sin A sin B

sin(A + B) = sin A cos B + cos A sin B

sin(A − B) = sin A cos B − cos A sin B

Complementary Angle Identities

cos(π2 − A) = sin A

sin(π2 − A) = cos A

Double-Angle cos 2A = cos2 A − sin2 A

Identities sin 2A = 2 sin A cos A

Half-Angle cos2 θ = 1+cos 2θ
2

Identities sin2 θ = 1−cos 2θ
2

Other 1 + tan2 A = sec2 A
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f (x) = x2 f (x) = x3 f (x) = |x|

f (x) = cos(x) f (x) = sin(x) f (x) = tan(x)

f (x) = sec(x) f (x) = csc(x) f (x) = cot(x)

f (x) = ex

1

1

f (x) = ln(x)

iv
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Differentiation Rules
Function Derivative

f (x) = cxa , a , 0, c ∈ R f ′(x) = caxa−1

f (x) = sin(x) f ′(x) = cos(x)

f (x) = cos(x) f ′(x) = − sin(x)

f (x) = tan(x) f ′(x) = sec2(x)

f (x) = sec(x) f ′(x) = sec(x) tan(x)

f (x) = arcsin(x) f ′(x) =
1

√
1 − x2

f (x) = arccos(x) f ′(x) = −
1

√
1 − x2

f (x) = arctan(x) f ′(x) =
1

1 + x2

f (x) = ex f ′(x) = ex

f (x) = ax with a > 0 f ′(x) = ax ln(a)

f (x) = ln(x) for x > 0 f ′(x) =
1
x

Table of Antiderivatives∫
xn dx =

xn+1

n + 1
+ C∫ 1

x
dx = ln(| x |) + C∫

ex dx = ex + C∫
sin(x) dx = − cos(x) + C∫
cos(x) dx = sin(x) + C∫
sec2(x) dx = tan(x) + C∫ 1
1 + x2 dx = arctan(x) + C

∫ 1
√

1 − x2
dx = arcsin(x) + C

∫ −1
√

1 − x2
dx = arccos(x) + C

∫
sec(x) tan(x) dx = sec(x) + C∫
ax dx =

ax

ln(a)
+ C

n-th degree Taylor polynomial for f centered at x = a

Tn,a(x) =
n∑

k=0

f (k)(a)
k! (x − a)k

= f (a) + f ′(a)(x − a) +
f ′′(a)

2! (x − a)2 + · · · +
f (n)(a)

n! (x − a)n

Linear Approximations (L0(x)) and Taylor Polynomials (Tn,0(x))

f (x) = ex L0(x) = T1,0(x) = f (0) + f ′(0)(x − 0) = e0 + e0(x) = 1 + x

T2,0(x) = f (0) + f ′(0)(x − 0) +
f ′′(0)

2! (x − 0)2 = e0 + e0(x) + e0

2! (x − 0)2 = 1 + x + x2

2

T3,0(x) = 1 + x + x2

2 + x3

6

T4,0(x) = 1 + x + x2

2 + x3

6 + x4

24

f (x) = sin(x) L0(x) = T1,0(x) = x

T2,0(x) = x

T3,0(x) = x − x3

6

T4,0(x) = x − x3

6

f (x) = cos(x) L0(x) = T1,0(x) = 1

T2,0(x) = 1 − x2

2

T3,0(x) = 1 − x2

2

T4,0(x) = 1 − x2

2 + x4

24
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Chapter 1

A Short Introduction to Mathemati-
cal Logic and Proof

In this course, we are going to take a rigorous approach to the main concepts in single
variable Differential Calculus. This means that rather than simply asserting mathe-
matical statements as facts, we will attempt whenever possible, to provide proofs of
the validity of these statements. To do so, we will begin with a set of notions and
statements that we will take as being given. For example, we will assume the ba-
sic notions of set theory and the algebraic and arithmetic properties of the natural
numbers, the integers, the rational numbers and the real numbers. We will introduce
as axioms some of the perhaps less well-known properties of these objects such as
the Principle of Mathematical Induction for the natural numbers and the Least Upper
Bound Property for the real numbers. It is important to note that while there is some
value in rigour for its own sake and that it is even possible for proofs to be fun, our
motivation in this course for including rigour is the hope that we will gain a deeper
understanding of the fundamental concepts of Calculus as well as an appreciation
for their limitations. In this respect, we will begin with a very brief, and admittedly
incomplete, introduction to the formalities of mathematical logic and to the rules of
inference that we will use in constructing our proofs.

1.1 Basic Notions of Mathematical Logic and Truth Tables

DEFINITION Statement

A statement is a (mathematical) sentence that can be determined to be either true or
false.

For example, “all differentiable functions are continuous”, and “all prime numbers
are odd” are two examples of mathematical statements. The first statement will be
later shown to be true and, since 2 is a natural number that is both prime and even,
the latter statement is false. Sometimes we are not able to determine whether or not a
statement is true or false but we can see that it must be one or the other. For example,

1



Chapter 1: A Short Introduction to Mathematical Logic and Proof 2

the Twin Prime Conjecture says that there are infinitely aany primes p such that p + 2
is also prime. Despite a great deal of effort that has been exerted to try and prove this
statement, we still do not know that it is true. (A conjecture is a statement for which
there is evidence or strong speculation that it is true but no known proof). However,
it should be obvious that this statement is either true or it is false. A mathematical
sentence such as x > 0 is not a statement since it can be either true or false depending
on the value assigned to the variable x.

Throughout the rest of this chapter we will use italicized lower case letters to denote
statements.

Given a statement p, we can also talk about the negation of p which we denote by
¬p and which we call not p. The negation of a statement is exactly what one would
expect from the name. For example, if the statement p is “the sky is blue”, then the
negation ¬ p is simply the statement that “the sky is not blue”. When a statement
p is true, its negation ¬ p is false and vice versa. We illustrate this fact by the use of
a truth table.

p ¬ p
T F
F T

Notice that it is never the case that both p and ¬ p are simultaneously both true nor
is it ever the case that both p and ¬ p are simultaneously false. This is known as the
Law of the Excluded Middle.

In this course, we will be asked to prove statements that rely on hypotheses. For
example, If f (x) is differentiable, then f (x) is continuous. If we let the statement
p be “ f (x) is differentiable”, and the statement q be “ f (x) is continuous”, then we
are asserting that the truth of p implies the truth of q. That is, p implies q. We will
denote this by

p⇒ q.

In p implies q , the statement p is called the antecedent and q is called the conse-
quence.

We can construct a truth table for p ⇒ q. To do so, we ask ourselves how such a
statement could be false. We would conclude that the only way for this to happen
would be if p is true but q is false. This leads to the following truth table.

p q p⇒q
T T T
T F F
F T T
F F T

A close look at the truth table above yields a rather strange consequence, namely that
something false will imply anything. For example if p is the statement “all animals

Calculus 1 (B. Forrest)2



Section 1.1: Basic Notions of Mathematical Logic and Truth Tables 3

are dogs” and q is the statement that “the sky is blue”, then the fact that p is false
means that we can conclude that p⇒ q or that

All animals are dogs implies that the sky is blue.

The words “if ... then” are referred to as a logical connective as they join two state-
ments together to form a compound statement. Two other common connectives are
and and or. (Curiously, not is also a connective though it is only applied to a single
statement.) Given two statements p and q , we can form two new statements p and
q, and p or q, which we denote respectively by p ∧ q and p ∨ q.

It should be quite clear that for p and q to be true, it must be the case that both
statements are true. This means that the truth table looks like:

p q p∧q
T T T
T F F
F T F
F F F

The situation for the word or is a little more ambiguous. In fact, in common speech
or has two possible interpretations. We could say that p or q is satisfied if at least
one of p and q is true. We could also say that p or q is satisfied if one of p and
q is true, but not both. The first case is referred to as the inclusive or. This is the
interpretation of the connective or that we use in mathematical logic. As we indicated
above, it is denoted by p ∨ q and its truth table is:

p q p∨q
T T T
T F T
F T T
F F F

The second case is called the exclusive or. It is logically equivalent to

(p ∨ q) ∧ ¬(p ∧ q).

We can use truth tables to see how this works

p q p∨q p∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
T T T T F F
T F T F T T
F T T F T T
F F F F T F

We have suggested that the exclusive or is logically equivalent to the compound state-
ment (p∨q)∧¬(p∧q). Generally, we will say that statements p and q are equivalent
if the truth of one implies the truth of the other. In other words, we say that p holds
if and only if q holds. In terms of our connectives, we can interpret equivalence as
the statement (p⇒ q) ∧ (q⇒ p). The truth table is

Calculus 1 (B. Forrest)2



Chapter 1: A Short Introduction to Mathematical Logic and Proof 4

p q p⇒ q q⇒ p (p⇒ q) ∧ (q⇒ p)
T T T T T
T F F T F
F T T F F
F F T T T

The truth table confirms that equivalence happens when p and q have the same truth
values. We will denote equivalence by p⇔ q.

Contrapositive:

In this example, we will use truth tables to show that the statements p⇒ q and ¬q⇒
¬p are logically equivalent. The statement ¬q ⇒ ¬p is called the contrapositive of
the statement p⇒ q. We will see later that the equivalence of an implication with its
contrapositive leads to a method of proof called proof by contradiction.

We can consider the following truth table:

p q ¬p ¬q p⇒ q ¬q⇒ ¬p (p⇒ q)⇔ (¬q⇒ ¬p)
T T F F T T T
T F F T F F T
F T T F T T T
F F T T T T T

A quick look at the table shows that p ⇒ q and and ¬q ⇒ ¬p have the same truth
values. This is what we wanted for the statements to be equivalent. Alternatively,
we see that (p ⇒ q) ⇔ (¬q ⇒ ¬p) is always true regardless what truth values
p and q are assigned. A compound statement is called a tautology if it is always true
regardless of the truth values assigned to the basic statements.

For example, given a function f (x) defined on the real numbers, if p is the statement
that “ f (x) is differentiable” and q is the statement that “ f (x) is continuous”, then p⇒
q is the statement that differentiability implies continuity. The contrapositive, ¬q ⇒
¬p represents the statement that if f (x) is not continuous, it cannot be differentiable”.
We will see later in this course that the first statement is true, and hence the second
statement must also be true.

1.2 Variables and Quantifiers

We saw before that there are mathematical sentences which could be either true or
false depending upon additional parameters. For example the statement “x > 0” may
be true or it may be false as the value of x is allowed to vary. For this reason, we call
x a variable. The “truth value” of “x > 0” will be determined once we assign a value
to x. This reminds us of a function and as such we will use the functional notation

p(x) : x > 0

to represent the sentence x > 0. The potential values for the variable x will either be
specified or they will be determined by the context of the sentence. For example, in

Calculus 1 (B. Forrest)2



Section 1.2: Variables and Quantifiers 5

this course, the sentence x > 0 makes sense whenever x is assigned a value that is a
real number. In this case, p(4) is true but p(−3) is false.

In this course, we will often want to show either that a sentence p(x) is true for all
possible values of x, that it is true for some values of x, or that it is false for every
value of x. In the first case, we would say that for every x, p(x) is true. The phrase
for every is called the universal quantifier. It is denoted by the symbol ∀ and we can
write the above sentence symbolically as follows:

∀x : p(x).

Here it is important to note that the scope of the variable x must be known for this
to make sense. That is we must know the collection of all possible values of x that
we are considering. For example, we may want x to be any real number, or any
polynomial, or any dog. If the scope is known, then this sentence itself becomes a
statement as it is either true or false.

To show that
∀x : p(x)

is true we must have some way of confirming the statement p(x) for all possible
values of x. For example, the statement:

“For all natural numbers n ≥ 2, n factors as a product of primes.”

requires us to show that for each such n, n can indeed be factored as a product of
primes.

To show that the statement

∀x : p(x)

is false we need only find one example of a value for x for which p(x) is false. This
example is often called a counterexample to the statement p(x).

For example, the statement

“For all natural numbers n, n factors as a product of primes.”

can be shown to be false, because n = 1 is a natural number that cannot be factored
as a product of primes.

Other English phrases that express the universal quantifier are “for each...” and “for
all...”.

We say that
there exists an x such that p(x) is true,

if we can find at least one value of x0 such that when substituted into the sentence,
p(x0) becomes true. The phrase there exists is called the existential quantifier. Sym-
bolically, it is denoted by ∃. We also use the symbol 3 to represent the phrase such
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Chapter 1: A Short Introduction to Mathematical Logic and Proof 6

that. Therefore, we can express the sentence “there exists an x such that p(x) is true
symbolically by

∃x 3 p(x).

In this case, to prove that the statement

∃x 3 p(x)

is true we need only find one example of a value for x that makes p(x) true. For
example, to prove the statement

“There exists a natural number n, such that n is divisible by both 2 and by 3.”

we can do so by presenting 6 as an example of a natural number that is divisible by
both 2 and 3.

To show that the statement
∃x 3 p(x)

is false, requires us to have some way to show that for every x, the statement p(x) is
false.

We will often require the use of more than one quantifier in a sentence. In this case,
the order of the quantifiers is very important. For example the sentences “for every x
there exists a z such that x ≤ z” and the sentence
“there exists an x such that for every z, x ≤ z” are very different. The first statement
is clearly true for the set of all real numbers since once we have determined a value
of x we may simply choose z to be x as well. The second statement is false for the
real numbers since its truth would imply that the real numbers have a least element
which is clearly not true.

It is important to know how to negate sentences with quantifiers. When, for exam-
ple, would it not be true that “for every x the sentence p(x) is true”. This happens
precisely when “there exists at least one such x0 such that not p(x0) is true”. Sym-
bolically this means that

¬(∀x : p(x))⇔ ∃x 3 ¬p(x).

The value x0 that negates ∀x : p(x) is called a counterexample for the statement
∀x : p(x). We emphasize that to prove that the statement “∀x : p(x)” is true, we
need some procedure or argument to exhaust all choices of x, whereas to show that
“∀x : p(x)” is false, we need only find one counterexample.

Similarly, the statement “there exists an x such that p(x) is true” is itself false pre-
cisely when for every x, the statement p(x) is false. That is,

¬(∃x 3 p(x))⇔ ∀x : ¬p(x).
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Section 1.3: Rules of Inference and the Foundations of Proof 7

1.3 Rules of Inference and the Foundations of Proof

In some ways, constructing proofs is like a complex game. Just as in games, in
constructing proofs there are certain basic rules that can be applied. These rules are
called the Rules of Inference.

Modus Ponens:

Our first rule of inference is called Modus Ponens. Simply stated, this rule tells us
that if we assume that p is true and we know that p implies q , then we can conclude
that q is also true. Symbolically, this is expressed as

p ∧ (p⇒ q)⇒ q

We can validate Modus Ponens by looking at the truth table below

p q p⇒q
T T T
T F F
F T T
F F T

We see that the only situation in which both p and p ⇒ q are true occurs when q is
also true.

For example, we know that Fido is a dog and that if Fido is a dog, then Fido is an
animal. From this we can conclude that Fido is an animal.

Modus Tollens:

A variant on Modus Ponens is the rule Modus Tollens. This rule tells us that if we
know that p ⇒ q is true and we also know that q is false, then we could conclude
that p must also be false. This is represented symbolically by

[(p⇒ q) ∧ ¬q]⇒ ¬p

Again, this can be verified from the truth table for p ⇒ q. An example of Modus
Tollens would be: If Fido is a dog, then Fido is an animal. However, Fido is not an
animal and hence we conclude that Fido is not a dog.

Hypothetical Syllogism:

The next rule of inference that we will introduce is Hypothetical Syllogism. This is
like an associativity law for implication. It says that if p implies q and if q implies
s , then we can conclude that p implies s . Symbolically, this is

(p⇒ q) ∧ (q⇒ s)⇒ (p⇒ s)

We can see in the truth table below that when ever both p ⇒ q and q ⇒ s are true
then so is p⇒ s.

Calculus 1 (B. Forrest)2
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p q s p⇒q q⇒s p⇒s
T T T T T T
T T F T F F
T F T F T T
T F F F T F
F T T T T T
F T F T F T
F F T T T T
F F F T T T

An example of Hypothetical Syllogism is: If Fido is a dog, then Fido is an animal
and if Fido is an animal, Fido must eat, therefore, if Fido is a dog, Fido must eat.

Disjunctive Syllogism:

The next rule is Disjunctive Syllogism. Simply stated this rule says that if we know
that p or q are true, and we can show that p is false, then we can conclude that q is
true. This becomes

[(p ∨ q) ∧ ¬p]⇒ q.

An example of Disjunctive Syllogism is: We are told that Fido is either a cat or a
dog. We know Fido is not a cat. Therefore, Fido is a dog.

Additional Rules are:

Constructive Dilemma:

This rule states that if p ⇒ q and r ⇒ s, and if we know that either p or r is true,
then we can conclude that either q or s must be true. That is

[[(p⇒ q) ∧ (r⇒ s)] ∧ (p ∨ r)]⇒ (q ∨ s).

Destructive Dilemma:

This rule states that if p ⇒ q and r ⇒ s, and if we know that either q or s is false,
then we can conclude that either p or r must also be false. That is

[[(p⇒ q) ∧ (r⇒ s)] ∧ (¬q ∨ ¬s)]⇒ (¬p ∨ ¬r).

The last three rules are very straight forward:

Simplification:

This rule says that if we know that both p and q are true, we can conclude that p is
true. That is

(p ∧ q)⇒ p
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Addition:

This rule states that if p is true, then either p or q must be true for any q.

p⇒ (p ∨ q)

Conjunction:

This states that if we can establish the truth of p and the truth of q separately, then
we have established the truth of the statement “p and q ”.

We have seen that if we know that all dogs are animals, and we know that Fido is a
dog, then Modus Ponens allows us to conclude that Fido is an animal. In this case,
we are able to apply our general knowledge about dogs to conclude something about
a specific dog Fido. This is an example of what is known as deductive reasoning.
Most of the proofs in mathematics employ deductive reasoning. Generally, we will
start with a hypothesis or something we know to be true, and then apply rules such
as those above to reach our desired conclusion.

Inductive Reasoning:

There is another type of reasoning called inductive reasoning. In inductive reason-
ing, we begin with some specific observations and then try to draw a more general
conclusion. For example, if we knew that the first few terms of an infinite sequence
were {2, 4, 6, 8, 10, . . .}, then we might guess from the pattern of these five terms that
this was the sequence of all even natural numbers. From this we could speculate that
the next term in the sequence would be 12. Unlike most instances of deductive rea-
soning that we will see in this course, inductive reasoning most often does not result
in a proof. Indeed, it is possible that if we were to be told a few more terms in the
sequence above we might find that we have {2, 4, 6, 8, 10, 0, 2, 4, 6, 8, 10, · · · } where
the general formula for the n-th term is an = 2n mod 12. We see that our induc-
tive conclusion was wrong. This does not make inductive reasoning useless. In fact,
inductive reasoning is the foundation for much of science, particularly experimental
science. Even in mathematics, inductive reasoning often leads us to an understanding
of what is actually going on. It helps us to formulate conjectures, mathematical state-
ments that we believe to be true, and for which we might later find proofs. It is also
a key element in problem solving. Moreover, in the next chapter we will see how to
employ an important formal technique of proofs that is based on inductive reasoning
called Proof by Induction.

In closing out this chapter, we will briefly remark on a somewhat indirect technique
of proof called proof by contradiction. In this technique we will use the fact that if we
know a statement q to be true and that if we can show that ¬p⇒ ¬q, then we could
conclude that p must also be true. Formally, this follows from our rules of inference
and from our understanding of the contrapositive. To see why this is the case, we
observe that knowing that ¬p ⇒ ¬q to be true also tells us that the contrapositive
statement q ⇒ p is true. However, since we have as a hypothesis that q is true,
Modus Ponens tells us that p must also be true.

EXAMPLE 1 Prove that there are infinitely many prime numbers.

Calculus 1 (B. Forrest)2
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PROOF

We will not provide all of the details of the proof of this statement at this time. In
particular, to prove this statement, we will need to know that every natural number
greater than or equal to 2 has a prime factor, something that we will leave as an
exercise following the next chapter. We then begin by assuming that there are not
infinitely many prime numbers or equivalently that the list

p1, p2, · · · pn

of prime numbers is finite. Next we let

p = p1 p2, · · · pn + 1

Since p is larger than 1, it must have a prime factor. However, it is easy to see that
none of the listed primes p1, p2, · · · , pn could be a factor of p. This contradicts the
assumption that the list p1, p2, · · · , pn includes all primes and shows that our original
assumption that there are not infinitely many prime numbers must be false. Hence
we conclude that there are infinitely many prime numbers.

Finally, we note that the material of this chapter has been included to encourage the
reader to think about what it means to formulate a proof of a mathematical statement.
We will use the ideas introduced here in this course but we will in general not make
full use of the formal symbolism.
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Chapter 2

Sets, Relations and Functions

In this chapter, we will introduce some basic material that will be used throughout
the rest of the course.

2.0 Notation

We will use the following notation:

• N will denote the set of natural numbers {1, 2, 3, . . .}.

• Z will denote the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.

• Q will denote the set of rational numbers
{

a
b : a ∈ Z, b ∈ N

}
.

• R will denote the set of real numbers.

Intervals. We will use the notation (a, b) to denote the set {x : a < x < b}. This
is called an open interval. We will use [a, b] to denote the set {x : a ≤ x ≤ b}. This
is called a closed interval. Additionally, we will use the notation (−∞, b), (a,∞),
(−∞, b], [a,∞) to mean the open intervals {x : x < b}, {x : x > a}, and the closed
intervals {x : x ≤ b}, {x : x ≥ a}, respectively. Finally, we will use [a, b) and (a, b]
to denote the half-open intervals {x : a ≤ x < b} and {x : a < x ≤ b}, respectively.

Formally, we make the following definition.

DEFINITION Intervals

A set S ⊂ R is an interval if for every x, y ∈ S , if x ≤ z ≤ y then we must have z ∈ S .

It is easy to see that the singleton set {a} is an interval for any a ∈ R. It is somewhat
less obvious that the empty set, denoted by ∅, is also an interval. To see why this is
so we first ask what would it mean if the empty set was “not an interval”. In this
case, we would have to be able to find a pair x, y ∈ ∅ and an element z ∈ R such that

11
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x ≤ z ≤ y but z < ∅. This is clearly impossible because no such x, y exist in ∅. As
such, we have shown that the statement, “∅ is not an interval” is false, and as such we
have proved that ∅ is an interval.

DEFINITION Degenerate Intervals

An interval I is said to be degenerate if I = {c} for some c ∈ R or if I = ∅. Otherwise,
we say that it is non-degenerate.

2.1 Sets, Products and Relations

In this section we will introduce some of the basic notation from set theory that we
will use throughout the rest of the course notes.

Subsets and Complements:

We will use the notation
A ⊂ B and A ⊆ B

interchangeably to mean that A is a subset of B with the possibility that A = B. That
is, every element of A is also contained in B.

When we explicitly wish to emphasize that A = B is a possibility, we will generally
use A ⊆ B. When we wish to express that A is a proper subset of B, then we can
either specify further that A , B, or we can use the notation

A ( B.

REMARK

The empty set, which we will denote by ∅, is a set with no elements.

The empty set may seem at first glance to be quite unremarkable. However, this is
definitely not the case. For example, it has the unique property that it is a subset
of every set. In fact, as we shall see later the empty set is really quite a mysterious
object.

DEFINITION Power Set

Given a set X we define the power set of X to be the set

P(X) = {A| A ⊆ X}.

That is P(X) consists of all subsets of X including ∅ and X itself.
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Section 2.1: Sets, Products and Relations 13

Assume that A and B are subsets of some universal set X. We will let

B \ A = {x ∈ B | x < A}.

The set B \ A is called the set difference of B minus A.

In the special case when B = X, we call the set X \ A the complement of A in X and
denote this set by

Ac.

Unions and Intersections:

Two of the most fundamental operations on sets are union and intersection. We define
these as follows:

DEFINITION Union

Let A, B ⊆ X. The union of A and B is the set

A ∪ B = {x | x ∈ A or x ∈ B}.

More generally, if for each α ∈ I we have Aα ⊆ X, then

⋃
α∈I

Aα = {x | x ∈ Aα for some α ∈ I}.

DEFINITION Intersection

Let A, B ⊆ X. The intersection of A and B is the set

A ∩ B = {x | x ∈ A and x ∈ B}.

More generally, if for each α ∈ I we have Aα ⊆ X, then

⋂
α∈I

Aα = {x | x ∈ Aα for all α ∈ I}.

The operations of union, intersection and complementation are linked by the follow-
ing important theorem:

THEOREM 1 De Morgan’s Laws

1) (
⋃
α∈I

Aα)c =
⋂
α∈I

Ac
α

2) (
⋂
α∈I

Aα)c =
⋃
α∈I

Ac
α
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The proof of the first of De Morgan’s Laws will be left as an exercise. The second
law follows immediately from the first by replacing Aα with Ac

α and observing that
for any subset A of X, we have that

(Ac)c = A.

2.2 Products of Sets

In this section we will introduce products of sets. We will see that defining the
product of an arbitrary collection of sets is a rather complex process. However, we
will begin with the simplest case involving two sets. To do so we note that if X,Y are
two sets, then we call (x, y) where x ∈ X and y ∈ Y an ordered pair in X and Y .

DEFINITION Product of Two Sets

Given two sets X,Y , define the product of X and Y by

X × Y = {(x, y) | x ∈ X and y ∈ Y}.

x is called the x-coordinate of (x, y).

y is called the y-coordinate of (x, y).

We can visualize the product of two functions by plotting the points on a pair of axes:

Y

X

(x,y)y

x

Given finitely many sets X1, X2, . . . , Xn we can easily generalize the notion of a prod-
uct of these n sets by replacing ordered pairs with ordered n-tuples (x1, x2, . . . , xn)
where each xi ∈ Xi. This leads us to the following definition.
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Section 2.2: Products of Sets 15

DEFINITION Product of n Sets

Given n sets {X1, X2, X3, · · · , Xn}, define the product of {X1, X2, X3, · · · , Xn} by

X1 × X2 × · · · × Xn =

n∏
i=1

Xi = {(x1, x2, x3, · · · , xn) | xi ∈ Xi}.

(x1, x2, · · · , xn) ∈
n∏

i=1
Xi is called an n-tuple and xi is called the i−th coordinate.

If Xi = X for all i, we write Xn for
n∏

i=1
Xi.

REMARK

Given a finite set X, we say that X has cardinality n, if X contains n elements. In this
case, we write

|X| = n.

Assume that we have a set X with three elements and a set Y with two elements. Then
it is easy to see that the product X × Y has

3 × 2 = 6

elements.

Y

X

After a little thought, it would seem reasonable to speculate that if {X1, X2, . . . , Xn}

was a finite collection of finite sets, then the cardinality of the product of these n sets
would be the product of their individual cardinalities. In fact, this is the case as the
next theorem shows.
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THEOREM 2 Cardinality of Products

Let {X1, X2, · · · , Xn} be a finite collection of finite sets. Then

|

n∏
i=1

Xi |=

n∏
i=1

| Xi |= |X1| · |X2| · · · |Xn|.

In particular, if Xi = X for all i, then

|

n∏
i=1

Xi |=| X |n .

So far we have seen how to define the product of a collection of n sets as the set of all
ordered n-tuples (x1, x2, . . . , xn) with xi ∈ Xi for each i = 1, 2 . . . , n. What happens if
our collection of sets is not finite? Specifically, we ask the following question:

Fundamental Question: Suppose for example that we had some infinite set I and for
each α ∈ I we have a set Xα. How do we define the product of sets in this collection
{Xα}α∈I?

To see how we could do this we will first take another look at our products of a finite
collection of sets.

REMARK

To answer the previous question we will take a closer look at how we obtain our
product for finite collections.

We begin by noting that each (x1, x2, · · · , xn) ∈
n∏

i=1
Xi determines a function

f(x1,x2,··· ,xn) : {1, 2, · · · , n} →
n⋃

i=1

Xi

by
f(x1,x2,··· ,xn)(i) = xi.

For here we make three key observations.

Key Observation 1: Each such function satisfies:

f(x1,x2,··· ,xn)(i) ∈ Xi.

Key Observation 2: Given f : {1, 2, · · · , n} →
n⋃

i=1
Xi with f (i) ∈ Xi, we can define

(x1, x2, · · · , xn) ∈
n∏

i=1

Xi,
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by setting
xi = f (i).

Key Observation 3: The identification

(x1, x2, · · · , xn) ⇐⇒ f(x1,x2,··· ,xn)

establishes a one-to-one correspondence between the product
n∏

i=1
Xi and the set

{ f : {1, 2, · · · , n} →
n⋃

i=1

Xi | f (i) ∈ Xi}.

In this case, we write

n∏
i=1

Xi � { f : {1, 2, · · · , n} →
n⋃

i=1

Xi | f (i) ∈ Xi}.

Since f allows us to choose one element from each of our sets, we call f a choice
function.

We have just seen that the product of finitely many sets can be identified with a
collection of special functions called choice functions. Since it is possible to define
a choice function for an arbitrary collection of sets this is the concept that will allow
us to extend our definition of a product to even infinitely many sets.

DEFINITION Product of Sets: The General Case

Given a collection {Xα}α∈I of sets, define∏
α∈I

Xα = { f : I →
⋃
α∈I

Xα | f (α) ∈ Xα}.

If Xα = X for all α ∈ I,
∏
α∈I

Xα is written as

XI .

A function f ∈
∏
α∈I

Xα is called a choice function on {Xα}α∈I .
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REMARK

We have seen that if we have a finite collection of finite non-empty sets, then the car-
dinality of the product of these sets is the product of the cardinality of the individual
sets. In particular, the product is certainly non-empty. In fact, this is easily seen to
be true, that the product is non-empty, even if the individual sets are not finite. Given
{X1, X2, . . . , Xn} we simply chose one element x1 from X1, the x2 from X2 and so on
until finally, we choose xn from Xn leaving us with the n-tuple (x1, x2, . . . , xn).

While it might be reasonable to assume that all products of non-empty sets must at
least contain one point, if the collection of sets {Xα}α∈I is itself infinite, then things get
more complicated. Can we actually choose one element simultaneously from each
Xα if our collection is infinite? In other words does a choice function even exist for
such an arbitrary collection?

It turns out that the answer to the above question is extremely profound. In 1938,
the logician Kurt Gödel showed that using the standard axioms of set theory that
you cannot prove the negation of the claim that all such products are non-empty.
Then in 1963, Paul Cohen showed that using the standard axioms of set theory you
cannot prove that the claim is true either. These two remarkable results tell us that we
literally have a choice to accept the claim or not. This leads us to add the following
axiom to our rules of set theory:

AXIOM 3 Axiom of Choice

If {Xα}α∈I is a non-empty collection of non-empty sets, then is∏
α∈I

Xα , ∅.

REMARK

There is an equivalent formulation of the axiom of choice that is perhaps more useful.
This version of the Axiom of Choice provides us with a rule that will allow us to
simultaneously choose one element from each non-empty subset of X. We will see
later that if X = N, then there is an easy way to describe an explicit rule to allow us
to do just that. Given a non-empty set A ⊆ N, we let f (A) be the least element in A,
which we will soon show always exists. However, if X = R, then this rule will not
work since A = (0, 1) has no least element. In fact, it is the case that no such explicit
function can ever be constructed for R.
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AXIOM 4 Axiom of Choice: Version 2

Given any non-empty set X, there exists a function f : P(X) \ {∅} → X such that

f (A) ∈ A

for every A ∈ P(X) \ {∅}

Why should we choose to accept choice? It turns out that we will use the axiom,
or some weaker form of it many times throughout this course . Most often we will
not even be aware of doing so. Moreover, in the majority of cases where we use the
axiom, without it it would not be at all clear how we could proceed. So while the
Axiom of Choice may be a rather abstract concept, it is nonetheless an important tool
which will help us to establish many of the most fundamental results from Calculus.
As an exercise, see if you can spot the next time the axiom is used.

2.3 Relations and Functions

We have already had several instances where we encountered functions. But what is
a function? We can give an informal heuristic or working definition of a function that
should be quite familiar to you.

DEFINITION Function: Heuristic Definition

A function is a rule that assigns to each element x in a set X a unique value y in a set
Y .

• Denote the function by a lowercase letter such as f and we write y = f (x).

• We also use the notation f : X → Y to denote the function.

While this definition certainly works for most purposes, it does lack mathematical
precision. In this section we will explore ways to make the definition of a function
more precise. To do so we first need to look at the concept of a relation

2.3.1 Relations

Like functions, there is a heuristic meaning to the term relation. Informally, in math-
ematics, a relation is a collection of related numbers or objects.

The relations that you are probably most familiar with often arise as solutions of an
equation, although as we will see you can also specify a relation by using ordered
pairs, a graphical representation, or descriptive sentences.
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EXAMPLE 1 Specifying a Relation

1. Equation

• y = x + 1
In this case, the assumption is that both x and y are in R (the real numbers)
and that they are related if they satisfy the given equation. In this case,
we could represent the relationship between x and y by specifying the
solution set S to the equation.

• S = {(x, y) | y = x + 1; x, y ∈ R}
We could modify the relation by restricting the set of points x and y that
we would accept as solutions. For example, if we wish to have that both
x and y are integers we get

• K = {(x, y) | y = x + 1; x, y ∈ Z}
The relation statement for K is similar to the statement for relation S in
that in both cases we are asking that y = x + 1. However, the pairs that we
identify as being related are different so they are different relations even
though they come from the same mathematical expression.

2. Lists of Ordered Pairs

You can describe a relation by listing all of its ordered pairs. For example,
ordered pairs that belong to relation S above include

(−2,−1), (−1, 0), (0, 1), (1, 2), (2, 3)

Of course, this is not the complete list of ordered pairs that defines relation S .
In fact, it is not possible to list all of the ordered pairs that define S and this is
a drawback of using lists of ordered pairs to define a relation.

However, ordered pairs are quite helpful if you are trying to determine a rela-
tion from experimental data, or on any finite set.

3. Graphical Representation

A relation can be represented by graphing data on a set of axes.

distance

time0

distance

time0

a b

c

d

e f

g

Discrete graph of ordered pairs Continuous graph of distance traveled

The first graph contains a set of ordered pairs that represents where a traveller
stopped at a finite list of times. When ordered pairs are plotted on a set of axes,
the plot is called a discrete graph.

In the second graph we plot the distance travelled at each moment between the
discrete set of points. This gives us a continuous graph since it contains no
breaks.
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What is common in all of these representations of relations is that they involve pairs
of elements that are designated to be related to one another. This suggests that ordered
pairs play a key role here. In fact, this observation leads us to a natural formal
definition for a relation.

DEFINITION Relation

A relation on X and Y is a set R ⊆ X × Y .

We say x is R-related to y if (x, y) ∈ R and write xRy.

The domain of the relation R is the set

{x ∈ X | there exists a y ∈ Y such that (x, y) ∈ R}

and is denoted by dom(R).

Y is called the codomain of the relation R and is denoted by codom(R).

The range of the relation R is the set

{y ∈ Y | there exists an x ∈ X such that (x, y) ∈ R}

and is denoted by ran(R).

NOTE

Generally we will have X = Y = R and we say that R is a relation on R.

To further illustrate these definitions, consider the following examples.

EXAMPLE 2 (a) Determine the domain and range of the finite relation J, where

J = {(3, 2), (3, 4), (−2, 2), (1, 4)}

Answer:

Domain of J: {3,−2, 1}

Range of J: {2, 4}

(b) Determine the domain and range of the range of relation K, where

K = {(x, y) | y2 = x + 1, x ∈ R, y ∈ R}
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Chapter 2: Sets, Relations and Functions 22

Answer:

It is always true that for each real number y, y2 ≥ 0. Since y2 = x + 1 and y2 ≥ 0, it
follows that x + 1 ≥ 0. This simplifies to x ≥ −1. Thus, the domain of K = {x | x ≥
−1}.

Now for each real number x ≥ −1, we
have y2 = x + 1 is equivalent to

y =
√

x + 1 and y = −
√

x + 1 0 x

y

-1

1

-1

This means that y can take on any positive real number, negative real number, or 0.
Hence, the range of K = {all real numbers}, or more simply the range of K = {y | y ∈
R}.

(c) The relation is specified by the graph shown. State the relation using set
notation and then determine its domain and range.

Answer:
Since the graph is a straight line with
slope 1 and y-intercept 1, the relation is

{(x, y) | y = x + 1}

Both the domain and the range are R.

Now that you are familiar with the idea of a “relation”, we next consider functions.

2.3.2 Functions

Formally, a function is a special type of relation. The key defining characteristic for
a function that each input is not permitted to return more than one output.

For example, each student in a class is assigned an ID number. This assignment
represents a function is defined on the set of students in the class to integer values. In
this case the nature of the rule that assigns students to integers may not be understood,
but the class list gives us all the information we require to determine the value of the
function for any member of the class, and each ID number is unique.

Consider the following relations:

N = {(1, 0), (2, 5), (2, 6), (3, 4)}
P = {(−2, 5), (0, 6), (2, 7), (4, 8)}
Q = {(−3, 2), (−1, 3), (1, 3), (4, 3)}
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Section 2.3: Relations and Functions 23

The following arrow diagram provides a picture of these relations:

N

1 0

2 5

6

3 4

P

- 2 5
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2 7
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Q

- 3 2

- 1

31

4

Domain Domain DomainRange Range Range

Notice that in relation N, the number 2 in the domain is assigned (or “mapped”) to
two different values in the range, that being 5 and 6. In this case, N is a relation, but
it is not a function.

In relation P, each value in the domain of P is mapped to only one value in the range
of P. We can then say that P is both a relation and a function.

In relation Q, again each value in the domain of Q is assigned to only one value in
the range of Q. Note that some of the values in the domain of Q have the same range
values (that of (−1, 3), (1, 3), and (4, 3)), but this is permissible as long as no domain
value has more than one range value. Thus, Q is both a relation and a function.

These examples lead us to the following definition:

DEFINITION Function: Version 1

A function f on X with values in Y, denoted by f : X → Y , is a relation f ⊆ X×Ysuch
that:

• For every x ∈ X there exists exactly one y ∈ Y for which (x, y) is in f .

In this case, we denote the value y by f (x) and write y = f (x).

Given f : X → Y ,

• X is called the domain of f and is denoted by dom( f ).

• Y is called the co-domain of f and is denoted by codom( f ).

• {y = f (x) | x ∈ X} is called the range of f and is denoted by ran( f ).

• The graph of f is the set

graph( f ) = {(x, y) = (x, f (x)) | x ∈ X} ⊆ X × Y .
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In the above definition we ask that the domain of our relation be the entire set X. In
this course we will typically be looking at functions whose domain and co-domain
are both R. However, if we view the function given by the formula

f (x) =
√

x

the natural domain for this function is {x ∈ R| x ≥ 0} rather than all of R. As such it
will be convenient if we extend the definition of a function as follows:

DEFINITION Function: Version 2

Let R ⊆ X × Y be a relation. Then R determines a function f if and only if

• whenever (x, y1) ∈ R and (x, y2) ∈ R, we have y1 = y2.

In this case, we let

dom( f ) = {x ∈ X | (x, y) ∈ R for some y ∈ Y}

to get f : dom( f )→ Y and write
y = f (x)

if x ∈ dom( f ) and (x, y) ∈ R.

Graphically, there exists an easy test to determine if a relation is a function.

The Vertical Line Test for Functions

The vertical line test indicates whether or not a graph is a function. If any vertical
line can be drawn that intersects a graph more than once, then the graph can not be
a function. Why does this work? If the vertical line intersects the graph more than
once, it means that two or more y values in the range are mapped to some x value in
the domain.

Examples of functions:

x

y

x

y

x

y

Note: In the third graph, the left-hand points of each line segment are unfilled circles.
These unfilled circles represent points that are NOT part of the graph. In a similar
manner, the right-hand points of each line segment are filled. These filled circles
represent points that ARE part of the graph.

Examples of relations that are NOT functions:
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More often than not we will be given our function by specifying only the mathemat-
ical formula that determines its values. For example

g(x) =
√

x

We are not given the domain explicitly. In this case our convention will be to choose
as the domain the largest subset of R for which the formula makes sense. In the case
of our “square root” function, the formula is valid for all x ≥ 0. We will therefore
assume that dom(g) = [0,∞). In other words, the domain is 0 along with all positive
real numbers.

Frequently we will encounter
functions that are defined by dif-
ferent formulae over various re-
gions of R. For example, we can
define the function

g(x) =

{
2x + 1 if x ≤ 4
x2 − 2x if x > 4

Examples of evaluating these types of functions are thus g(2) = 2(2) + 1 = 5 and
g(7) = 72 − 2(7) = 35.

Moreover, we have already seen another example of this type. Recall the definition
of absolute value where if f (x) =| x |, then

f (x) =| x |=
{

x if x ≥ 0
−x if x < 0 .

0

2

4

–4 –2 2 4

NOTE

It is important to mention that when studying functions, we must always be conscious
of the domain on which it is defined. To illustrate this point, consider two functions:

f (x) = x + 1 and g(x) =
x2 − 1
x − 1
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Note that we can factor the numerator x2 − 1 to get that

x2 − 1
x − 1

=
(x + 1)(x − 1)

x − 1

It is tempting to simply cancel the common factor of (x − 1) to conclude that x2−1
x−1 =

x + 1 and then to conclude that f and g are really the same function in disguise.
However, we note that the domain of f (x) is all of R whereas if we were to try and
evaluate g(x) at x = 1 we would be left with the indeterminate value 0

0 . Consequently,
dom(g) = {x ∈ R | x , 1} is a proper subset of dom( f ) — their domains are not
equal. Therefore, despite the fact that these functions are very similar in that they
assign the same values to each real number other than 1, the fact that they have
different domains means that they are different functions.

1 1

y = x + 1 y = x - 1
x - 1

2

hole at

x = 1

2.4 Composition of Functions

Many of the functions that will be used in this course can be built by combining two
or more simple functions to create a more complex function. One way to do this is
to use the operation of composition. To illustrate this process let’s first consider the
function

h(x) =
√

x2 + 1.

To calculate the value of this function at a given value of x we would generally first
calculate x2 + 1 and then calculate the square root of this number.

Let us denote the function x2 + 1 by g(x) and write f (w) =
√

w. (Remember, the
name of the variable is really not important.) Now to calculate h(x) we first evaluate
g(x) and then we substitute this result for w in f (w). Symbolically, this means that

h(x) = f (g(x)).

For example, to calculate h(2), let

w = g(2) = 22 + 1 = 5.

Then
h(2) = f (5) =

√
5.
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This is a simple example that leads us to a very important method of constructing
new functions from old functions. In fact, anytime we have two functions f and g
such that

ran(g) ⊂ dom( f )

we can define a new function

h(x)
de f
= f (g(x)).

This new function is called the composition of f by g and is denoted by

f ◦ g(x).

X Y Z

x
y

f

z

h=f o g

g

DEFINITION Composition of Functions

Let f and g be two functions such that ran(g) ⊂ dom( f ). The composition of f by g
is the function h(x) = f ◦ g(x) defined by

h(x) = f (g(x)).

There are a few important observations that must be made concerning the composi-
tion of two functions. Firstly, and most importantly, it is imperative that the condition
ran(g) ⊂ dom( f ) be valid, otherwise the composition need not be defined. For exam-
ple, if we were to compose the function f (x) =

√
x with the function g(x) = −1− x2,

we would be left with the function

h(x) = f ◦ g(x) = f (g(x)) =
√
−1 − x2.

However, it is easy to see that the range of g(x) = (−∞,−1]. It follows that no matter
what value of x we choose, g(x) returns a negative number. This is a problem because
f is not defined for negative values and hence, f (g(x)) is impossible to calculate. As
such, this particular composition does not make sense.

The example above also leads us to the second important fact that we should know
about compositions. Order matters! Indeed, we have seen that for the functions f
and g above, f ◦ g(x) is not defined for any x. However, for any x ≥ 0, that is for any
x ∈ dom( f ), we get that f (x) ∈ dom(g). Therefore, the composite function

k(x) = g ◦ f (x) = g( f (x))
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makes sense for any x ≥ 0. In fact,

k(x) = g ◦ f (x) = g( f (x)) = −1 − (
√

x)2

= −1 − x

since for any x ≥ 0, (
√

x)2 = x.

We must still be somewhat cautious in dealing with this composition. Looking at
the function k(x) = −1 − x, we might be tempted to claim that the domain of this
function is all ofR. However, we must always be aware that the first step in evaluating
k(x) = g ◦ f (x) is to first calculate f (x) =

√
x. This can only be done if x ≥ 0. It

follows that dom(k) = {x ∈ R | x ≥ 0}.

2.5 Transformations of Functions

We now turn our attention to a number of basic operations that can be performed to
obtain new functions from a given function. These operations include translation,
scaling, and reflections. We will also look at various types of symmetry that a graph
of a function might exhibit.

2.5.1 Translations

In this section, we will see how to use translation to create new functions from a
given function. Translations appear in many applications of mathematics and result
from such phenomena as time delay and phase change.

Let’s assume that we have a function
f : R→R that has the following graph.

We can create a number of new functions from f (x).

For example, we can define

g(x) = f (x) + 2

To evaluate g(x) at a point x, we first eval-
uate f (x) and then add 2. This has the ef-
fect of shifting every point on the graph of
f (x) up 2 units to obtain the graph of g.
The diagram illustrates this shift.

The new function g is a type of translation of f called a vertical shift.
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If instead of adding 2 to f (x), we sub-
tracted 2, we would get the new function

h(x) = f (x) + (−2) = f (x) − 2

The graph of h is shown with the graph
of the original function f and is contrasted
with that of g.

We are led to the following rule for vertical shift translations.

Vertical Shift Rule:

Suppose that a is any real number and that

g(x) = f (x) + a.

Then,

1) If a > 0, then the graph of g is simply the graph of f shifted upwards by a units.

2) If a < 0, then the graph of g is simply the graph of f shifted downwards by
| a |= −a units.

There is another type of translation that we will need to understand. Consider the
function h(x) = f (x +2) where f is the function from above. While this looks similar
to the expression for g(x) = f (x) + 2, it is indeed a different function. In evaluating
g(x) at a point x, we first evaluate f (x) and then add 2 to this number.

In the case of h(x), we first add 2 to the
value x and then apply the function f . This
means that the value of h(0) is the same as
the value of f (0 + 2) = f (2) and the value
of h(−2) is the same as the value of f (−2+

2) = f (0). If we were to plot f (x) and h(x)
simultaneously, we see that they both have
the same shape. Indeed, the graph of h(x)
is just the graph of f (x) shifted 2 units to
the left.

Consequently, we call this translation of f (x) to h(x) a horizontal shift.

If we were to define k(x) = f (x + (−2)) =

f (x − 2), then the values of k(x) at 4 and
2 would agree with the values of f at 2
and 0, respectively. In this case, the graph
of k(x) is the same shape as the graph of
f (x), but shifted to the right by 2 units.

We are now able to state the rule for horizontal shift translations.
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Horizontal Shift Rule:

Suppose that a is any real number and that

h(x) = f (x + a).

Then,

1) If a > 0, then the graph of h(x) is simply the graph of f (x) shifted to the left by a
units.

2) If a < 0, then the graph of h(x) is simply the graph of f (x) shifted to the right by
| a |= −a units.

NOTE

Although the Vertical Shift Rule is intuitive in that + represents a shift up and −
represents down, take notice that in the Horizontal Shift Rule, while we might expect
+ to represent a shift to the right and − to the left, in fact exactly the opposite occurs!

EXAMPLE 3

Consider the function cos(x) and translate the graph π
2 units to the right.

Solution: The graph of cos(x) and that of
the new function h(x) are shown.

You might notice that the graph of the new function h(x) looks suspiciously like the
graph of sin(x). In fact, the rule for horizontal shift translations tells us that

h(x) = cos(x −
π

2
).

However, the rules for cosines of sums gives us that

h(x) = cos(x −
π

2
)

= cos(x) cos(
−π

2
) − sin(x) sin(

−π

2
)

= cos(x) · 0 − sin(x) · (−1)
= sin(x)
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just as we suspected.

This also shows that if we were to start with sin(x) and translate the graph +π
2 units

to the left, we should get back cos(x). Using the rule for horizontal shifts, we have
the identity

cos(x) = sin(x +
π

2
)

which you can verify by using the rule for the sin(α + β) that we studied in the
trigonometry section.

EXAMPLE 4
A pool that is 1m deep everywhere has two identical wave machines located at either
end. Consider a particle located at the point on the surface exactly in the middle of
the pool. We want to plot the height of the particle as a function h(t) of time as the
waves generated by the two machines pass by. (Here h(t) represents the height of the
particle above a fixed reference point measured in centimeters.)

If both machines are turned off, the function h(t) is constant. For our purposes we
can assume that the height in this case is set to 0m.
Suppose, on the other hand, that we began
measuring the height at exactly 12:00pm
and that one of the wave machines had
been running for some time. With this in
mind we will set 12:00pm to be time zero
and let the variable t represent the num-
ber of minutes that have passed. Let H(t)
represent the height of the particle if only
the first wave machine was turned on. We
would find that the graph of H(t) would
have the same basic shape as a transla-
tion of the graph of sin(t). (The movement
of the particle up-and-down caused by the
wave machine is called simple harmonic
motion.)
Suppose that one minute after the first machine was started, the operator started the
second machine. Since the point is in the middle of the pool, the effect of the waves
generated by the second machine would be identical to the first, but we would have a
one minute delay in this case.

This means that the effect from the second
wave at time t would be the same as the ef-
fect of the first machine at time t−1. Thus,
we get a new function, K(t) = H(t − 1).
K(t) represents the height that the particle
would reach t minutes after noon if only
the second machine had been turned on.
Its graph, which is a horizontal shift of the
graph of H, is as follows.
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Now these two graphs represent the effect that the wave machines would each have
on the particle separately. It turns out that if both machines were running, with the
second starting 1 minute after the first, we could find the net effect on the particle by
adding the two functions. In the picture below, H(t) represents the effect that the first
machine has on the particle, K(t) represents the effect that the second machine has on
the particle, and h(t) represents the net effect that both machines have on the particle.

Note that the maximum height (called its amplitude) of the new wave h(t) is slightly
larger than that of either the two original waves.

It turns out that the size of the delay in starting the second machine is very important.
The graph below represents the scenario with only a 30 second delay. Notice that the
original waves are now a closer match to one another and the resulting net wave has
much greater highs and lows (larger amplitude).

In contrast, if the delay was 1.5 minutes, we would have the following situation. No-
tice that in this case, the original waves are nearly mirror images of one another. This
has the effect of causing the two waves to nearly cancel one another out. Conse-
quently, the net wave has a rather small amplitude.
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2.5.2 Scaling

We now consider the transformation called scaling. There are two types of scaling–
in x and in y. Both can result in either compression or stretching in the graph of the
function. Algebraically, this process involves multiplication by a constant c.

Scaling in x:

Given a positive constant c and a function f (x), the new function g(x) defined by

g(x) = f (cx)

is called an x-scaling of f (x).

x-scaling causes a horizontal stretching away from the y axis of the graph of f if
0 < c < 1 and a horizontal compression toward the y axis of f if c > 1.
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Scaling in y:

Given a positive constant c and a function f , the new function g defined by

g(x) = c f (x)

is called a y-scaling of f .

y-scaling causes a vertical stretching away from the x axis of the graph of f if c > 1
and a vertical compression toward the x axis of f (x) if 0 < c < 1.

EXAMPLE 5

This example illustrates the transformation of scaling in the function f (x) = sin(x).

On the first set of axes, f (x) = sin(x)
is plotted. Notice that sin(x) is 2π pe-
riodic and its amplitude is 1.

The second set of axes displays f (x) =

2 sin(x). Notice that 2 sin(x) is also 2π
periodic. However, its amplitude is 2
(i.e., twice that of sin(x)), as this is the
result of vertical stretching since the
sin function was multiplied by a con-
stant c > 1.
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The third set of axes displays f (x) =

sin(2x). Here, the original sin func-
tion is compressed horizontally (by
half), since the variable x in the origi-
nal function was multiplied by a con-
stant c > 1 (actually c = 2 here). The
period of sin(2x) is only π units (i.e.,
1
2 (2π)), but its amplitude is still 1.

2.5.3 Reflections

Consider a function f with the follow-
ing graph.

We can define two new functions

g(x) = − f (x)

and
h(x) = f (−x).

Observe that for any x, the values f (x)
and g(x) have exactly the same magnitude
but have opposite sign. This means that
the points on the graph of the two func-
tions with the same x−coordinate are mir-
ror reflections of one another through the
x − axis. To illustrate this point, we have
included the graph of f (x) and g(x) on the
same axes.

You can see that since we started with a function f that was always positive its graph
is in the upper half plane. As such its reflection is entirely in the lower half plane just
as we would expect since f (x) > 0 implies g(x) < 0.
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Even if f (x) is not positive, the graph
of g(x) = − f (x) will still be the re-
flection of the graph of f (x) through
the x-axis. Indeed, the picture illus-
trates that this reflection principle still
applies even if f (x) is modified so that
f (x) is no longer always positive.

In the case of the function, h(x) = f (−x), we find that the value of the function h
at 1 is the same as the value of the function f at −1. Thus the points (1, h(1)) and
(−1, f (−1)) have the same y − component and are equidistant from the y − axis. In
fact this is true of any pair, (x, h(x)), (−x, f (−x)). This means that the graphs of f
and h are again mirror reflections of one another, though in this case the reflection is
through the y − axis.

Notice that the graphs cross at x = 0. This is because

f (0) = f (−0) = h(0).

We can modify the operations in this section in an interesting way by introducing
absolute values into our investigation. What would the function

k(x) =| f (x) |

look like if f (x) is as given below?

We need to appeal to the definition of the absolute value to get a feel for what k(x)
will look like. Recall that for a real number a, we have

| a |=
{

a if a ≥ 0
−a if a < 0 .
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It follows that

k(x) =| f (x) |=
{

f (x) if f (x) ≥ 0
− f (x) if f (x) < 0

This means that f (x) and
k(x) =| f (x) | return exactly the same
value whenever x is such that f (x) ≥ 0
and k(x) agrees with − f (x) whenever
f (x) < 0. Following our reasoning
from earlier in this section, we see that
in order to obtain the graph of k(x)
from that of f (x), we do nothing when
f (x) ≥ 0 and for those x’s for which
f (x) < 0, we reflect through the x-
axis.
We see that the only difference between the graphs of f (x) and k(x) happens when
f (x) < 0. Moreover, for these x’s, the new graph is indeed the reflection of the old
one through the x-axis.

2.5.4 Symmetries: Even and Odd Functions

Consider the function f (x) = x2. This function has the property that for any x,

f (−x) = (−x)2 = x2 = f (x).

Moreover, the graph of f (x) is symmetric about the
y-axis. In fact, any function that satisfies f (x) =

f (−x) will always have a graph that is symmetric
about the y-axis. Recall that the graph of f (−x)
is the reflection through the y-axis. Therefore, if
f (x) = f (−x), the graph of f (x) is its own reflec-
tion and as such must be symmetric. 42-2-4
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DEFINITION Even Function

A function f (x) : R→ R is called even if

f (x) = f (−x)

for all x.

EXAMPLES

1) The function f (x) = x2 is even. Indeed, the term “even” essentially comes from
the fact that the polynomial

p(x) = xn

is an even function if and only if n is an even integer. Consequently, x4, x6, . . .
are all even functions.
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2) The function f (x) =| x | is even.

3) Constant functions of the form g(x) = c are even functions.

4) The identity cos(x) = cos(−x) means that cosine is also an even function.

5) Assume that f (x) and g(x) are even functions. Let α, β ∈ R. Then the functions

h(x) = α f (x) + βg(x)

and
k(x) = f (x)g(x)

are also even. To see this note that

h(−x) = α f (−x) + βg(−x)
= α f (x) + βg(x)
= h(x)

since f (x) = f (−x) and g(x) = g(−x). The case for the product is similar.

6) The function sin(x) is not even since sin(π2 ) = 1 while sin(−π2 ) = −1.

REMARK

We saw above that sin(x) is not an even function. In fact, we know from trigonometry
that

sin(−x) = − sin(x)

However, if we look at the graph of sin(x), it certainly does have symmetry, though
not with respect to the y − axis as was the case for even functions. In fact, a close
examination shows that the graph of sin(x) is actually symmetric about the origin in
that (−x, sin(−x)) and (x, sin(x)) are mirror images of each other through the origin.
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This symmetry is typical of any function f (x) for which

f (x) = − f (−x).

To see why this is true, first take any point (x, y) and reflect it through the y-axis to get
(−x, y). Then reflect (−x, y) through the x-axis to get (−x,−y). This point becomes
the mirror image of (x, y) through the origin.

Now the function − f (−x) is obtained from f (x) by first constructing f (−x) by reflect-
ing the graph of f (x) through the y − axis and then obtaining −( f (−x)) by reflecting
the resulting graph through the x − axis.
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This means that for any function f (x), the graph of − f (−x) is the mirror image of
the original graph through the origin. It follows that f (x) = − f (−x) if and only if
the graph of f (x) is the same as its reflection through the origin. In other words, it is
symmetric about the origin.

The functions f (x) = x and g(x) = x3 are easily seen to have the property above as
does any other polynomial of the form p(x) = xn where n is an odd integer. For this
reason we are led to the following definition.

DEFINITION Odd Function

A function f (x) : R→ R is called an odd function if

f (x) = − f (−x)

for all x.

It is important to note that most functions are neither even nor odd. For example, if
we let f (x) = x2 + 3x, then f (1) = 4 while f (−1) = −2. It follows that f (x) is neither
even or odd.

Questions:

(a) We have seen that the sum of two even functions is even (Example 5 above). Is
the sum of two odd functions odd?

(b) What can be said about the product of two odd functions?

2.6 Inverse Functions

There are times when we want to be able to reverse a process. Similarly, there are
times when we want to be able to undo the effects of a function. To accomplish
this task requires the existence of an inverse function. In this section, we will define
what we mean by the inverse of a function and determine the conditions under which
inverses exist.

2.6.1 One-to-one and Onto Functions

In this section we will assume that we have a function f : X → Y . The definition of a
function requires that we assign to each x ∈ X a unique y ∈ Y , denoted by f (x). The
definition did not require that we assign different x’s to different y’s, nor did every y
have to be the image of some x. This leads us to two special classes of functions.
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DEFINITION One-to-one and Onto Functions

A function f : X → Y is said to be 1 − 1 (reads “one to one”) if f assigns different
x’s to different y’s. That is, whenever x1, x2 ∈ X with x1 , x2, then f (x1) , f (x2).

A function f : X → Y is onto if ran( f ) = Y . That is, if for every y0 ∈ Y , there exists
some x0 ∈ X such that f (x0) = y0.

Visually, for a function f (x) from R to R, f is 1−1 if every horizontal line crosses the
graph of f (x) at most once. The function f (x) is onto if every horizontal line crosses
the graph at least once.

EXAMPLE 6

Let f : R → R be defined by f (x) = x2. Then note that ran( f ) = {y ∈ R | y ≥ 0} is a
proper subset of R. Thus, f (x) is not onto. Moreover, f (1) = 1 = f (−1), so f (x) is
not 1 − 1.

EXAMPLE 7

Let f : R → R be defined by f (x) = x3. We can show that the function f (x) = x3 is
1 − 1 by using some basic algebra. Suppose that we have a fixed point w ∈ R. We
want to find all points x such that f (x) = x3 = w3 = f (w). This means that

0 = x3 − w3 = (x − w)(x2 + xw + w2)

One way to find such values for x is to solve

0 = (x2 + xw + w2).

Since we have a fixed w, we can apply the quadratic formula to the polynomial p(x) =

x2 + xw + w2 to look for
0 = x2 + xw + w2 = p(x).

However, the discriminant in this case is

w2 − 4w2
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which is −3w2. However, −3w2 < 0 if w , 0 and we only get solutions if the
discriminant is nonnegative. This means that we can only find an x so that

x2 + xw + w2 = 0

if w = 0. But then the equation becomes

x2 = 0

and hence we also have that x = 0 = w. Otherwise, to get

x3 − w3 = 0

we must have
x − w = 0

or x = w. Consequently, if x , w, then x3 − w3 , 0. This means that if x , w, then
f (x) , f (w) and hence that f is 1-1.

To see that f is onto, note that if y ∈ R, then

y = (y
1
3 )3 = f (y

1
3 )

since f (x) = x3.

You may feel that the argument which showed that f (x) = x3 is 1 − 1 was rather
complicated. It would be nice if there was a better way to do this. In fact, there is!

EXAMPLE 8

If we look at the graph of f (x) = x3, we
see that if x1 < x2, then

f (x1) < f (x2).

Such a function is said to be increasing.
We will soon show that increasing func-
tions are always 1 − 1.

It is often the case that a function is not 1 − 1 on all of its domain, but it is if we
restrict our attention to a particular subset of the domain. For example, if we have
two different positive real numbers x1 and x2, then x2

1 , x2
2. This means that the

function f (x) = x2 is 1 − 1 on the set {x ∈ R | x ≥ 0}.
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DEFINITION One-to-one Function on an Interval

Let I be an interval contained in the domain of a function f (x). We say that f (x) is
1 − 1 on I if whenever x1, x2 ∈ I with x1 , x2, then f (x1) , f (x2).

The previous example gives us a clue as to how to determine possible intervals on
which f (x) could be 1 − 1.

We will now look at perhaps the most important classes of 1 − 1 functions on R

DEFINITION Increasing and Decreasing Functions

Suppose that f is defined on an interval I.

i) We say that f is increasing on I if f (x1) < f (x2) for all x1, x2 ∈ I with x1 < x2.

ii) We say that f is decreasing on I if f (x1) > f (x2) for all x1, x2 ∈ I with x1 < x2.

iii) We say that f is non-decreasing on I if f (x1) ≤ f (x2) for all x1, x2 ∈ I with
x1 < x2.

iv) We say that f is non-increasing on I if f (x1) ≥ f (x2) for all x1, x2 ∈ I with
x1 < x2.

If f satisfies any of these four conditions we say that f is monotonic on I. If f is
either increasing or decreasing on I, we say that f is strictly monotonic on I.

The next proposition tells us that functions that are either increasing or decreasing on
a particular interval are 1 − 1 on the interval.

PROPOSITION 5

Let I be an interval contained in the domain of a function f .

a) If f is increasing on I, then it is 1 − 1 on I.

b) If f is decreasing on I, then it is 1 − 1 on I.

PROOF

a) Assume that f (x) is increasing on I. Let x1, x2 ∈ I with x1 , x2. Then we must
show that f (x1) , f (x2). To do this we can always assume that x2 > x1. Since
f (x) is increasing on I, we have that f (x2) > f (x1). Hence f (x1) , f (x2).
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b) This is essentially the same argument as in part a). Assume that f (x) is decreasing
on I. Let x1, x2 ∈ I with x1 , x2. We can again assume that x2 > x1. Since f (x)
is decreasing on I, we have that f (x2) < f (x1). Hence f (x1) , f (x2).

2.6.2 Inverse Functions

Suppose that f : X → Y is one-to-one and onto. Then for every y ∈ Y there exists
a unique x ∈ X such that f (x) = y. This simple observation allows us to define the
inverse function g : Y → X for f as follows:

DEFINITION Inverse Function

If f : X → Y is 1 − 1 and onto, we can define a function g : Y → X by

g(y) = x if and only if f (x) = y.

g(y) is called the inverse function of f (x) and is often denoted by f −1(y).

REMARK

The inverse effectively undoes the action of f . To make this more precise we observe
that if we start with an x ∈ X and apply f to get y = f (x), then if we apply our inverse
function g to this value y we get

g(y) = g( f (x)) = x

That is
g ◦ f (x) = x

for every x ∈ X. A similar calculation also shows that for any y ∈ Y we have

f (g(y)) = y

so that our original function f is also the inverse of g. That is

( f −1)−1 = f
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X Y

x y

y

f

1 1

2
x2

g=f-1

The next example illustrates why less restrictive requirements for the existence of an
inverse may be desirable.

EXAMPLE 9

Assume that you have a message that you want to send via satellite to a location on
the other side of the world. Your message is text made up of words from the English
alphabet.

Unfortunately, your transmitter is capable of sending only two different types of data,
either a 0 or a 1. One way to send this message is to label all of the letters by a
number from 1 − 26 and then to convert each number to a string of five 0’s and 1’s
by converting the decimal numbers from 1-26 to their binary representation (i.e.,
encode).

For example, the first letter in the alphabet is “a”. It is assigned the decimal number
1 which has a five-digit binary representation 00001. Our last letter, “z”, corresponds
to 26 which has a five-digit binary representation 11010.

The person who receives the message must be able to convert the string of 0’s and
1’s back into the original text (i.e., decode). For example, if the message is sent as
10011, the person who receives this must recognize that we are looking for the 19th
letter of the alphabet, namely “s”.

Let X be the set of all 26 letters of the alphabet. The set Y will consist of all five digit
strings of 0’s and 1’s. We can think of the encoding process as a function f (x) from
X with values in Y . The process of decoding the message requires us to take a value
in y ∈ Y and find the x ∈ X such that f (x) = Y .

You might notice an immediate problem with this. The string 11111 corresponds to
the number 31 and we only have 26 letters. Hence, there is no such x for this y. We
are saved from this by the fact that we will never receive the signal 11111, unless
there is a transmission error so we really don’t need to worry about this. In fact, we
are not interested in the elements of Y , but rather in the elements of the range of f .

Let Y1 = ran( f ).
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If we receive a signal y, to undo the process, we need to determine which x it came
from. It turns out that we are able to do this because for each y ∈ ran( f ), there
is exactly one letter of the alphabet such that y = f (x). Indeed, the x is uniquely
determined since each letter is encoded in a different way. This means that if f (x1) =

y = f (x2), then x1 = x2. This is just another way of saying that f is 1 − 1.

Consequently, we get a new function g : ran( f ) → X that can be defined by the
statement that

x = g(y) if and only if y = f (x)

Again, we can do this because each element in ran( f ) is the image of one and only
one x ∈ X. That is, f : X → ran( f ) is 1 − 1 and onto.

As we have seen, the function g(y) can be viewed as a way of undoing f . It also has
the following interesting property. Suppose we start with an x1 ∈ X. Let y1 = f (x1) ∈
ran( f ). If we ask which x is sent to y1, the answer is obviously x1. This means that

x1 = g( f (x1)) = g ◦ f (x1).

Indeed for any x ∈ X,
x = g( f (x)) = g ◦ f (x).

Therefore, g ◦ f (x) is the identity function of X.

Similarly, if we choose any y ∈ ran( f ), then the definition of g gives us that if
x = g(y), then f (x) = y. This means that

y = f (g(y)) = f ◦ g(y).

That is f ◦ g is the identity function on ran( f ).

The process that we have identified above is quite general. In fact, it works whenever
f (x) is 1 − 1. In this course, as is typical in Calculus, we will always take the view
that a 1-1 function is onto its range and that this will be sufficient for us to define
our inverse. This will allow us, for example, to view g(y) = ln(y) as the inverse of
f (x) = ex even though when viewed as a function f : R → R f (x) = ex is not onto
and as such in the strictest sense is not invertible.

DEFINITION Inverse of a Function: Version 2

Assume that f : X → ran( f ) is 1 − 1. We define a new function g : ran( f ) → X by
the statement that

x = g(y) if and only if y = f (x).

This function is called the inverse of f and it is often denoted by f −1. When the
inverse exists, we say that f is invertible on X.

Our focus will be on real-valued functions. As you would expect, these functions are
not generally invertible. For example, the function f (x) = x2 is not invertible. To see
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this we simply note that for y = 1 we get two x’s, 1 and −1, such that f (x) = 1. This
means that in defining the inverse function we don’t know what to do with y = 1!

You probably guessed that the problem is that f (x) = x2 is not 1 − 1. However, if we
restrict our attention to the interval I = {x ∈ R | x ≥ 0}, then f (x) = x2 is 1 − 1. This
means that we can undo the effects of f (x) on I. We note that the range of f (x) over
I is

f (I) = {y ∈ R | y ≥ 0}.

For each y ≥ 0, there is indeed a unique x ≥ 0 such that y = x2. Given y, we denote
this x by g(y). Then g(y) becomes a function from f (I) back to I. In fact,

g(y) =
√

y.

You can verify again that if x ≥ 0, then

g ◦ f (x) = g( f (x)) = g(x2) =
√

x2 = x

and if y ≥ 0, then

f ◦ g(y) = f (g(y)) = f (
√

y) = (
√

y)2 = y.

This shows that g(y) has very similar properties to what we saw in the inverse of a
function. This leads us to the following defintion.

DEFINITION Inverse of a Function over an Interval

Let f be 1 − 1 on an interval I ⊆ R. Then we say that f is invertible on I and define
the inverse of f with respect to I to be the function g(y) : f (I)→ I by x = g(y) if and
only if x ∈ I and y = g(x).

EXAMPLE 10

Let f (x) = 1
1+x2 . The function is not 1 − 1

on all of R, but it is 1−1 on the interval I =

{x ∈ R | x ≥ 0} since it is decreasing. We
can also see that f (x) takes on all values
J = {y | 0 < y ≤ 1} as x ranges over I.

It follows that f (x) is invertible on I and that its inverse is a function

g(y) : J → I.

To find g, we can do as follows: First we write

y =
1

1 + x2 .
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Then we try to solve for x in terms of y. We have

y =
1

1 + x2

(1 + x2)y = 1
yx2 + y = 1

yx2 = 1 − y

x2 =
1 − y

y
.

We can see that if 0 < y ≤ 1, then 1 − y ≥ 0 and hence 1−y
y ≥ 0. This means that we

can take square roots of both sides. Since x ≥ 0, we have

x =
√

x2 =

√
1 − y

y
.

The inverse function is given by

g(y) =

√
1 − y

y

for 0 < y ≤ 1.

We can verify that g(y) is the inverse by noting that

g( f (x)) = g
( 1
1 + x2

)
=

√
1 − 1

1+x2

1
1+x2

=

√√
1+x2

1+x2 −
1

1+x2

1
1+x2

=

√√
x2

1+x2

1
1+x2

=
√

x2

= x

for x ≥ 0 and

f (g(y)) = f
(√1 − y

y
)

=
1

1 + (
√

1−y
y )2

=
1

1 +
1−y

y
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=
1

y
y +

1−y
y

=
1
1
y

= y

just as we wanted.

You might also have noticed that f (x) is also 1 − 1 on the interval I1 = (−∞, 0] and
that f (I1) is again the interval J = {y | 0 < y ≤ 1}. It follows that f (x) is also
invertible on I1. This time the inverse is a function h(y) : J → I1. To find h we can
again write

y =
1

1 + x2

and try to solve for x in terms of y. As before, we have

y =
1

1 + x2

(1 + x2)y = 1
yx2 + y = 1

yx2 = 1 − y

x2 =
1 − y

y
.

However, we now have x ≤ 0 so we get

−x =| x |=
√

x2 =

√
1 − y

y
.

This means that

x = −

√
1 − y

y

so the new inverse is

h(y) = −

√
1 − y

y
.
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2.6.3 Graphing Inverse Functions

It turns out that if a function is invert-
ible, you can find everything you need to
know about the graph of the inverse func-
tion from the graph of the original func-
tion. To see this, let’s begin with a func-
tion that we know is invertible—the func-
tion f (x) = x2

3 + 1
3 on the interval [0,∞).

The arrows above indicate the procedure
we would use to show how we would find
the value of f (x) from the graph of f .

Let g(y) be the inverse function for f (x). Since f ([0,∞)) = [1
3 ,∞), the domain of

g(y) is [ 1
3 ,∞) and its range is [0,∞). Moreover, we can still use the graph of f (x) to

calculate values of g(y). We do this by simply reversing the direction of the arrows.

We have just seen that the graph of x = g(y) and the graph of y = f (x) are really
the same object, but with the role of the x and y coordinates reversed. It follows that
we can obtain the graph of g from the graph of f by simply exchanging the x and y
coordinates.

We can do this geometrically by reflecting the graph of f (x) through the line y = x.
This gives us the graph of the inverse function with the independent variable on the
horizontal axis.
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Summary: If f (x) is invertible, then the graph of its inverse is the reflection of the
graph of f (x) through the line y = x.

2.6.4 Inverse Trigonometric Functions

At first look it might seem unreasonable to speak of the inverse for any of the standard
trigonometric functions since none of these functions are 1 − 1.

However, if we look at sin(x), for exam-
ple, we will see that it is increasing on the
interval [−π2 ,

π
2 ] and is therefore invertible

on this interval.

On the interval [−π2 ,
π
2 ], sin(x) takes on all values between −1 and 1. Consequently,

the inverse function is a function g(y) with domain [−1, 1] and range [−π2 ,
π
2 ]. We call

this function the arcsine function and denote it by

g(y) = arcsin(y).

From the definition of an inverse function, we get:

DEFINITION Arcsine Function

For each y ∈ [−1, 1],

x = arcsin(y) if and only if y = sin(x)

and x ∈ [−π2 ,
π
2 ].

To obtain the graph of arcsin(x), we reflect
the restricted graph of sin(x) through the
line y = x, just as we did in the previous
section.
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You can see from the graph that arcsin(1) = π
2 . This is consistent since sin(π2 ) = 1.

Similarly, arcsin(−1) = −π2 and arcsin(0) = 0. Again, both of these results are
consistent since sin(−π2 ) = −1 and sin(0) = 0.

Observe that the composition sin(arcsin(x)) makes sense for any x ∈ [−1, 1], which
is the domain of arcsin(x). Furthermore, if we start with any x ∈ [−1, 1] and let
y = arcsin(x), then by definition y = arcsin(x) if and only if sin(y) = x. Consequently,
sin(arcsin(x)) = sin(y) = x for all x ∈ [−1, 1].

It is also true that for all y ∈ R, sin(y) belongs to [−1, 1] which is the domain of
arcsin(x). Hence the composition

arcsin(sin(y))

also makes sense for any y ∈ R. The rules for inverse functions would tempt us to
guess that

y = arcsin(sin(y))

for all y ∈ R. Recall that arcsin(y) was constructed to be the inverse of sin(x) only
for those x’s in the interval [−π2 ,

π
2 ]. Thus y = arcsin(sin(y)) is valid if y ∈ [−π2 ,

π
2 ], but

not for other values of y.

For example, if y = 5π
2 = π

2 + 2π, then

sin(y) = sin(
5π
2

) = sin(
π

2
+ 2π) = sin(

π

2
) = 1.

Thus arcsin(sin( 5π
2 )) = arcsin(1) = π

2 ,
5π
2 !!!

There are two other important inverse trigonometric functions. They are derived from
cos(x) and tan(x).

Like sin(x), neither cos(x) nor tan(x) are 1-1 on all of their domains. Consequently,
we need to use the same trick as we did for sin(x) and find suitable intervals on which
these functions are 1 − 1.

First lets look at cos(x). We could try [−π2 ,
π
2 ], but cos(x) is not 1 − 1 on this interval

as the graph shows.
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However, the graph does suggest that if we use the interval [0, π], then cos(x) is 1− 1
and hence, invertible. We call the inverse of cos(x) on the interval [0, π] the arccosine
function and denote it by

y = arccos(x)

The domain of arccos(x) is again the interval [−1, 1] and the range is [0, π]. Formally
we have:

DEFINITION Arccosine Function

For each y ∈ [−1, 1],

x = arccos(y) if and only if y = cos(x)

and x ∈ [0, π].

To obtain the graph of arccos(x),
we reflect the restricted graph of
cos(x) through the line y = x, just
as we did for sin(x).

You may notice that it is not as easy to see that the graph of arccos(x) is the reflection
of the graph of cos(x). You should verify the accuracy of this graph by calculating
directly arccos(−1), arccos(0), and arccos(1). You should also verify that the domain
and range are correct.

From the graph of tan(x) you will notice
that while tan(x) is not 1−1 on its domain,
like sin(x), it is 1−1 on the interval (−π2 ,

π
2 ).

(Note: The endpoints are excluded since
cos(−π2 ) = 0 = cos(π2 ) and as such tan(x) is
not defined on these points.

As x varies through (−π2 ,
π
2 ), tan(x) takes on all real values. Therefore, the inverse

function of tan(x) on the interval (−π2 ,
π
2 ), which we will denote by arctan(y), is defined

for all y ∈ R.
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DEFINITION Arctangent Function

For each y ∈ R,
x = arctan(y) if and only if y = tan(x)

and x ∈ (−π2 ,
π
2 ).

To obtain the graph of arctan(x),
we reflect the restricted graph of
tan(x) through the line y = x, just
as we did before.

2.7 Pullback

We have just seen that if we have a function f : X → Y that is one-to-one and onto,
then we can define the inverse function g : Y → X with the property that

g(y) = x if and only if f (x) = y.

We have also seen that since f is always onto its range, we can effectively define the
inverse function g from ran( f ) onto X provided that f is one-to-one. Moreover, if f
is not one-to-one on all of X, but is one-to-one on a subset A of X, we can define the
relative inverse g of X on A by

g(y) = x if and only if f (x) = y and x ∈ A.

In each of these cases it is common to use the notation f −1 for the inverse.

It turns out that there is another very common use for the notation f −1 other than the
inverse of the function, or in the case of real-valued functions the reciprocal. In this
case, if f : X → Y , then f −1 is actually a function from P(Y) into P(X) which is
defined as follows:

DEFINITION Pullback

Given a function f : X → Y , we define the pullback of f to be the function f −1 :
P(Y)→ P(X) by

f −1(B) = A = {x ∈ X| f (x) ∈ B}

for each B ∈ P(Y).

In other words, the pullback of a subset B of Y tells us all the elements in X that are
mapped into B by f .
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REMARK

Pullbacks play significant roles in many parts of mathematics. While we will not
encounter pullbacks often in this course we can deduce some things immediately
from the f −1.

1) A function f : X → Y is one-to-one if and only if for any y ∈ Y the pullback
f −1({y}) of the singleton {y} is either a singleton {x} or it is empty.

2) A function f : X → Y is onto if and onlyif for any y ∈ Y the pullback f −1({y})
of the singleton {y} is non-empty.

3) A function f : X → Y is one-to-one and onto if and only if for any y ∈ Y the
pullback f −1({y}) of the singleton {y} is a singleton .

4) If f : X → Y is one-to-one and onto with inverse g : Y → X, then g(y) = x if
and only if f −1({y}) = {x}

2.8 Boolean Algebra and Sets: Enrichment

Boolean algebra allows us to translate rules of logic and set theory into simple arith-
metic. In this section we will briefly investigate how this can help us provide proofs
of some of the most basic results in set theory. To begin with we will need the fol-
lowing definition:

DEFINITION Characteristic Function

Given A ⊆ X define

χA(x) :=

1 if x ∈ A,
0 if x < A.

χA(x) is called the characteristic function of A.

NOTE

The characteristic function of a set completely determines the set A in the sense
that we can see if an element x is in our set A simply by looking at the value the
characteristic function returns when evaluated at x. In particular, we know that χA =

χB if and only if A = B. This tells us that the map Γ : P(X)→ { f : X → {0, 1}} given
by

Γ(A) = χA
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is always one-to-one.

Conversely, given a function f : X → {0, 1}, if we let

A = {x ∈ X| f (x) = 1},

then it turns out that
f = χA.

This means that Γ is actually a one-to-one correspondence between the power set
P(X) of X and the set of functions on X taking only values 0 or 1. In more sophisti-
cated language

P(X) =
∏
x∈X

{0, 1}.

One immediate consequence of this observation is that if X = {x1, x2, . . . , xn} is a
finite set with n elements, then

|P(X)| = 2n.

That is a set with n elements has exactly 2n subsets.

This identification between subsets of X and their characteristic functions can be
quite useful in terms of proving set theoretic identities. In this respect the following
rules are useful:

THEOREM 6 Boolean Arithmetic

Let A, B ⊆ X. Then

1) χA∩B = χA · χB

2) χA∪B = χA + χB − χA · χB

3) χAc = 1 − χA

PROOF

We will prove the first statement only. The second and third are left as exercises.

To prove i), there are 4 cases to consider:

Cases:
1) x ∈ A and x ∈ B,
2) x ∈ A and x < B,
3) x < A and x ∈ B,
4) x < A and x < B.

We can use the following table to check these four cases and to verify our claim.
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Case χA χB χA∩B χA · χB

1 1 1 1 1 · 1 = 1
2 1 0 0 1 · 0 = 0
3 0 1 0 0 · 1 = 0
4 0 0 0 0 · 0 = 0

Since χA∩B and χA ·χB return the same value in all four cases we have established the
validity of 1).

REMARK

You may have noticed a similarity between the table above and the truth tables we
considered in the previous chapter. This is no coincidence. If we assign a true state-
ment the value 1 and a false statement the value 0, and if we interpret ∩ as and; ∪
as or; and complementation as negation, we can translate the results in the previous
theorem to give us the truth tables for and, or, and negation.

NOTE

A key property of characteristic functions is that χA · χA = χA.

We can use Boolean algebra to verify more complex statements as well.

EXAMPLE 11 Prove that
(A ∪ B) ∩C = (A ∩C) ∪ (B ∩C).

PROOF

(A ∪ B) ∩C � (χA + χB − χA · χB) · χC

= (χA · χC) + (χB · χC) − χA · χB · χC

= (χA · χC) + (χB · χC) − χA · χB · χ
2
C

= (χA · χC) + (χB · χC) − (χA · χC) · (χB · χC)
� (A ∩C) ∪ (B ∩C)
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2.9 Principle of Mathematical Induction

2.10 Mathematical Induction

As we have already seen, mathematics is built on axioms. Axioms are mathematical
statements that we accept as being true without need for proof. The following axiom
introduces one of the fundamental properties of the set N of natural numbers. It will
lead to an important method of proof called “proof by induction”.

AXIOM 7 (Principle of Mathmatical Induction)

If a set S ⊆ N is such that the following two conditions hold,

1. 1 ∈ S .

2. For each k ∈ N, if k ∈ S , then k + 1 ∈ S .

then S = N.

We can give an informal argument that illustrates why the Principle of Mathematical
Induction is a reasonable axiom. Suppose S ⊆ N satisfies the two conditions given
in the axiom. Then we know that 1 ∈ S . Because 1 ∈ S , and because S satisfies the
second condition, 2 must also be in S . Because 1+1 = 2 ∈ S , and because S satisfies
the second condition, 2 + 1 = 3 must also be in S . Because 3 ∈ S , 4 must be in S .
Because 4 ∈ S , 5 must be in S , and so on. If we are given any natural number n, we
can use this argument to show that n ∈ S ; therefore, every natural number n can be
shown to be in S by simply repeating this process enough times and so S = N. It is
important to note however, that this is not a proof of the validity of the Principle of
Mathematical Induction. Indeed, since we have stated the principle as an axiom, no
proof is needed.

Mathematical Induction: As mentioned before, this axiom leads to a method of
proof called “proof by induction”. We begin by asserting a statement P(n) for each
natural number n. The goal is then to show to that P(n) is true for each n ∈ N . For
example, we could let P(n) be the statement that

n∑
j=1

j = 1 + 2 + · · · + n =
n(n + 1)

2
.

If we let S = {n ∈ N : P(n) is true}, then S ⊆ N. Moreover, to prove P(n) for each n,
it suffices to show that S = N. To do this we first show that 1 ∈ S (i.e., that P(1) is
true). We must then show that for any k ∈ N, k ∈ S implies that k + 1 ∈ S , that is that
the truth of P(k) forces P(k + 1) to also be true, for any natural number k. This would
show that S satisfies the two hypotheses of the Principle of Mathematical Induction
and as such, we can conclude that S = N and hence that P(n) is true for all n ∈ N.
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In practise, we divide inductive proofs into three distinct steps as outlined above.

Step 1: The first step is to clearly identify the statements P(n) that we are trying to
prove.

Step 2: The next step is usually (but not always) the easiest part of the argument:
Show that P(1) is true. This is called the initial case. This step is very important.
There are many instances where induction has led to false proofs because this initial
case was not properly established.

Step 3: In the third step, we are allowed to assume that we know the truth of P(k)
for some k. This assumption is referred to as the induction hypothesis. We must then
use the truth of P(k) as a tool to show that given the induction hypothesis, it must also
be the case that P(k + 1) is also true, that is that P(k) implies P(k + 1), for any k ∈ N.
In most inductive proofs we will see in this course, this step is the most involved.

Once we have successfully concluded each of the steps above, we may appeal to the
Principle of Mathematical Induction to conclude that P(n) is in fact true for each
n ∈ N.

We will illustrate “proof by induction” with the following example:

EXAMPLE 12 Prove by induction that

n∑
j=1

j = 1 + 2 + · · · + n =
n(n + 1)

2
.

Step 1:

Let P(n) be the statement that

n∑
j=1

j =
n(n + 1)

2
.

Step 2:

We must show that P(1) is true. However, P(1) is the statement that

1∑
j=1

j =
1(1 + 1)

2
,

which is obviously true because
∑1

j=1 j = 1 = 2
2 =

1(1+1)
2 .

Step 3:

Next, we will verify that the truth of P(k) implies the truth of P(k + 1), for any k ∈ N.
Assume that P(k) is true. This means that for some fixed k

k∑
j=1

j =
k(k + 1)

2
.
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With this assumption in hand, we need to show that P(k + 1) is true, or that

k+1∑
j=1

j =
(k + 1)((k + 1) + 1)

2
.

We know that
k+1∑
j=1

j =

 k∑
j=1

j

 + (k + 1).

Separating out the last term k + 1 alllows us to make use of the induction hypothesis.
In fact, by the assumed truth of P(k), the following is true:

k+1∑
j=1

j =

 k∑
j=1

j

 + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=

(
k
2

+
2
2

)
(k + 1)

=
(k + 2)(k + 1)

2

=
(k + 1)((k + 1) + 1)

2
.

We have succeeded in showing that
k+1∑
j=1

j =
(k+1)((k+1)+1)

2 , which is precisely the asser-

tion P(k + 1).

Finally, by the Principle of Mathematical Induction, we have that P(n) is true for all
n ∈ N.

Strong Induction and the Well Ordering Principle. There are a number of equiv-
alent formulations of the Principle of Mathematical Induction. Below we present the
first of these which we called the Principle of Strong Mathematical Induction. It is so
named because it seems to be formally stronger than the Principle of Mathematical
Induction in the sense that you can assume the presence of 1, 2, 3, . . . , k in S to show
that k + 1 is in S . We could prove the Principal of Strong Mathematical Induction as
a consequence of the Principle of Mathematical Induction. In fact, it is an interesting
exercise to show that the two statements are in fact logically equivalent in the sense
that they each imply the other.

After presenting the Principle of Strong Induction, we will show that the Principle of
Strong Induction can be used to establish another important property of the natural
numbers known as the Well Ordering Principle.
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THEOREM 8 Principle of Strong Induction

If a set S ⊆ N is such that the following two conditions hold, then S = N.

1. 1 ∈ S .

2. For each k ∈ N, if 1, 2, . . ., k ∈ S , then k + 1 ∈ S .

PROOF

To prove the Principle of Strong Induction we will use Induction. The key to doing
so is to choose our statement P(n) cleverly!

Let P(n) be the statement that {1, 2, 3, . . . , n} ⊆ S . We note that if P(n) is true, then it
also follows that n ∈ S . Hence if we can show that P(n) is true for all n ∈ N we have
indeed shown that S = N.

Now we know by our first assumption that 1 ∈ S . This means that {1} ⊆ S , and hence
that P(1) is true.

Next lets assume that P(K) is true. This means that {1, 2, . . . , k} ⊆ S . We can now
appeal to our second assumption about S to conclude that k + 1 ∈ S . But from this
we can deduce that {1, 2, . . . , k, k + 1} ⊆ S and therefore that P(k + 1) is true.

Since we have shown that P(1) is true and that if P(k) is true so is P(k + 1), we can
apply Induction to conclude that P(n) is true for each n ∈ N. Finally, this gives us
that S = N.

In a similar manner as for the Principle of Mathematical Induction, the Principle of
Strong Induction leads to a method of proof called proof by strong induction which
we illustrate with the following example:

EXAMPLE 13 Let f : N → R be a function defined recursively by f (1) = 3, f (2) = 3
2 , and f (n) =

f (n−1)+ f (n−2)
2 for all n ≥ 3. We will prove by strong induction that f (n) = 2 +

(
−1
2

)n−1
.

Let P(n) be the statement that

f (n) = 2 +

(
−1
2

)n−1

.

Then for n = 1, 2 +
(
−1
2

)n−1
= 2 +

(
−1
2

)0
= 3 = f (1). This shows that P(1) is true. For

n = 2, 2 +
(
−1
2

)n−1
= 2 +

(
−1
2

)1
= 3

2 = f (2). This shows that P(2) is true.
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Now assume that P(n) is true for all n satisfying 1 ≤ n ≤ k, for some k ∈ N. If k = 1,
the P(k + 1) = P(2) is true. If k > 1, then k + 1 ≥ 3, and hence we have that

f (k + 1) =
f ((k + 1) − 1) + f ((k + 1) − 2)

2
=

f (k) + f (k − 1)
2

=
2 +

(
−1
2

)k−1
+ 2 +

(
−1
2

)k−2

2
=

4 +
(
−1
2

)k−2 [
−1
2 + 1

]
2

=
4 +

(
−1
2

)k−2 [
1
2

]
2

= 2 +

[
1
2

] [
1
2

] (
−1
2

)k−2

= 2 +

[
−1
2

] [
−1
2

] (
−1
2

)k−2

= 2 +

(
−1
2

)k

= 2 +

(
−1
2

)(k+1)−1

.

This shows that the statement P(k + 1) is true. By the Principle of Strong Induction,
P(n) is true for all n ∈ N.

REMARK

As we mentioned previously, on the surface it appears that Strong Induction is a more
powerful technique when compared with Induction because in trying to prove that the
statement P(k + 1) is true you are able to not only assume that P(k) is true but also
that all of P(1), P(2), . . . , P(k − 1) are also true. This gives you more tools to use in
establishing P(k+1). However, as we will soon see this is not actually the case as any
result which can be proved by Strong Induction could also be obtained by Induction.
Toward this goal, we will now give another fundamental property of N which can be
deduced from the Principle of Strong Induction.

Well Ordering Principle. One way in which the natural numbers differ from the
real numbers is that N has a least element namely 1. In fact, since N is only “infi-
nite in one direction,” we would speculate that every nonempty subset of the natural
numbers has a least element. In fact, we can use Strong Induction to show that this is
true. This property is known as the Well-Ordering Principle and is stated below.

THEOREM 9 Well Ordering Principle

Every non-empty subset S of N has a least element.
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PROOF

Suppose there exists a subset S of N such that S has no least element. We must show
that S = ∅. To do so we let T = N \ S . We will use the Principle of Strong Induction
on T to show that T = N.

Let P(n) be the statement that
n ∈ T.

Since S has no least element it must be the case that 1 < S , and hence that 1 ∈ T .
This means that P(1) holds.

Next assume that P( j) holds for all j ∈ {1, 2, . . . , k}. That is that

{1, 2, . . . , k} ⊆ T.

In this case, if k + 1 ∈ S , then k + 1 would have to be the least element of S since all
smaller natural numbers are assumed to be in S . However, this is impossible since S
has no least element. We get that k + 1 ∈ T and hence that P(k + 1) holds.

We have just shown that P(1), P(2), . . . , P(k) all being true implies that P(k+1). Since
we have also shown that P(1) holds, the Principle of Strong Induction shows us that
P(n) holds for all n ∈ N and therefore that T = N. This then gives us that S = ∅. This
completes the proof since it means that a non-empty subset S of N must have a least
element.

NOTE

There is a strong link between the Well Ordering Principle and the Axiom of Choice.
To see why this is the case we note that we can define a function f : P(N) \ {∅} → N
by

f (A) = the least element in A.

Then f is a choice function for N.

It is known that there is no way to construct an explicit order on R, necessarily
different from the usual way we usually order real numbers, so that with this new
order every non-empty subset of R has a least element. In fact the existence of such
an abstract ordering of R with this property not only requires the Axiom of Choice
but it cannot be done without it.

REMARK

Recall that a natural number n is prime if n ≥ 2 and if n has no factors other than
1 and itself. One of the many standard applications of the Well Ordering Principle
is the Fundamental Theorem of Arithmetic which we state below. The proof will be
left as an exercise.
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THEOREM 10 The Fundamental Theorem of Arithmetic

Let n ∈ N with n ≥ 2. Then there exist primes p1 < p2 < · · · < pk and natural
numbers m1,m2, · · · ,mk such that

n = pm1
1 pm2

2 · · · p
mk
k .

Moreover, if there exist primes q1 < q2 < · · · < ql and natural numbers r1, r2, · · · , rk

such that
n = qr1

1 qr2
2 · · · q

rl
l ,

then k = l, pi = qi for each 1 ≤ i ≤ k and mi = ri for each 1 ≤ i ≤ k.

PROOF

This proof that there is a decomposition into primes is left as an exercise. We will
not address the uniqueness at this time.

Equivalence of three principles. It turns out that the three principles we have out-
lined in this section, the Principle of Mathematical Induction, the Principle of Strong
Induction and the Well Ordering Principle are logically equivalent—i.e., they imply
each other.

THEOREM 11 The following are equivalent:

i) Principle of Mathematical Induction;

ii) Principle of Strong Induction;

iii) Well-ordering Principle.

PROOF

We have already shown that i)⇒ ii) and that ii)⇒ iii).

To prove that iii)⇒ i) assume that N satisfies the Well Ordering Principle and that S
is a subset of N satisfying

1. 1 ∈ S .

2. For each k ∈ N, if k ∈ S , then k + 1 ∈ S .
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We let T = N \ S . To prove the theorem we must show that T = ∅. Assume to
the contrary that T is nonempty. Then by the Well Ordering Principle, T has a least
element which we denote by k0. Since we have assumed already that 1 ∈ S , we know
immediately that 1 , k0. It follows that k0 − 1 ∈ N. However, since k0 − 1 < k0 and
k0 is the least element of T it must be that k0 − 1 ∈ S . But if k0 − 1 ∈ S , then by
property 2 above we must also have that k0 = (k0 − 1) + 1 ∈ S . This is a contradiction
since we know that k0 ∈ T . Therefore, since the assumption that T , ∅ leads to a
contradiction it must be the case that T = ∅. Finally, if T = ∅ and T = N \ S , then it
must be the case that S = N.

The proof above uses the technique known as “proof by contradiction” that we men-
tioned briefly in the previous chapter. As previously indicated, we first assume that
the conclusion of the theorem is false and then proceed to derive a contradiction,
thereby showing that the conclusion cannot be false.
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2.10.1 The Tower of Hanoi: Enrichment

We end this section with a famous problem that can be easily solved using Induction.

Tower of Hanoi

EXERCISE 1 (Tower of Hanoi)

You are given three pegs.

On one of the pegs is a tower made up of n rings placed on top of one another so
that as you move down the tower each successive ring has a larger diameter than the
previous ring.

The object of this puzzle is to reconstruct the tower on one of the other pegs by
moving one ring at a time, from one peg to another, in such a manner that you never
have a ring above any smaller ring on any of the three pegs.

Prove that for any n ∈ N, if you begin with n rings, then the puzzle can be completed
in 2n − 1 moves. Moreover, prove that for each n, this is the minimum number of
moves necessary to complete the task.

Note: The key to this question is to formulate an appropriate description of the
statement P(n).
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Real Numbers

It is often the case that in order to solve complex mathematical problems we must
first replace the problem with a simpler version for which we have appropriate tools
to find a solution. In doing so our solution to the simplified problem may not work
for the original question, but it may be close enough to provide us with useful in-
formation. Alternatively, we may be able to design an algorithm that will generate
successive approximate solutions to the full problem in such a manner that if we ap-
ply the process enough times, the result will eventually be as close as we would like
to the actual solution.

For example, there is no algebraic method to solve the equation

ex = x + 2.

However, we can graphically show that there are two distinct solutions for this equa-
tion and that the two solutions are close to -2 and 1, respectively. One process we
could use to solve this equation is a type of binary search algorithm that is based on
the fact that the function f (x) = ex − (x + 2) is continuous. We could also use an al-
ternate process which relies on the very useful fact that if a function is differentiable
at a point x = a, then its tangent line is a very good approximation to the graph of a
function near x = a.

In fact, approximation will be a theme throughout this course. But for any process
that involves approximation, it is highly desirable to be able to control how far your
approximation is from the true object. That is, to control the error in the process.
To do so we need a means of measuring distance. In this course, we will do this by
using the geometric interpretation of absolute value.

3.1 Absolute Values

One of the main reasons that mathematics is so useful is that the real world can be
described using concepts such as geometry. Geometry means “earth measurement”
and so at its heart is the notion of distance. We may view the number line as a ruler
that extends infinitely in both directions. The point 0 is chosen as a reference point.
We can think of the distance between 0 and 1 as our fixed unit of measure. It then
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follows that the point π is located 3.141592 . . . to the right of the reference point 0.
The point −

√
2 is located 1. 41421 . . . units to the left of 0. Consequently, we can

think of the non-zero real numbers as being quantities that are made up of two parts.
First there is a sign, either positive or negative, depending on the point’s orientation
with respect to zero, and a magnitude that represents the distance that the point is
from 0. This magnitude is also a real number, but it is always either positive or 0.
This magnitude is called the absolute value of x and is denoted by | x |.

It is common to think of the absolute value as being a mechanism that simply drops
negative signs. In fact, this is what it does provided that we are careful with how
we represent a number. For example, we all know that | 5 |= 5 and that | −3 |= 3.
However, what if x was some unknown quantity, would | −x |= x? It is easy to see
that this is not true if the mystery number x actually turned out to be −3. Since the
absolute value plays an important role for us in this course, we will take time to give
it a careful definition that will remove any ambiguity.

DEFINITION Absolute Value

For each x ∈ R, define the absolute value of x by

| x |=
{

x if x ≥ 0
−x if x < 0

REMARK

If we use this definition, then it is easy to see that

| x |=| −x | .

So far we have only considered the distance between a fixed number and 0. However,
it makes perfect sense to consider the distance between any two arbitrary points. For
example, we would assume that the distance between the points 2 and 3 should be 1.

-4 -3 -2 -1 0 1 2 3 4

1

distance = 1 = | 2 - 3 | = | 3 - 2 |

The distance between −3 and 2 is slightly more complicated. To get from −3 to 2
we can first travel from −3 to 0, a distance of 3 units, and then travel from 0 to 2, an
additional 2 units. This makes for a total of 5 units. We observe that
| 3 − 2 |=| 2 − 3 |= 1 (from the first example) and that | −3 − 2 |=| 2 − (−3) |= 5.
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distance = 5 = | 2 - (-3) | = |(-3) - 2 |

3 2

5

-4 -3 -2 -1 0 1 2 3 4

REMARK

These examples illustrate an important use of the absolute value, namely that given
any two points a, b on the number line, the distance from a to b is given by | b − a |.
Note that the distance is also | a−b | since | b−a |=| −(b−a) |=| a−b |. Geometrically,
this last statement corresponds to the fact that the distance from a to b should be equal
to the distance from b to a.

distance = | b - a | = | a - b |

|b-a| = |a-b|

a b

3.1.1 Inequalities Involving Absolute Values

One of the fundamental concepts in Calculus is that of approximation. Consequently,
we are often faced with the question of “when is an approximation close enough to
the exact value of the quantity?” Mathematically, this becomes an inequality involv-
ing absolute values. These inequalities can look formidable. However, if you keep
distances and geometry in mind, it will help you significantly.

One of the most fundamental inequalities in all of mathematics is the
Triangle Inequality. In the two-dimensional world, this inequality reduces to the
familiar statement that the sum of the length of any two sides of a triangle exceeds
the length of the third. This means that if you have three points x, y and z, it is always
at least as long to travel in a straight line from x to z and then from z to y as it is to go
from x to y directly.

x

y
z |z − y|

|x − y|

|x − z|
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If we use this last statement as our guide, and recognize that the exact same principle
applies on the number line, we are led to the following very important theorem:

THEOREM 1 Triangle Inequality

Let x, y and z be any real numbers. Then

| x − y |≤| x − z | + | z − y |

This theorem essentially says: The distance from x to y is less than or equal to the
sum of the distance from x to z and the distance from z to y.

While we will try to avoid putting undue emphasis on formal proofs, it is often en-
lightening to convince ourselves of the truth of a mathematical assertion. To do this
for the triangle inequality, we first note that since | x − y |=| y − x |, we could al-
ways rename the points so that x ≤ y. With this assumption, we have three cases to
consider:

PROOF

Case 1 : z < x. In this case, it is clear from the picture below that the distance from
z to y exceeds the distance from x to y. That is, | x − y |<| z − y | and therefore
that | x − y |≤| x − z | + | z − y |.

|x − y|

|z − y|

z x y

Case 2 : x ≤ z ≤ y. In this case, we can see that the distance from x to y is the sum
of the distances from x to z and z to y. That is | x − y |=| x − z | + | z − y |.

|x − y|

|z − y|

zx y

|x − z|

Case 3 : y < z. In this case, it is clear from the picture below that the distance from
x to z exceeds the distance from x to y. That is, | x − y |<| x − z |. Therefore,
| x − y |≤| x − z | + | z − y |.
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|x − y|

zx y

|x − z|

Since we have exhausted all possible cases, we have verified the inequality.

There is one important variant of the Triangle Inequality that we will require. It can
be derived as follows:

Let x and y be any real numbers. Then using the Triangle Inequality and the fact that
| − y| = |y| we have

|x + y| = |(x − 0) − (0 − y)|
≤ |x − 0| + |0 − y|
= |x| + | − y|
= |x| + |y|

We will call the inequality we have just derived the Triangle Inequality II.

THEOREM 2 Triangle Inequality II

Let x, y ∈ R. Then
|x + y| ≤ |x| + |y|.

We will also need to be able to deal with inequalities of the form

| x − a |< δ

where a is some fixed real number and δ > 0. We can interpret this inequality
geometrically. It asks for all real numbers x whose distance away from a is less than
δ. This makes the inequality rather easy to solve. If we look at the number line we
see that if we proceed δ units to the right from a, we reach a + δ. For any x beyond
this point, the distance from x to a exceeds δ and consequently our inequality is not
valid. We can also move to the left δ units from a to get to a − δ. We can again see
that if x < a − δ, then the distance from x to a again exceeds δ. We also note that
since this is a strict inequality, a − δ and a + δ are excluded as solutions. Therefore,
the solution set to the inequality

| x − a |< δ

is the set
a − δ < x < a + δ

or
(a − δ, a + δ).
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)(
δ

a - δ a + δa

δ

If we were to change the inequality to

| x − a |≤ δ

then the endpoints a − δ and a + δ now satisfy the new inequality so that the new
solution set would be [a − δ, a + δ].

There is one more inequality that we will come across later. It is the inequality

0 < |x − a| < δ.

In this case, the distance from x to a must be less than δ so x ∈ (a − δ, a + δ) but it
must also be greater than 0. This last condition means that x , a. So our solution is
all points in (a − δ, a + δ) except x = a. We will denote this set by

(a − δ, a + δ) \ {a}.

We can summarize our last three inequalities in the chart below:

Inequality Solution
|x − a| < δ (a − δ, a + δ)
|x − a| ≤ δ [a − δ, a + δ]

0 < |x − a| < δ (a − δ, a + δ) \ {a}

EXAMPLE 1 Find the solution to the inequality

1 ≤| x − 3 |< 2.

SOLUTION The inequality is asking for all points that are at least 1 unit from 3,
but less than 2 units from 3. To the right of 3, the values of x that are at least one unit
away are x ≥ 3 + 1 = 4.

However, to also be less than 2 units away from 3, we must have x < 3 + 2 = 5.

It follows that if x ≥ 3 and x is a solution to the inequality, then 4 ≤ x < 5 or
equivalently, x ∈ [4, 5).

A similar argument shows that if x ≤ 3 is a solution to the inequality, then
1 = 3 − 2 < x ≤ 3 − 1 = 2 or equivalently, x ∈ (1, 2].
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( ) ] [

|x-3| < 2 1 ≤ |x-3|

1 3 5 2 3 4

2 2 11

This leads us to the solution to the inequality, namely the set

(1, 2] ∪ [4, 5) = (1, 5) \ (2, 4).

( )] [
1 52 3 4

3.2 Least Upper Bound Property

In this section we will introduce one of the most fundamental defining characteristics
of the real line, namely the Least Upper Bound Property. The Least Upper Bound
Property will play a crucial role in much of the remainder of the course. But before
we can state the property we need to introduce some terminology.

DEFINITION Upper and Lower Bounds

Let S ⊂ R. We say that α is an upper bound of S if

x ≤ α

for every x ∈ S . If S has an upper bound, we say that it is bounded above.

We say that β is a lower bound of S if

β ≤ x

for every x ∈ S . If S has a lower bound, we say that it is bounded below.

S is bounded if it is bounded both above and below. Note that S is bounded if there
exists an M such that

S ⊆ [−M,M]

Calculus 1 (B. Forrest)2



Chapter 3: Real Numbers 74

EXAMPLE 2 Let S = [0, 1). Then α = 3 is an upper bound for S . However, 1 is also an upper
bound. Moreover, 1 has the property that amongst all of the upper bounds for S , it is
the smallest.

Similarly, while −2 is a lower bound for our set, 0 has the property that it is the
largest lower bound of S .

If M = 2, then clearly S ⊆ [−2, 2], so S is bounded.

[ )
0-2 1 2 3

S

Largest
lower
bound

Smallest
upper
bound

Upper
bound

Lower
bound

It turns out that the smallest or least upper bound for a set will play a key role in our
investigation of convergence for monotone sequences.

DEFINITION Least Upper Bound

Let S ⊆ R. Then α is called the least upper bound of S if

1. α is an upper bound of S .

2. α is the smallest such upper bound. That is, if x ≤ γ for every x ∈ S , then
α ≤ γ.

We write
α = lub(S ).

Note: The least upper bound is often called the supremum of S and is denoted by

sup(S ).
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DEFINITION Greatest Lower Bound

Let S ⊆ R. Then β is called the greatest lower bound of S if

1. β is a lower bound of S .

2. β is the largest such lower bound. That is, if γ ≤ x for every x ∈ S , then γ ≤ β.

We write
β = glb(S ).

Note: The greatest lower bound is often called the infimum of S and is denoted by

in f (S ).

The next example shows that if the least upper bound or the greatest lower bound
exist, they need not be in the set.

EXAMPLE 3 If S = [0, 1), then lub(S ) = 1 and glb(S ) = 0.

[ )
0 1

S

DEFINITION Maxima and Minima

1. If S contains α = lub(S ), then α is called the maximum of S and is denoted by
max(S ).

2. If S contains β = glb(S ), then β is called the minimum of S and is denoted by
min(S ).

EXAMPLE 4 If S is a finite set with n elements

S = {a1 < a2 < · · · < an},

then
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• an = lub(S ) = max(S ), and

• a1 = glb(S ) = min(S ).

The next property of the real numbers may seem obvious and perhaps quite unimpor-
tant. However, it is actually the theoretical foundation for all of the most fundamental
results of calculus.

AXIOM 3 Least Upper Bound Property

Let S ⊂ R be nonempty and bounded above. Then S has a least upper bound.

Observe that in our statement of the Least Upper Bound Property we specifically
excluded the empty set ∅. This leads to the following problem:

Problem: Is ∅ bounded above or below?

We begin by asking whether there is an upper bound for ∅. Specifically, is 6 greater
than or equal to every element in the empty set and hence an upper bound for ∅?
This might seem like a bit of an absurd question after all how can some number like
6 be greater than or equal to every element in a set that itself contains no element.
However, the key is to ask, what would need to happen for it to be true that 6 was not
an upper bound for ∅ ? With this in mind, we have the following proposition:

PROPOSITION 4 Let α ∈ R Then α ∈ R is both an upper bound and a lower bound for ∅. In particular,
∅ is bounded.

PROOF

If αwere not an upper bound for ∅, then by definition there would exist some element
x ∈ ∅ satisfying x > α, a contradiction (nothing is in ∅). This shows that α must be
an upper bound for ∅. Similarly, α must be a lower bound for ∅, as claimed.

The previous proposition yields a very unusual fact about the empty set. For this set
and this set alone it is possible to have an upper bound α and a lower bound β such
that α < β. In fact, α = −1 and β = 5 are such a pair. This proof again uses the
general principle that a statement about elements in a set will be automatically true
for ∅, because if it were not true, then there would exist elements in ∅ to contradict
the statement, which is impossible. The truth of a statement about ∅ derived in this
way is called a vacuous truth and the statement is said to be true vacuously.

The above proposition also shows that we must take care to apply the least upper
bound property only to nonempty sets, because clearly, ∅ fails to have a least upper
bound even though it is bounded above!
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The dual to the Least Upper Bound Property is the Greatest Lower Bound Property,
stated below. Note that, as we show below, the Greatest Lower Bound Property can
be derived as a theorem, using the Least Upper Bound Property as the key tool in the
proof. However, had we assumed the Greatest Lower Bound Property as an axiom,
we would be able to derive the Least Upper Bound Property as a theorem. That is the
two properties are equivalent.

THEOREM 5 Greatest Lower Bound Property

A nonempty subset S ⊂ R that is bounded below always has a greatest lower bound.

PROOF

Let β be a lower bound for S . Therefore, if x ∈ S , we have that β ≤ x. It follows that
−x ≤ −β and hence that −β is an upper bound for the set T = −S = {−s : s ∈ S }.
Since S is nonempty, so is T . By the Least Upper Bound Property, T has a least
upper bound α. Now if x ∈ S , then −x ≤ α, so that −α ≤ x, for every x ∈ T . This
proves that −α is a lower bound for S . We also know that since −β is an upper bound
for T , we have α ≤ −β and hence that β ≤ −α. However, since β was an arbitrary
lower bound of S , −α is in fact the greatest lower bound for S .

3.3 Archimedean Property

We begin by posing the following question:

Question: Is N bounded above?

The fact that N is not bounded above may seem trivial and obvious. Our first thought
might be that N has no largest element and as such would be unbounded. However,
the set (0, 1) does not have a largest element and yet it is definitely bounded above
by 12. It is at least theoretically possible that there is some mysterious real number
α such that n < α for all n ∈ N even if N itself has no largest element. Yet it certainly
seems evident that this cannot be.

One of the goals of the course is to learn to proceed in mathematics rigorously and
carefully, verifying every new statement with definitions, axioms, and previously
proven results. This is important because there are many glaring examples of state-
ments that appear that they “must be true” that are either extremely difficult to prove
or worse yet, for which there are even simple counterexamples showing them to be
false. The good news is that in this case, our instincts are correct and we have the
tools to verify this.

THEOREM 6 Archimedean Property

The set N ⊂ R has no upper bound in R. That is, N is not bounded above.
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PROOF

Suppose on the contrary that N is bounded above by some M ∈ R. Then since 1 ∈ N,
N , ∅. By the least upper bound property, N has a least upper bound α ∈ R. Then
since α is the least upper bound, α − 1

2 is not an upper bound for N. This shows that
there exists an element n ∈ N with

α −
1
2
< n ≤ α.

Since n ∈ N, it follows that n + 1 ∈ N, making

α −
1
2

+ 1 < n + 1

⇒ α < α +
1
2
< n + 1,

which is a contradiction since no element of N can be greater than α, an upper bound
for N. Consequently, the statement that N is bounded above cannot be true and the
theorem follows.

REMARK

The previous proof uses an observation that will be used repeatedly throughout this
course, namely that if α is the least upper bound of a set S and if ε > 0 is any positive
number no matter how small, then α − ε < α. Therefore, α − ε is not an upper bound
for S . It follows that there must be some s ∈ S that makes α − ε fail to be an upper
bound; that is, this s satisfies s > α− ε. But since s ∈ S , it must be less than or equal
to the upper bound α. Combining these two inequalities yields

α − ε < s ≤ α.

The following easy but important corollary is also known as the Archimedean Prop-
erty. We will see later that this corollary gives us a formal proof that the sequence { 1n }
converges to 0.

COROLLARY 7 Archimedean Property II

For every ε > 0, then there exists an n ∈ N satisfying 0 < 1
n < ε.

PROOF

For any ε > 0, we can find an n ∈ N with n > 1
ε
> 0 by Archimedean Property I—for

if such an n cannot be found, then 1
ε

would be an upper bound for N, contradicting
the theorem. Taking reciprocals yields 0 < 1

n < ε.
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REMARK

It might have been tempting to try and avoid using the Least Upper Bound Property
to prove the Archimedean Property by instead arguing as follows: Assume that α ∈ R
is an upper bound for N. Then we certainly know that α > 0 and we also know that
α has a decimal expansion

α = m.a1a2a3a4 · · ·

where m ∈ N and 0 ≤ ai ≤ 9. (The number m, which is the greatest integer less
than α, is called the floor of α and it is denoted by bαc.) From here we, we get that
m ≤ α < m + 1. However m + 1 ∈ N contradicting the fact that α was an upper bound
for N.

It might well appear that we have succeeded in avoiding the use of the Least Upper
Bound Property in the above “proof” until we ask ourselves: how do we know that
every real number has a decimal expansion? It turns out that this familiar “fact”
can actually be shown to be equivalent to the Least Upper Bound Property. Indeed,
in an exercise later in the course, you will show one direction of this equivalence
by showing that under the assumption that the real numbers satisfy the Least Upper
Bound Property, then every real number does indeed have a decimal expansion.

What we want to do now is to show that every real number α can be approximated
as closely as we would like by both rational and irrational numbers. This leads us to
define the notion of density.

DEFINITION Density in R

We say that a set S ⊆ R is dense in R if for every α ∈ R and every ε > 0, there exists
an s ∈ S such that s ∈ (α − ε, α + ε).

An application of the previous corollary is the following corollary, which states some-
thing about the density of rational numbers and irrational numbers as subsets of R.

COROLLARY 8 Density of Q and R \ Q

For every a, b ∈ R with a < b, there exists r ∈ Q and s < Q satisfying a < r < b and
a < s < b.

PROOF

This proof is left as a homework exercise. In this proof, you may assume that
√

2 is
irrational.
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Chapter 4

Sequences and Convergence

4.1 Sequences and Their Limits

In many applications of mathematics, continuous processes are modeled by lists of
data points (discrete data). This leads naturally to the concept of a sequence. In
this section, we will introduce sequences and define what is meant by the limit of a
sequence.

4.1.1 Introduction to Sequences

A sequence is simply an ordered list. We encounter sequences every day. For ex-
ample a phone number can be thought of as a sequence. Indeed the phone number
519-555-1234 is read as a sequence of one digit terms 5-1-9-5-5-5-1-2-3-4 rather
than as the integer 5,195,551,234. With phone numbers, we are very aware that the
order of the terms is important.

A phone number is an example of a finite sequence in the sense that this ordered
list contains only finitely many terms. For the remainder of this course we will only
consider infinite sequences where the terms or elements of the sequence will be real
numbers.

We write
{a1, a2, a3, · · · , an, · · · } or {an}

∞
n=1 or simply {an}

to denote a sequence.1 The real numbers an are called the terms or elements of the
sequence. The natural number n is called the index of the term an.

There are many different ways that a sequence can be specified. The easiest way is to
simply list the elements in a manner that gives the value of an as an explicitly defined
function of n. For example, in the sequence

{1,
1
2
,

1
3
, · · · ,

1
n
, · · · }

1Some references use round brackets instead of curly brackets to denote sequences. Therefore you
may encounter sequences written as (a1, a2, a3, · · · , an, · · · ) or (an)∞n=1 or (an).
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the n-th term in the sequence is 1
n . The sequence can also be identified by writing { 1n }

or by giving the explicit function

an =
1
n

that specifies the value of the terms.

We can also visualize a sequence by plotting its terms on the number line. For exam-
ple, the sequence {1, 1

2 ,
1
3 , · · · ,

1
n , · · · } has a plot that looks like:

0 0.2 0.4 0.6 0.8 1

We can also consider a sequence as a function from the natural numbers N with
values in R. Consequently, we can use function notation to identify a sequence as
well. In this case, we will equate an with the value of the function f at the natural
number n and write f (n) = an as a means of designating the sequence. In particular,
the sequence

{1,
1
2
,

1
3
, · · · ,

1
n
, · · · }

can be identified with the function

f (n) =
1
n
.

In this form, the graph of the function can give us some very useful visual information
about the nature of the sequence.

0

0.2

0.4

0.6

0.8

1

10 20 30 40

f (n) = 1
n

f (n)

n

For f (n) = 1
n , we see that as the index increases the terms decrease, and as the index

gets large the values of the terms “approach” 0.

In contrast to the rather nice behaviour of the sequence { 1n }, the sequence {cos(n)} has
rather chaotic behaviour as its graph shows:
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1

0.5

0

-0.5

-1

20 40 60 80 100

f (n) = cos(n)

f (n)

n

Moreover, to see why the two-dimensional plot is often better as a way of represent-
ing a sequence than the simple one-dimensional view, let’s look at these two plots for
the sequence {(−1)n−1} = {1,−1, 1,−1, · · · }.

-1

1

1 2 3 4 2k-1 2k -1 1

The two-dimensional plot on the left representing the graph of the function
f (n) = (−1)n−1 clearly shows the sequence osculating from 1 to −1 as the index in-
creases. However, the one-dimensional plot actually looks very static. Moreover, the
right-hand plot would essentially look identical to the plot of the sequence {(−1)n}.
This example, and the two plots above, also illustrates two important principles;
firstly that the order of the terms does matter, and secondly, that a sequence always
has infinitely many terms even if those terms may take on only finitely many different
values.

4.1.2 Recursively Defined Sequences

In the last section we saw that to define a sequence we could either provide an explicit
formula for the n-th term an, or we could present an ordered list from which this ex-
plicit formula may be derived. Another important method for specifying a sequence
is to use recursion. When we define a sequence recursively we typically do not know
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an explicit formula for the term an, but rather we are able to deduce its value from
one or more previous terms in the sequence. To do so we generally need to know the
first term of the sequence, or even the first few terms depending on the complexity of
the recursive formula. For example, consider the sequence defined by

a1 = 1 and an+1 =
1

1 + an
.

Suppose that we want to determine the value of a5. In the previous example with
an = 1

n , we could see by inspection that the value of a5 was simply 1
5 . However,

notice that in this new example you cannot determine a5 directly from the given
expression. Indeed, since 5 = 4 + 1, the formula tells us that to find a5 we must first
calculate a4. But to do this we must know a3, which in turn depends upon the value
of a2. At this point, we are explicitly told that a1 = 1. Hence we can conclude that

a2 =
1

1 + a1
=

1
1 + 1

=
1
2
.

Then we get that

a3 =
1

1 + a2
=

1
1 + 1

2

=
2
3
.

We can calculate a4 = 3
5 and then finally a5 = 5

8 . If you are now asked to find a2573,
your first instinct would likely be to give up! Luckily though, it is often very easy to
program a computer to evaluate the terms of a recursively defined sequence. In fact,
a modern computer can calculate a2573 almost instantaneously.

Problem: Can you write a loop that calculates the terms of the recursively defined
sequence above and stops at a2573?

Despite the difficulty that we may have in identifying the terms of recursively de-
fined sequences, such sequences are very important for practical applications. In this
course, for example, we will use recursively defined sequences to find approximate
solutions to equations that cannot be solved explicitly (see Newton’s Method).

We end this section with three recursively defined sequences. The first, the Fibonacci
sequence is one of the most famous sequences in mathematics. The last of the three
sequences is of historical importance in that it arises from an algorithm that the Baby-
lonians used to calculate square roots.

EXAMPLE 1 The Fibonacci Sequence

In his 1202 manuscript Liber Abaci (Book of Abacus) the Italian mathematician
Leonardo Fibonacci posed the following problem: Assume that a newly born pair
of breeding rabbits can mate at the age of 1 month and that each female will then
produce exactly one more breeding pair one month later and that the pair will then
mate again immediately. Assume also that rabbits never die. If you start with a single
newly born pair of breeding rabbits, how many pairs will you have at the beginning
of the nth month?

Calculus 1 (B. Forrest)2



Chapter 4: Sequences and Convergence 84

Let Fn denote the number of rabbit pairs at the
beginning of month n. Then by assumption we
start with one pair and as such F1 = 1. Since
this pair must wait one month before breeding,
we also begin month 2 with only this pair. That
is F2 = 1. At the end of the second month
the initial breeding pair has produced another
breeding pair so we begin the third month with
F3 = 2.
At this point, our initial pair will produce off-
spring each subsequent month. However, our
newly born pair must wait one month to breed.
As such at the beginning of month 4 we have
our initial pair, their first pair of offspring and
the new offspring the initial pair produces in
month 3. That tells us that F4 = 3.

To find Fn for a typical n, we make the following observation. Each pair that was
alive at the beginning of month n − 1 will still be alive at the beginning of month n.
Moreover, we will have one more additional pair for each pair alive at the beginning
of month n − 2 as each such pair will be of breeding age at the beginning of month
n − 1. This gives us a recursive formula for Fn of the form

Fn = Fn−1 + Fn−2.

From this we can deduce that F5 = 3 + 2 = 5, F6 = 5 + 3 = 8, F7 = 8 + 5 = 13, and
so on.

This sequence, which was known in India centuries before Fibonacci, has many re-
markable properties though curiously enough, we still do not know if there are in-
finitely many prime numbers in the sequence.

Problem: Find the first 6 primes in the Fibonacci sequence.

EXAMPLE 2 In this example we will look at the sequence defined by the recursive relation a1 = 1
and an+1 =

√
3 + 2an.
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The table shows the first 10 terms in the sequence.
You will notice an interesting pattern here. The
terms are increasing, all of them are less than 3,
but the terms do seem to be getting very close to
3. In fact, if we were to continue on we would find
that a30 = 2.99999999999996. This is indeed no
accident. It is a consequence of the nature of the
function f (x) =

√
3 + 2x which we use to generate

the sequence. In particular, we note the fact that 3
is the unique solution to the equation.

L =
√

3 + 2L.

This is equivalent to saying that 3 is the
x-coordinate of the unique intersection point of the
graphs of the functions y = x and y =

√
3 + 2x.

n an

1 1
2 2.236067977
3 2.733520798
4 2.909818138
5 2.969787244
6 2.989912121
7 2.996635487
8 2.998878286
9 2.999626072

10 2.999875355

A graphical illustration of the comments above is given by the following diagram:

1

2

3 4

1

2

3

4

0

y = x

y =
√

3 + 2x

a1 a2 a3

Calculus 1 (B. Forrest)2



Chapter 4: Sequences and Convergence 86

In this example, we might ask what hap-
pens if we were to change the value of a1?
For example, what if we let a1 = 4? How
would the sequence behave? The chart
on the right and the graph below shows
that the sequence still behaves in a simi-
lar manner despite the new initial value.
Of course, the sequence now decreases
rather than increases, but it still rapidly
approaches 3.

n an an

1 4 1756
2 3.31662479 59.28743543
3 3.103747667 11.02609953
4 3.034385495 5.005217184
5 3.011440019 3.606997972
6 3.003810919 3.195934283
7 3.001270038 3.064615566
8 3.000423316 3.021461754
9 3.000141102 3.007145409

10 3.000047034 3.002380858

y = x

y =
√

3 + 2x

a1a2a3

Note that if we start with a1 = 1756, then the sequence again decreases and still
rapidly moves towards 3. Moreover, if we let a1 = 23675382, then a10 = 3.009560453.
In fact it is actually possible to show that if a1 is any real number that is greater than
−3
2 (so that

√
3 + 2x > 0), then the sequence will increase if a1 < 3, decrease if

a1 > 3, but in all cases the sequence will rapidly approach 3.

Problem: What happens if a1 = 3?

In the next example we will present an algorithm for calculating square roots that has
its historical origins going back to the Babylonians. The algorithm itself was first
presented explicitly by the Greek mathematician Heron of Alexandria (also known
as Hero of Alexandria).
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EXAMPLE 3 Heron’s Algorithm for Finding Square Roots

Consider the following recursively defined sequence:

a1 = 4 and an+1 =
1
2

(an +
17
an

).

Let’s see what this sequence looks like by calculating the first 10 terms.

You will notice that up to ten decimal places the
sequence actually stabilizes from n = 4 onwards.
In fact the terms do change as n increases but the
difference between successive terms is so small as
to be almost undetectable very quickly. In partic-
ular, like our previous example, the terms of this
sequence seem to rapidly approach a certain limit-
ing value α which we would guess to be very close
to 4.1231056256. So it is now worth asking, what
is the significance of this value α?

n an

1 4
2 4.125
3 4.1231060606
4 4.1231056256
5 4.1231056256
6 4.1231056256
7 4.1231056256
8 4.1231056256
9 4.1231056256

10 4.1231056256

In fact it turns out that we will later be able to show that α =
√

17. In particular, we
can show that a4 −

√
17 is roughly 2.31 × 10−14 which means that a4 is a remarkably

accurate approximation to
√

17. Even a3 is very close to
√

17 with a3−
√

17 � 4.35×
10−7. It is also worth noting that despite the fact that in the table above we represented
the terms in the sequence with decimal expansions, the calculations certainly produce
rational values for each an. In particular, a1 = 4, a2 = 33

8 , a3 = 2177
528 and a4 = 9478657

2298912 .
So this algorithm not only gives an approximate value for

√
17, but it also generates

very accurate rational approximations to this irrational number.

More generally, if α > 0 is any positive real number and we have a1 chosen so that
a1 is a real number that is reasonably close to

√
α, then the recursive sequence with

initial term a1 and

an+1 =
1
2

(an +
α

an
)

will generate a sequence which will very rapidly approach the value
√
α. If both α

and a1 are rational numbers, then so is an for each n.

Problem: Let α = 198 and a1 = 14. Find the rational expressions for a2 and a3 using
the algorithm above. Using a calculator calculate the decimal expression for a3 and
for
√

198 to 8 decimal places. Are they the same?

Before we leave this example, let’s take a closer look at this algorithm. For example,
suppose we want to find

√
17. This is the same as finding the unique positive solution

to the equation x2 − 17 = 0, or equivalently, finding the unique positive x-intercept
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for the graph of the function f (x) = x2 − 17. It turns out that if a1 = 4, then a2 is the
x-coordinate of the intersection of the x-axis and the tangent line to the graph of f
through (4,−1).

10

0

-10

-20

-30

1 2 3 4 5

f (x) = x2 − 17

y = 8(x − 4) − 1

To illustrate, we note that the tangent line above has equation y = 8(x − 4) − 1 and
if we solve the equation 0 = 8(x − 4) − 1, the solution is exactly a2 = 33

8 as claimed.
From here you will note that the graph above shows that the tangent line provides a
very close approximation to the function f (x) = x2 − 17 near x = 4 and it crosses
the x-axis very close to the place where the graph of f crosses the x-axis. The latter
happens precisely at x =

√
17.

crosses at
graph of

at a2 = 33
8 = 4.125

tangent line crossesf√
17

0.01

-0.01

-0.02

-0.03

0

The geometric process we have outlined above is a special case of an algorithm called
Newton’s Method which we will look at in detail later in the course.
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REMARK

Historical Note: The algorithm above that generates a sequence converging to
√
α

is often called Heron’s algorithm, in honour of the first century Greek mathematician
Heron who is attributed with the first explicit description of the method. The process
is also called the Babylonian Square Root Method since this method was essentially
used by Babylonian mathematicians to calculate

√
2.

4.1.3 Subsequences and Tails

Consider any sequence {an}. We can build many new sequences by extracting in-
finitely many terms of {an} in such a manner that we preserve the order in which the
extracted terms appeared in the original sequence. We call this extracted sequence a
subsequence of our original sequence {an}.

For example, given the sequence

{an} = {1,
1
2
,

1
3
, . . . ,

1
n
, . . .}

we might extract every second term beginning with the first. This gives us

{1,
1
3
,

1
5
, . . .}.

In this case, our new sequence has first term 1, second term 1
3 , third term 1

5 , and for
each k ∈ N, the k-th term is 1

2k−1 so that we denote this new sequence by {a2k−1} or
{ 1

2k−1 }.

A more formal definition of a subsequence is:

DEFINITION Subsequence

Let {an} be a sequence. Let {n1, n2, n3, . . . , nk, . . .} be a sequence of natural numbers
such that n1 < n2 < n3 < · · · < nk < · · · . A subsequence of {an} is a sequence of the
form

{ank} = {an1 , an2 , an3 , . . . , ank , . . .}.

In this course, particularly when we talk of limits of sequences, we will most often
be interested in the terms of the sequence with indexes that are at least as large as
some fixed k.

To end this section we introduce one more piece of terminology with respect to se-
quences. Given a sequence {an} and a natural number k we consider all of the terms
of the sequence with index n ≥ k.
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DEFINITION Tail of a Sequence

Given a sequence {an} and k ∈ N, the subsequence

{ak, ak+1, ak+2, . . .}

is called the tail of {an} with cutoff k.

4.1.4 Limits of Sequences

The notion of a limit is fundamental to Calculus. Limits occur in various forms.
In the previous section we saw examples of sequences with the property that as the
index n became large, the terms of the sequences each approached or converged to a
particular fixed value L.

L

0

an

n

We call such a sequence convergent and call the value L the limit of the sequence
{an}. This is of course far from a precise mathematical definition of the limit. In the
remainder of this section we will try to formulate just such a definition.

First let’s consider the sequence {1, 1
2 ,

1
3 , . . . ,

1
n , . . .}. Notice that as n gets larger and

larger, the terms get closer and closer to the value 0.

0
L

n

an

In particular, we can all agree that we should have that 0 is the limit of the sequence
{ 1n }. Moreover, this simple example leads us to our first attempt at a heuristic or
descriptive definition of the limit of a sequence.
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Heuristic Definition of the Limit of a Sequence I
Given a sequence {an}, we say that L is the limit of the sequence {an} as n goes to
infinity if, as n gets larger and larger, the terms of the sequence get closer and closer
to L.

Unfortunately, there are several flaws associated with this definition. For example,
if we take this definition exactly as it is written, then not only is 0 a limit of the se-
quence, but so is −1 because it is also true that as n gets larger and larger the terms
in the sequence { 1n } get closer and closer to −1.

So what distinguishes 0 from −1 as a potential limit for { 1n }? In the case of 0, as n
gets larger the terms of the sequence get as close as we would like to 0, whereas the
distance from each term 1

n to −1 is always greater than 1. As such, the key observation
we can take away from this example is that our terms should approximate the limit
as accurately as we might wish so long as the index is large enough. Having made
this observation, we are now in a position to present a much more precise heuristic
definition for the limit.

Heuristic Definition of the Limit of a Sequence II
Given a sequence {an} we say that L is the limit of the sequence {an} as n goes to
infinity if no matter what positive tolerance ε > 0 we are given, we can find a cutoff

N ∈ N such that the term an approximates L with an error less than ε provided that
n ≥ N.

This descriptive definition captures all of the properties we would like in a limit. We
can also make this into a more formal mathematical definition as follows:
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DEFINITION Formal Definition of the Limit of a Sequence I

We say that L is the limit of the sequence {an} as n goes to infinity if for every ε > 0
there exists an N ∈ N such that if n ≥ N, then

|an − L| < ε.

If such an L exists, we say that the sequence is convergent and write

lim
n→∞

an = L.

We may also use the notation an → L to mean {an} converges to L.

If no such L exists, then we say that the sequence diverges.

Let’s see how the formal definition of a limit can be applied with a specific sequence
in mind.

EXAMPLE 4 Use the formal definition of a limit to show that lim
n→∞

1
√

n = 0.

It should be fairly obvious that as n grows so does
√

n. Moreover, since we can make
√

n as large as we like, and therefore 1
√

n as close to 0 as we wish, it should be clear
that 0 is in fact the limit. However, we still need to show that the formal definition
can be satisfied. To start with, suppose that we are given a tolerance ε = 1

100 . How
big does our cutoff N have to be so that if n ≥ N, then

|
1
√

n
− 0| =

1
√

n
<

1
100

(∗)

whenever n ≥ N? For (∗) to hold we would have

100 <
√

n

or equivalently
10000 < n.

So let’s choose any cutoff N1 ∈ N so that N1 > 10000. In particular, N1 = 10001
would work. Then if n ≥ N1, we would have

|
1
√

n
− 0| =

1
√

n
≤

1
√

N1
<

1
√

10000
=

1
100

.

But of course we are still not done because we need to be able to find the appropriate
cut off for every positive tolerance ε > 0. Suppose instead of a tolerance of 1

100
the tolerance we were given was 1

1010 . This means we are significantly reducing our
permissible error from our previous case and as such fewer terms in the sequence
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may approximate our proposed limit within this new tolerance. In fact, if we look at
n = N1 = 10001, then

1
√

10001
>

1
1010

so our old cutoff N1 is no longer good enough for our purposes. It actually turns out
that with this new tolerance we need a cutoff N2 which is actually greater than 1020.
This is a huge number but if we let N2 = 1020 + 1, then for any n ≥ N2 we do indeed
get that

|
1
√

n
− 0| =

1
√

n
≤

1
√

N2
<

1
√

1020
=

1
1010

as required.

Now even though we have been able to manage this extremely small tolerance, we are
not finished. Someone else could come along and give us an even smaller tolerance
than 1

1010 . As such what we really need is to be able to find a cutoff N regardless of
what our tolerance ε > 0 might be.

The good news is that we can still handle a generic tolerance ε. The key is to observe
that if we want

|
1
√

n
− 0| =

1
√

n
< ε

then what we really need is for n to be large enough so that
1
ε
<
√

n

or equivalently that
1
ε2 < n.

But it is a basic property of the Natural numbers (called the Archimedean Property)
that no matter what ε > 0 we are given, we can always find a cutoff N ∈ N so that

1
ε2 < N.

With this cutoff, we do have that if n ≥ N, then

|
1
√

n
− 0| =

1
√

n
≤

1
√

N
< ε.

N n1
ε2

ε

−ε

{ 1
√

n }

1√
n
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Understanding the formal definition of the limit for a sequence, and later for a func-
tion, is perhaps one of the most challenging parts of this course. While we normally
will not require that the formal definition of a limit be used to verify that a particular
sequence has a particular value L as a limit, it is still worthwhile to develop a strong
sense of how this process works. To do so it is perhaps easiest to think of this as a
game.

Let’s say that the goal of the game is to show that a sequence {an} converges. Here is
how to proceed if you want to win the game:

Step 1: Your first task is to identify a possible candidate L for the limit. There is no
absolute method to accomplish this task and it may be extremely difficult to find the
appropriate value. One method to try is to simply look at the terms of the sequence
and guess.

L

0

an

n

Once you have completed Step 1 you are ready to begin the game in earnest.

Step 2: This is your opponent’s move. At this point your opponent presents you
with a very small tolerance for you to manage. For example, let ε = .00001. This
tolerance creates an error band or target zone of the form (L − ε, L + ε).

L

L + ε

L − ε

0

an

n

Step 3: To remain in the game with the tolerance in hand you must find a cutoff N
so that if the index n is greater than or equal to N, then the term an approximates L
with an error that is less than your given tolerance.
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N

L

L + ε

L − ε

0

an

n

If you cannot find such a cutoff, then you lose and the L you chose is not the limit.

If you do find such a cutoff, then you are still in the game. Unfortunately, if you do
find the cutoff for the tolerance ε = .00001, you are not done. You simply go back
to Step 2 and your opponent will provide you with a new tolerance ε1 that is even
smaller than the previous one.

N

L
L − ε1

L + ε1
L + ε

L − ε

0

an

n

You must now find a new cutoff N1, typically bigger than the last, or you lose and the
game stops.

N N1

L
L − ε1

L + ε1
L + ε

L − ε

0

an

n

Given the rules above, it may appear that you can never win this game no matter how
many times you are successful since once you find one cutoff your opponent is free
to offer you another tolerance, smaller than the last, forcing you to start your search
over again. But in fact you can win the game if you can present your opponent with
an algorithm that will generate an appropriate cutoff no matter what tolerance ε you
are given. We saw this in the example of the sequence { 1

√
n } where given an ε > 0,
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we simply present our opponent with a cutoff N which is greater than 1
ε2 . So here our

algorithm could be

N = b
1
ε2 c + 1

where f loor(x) = bxc is the largest integer not greater than x.

Important Note: It is generally extremely hard or even impossible to show directly
from the formal definition that a particular sequence has a limit. As such in this
course, with very few exceptions, we will not try to do so. Nonetheless, understand-
ing the language of limits is something that can be mastered with a little patience and
some perseverance. However, there are a few other equivalent formulations of the
formal definition of convergence that may be easier to understand.

Observation: Suppose that we want to show that L is the limit of the sequence {an}.
Suppose also that we are given a tolerance ε > 0. We must find a cutoff N ∈ N so that
if n ≥ N, then |an − L| < ε. But we have already seen that |an − L| < ε is equivalent to
having an ∈ (L − ε, L + ε).

n ≥ N

LL − ε L + ε

an

You will also recall that the collection of all the terms in {an} with index n ≥ N is a
tail of the sequence. So we can reformulate the definition of a limit as follows:

DEFINITION Formal Definition of the Limit of a Sequence II

We say that L = lim
n→∞

an if for every tolerance ε > 0, the interval (L− ε, L+ ε) contains
a tail of the sequence {an}.

Moreover, if we have any open interval (a, b) containing L, we can find a small
enough ε > 0 so that

L ∈ (L − ε, L + ε) ⊆ (a, b).

But then if L is to be the limit, (L− ε, L + ε) must contain a tail of {an}, and as a result
so does (a, b).
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an

L − ε L + ε

La b

Finally, with the convention that ε represents an arbitrary positive tolerance, this
observation allows us to present several new ways to view the formal definition of a
limit which are conceptually easier to use.

THEOREM 1 The following statements can all be viewed as being equivalent:

1. lim
n→∞

an = L.

2. Every interval (L − ε, L + ε) contains a tail of {an}.

3. Every interval (L − ε, L + ε) contains all but finitely many terms of {an}.

4. Every interval (a, b) containing L contains a tail of {an}.

5. Every interval (a, b) containing L contains all but finitely many terms of {an}.

Important Note: Changing finitely many terms in {an} does not affect convergence.

So far in all of our examples of convergent sequences it appears that the sequence has
had a unique limit. This leads us to ask:

Question: Can a sequence have more than one limit?

EXAMPLE 5 Consider the sequence

{1,−1, 1,−1, · · · , (−1)n+1, · · · } = {(−1)n+1}.

Since the number 1 appears as a term infinitely often, one might be tempted to guess
that 1 is a limit of the sequence. Similarly, since −1 also appears infinitely often, we
might be tempted to say that −1 is also a limit of this sequence. In fact, we will use
what we have just learned to show that neither 1 or −1 are true limits of this sequence.
Moreover, we can show that the sequence actually has no limit.

Suppose that we want to show that 1 was a limit of our sequence. Then since 1 ∈
(0, 2), we have to show that this open interval contains a tail of our sequence. But
this interval does not contain any of the infinitely many terms with value −1 which
means no such tail exists. This shows that 1 was not a limit at all.
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Similarly, suppose we want to show that −1 was a limit of our sequence. Then since
−1 ∈ (−2, 0), we now have to show that this open interval contains a tail of our
sequence. But this interval does not contain any of the infinitely many terms with
value 1 which means again no such tail exists. This shows that −1 was not a limit
either.

Could some other L be a limit? Suppose it was. This would mean every open interval
around L must contain a tail of our sequence and as such must contain both 1 and −1
since every tail has terms with value 1 and value −1. But since the distance from −1
to 1 is 2, it turns out that if we choose an interval around L of length 1, that interval
cannot contain both −1 and 1 simultaneously and as such cannot contain a tail.

To make this more precise, we first let our tolerance be ε = 1
2 . From the definition

of a limit, the open interval (L − 1
2 , L + 1

2 ) must contain a tail of our sequence. This
would mean that the interval (L − 1

2 , L + 1
2 ) would contain 1, since every tail of our

sequence contains terms with values equal to 1. So now we know that the distance
from 1 to L is less than 1

2 (i.e., |1 − L| < 1
2 ). Therefore we have L ∈ (1

2 ,
3
2 ).

0 1
2

3
21

L

We also know that the tail contains terms with value −1. So the distance from L to
−1 is also less than 1

2 and as such this time we have L ∈ (−3
2 ,
−1
2 ).

0

L

−1
2

−3
2 −1

This is a problem since there is no number that lies in both ( 1
2 ,

3
2 ) and (−3

2 ,
−1
2 ). Thus

we have shown that our sequence {(−1)n+1} has no limit, so it diverges.

0 1
2

3
21

L

−1
2

−3
2 −1

not possible!
This is
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The argument in the previous example can also be modified to prove the following
theorem that says that limits of sequences are unique.

THEOREM 2 Uniqueness of Limits for Sequences

Let {an} be a sequence. If it has a limit L, then the limit is unique.

PROOF

Suppose that the sequence had two different limits L and M. We can always assume
that L < M, so let’s do so. From here we will build two disjoint open intervals,
one containing M and the other containing L. To do this we note that the midpoint
between L and M is M+L

2 . So let’s consider the intervals (L − 1, M+L
2 ) which contains

L and ( M+L
2 ,M + 1) which contains M.

L MM+L
2

Since we are assuming that both L and M are limits, both of these intervals must
contain a tail of the sequence. Since only finitely many terms are excluded from each
tail, there are only finitely many terms that are not in each interval. But since we have
infinitely many terms, at least one term an0 must be in both intervals.

L MM+L
2

an0

However, our intervals are disjoint so this cannot happen. As such our assumption
that the sequence had two different limits cannot be true.

We will end this section with one more useful observation.

Observation: Suppose we had a sequence {an} consisting of only non-negative
terms. That is an ≥ 0 for all n ∈ N. Then this sequence cannot converge to a
negative value. To see why note that if L < 0, then the interval (L − 1, L

2 ) consists
of only negative numbers. Therefore, this interval cannot contain any terms in the
sequence. It follows that L could not be the limit of the sequence.

0L
2L − 1 L
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PROPOSITION 3 Let {an} be a sequence with an ≥ 0 for each n ∈ N. Assume that L = lim
n→∞

an. Then
L ≥ 0.

EXERCISE 1 Let {an} be a sequence with an > 0 for each n ∈ N. Assume that L = lim
n→∞

an. Is it
always the case that L > 0, or could it be that L = 0?

4.1.5 Divergence to ±∞

The sequence {1, 22, 32, . . . , n2, . . .} does not converge because as the index n in-
creases the terms grow without bounds and therefore do not approach a fixed value
L. As such we could say that the terms approach∞ as the index n increases. For this
reason we might want to write

lim
n→∞

n2 = ∞.

The notation may be a little misleading because in fact, the sequence has no limit.
But it does help to describe how the sequence behaves far out in the tail. In particular
no matter how big M > 0 might be, so long as the index n is big enough, in this
case bigger than

√
M, we have n2 > M. This observation leads us to the following

definition:

DEFINITION Divergence to +∞

We say that a sequence {an} diverges to ∞
if for every M > 0 we can find a cutoff

N ∈ N so that if n ≥ N, then

an > M.

In this case, we write

lim
n→∞

an = ∞.

Equivalently, we have that lim
n→∞

an = ∞ if
every interval of the form (M,∞) contains
a tail of the sequence.

N

M > 0

0 n

an

Calculus 1 (B. Forrest)2



Section 4.1: Sequences and Their Limits 101

DEFINITION Divergence to −∞

We say that a sequence {an} diverges to
−∞ if for every M < 0 we can find a cutoff

N ∈ N so that if n ≥ N, then

an < M.

In this case, we write

lim
n→∞

an = −∞.

Equivalently, we have that lim
n→∞

an = −∞

if every interval of the form (−∞,M) con-
tains a tail of the sequence.

N

M < 0

0 n

an

Important Note: When we write lim
n→∞

an = ∞ or lim
n→∞

an = −∞, we are not
actually implying that the sequence has a limit. Despite the notation such sequences
still diverge. The notation simply gives us a way of describing the behaviour of the
sequence far out in the tail.

The following theorem is useful:

THEOREM 4 (i) If α > 0, then
lim
n→∞

nα = ∞.

(ii) If α < 0, then
lim
n→∞

nα = 0.

4.1.6 Arithmetic Rules for Limits of Sequences

In this section, we will see that most of the usual rules of arithmetic hold for limits of
sequences. To illustrate this statement assume that {an} converges to 3 and that {bn}

converges to 4. For large n, we would expect an to be very close 3 and bn to be very
close to 4. As such, we would expect 2an to be very close to 2 × 3 = 6, an + bn to be
very close to 3 + 4 = 7, and anbn to be very close to 3 × 4 = 12. This suggests that
{2an} should converge to 6, that {an + bn} should converge to 7 and that {anbn} should
converge to 12. The next theorem shows that these statements are in fact true.
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THEOREM 5 Arithmetic Rules for Limits of Sequences

Let {an} and {bn} be sequences. Assume that lim
n→∞

an = L and lim
n→∞

bn = M where L
and M are real numbers. Then

i) For any c ∈ R, if an = c for every n, then c = L.
ii) For any c ∈ R, lim

n→∞
can = cL.

iii) lim
n→∞

(an + bn) = L + M.

iv) lim
n→∞

anbn = LM.

v) lim
n→∞

an
bn

= L
M if M , 0.

vi) If an ≥ 0 for all n and if α > 0, then lim
n→∞

aαn = Lα.

vii) For any k ∈ N, lim
n→∞

an+k = L.

PROOF

Proof of i): Given any ε > 0, if n ≥ 1, then

|an − c| = |c − c| = 0 < ε.

Proof of ii): This proof splits into two cases. The first where c = 0. The second
where c , 0.

If c = 0, then bn = can = 0 for all n. It then follows by i), that

lim
n→∞

can = 0 = 0 · L = c · L.

Assume that c , 0. Let ε > 0. Then since we know that {an} converges to L, we can
find a cutoff N ∈ N such that if n ≥ N, then

|an − L| <
ε

|c|
.

It follows that if n ≥ N, then

|can − cL| = |c| · |an − L| < |c| ·
ε

|c|
= ε.

NOTE

While the calculation we just used to prove part ii) of our arithmetic rules is quite
straight forward, it is Nonetheless very useful. We will use variants of this argu-
ment to establish not only the remaining rules in this theorem, but many more times
throughout the course.
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Proof of iii): The proof we give for Rule iii) illustrates an important point, namely
that “the error in a sum is less than or equal to the sum of the errors.” More specifi-
cally, the triangle inequality shows that

|(an + bn) − (L + M)| ≤ |an − L| + |bn − M| (∗).

So lets suppose that we are given a tolerance ε > 0. If we can make both |an − L| < ε
2

and |bn − M| < ε
2 , Then (∗) would tell us that

|(an + bn) − (L + M)| ≤ |an − L| + |bn − M| <
ε

2
+
ε

2
= ε.

But since lim
n→∞

an = L, we can find a cutoff N1 ∈ N so that if n ≥ N1, then

|an − L| <
ε

2
.

Similarly since, lim
n→∞

bn = M, we can find a cutoff N2 ∈ N so that if n ≥ N2, then

|bn − M| <
ε

2
.

Now we let N0 = max{N1,N2}, the largest of the two cutoffs. Then if n ≥ N0, we
have that n ≥ N1 and n ≥ N2, simultaneously. This is the required cutoff.

Proof of iv): We want to show that lim
n→∞

(anbn) =

(
lim
n→∞

an

)
·

(
lim
n→∞

bn

)
= LM. To do so

we start with the following observations:

Observation:

| anbn − LM | = | (anbn − Lbn) + (Lbn − LM) |
≤ | anbn − Lbn | + | Lbn − LM |
= | an − L || bn | + | L || bn − M | .

Let ε > 0. We know from ii) that we can choose N1 large enough so that if n ≥ N1,

| L || bn − M |<
ε

2
.

Key Observation 1:

| an − L || bn | is trickier because bn varies. We could have

| an − L | | bn |

↓ ↓

small BIG

= ?
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Conclusion: We must control the size of | bn |.

Key Observation 2: The following theorem will allow us to control the size of our
sequence {bn}:

THEOREM 6

Assume that {bn} converges. Then {bn} is bounded when viewed as a subset of R.

PROOF

We know that there exists a N so that if n ≥ N, then

|bn − M| < 1

The Triangle Inequality then shows that

|bn| < |M| + 1.

for all n ≥ N. Let
K = max{|b1|, |b2|, . . . , |bN−1|, |M| + 1}

then
|bn| ≤ K

for all n ∈ N.

Proof of iv) Continued: There is a K > 0 such that,

| an − L || bn |≤ K | an − L | .

We can find N2 large enough so that if n ≥ N2, then

| an − L || bn |≤ K | an − L |<
ε

2
.

If n ≥ N0 = max{N1,N2}, then

| anbn − LM | ≤ | an − L || bn | + | L || bn − M |

<
ε

2
+
ε

2

= ε.

Proof of v): We want to show that lim
n→∞

an
bn

= L
M if M , 0.

Strategy: Start with a simpler case:
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v’) If M , 0,⇒ lim
n→∞

1
bn

= 1
M .

Observation: ∣∣∣∣∣ 1
bn
−

1
M

∣∣∣∣∣ =
| bn − M |
| bnM |

Problem: We can make | bn − M | small, but | bnM | might also be small, and

small
small

= ?

Challenge: We must make sure that bn is not too small!

Letting ε = |M|
2 , we can find a cutoff N1 ∈ N so that if n ≥ N1, then

|bn − M| <
|M|
2
.

If n ≥ N1, we get that bn will be in the open interval between |M|
2 and 3·|M|

2 . In
particular,

|M|
2

< bn.

0M M
2

3M
2

|M|

2

( )
bn

If n ≥ N1 then

| M |
2
≤| bn | ⇒

1
| bn |

≤
1
|M|
2

⇒
1

| bnM |
≤

1
M2

2

⇒
| bn − M |
| bnM |

≤
| bn − M |

M2

2

This shows that if n ≥ N1, then

|
1
bn
−

1
M
|≤
| bn − M |

M2

2

.
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However, we know how to proceed given the last inequality. We choose a cutoff

N2 ∈ N so that if n ≥ N2, then

|bn − M| < (
|M|2

2
) · ε.

If we let N0 = max{N1,N2}, and if n ≥ N0, then

|
1
bn
−

1
M
|≤
| bn − M |

M2

2

≤
( |M|

2

2 ) · ε
|M|2

2

= ε.

This proves v′).

To prove v) we can now appeal to iv) and v′) to get

lim
n→∞

an

bn
= ( lim

n→∞
an) · ( lim

n→∞

1
bn

) =
L
M
.

Proof of vi): Assume that an ≥ 0 for all n and that lim
n→∞

an = L. If α > 0, we want
to show that lim

n→∞
aαn = Lα. There are two cases to consider: when L = 0 and when

L , 0.

Case 1: Assume that L = 0.

Let ε > 0. Since L = 0, we can find a cutoff N ∈ N such that if n ≥ N, then

an < ε
1
α .

However, if n ≥ N, this means that

aαn < ε

as desired.

Case 2: Assume that L , 0.

This case is much more complicated than the first case. We will prove the result for
any rational number α. The irrational case is beyond the scope of this course. We
will begin by assuming that α = 1

n for some α ∈ N.

We will use the fact that for any a, b ∈ R, with a > 0 and b > 0, we have

|an − bn| = |a − b| · [an−1 + an−2b + an−3b2 + · · · + abn−2 + bn−1]

and hence

|a − b| =
|an − bn|

[an−1 + an−2b + an−3b2 + · · · + abn−2 + bn−1]
<
|an − bn|

bn−1 .

Let a = (ak)
1
n and b = L

1
n . we get

|(ak)
1
n − L

1
n | <
|ak − L|

L
n−1

n

.
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As such, given ε > 0, choose a cutoff N so that if k ≥ N, then

|ak − L| < L
n−1

n · ε.

From here we get that if k ≥ N, then

|(ak)
1
n − L

1
n | <
|ak − L|

L
n−1

n

<
L

n−1
n · ε

L
n−1

n

= ε.

This shows that
lim
k→∞

aαk = Lα

when α = 1
n .

Let α = m
n where m, n ∈ N. Since

(ak)
m
n = (am

k )
1
n

we can appeal to the above calculation as well as Rule iv) to get that

lim
k→∞

aαk = Lα

when α is a positive rational number and then to Rule v) to extend this to all rational
numbers.

The case where α is irrational is beyond the scope of this course.

Important Note: It is worth devoting special attention to Rule v) concerning quo-
tients. It states that lim

n→∞

an
bn

= L
M if M , 0. But what happens if lim

n→∞
bn = M = 0?

It turns out that in this case lim
n→∞

an
bn

sometimes exists and sometimes it does not. For
example, if

an =
1
n

= bn

for each n ∈ N, then if cn = an
bn

, we get that cn = 1 for each n. Consequently,

lim
n→∞

cn = lim
n→∞

an

bn
= 1.

However if an = 1
n and bn = 1

n2 , then in this case

cn =
an

bn
= n

for each n ∈ N. Consequently,

lim
n→∞

an

bn
= lim

n→∞
n = ∞.
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There is an additional observation that we can make. If lim
n→∞

an
bn

exists and lim
n→∞

bn = 0,
then we must have that lim

n→∞
an = 0 as well. To see this we let

lim
n→∞

an

bn
= K.

Then since an = bn ·
an
bn

, Rule iv) shows that

lim
n→∞

an = lim
n→∞

bn ·
an

bn

= lim
n→∞

bn × lim
n→∞

an

bn

= 0 · K
= 0.

Let’s think about why the observation above is true. Suppose that L , 0, but M = 0.
Then as n becomes large, bn becomes very small. However when we divide an by a
very small number, namely bn, the quotient tends to have very large magnitude unless
an is also very small. But if lim

n→∞
an , 0, then eventually the magnitude of bn is much

smaller than that of an, so the ratio an
bn

grows very large. Therefore, the limit cannot
exist.

THEOREM 7 Assume that {an} and {bn} are two sequences and that lim
n→∞

bn = 0. Assume also that

lim
n→∞

an
bn

exists. Then
lim
n→∞

an = 0.

The previous theorem will actually play an important role in this course. We will be
able to use it to establish a similar result for limits of functions, and then we will rely
on this new result to show that differentiability implies continuity.

REMARK

Rule vii) states that if lim
n→∞

an = L, then for any k > 0, lim
n→∞

an+k = L as well. In
particular, we will later use the fact that if lim

n→∞
an = L, then

lim
n→∞

an+1 = L

to help us find the limit of a recursively defined sequence.

This rule is really just an observation that convergence is about the behaviour of the
tail of a sequence. We can in fact change any finite number of the terms in a sequence
without impacting convergences.
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EXAMPLE 6 Find the limit for the sequence { n+3
n+1 }.

SOLUTION

If we let n = 1000, we get a1000 = 1003
1001 = 1.001998 . . ., while if we let n = 10000000,

we get a10000000 = 10000003
10000001 = 1.0000002 . . .. As you might guess, as n gets larger { n+3

n+1 }

gets closer and closer to 1. Hence, we would expect lim
n→∞

n+3
n+1 = 1. Let’s see how we

can use the Arithmetic Rules for Limits of Sequences to verify this result.

First notice that we can remove a factor of n from both the numerator and denomina-
tor to get

n + 3
n + 1

= (
n
n

)(
1 + 3

n

1 + 1
n

)

=
1 + 3

n

1 + 1
n

From this we see that lim
n→∞

n+3
n+1 = lim

n→∞

1+ 3
n

1+ 1
n
.

We can now apply our limit rules to get that

lim
n→∞

n + 3
n + 1

= lim
n→∞

1 + 3
n

1 + 1
n

=

lim
n→∞

1 + lim
n→∞

3
n

lim
n→∞

1 + lim
n→∞

1
n

=

lim
n→∞

1 + 3 lim
n→∞

1
n

lim
n→∞

1 + lim
n→∞

1
n

=
1 + 3(0)

1 + 0
= 1

just as we expected.

The next example is similar to the previous one. You may want to try to do this
question before reading the solution.

EXAMPLE 7 Find the limit for the sequence { 3n2+6n−3
n2+2n }.
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SOLUTION

First notice that we can again factor out the largest power of n, namely n2, from each
of the numerator and denominator to get

3n2 + 6n − 3
n2 + 2n

=

(
n2

n2

) 3 + 6
n −

3
n2

1 + 2
n


=

3 + 6
n −

3
n2

1 + 2
n

Applying the rules of limits as in the previous example gives us

lim
n→∞

3n2 + 6n − 3
n2 + 2n

= lim
n→∞

3 + 6
n −

3
n2

1 + 2
n

= 3

EXAMPLE 8 Consider the recursively defined sequence

a1 = 1 and an+1 =
1

1 + an
.

At this point it is likely impossible for you to determine if this sequence converges or
diverges. To help you gain an understanding for how the sequence behaves, consider
the following table that contains the exact of values of an and their 7-decimal place
equivalents for n from 1 to 25:

n an Decimal

1 1 1.0000000
2 1

2 .5000000
3 2

3 .6666666
4 3

5 .6000000
5 5

8 .6250000
6 8

13 .6153846
7 13

21 .6190476
8 21

34 .6176470
9 34

55 .6181818
10 55

89 .6179775
11 89

144 .6180555
12 144

233 .6180257
13 233

377 .6180371

n an Decimal

14 377
610 .6180327

15 610
987 .6180344

16 987
1597 .6180338

17 1597
2584 .6180340

18 2584
4181 .6180339

19 4181
6765 .6180340

20 6765
10946 .6180339

21 10946
17711 .6180339

22 17711
28657 .6180339

23 28657
46368 .6180339

24 46368
75025 .6180339

25 75025
121393 .6180339
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Notice that the terms of this sequence do seem to be getting closer together. In fact,
the values of an agree up to the first 7 decimal places for n from 20 to 25. This is
strong evidence to suggest that this sequence converges to a value near 0.6180339, but
this is still not a proof of convergence. Indeed, the sequence does actually converge,
but we will not provide a proof of this statement here. However, once we know it
converges, we can us the rules of limits to find the value of the limit. How do we do
this?

Assume that lim
n→∞

an = L. We begin with the recursive definition:

an+1 =
1

1 + an
.

First note that since a1 = 1 > 0, all of the subsequent terms will also be positive.
This shows that L ≥ 0. From Rule vii) we get that lim

n→∞
an+1 = L as well. But then the

rules of limits give us

L = lim
n→∞

an+1

= lim
n→∞

1
1 + an

=
1

1 + lim
n→∞

an

=
1

1 + L
.

This means that
L =

1
1 + L

.

Cross-multiplication shows that

L(L + 1) = 1

and hence that
L2 + L − 1 = 0.

We use the quadratic formula to get that

L =
−1 ±

√
(1)2 − 4(1)(−1)

2(1)

=
−1 ±

√
5

2

To determine L, recall that we must have L ≥ 0. This means that

L =
−1 +

√
5

2
.
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Finally, you can use your calculator to see that

L =
−1 +

√
5

2
= .6180339 . . .

exactly as the table of values predicted.

EXAMPLE 9 Evaluate lim
n→∞

3n2+2n−1
4n2+2 .

SOLUTION

Note that

lim
n→∞

3n2 + 2n − 1
4n2 + 2

= lim
n→∞

n2

n2 ·
3 + 2

n −
1
n2

4 + 2
n2

(∗)

= lim
n→∞

3 + 2
n −

1
n2

4 + 2
n2

=
3
4

Observation: If we look at (∗), then we see that for large values of n the terms 2
n , −1

n2

and 2
n2 are all very close to 0 and as a result when n is large 3n2+2n−1

4n2+2 behaves like

3n2

4n2 =
3
4
.

EXAMPLE 10 Evaluate lim
n→∞

3n2+2n−1
4n3+2 .
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SOLUTION

Note that

lim
n→∞

3n2 + 2n − 1
4n3 + 2

= lim
n→∞

n2

n3 ·
3 + 2

n −
1
n2

4 + 2
n3

= lim
n→∞

1
n
·

3 + 2
n −

1
n2

4 + 2
n3

(∗∗)

= lim
n→∞

1
n
· lim

n→∞

3 + 2
n −

1
n2

4 + 2
n2

= 0 ·
3
4

= 0

Observation: If we look at (∗∗), then we see that for large values of n the terms 2
n ,

−1
n2 and 2

n2 are all very close to 0 and as a result when n is large 3n2+2n−1
4n3+2 behaves like

3n2

4n3 =
3

4n

which converges to 0.

EXAMPLE 11 Consider the sequence
{

3n2+5
n3/2+2

}
. We know that

3n2 + 5
n3/2 + 2

=
n3/2

n3/2 ·
3n1/2 + 5

n3/2

1 + 2
n3/2

≥
3n1/2

1 + 2
=
√

n,

which tells us that the sequence grows without bound. This shows that
lim
n→∞

3n2+5
n3/2+2 = ∞.

Alternatively, by factoring out the highest power from both the numerator and de-
nominator we get

lim
n→∞

3n2 + 5
n3/2 + 2

= lim
n→∞

n2

n
3
2

·
3 + 5

n2

1 + 2
n3/2

(∗ ∗ ∗)

= lim
n→∞

√
n ·

3 + 5
n2

1 + 2
n3/2

= ∞

Observation: If we look at (∗ ∗ ∗), then we see that for large values of n the terms
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5
n2 and 2

n3/2 are both very close to 0 and as a result when n is large 3n2+5
n3/2+2 behaves like

n2

n
3
2

· 3 = 3n
1
2

which approaches∞.

EXAMPLE 12 Let

an =
b0 + b1n + b2n2 + b3n3 + · · · + b jn j

c0 + c1n + c2n2 + · · · + cknk .

Consider the sequence {an}. By factoring out n j from the numerator and nk from the
denominator and rewriting the sequence as

an =
n j

nk

[ b0
n j + b1

n j−1 + b2
n j−2 + b3

n j−3 + · · · + b j
c0
nk + c1

nk−1 + c2
nk−2 + · · · + ck

]
,

we can show that

lim
n→∞

an =


b j

ck
if j = k

0 if j < k
∞ if j > k and b j

ck
> 0

−∞ if j > k and b j

ck
< 0.

Then we get that for large n

b0 + b1n + b2n2 + b3n3 + · · · + b jn j

c0 + c1n + c2n2 + · · · + cknk ∼
b jn j

cknk =
b j

ck
n j−k.

EXAMPLE 13 Consider the sequence {an} = {
√

n2 + n − n}. We could try to evaluate this sequence
by separating the components and arguing that

lim
n→∞

√
n2 + n − n = lim

n→∞

√
n2 + n − lim

n→∞
n = ∞−∞.

However,∞−∞ has no mathematical meaning.

We could try evaluating a few terms for large values of the index n. For example,
a100 = 0.498756211 and a106 = 0.499999875. These calculations suggest that the
limit might be 1

2 . But how do we show this? It turns out that we can use the following
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trick (the conjugate) and write

√
n2 + n − n = (

√
n2 + n − n) ·

√
n2 + n + n
√

n2 + n + n

=
(n2 + n) − n2

√
n2 + n + n

=
n

√
n2 + n + n

=
n
n
·

1√
1 + 1

n + 1

=
1√

1 + 1
n + 1

It follows that
lim
n→∞

√
n2 + n − n = lim

n→∞

1√
1 + 1

n + 1
=

1
2
.

4.2 Squeeze Theorem

We have seen that there are natural rules of arithmetic for sequences, but some care
must be taken to meet all of the underlying conditions. We illustrate this with the
following example:

EXAMPLE 14 Let an =
sin(n)

n . We want to find the limit of the sequence {an}. We would like to argue
that:

lim
n→∞

an =

(
lim
n→∞

sin(n)
)
·

(
lim
n→∞

1
n

)
=

(
lim
n→∞

sin(n)
)
· 0 = 0.

However, it can be shown that the sequence {sin(n)} does not converge, and so we
cannot use our Product Rule iv) for Sequences to conclude that the limit is 0.

Intuitively, we can see that the limit is indeed 0 because the sine function is never
larger than 1 in absolute value. Dividing by n will cause sin(n)

n to converge to 0 at least
as quickly as 1

n . Alternatively, since | sin(n)| ≤ 1 for all n ∈ N, we have that

|an| =

∣∣∣∣∣sin(n)
n

∣∣∣∣∣ ≤ 1
n

for all n. But this means that

−1
n
≤

sin(n)
n
≤

1
n
.
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That is, { sin(n)
n } is “squeezed” between two sequences that converge to the same limit:

0.

1
n
−1
n

sin(n)
n

−1
n

1
n

1

0.5

0

-0.5

-1

5 10 15 20 25

sin(n)
n

The diagram above suggests that the sequence
{

sin(n)
n

}
does indeed converge and that

the limit is 0 as we expected. But must
{

sin(n)
n

}
actually converge? And if

{
sin(n)

n

}
converges, is its limit actually 0?

The answer to these questions can be obtained from the following very useful rule
called the Squeeze Theorem for Sequences.

THEOREM 8 Squeeze Theorem for Sequences

Assume that an ≤ bn ≤ cn for all n ∈ N, and

lim
n→∞

an = L = lim
n→∞

cn.

Then {bn} converges and lim
n→∞

bn = L.

PROOF

Choose a tolerance ε > 0. Since lim
n→∞

an = L = lim
n→∞

cn , we can find an N0 ∈ N such
that if n ≥ N0, then an ∈ (L − ε, L + ε) and cn ∈ (L − ε, L + ε). But then if n ≥ N0, this
would mean that

L − ε < an ≤ bn ≤ cn < L + ε,

implying that bn ∈ (L − ε, L + ε). This shows that {bn} converges and lim
n→∞

bn = L, as
required.
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cn

an

bn

L

L + ε

L − ε

N0
an

cn

bn

We can now address the problems that we encountered in the previous example.

EXAMPLE 15 We will show that
{

sin(n)
n

}
converges and find its limit. Since | sin(n)| ≤ 1 for all n ∈ N,∣∣∣ sin(n)

n

∣∣∣ ≤ 1
n for all n. Then

−1
n
≤

sin(n)
n
≤

1
n
,

for all n ∈ N. Since lim
n→∞

−1
n = 0 = lim

n→∞
1
n , the Squeeze Theorem shows that

{
sin(n)

n

}
converges and has limit 0.

4.3 Monotone Convergence Theorem

In this section, we will study the convergence of an important class of sequences
called monotonic sequences. We will discover that for sequences in this class, there
is a simple rule for determining whether the sequence converges or diverges, and in
the case of convergence, the limit of the sequence.

DEFINITION Monotonic Sequences

We say that a sequence {an} is:

• increasing if an < an+1, for all n ∈ N.

• non-decreasing if an ≤ an+1, for all n ∈ N.

• decreasing if an > an+1, for all n ∈ N.

• non-increasing if an ≥ an+1, for all n ∈ N.

• monotonic if {an} is either non-decreasing or non-increasing.
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The next example will give us a powerful clue to the nature of convergence for mono-
tonic sequences.

EXAMPLE 16 Let S be the terms in the increasing sequence {1 − 1
n }. That is,

S = {0,
1
2
,

2
3
,

3
4
,

4
5
, · · · }.

Notice that each term is less than 1, but we can get as close to 1 as we like so long as
the index n is large enough. This means that 1 is an upper bound for S and no other
number that is smaller than 1 could be an upper bound. Hence 1 = lub(S ).

We also know that

1 = lim
n→∞

(
1 −

1
n

)
.

It turns out that the fact that the limit and the least upper bound agree is no accident.

Important Observation: Let {an} be a non-decreasing sequence that is bounded
above. Let

L = lub({an}).

We claim that {an} converges to L.

To see why this is the case, we choose a tolerance ε > 0. Then the number L − ε
is strictly smaller than L. This means that L − ε cannot be an upper bound of the
sequence. Therefore, there must be an index N such that

L − ε < aN

L − ε L

aN

Let n ≥ N. Since {an} is non-decreasing

L − ε < aN ≤ an.

However, since L is an upper bound, we have actually shown that for all n ≥ N,

L − ε < aN ≤ an ≤ L.

L − ε L

aN an
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It follows immediately from this inequality that if n ≥ N, an approximates L with an
error that is less than ε. This is exactly what we required for us to conclude that

L = lim
n→∞

an.

If {an} is non-decreasing and not bounded and M is any number, then since M is not
an upper bound for our sequence there must be a N such that

M < aN .

However, if n ≥ N, we have
M < aN ≤ an.

This shows that {an} diverges to∞ or equivalently,

lim
n→∞

an = ∞.

We have just established a simple test for the convergence of a non-decreasing se-
quence.

THEOREM 9 Monotone Convergence Theorem (MCT)

Let {an} be a non-decreasing sequence.

1. If {an} is bounded above, then {an} converges to L = lub({an}).

2. If {an} is not bounded above, then {an} diverges to∞.

In particular, {an} converges if and only if it is bounded above.

NOTE

A similar statement can be made about non-increasing sequences by replacing the
least upper bound with the greatest lower bound and∞ by −∞.
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EXAMPLES

1. The sequence {−1
n } = {−1, −1

2 ,
−1
3 ,
−1
4 ,
−1
5 , · · · } is increasing and bounded above

by 0. In fact, 0 is the least upper bound of the sequence since

lim
n→∞

−1
n

= 0.

2. The sequence 1, 2, 3, 4, 5, · · · is the simplest example of an increasing sequence
that is not bounded above. It obviously diverges to∞.

3. Consider the recursively defined sequence a1 = 1 and an+1 =
√

3 + 2an.

We have seen this sequence before in Chapter 2, Example 2. As is suggested
in diagram below can show by induction that {an} is increasing and bounded
above by 3.

1

2

3 4

1

2

3

4

0

y = x

y =
√

3 + 2x

a1 a2 a3

Let P(n) be the statement that

an < an+1 < 3.

Since a1 = 1 and a2 =
√

5 < 3 it follows that P(1) is true.

Assume that P(k) holds so that

ak < ak+1 < 3.

Then we also have that

2ak < 2ak+1 < 2 · 3 = 6

and hence that
3 + 2ak < 3 + 2ak+1 < 3 + 2 · 3 = 9.
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Since taking square roots preserves order we get that√
3 + 2ak <

√
3 + 2ak+1 <

√
3 + 2 · 3 =

√
9.

This gives us that
ak+1 < ak+2 < 3

so that P(k + 1) holds. By induction we have that

an < an+1 < 3

for all n ∈ N.
We have shown that {an} is increasing and bounded above by 3. Therefore,
the Monotone Convergence Theorem shows us that the sequence converges.
However, while it is tempting to conclude that the limit of the sequence is 3
we do not yet know this for sure. As of this point we know that 3 is an upper
bound for the sequence but not necessarily the least upper bound.
Let

lim
n→∞

an = L.

We know from our arithmetic rules that if an ≥ 0 and lim
n→∞

an = L, then

lim
n→∞

√
an =

√
L. We can use this property to show that

L = lim
n→∞

an+1

= lim
n→∞

√
3 + 2an

=
√

3 + 2 lim
n→∞

an

=
√

3 + 2L

Given that L =
√

3 + 2L, squaring both sides shows that

L2 = 3 + 2L

or
L2 − 2L − 3 = 0.

Factoring the left-hand side gives

(L + 1)(L − 3) = 0

so L = −1 or L = 3. However, all of the terms in the sequence are positive so
the limit must be greater than or equal to 0. Therefore, L = 3 as expected.

4. Let
S n = 1 +

1
2

+
1
3

+
1
4

+ · · · +
1
n
.

{S n} is called the sequence of partial sums. Since S n+1 − S n = 1
n+1 > 0, this

sequence is increasing. Unfortunately, it is not at all obvious whether or not
the sequence {S n} is bounded. In fact we will soon see that it is not.
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REMARK

We have seen that the Monotone Convergence Theorem follows as a consequence of
the Least Upper Bound Property. What is perhaps less obvious is that if we were to
assume the Monotone Convergence Theorem as an axiom for the real numbers, then
from this we could derive the Least Upper Bound Property.

4.4 Introduction to Series

The Greek philosopher Zeno, who lived from 490-425 BC, proposed many para-
doxes. The most famous of these is the Paradox of Achilles and the Tortoise. In
this paradox, the great warrior Achilles is to race a tortoise. To make the race fair,
Achilles (A) gives the tortoise (T) a substantial head start.

P
0

P
1

A T

Zeno would argue that before Achilles could catch the tortoise, he must first go from
his starting point at P0 to that of the tortoise at P1. However, by this time the tortoise
has moved forward to P2.

P
0

P
1

A T

P
2

This time, before Achilles could catch the tortoise, he must first go from P1 to where
the tortoise was at P2. However, by the time Achilles completes this task, the tortoise
has moved forward to P3.

P
0

P
1

A T

P
2

P
3

Each time Achilles reaches the position that the tortoise had been, the tortoise has
moved ahead further.

P0 P1

AT

P2 P3 Pn-1Pn
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This process of Achilles trying to reach where the tortoise was going ad infinitum led
Zeno to suggest that Achilles could never catch the tortoise.

Zeno’s argument seems to be supported by the following observation:

Let t1 denote the time it would take for Achilles to get from his starting point P0 to
P1. Let t2 denote the time it would take for Achilles to get from P1 to P2, and let t3

denote the time it would take for Achilles to get from P2 to P3. More generally, let
tn denote the time it would take for Achilles to get from Pn−1 to Pn. Then the time it
would take to catch the tortoise would be at least as large as the sum

t1 + t2 + t3 + t4 + · · · + tn + · · ·

of all of these infinitely many time periods.

Since each tn > 0, Achilles is being asked to complete infinitely many tasks (each of
which takes a positive amount of time) in a finite amount of time. It may seem that
this is impossible. However, this is certainly a paradox because we know from our
own experience that someone as swift as Achilles will eventually catch and even pass
the tortoise. Hence, the sum

t1 + t2 + t3 + t4 + · · · + tn + · · ·

must be finite.

This statement brings into question the following very fundamental problem:

Problem: Given an infinite sequence {an} of real numbers, what do we mean by the
sum

a1 + a2 + a3 + a4 + · · · + an + · · ·?

To see why this is an issue, consider the following example:

EXAMPLE 17 Let an = (−1)n−1. Consider

1 + (−1) + 1 + (−1) + 1 + (−1) + 1 + (−1) + · · · .

If we want to find this sum, we could try to use the associative property of finite sums
and group the terms as follows:

[1 + (−1)] + [1 + (−1)] + [1 + (−1)] + [1 + (−1)] + · · · .

This would give
0 + 0 + 0 + 0 + · · ·

which must be 0. Therefore, we might expect that

1 + (−1) + 1 + (−1) + 1 + (−1) + 1 + (−1) + · · · = 0.

This makes sense since there appears to be the same number of 1’s and −1’s, so
cancellation should make the sum 0.
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However, if we choose to group the terms differently,

1 + [(−1) + 1] + [(−1) + 1] + [(−1) + 1] + [(−1) + 1] + · · · ,

then we get
1 + 0 + 0 + 0 + 0 + · · · = 1.

Both methods seem to be equally valid so we cannot be sure of what the real sum
should be. It seems that the usual rules of arithmetic do not hold for infinite sums.
We must look for an alternate approach.

Since finite sums behave very well, we might try adding up all of the terms up to a
certain cut-off k and then see if a pattern develops as k gets very large. This is in fact
what we will do.

DEFINITION Series

Given a sequence {an}, the formal sum

a1 + a2 + a3 + a4 + · · · + an + · · ·

is called a series. (The series is called formal because we have not yet given it a
meaning numerically.)

The an’s are called the terms of the series. For each term an, n is called the index of
the term.

We will denote the series by
∞∑

n=1

an.

For each k, we define the k-th partial sum S k by

S k =

k∑
n=1

an.

We say that the series
∞∑

n=1
an converges if the sequence {S k} of partial sums converges.

In this case if L = lim
k→∞

S k, then we write

∞∑
n=1

an = L

and assign the sum this value. Otherwise, we say that the series
∞∑

n=1
an diverges.
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Note that all of the series we have listed so far have started with the first term indexed
by 1. This is not necessary. In fact, it is quite common for a series to begin with the
initial index being 0. In fact, the series can start at any initial point.

∞∑
n= j

an = a j + a j+1 + a j+2 + a j+3 + . . .

initial index

final index

We can apply the previous definitions to the first series that we considered in this
section.

EXAMPLE 18 Let an = (−1)n−1. Then

S 1 = a1 = 1
S 2 = a1 + a2 = S 1 + a2 = S 1 − 1 = 0
S 3 = a1 + a2 + a3 = S 2 + a3 = S 2 + 1 = 1
S 4 = a1 + a2 + a3 + a4 = S 3 + a4 = S 3 − 1 = 0
S 5 = a1 + a2 + a3 + a4 + a5 = S 4 + a5 = S 4 + 1 = 1

...

Therefore,

S k =

{
0 if k is even
1 if k is odd

This clearly shows that {S k} diverges, and hence so does
∞∑

n=1
(−1)n−1.

EXAMPLE 19 Determine if the series
∞∑

n=1

1
n2 + n

converges or diverges.

Observe that
an =

1
n2 + n

=
1

n(n + 1)
Moreover, we can write

an =
1

n(n + 1)
=

1
n
−

1
n + 1

.

Therefore the series becomes
∞∑

n=1

(
1
n
−

1
n + 1

)
.
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To calculate S k note that

S k =

k∑
n=1

(
1
n
−

1
n + 1

)
= (1 −

1
2

) + (
1
2
−

1
3

) + (
1
3
−

1
4

) + (
1
4
−

1
5

) + · · · + (
1
k
−

1
k + 1

).

If we re-group the terms in the last expression, we get

S k = (1 −
1
2

) + (
1
2
−

1
3

) + (
1
3
−

1
4

) + (
1
4
−

1
5

) + · · · + (
1
k
−

1
k + 1

)

= 1 − (
1
2
−

1
2

) − (
1
3
−

1
3

) − (
1
4
−

1
4

) − (
1
5
−

1
5

) − · · · − (
1
k
−

1
k

) −
1

k + 1

= 1 − 0 − 0 − 0 − 0 − · · · − 0 −
1

k + 1

= 1 −
1

k + 1

Then

lim
k→∞

S k = lim
k→∞

(
1 −

1
k + 1

)
= 1.

This shows that the series
∞∑

n=1

1
n2+n converges and that

∞∑
n=1

1
n2 + n

= 1.

What is actually remarkable about the series above is not that we were able to show
that it converges, but rather that we could find its value so easily. Generally, this will
not be the case. In fact, even if we know a series converges, it may be very difficult
or even impossible to determine the exact value of its sum. In most cases, we will
have to be content with either showing that a series converges or that it diverges and,
in the case of a convergent series, estimating its sum.

The next section deals with an important class of series known as geometric series.
Not only can we easily determine if such a series converges, but we can easily find
the sum.

4.4.1 Geometric Series

Perhaps the most important type of series are the geometric series.
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DEFINITION Geometric Series

A geometric series is a series of the form

∞∑
n=0

rn = 1 + r + r2 + r3 + r4 + · · ·

The number r is called the ratio of the series.

If r = (−1), the series is
∞∑

n=0

(−1)n = 1 + (−1) + 1 + (−1) + 1 + (−1) + 1 + (−1) + · · ·

which we have already seen diverges.

If r = 1, the series is
∞∑

n=0

1n = 1 + 1 + 1 + 1 + 1 + · · ·

which again diverges since S k =
k∑

n=0
1n = k + 1 diverges to∞.

Question: Which if any of the geometric series converge?

Assume that r , 1. Let

S k = 1 + r + r2 + r3 + r4 + · · · + rk.

Then

rS k = r(1 + r + r2 + r3 + r4 + · · · + rk)
= r + r2 + r3 + r4 + · · · + rk+1.

Therefore

S k − rS k = (1 + r + r2 + r3 + r4 + · · · + rk) − (r + r2 + r3 + r4 + · · · + +rk + rk+1)
= 1 − rk+1.

Hence
(1 − r)S k = S k − rS k = 1 − rk+1

and since r , 1,

S k =
1 − rk+1

1 − r
.

The only term in this expression that depends on k is rk+1, so lim
k→∞

S k exists if and only

if lim
k→∞

rk+1 exists. However, if | r |< 1, then rk+1 becomes very small for large k. That

is lim
k→∞

rk+1 = 0.
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If | r |> 1, then | rk+1 | becomes very large as k grows. That is, lim
k→∞

| rk+1 |= ∞.

Hence, lim
k→∞

rk+1 does not exist.

Finally, if r = −1, then rk+1 alternates between 1 and −1, so it again diverges. This

shows that rk+1, and hence the series
∞∑

n=0
rn, will converge if and only if | r |< 1.

Moreover, in this case,

lim
k→∞

S k = lim
k→∞

1 − rk+1

1 − r

=

1 − lim
k→∞

rk+1

1 − r

=
1

1 − r

THEOREM 10 Geometric Series Test

The geometric series
∞∑

n=0
rn converges if | r |< 1 and diverges otherwise.

If | r |< 1, then
∞∑

n=0

rn =
1

1 − r

EXAMPLE 20

Evaluate
∞∑

n=0

(
1
2

)n
.

SOLUTION This is a geometric series with ratio r = 1
2 . Since 0 < 1

2 < 1, the

Geometric Series Test shows that
∞∑

n=0

(
1
2

)n
converges. Moreover,

∞∑
n=0

(
1
2

)n

=
1

1 − 1
2

= 2.

4.4.2 Divergence Test

It makes sense that if we are to add together infinitely many positive numbers and get
something finite, then the terms must eventually be small. We will now see that this
statement holds for any convergent series.
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THEOREM 11 Divergence Test

Assume that
∞∑

n=1
an converges. Then

lim
n→∞

an = 0.

Equivalently, if lim
n→∞

an , 0 or if lim
n→∞

an does not exist, then
∞∑

n=1
an diverges.

The Divergence Test gets its name because it can identify certain series as being
divergent, but it cannot show that a series converges.

EXAMPLE 21 Consider the geometric series
∞∑

n=0
rn with | r |≥ 1. Then lim

n→∞
rn = 1 if r = 1 and it does

not exist for all other r with | r |≥ 1 (i.e., if r = −1 or if |r| > 1). The Divergence Test

shows that if | r |≥ 1, then
∞∑

n=0
rn diverges.

The Divergence Test works for the following reason. Assume that
∞∑

n=1
an converges to

L. This is equivalent to saying that

lim
k→∞

S k = L.

By the basic properties of convergent sequences, we get that

lim
k→∞

S k−1 = L

as well.

However, for k ≥ 2,

S k − S k−1 =

k∑
n=1

an −

k−1∑
n=1

an

= (a1 + a2 + a3 + a4 + · · · + ak−1 + ak) − (a1 + a2 + a3 + a4 + · · · + ak−1)
= ak

Therefore,

lim
k→∞

ak = lim
k→∞

(S k − S k−1)

= lim
k→∞

S k − lim
k→∞

S k−1

= L − L
= 0.
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EXAMPLES

1. Consider the sequence { n
n+1 }. Then

lim
n→∞

n
n + 1

= 1.

Therefore, the Divergence Test shows that

∞∑
n=1

n
n + 1

diverges.

2. While it is difficult to do so, it is possible to show that

lim
n→∞

sin(n)

does not exist. Therefore, the Divergence Test shows that the series

∞∑
n=1

sin(n)

diverges.

3. The Divergence Test shows that if either lim
n→∞

an , 0 or if lim
n→∞

an does not exist,

then
∞∑

n=1
an diverges. It would seem natural to ask if the converse statement

holds. That is:

Question: If lim
n→∞

an = 0, does this mean that
∞∑

n=1
an converges?

Let an = 1
n . Let

S k =

k∑
n=1

1
n

= 1 +
1
2

+
1
3

+
1
4

+
1
5

+ · · ·
1
k
.
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Then

S 1 = 1

S 2 = 1 +
1
2

S 4 = 1 +
1
2

+
1
3

+
1
4

= 1 +
1
2

+ (
1
3

+
1
4

)

> 1 +
1
2

+ (
1
4

+
1
4

)

= 1 +
1
2

+
1
2

= 1 +
2
2

S 8 = 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

= 1 +
1
2

+ (
1
3

+
1
4

) + (
1
5

+
1
6

+
1
7

+
1
8

)

> 1 +
1
2

+ (
1
4

+
1
4

) + (
1
8

+
1
8

+
1
8

+
1
8

)

= 1 +
1
2

+
1
2

+
1
2

= 1 +
3
2

...

We have seen that
S 1 = S 20 = 1 + 0

2
S 2 = S 21 = 1 + 1

2
S 4 = S 22 > 1 + 2

2
S 8 = S 23 > 1 + 3

2
...

A pattern has emerged. In general, we can show that for any m

S 2m ≥ 1 +
m
2
.

However, the sequence 1 + m
2 grows without bounds. It follows that the partial

sums of the form S 2m also grow without bound. This shows that the series
∞∑

n=1

1
n

diverges to∞ as well.

This example shows that even if lim
n→∞

an = 0, it is still possible for
∞∑

n=1
an to diverge!!!
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Note:

1. The sequence { 1n } was first studied in detail by Pythagoras who felt that these
ratios represented musical harmony. For this reason the sequence {1n } is called

the Harmonic Progression and the series
∞∑

n=1

1
n is called the Harmonic Series.

We have just shown that the Harmonic Series
∞∑

n=1

1
n diverges to ∞. However,

the argument to do this was quite clever. Instead, we might ask if we could
use a computer to add up the first k terms for some large k and show that the
sums are getting large? In this regard, we may want to know how many terms
it would take so that

S k = 1 +
1
2

+
1
3

+
1
4

+
1
5

+ · · ·
1
k
> 100?

The answer to this question is very surprising. It can be shown that k must be
at least 1030, which is an enormous number. No modern computer could ever
perform this many additions!!!

2. Recall that in Zeno’s paradox, Achilles had to travel infinitely many distances
in a finite amount of time to catch the tortoise. If Dn represents the distance
between points Pn−1 (where Achilles is after n − 1 steps) and Pn (where the
tortoise is currently located), then the Dn’s are becoming progressively smaller.

If tn is the time it takes Achilles to cover the distance Dn, then the tn’s are also
becoming progressively smaller. In fact, they are so small that lim

n→∞
tn = 0 and

indeed it is reasonable to assume that
∞∑

n=1

tn

converges! This is how we can resolve Zeno’s paradox.

4.5 Bolzano-Weierstrass Theorem

We have seen that every convergent sequence is bounded and that for monotonic
sequences boundedness will also imply convergence. However, it is easy to see that
boundedness will not imply convergence without some additional conditions since
the sequence

{(−1)n+1} = {1,−1, 1,−1, . . .}

is clearly bounded but does not converge. It is worth noting however that this se-
quence does have a convergent subsequence namely

{a2k−1} = {1, 1, 1, . . .}.
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In fact this sequence has infinitely many convergent subsequences.

In this section we will consider the following question:

Question: Under what conditions can we guarantee that a sequence {an} will have a
convergent subsequence.

Of course it would also make sense to ask if all sequences have convergent subse-
quences. The first of the two examples below shows this is not the case.

EXAMPLE 22

The sequence an = n has no convergent subsequences since every subsequence {nk}

is unbounded.

EXAMPLE 23 Since convergent sequences are bounded we might be tempted to think that only
bounded sequences could have convergent subsequences. However, the next se-
quence

{n(−1)n+1
} = {1,

1
2
, 3,

1
4
, 5,

1
6
, . . .}

is unbounded since the odd index terms grow without bound, but

{a2k} = {
1
2
,

1
4
, . . . ,

1
2k
, . . .}

converges to 0.

At this point the best that we can say is that for {an} to have a convergent subsequence,
it must at the very least have a bounded subsequence. We will show that in fact that
having a bounded subsequence is sufficient to ensure that {an} also has a convergent
subsequence by showing that every bounded sequence has a convergent subsequence.

REMARK
Why is the claim that every bounded sequence has a convergent subsequence reason-
able? To see why this might be lets assume that L is the limit of such a subsequence.
Then for every open interval I containing L, no matter how small there must be in-
finitely many terms from our sequence within I. It is this clustering of any term in
the sequence that is characteristic of a convergent subsequence.

Suppose that {an} is bounded and
that {an} ⊂ [−M,M]. If we cut the
interval [−M,M] up into a large
number of small subintervals,
then an infinite version of the
pigeon hole principle tells us that
one of these subintervals must
contain infinitely many terms of
our sequence.

����
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If we take one such subinterval
and break it up into even finer
subintervals we must again have
one of these that contains
infinitely many terms in our
sequence. Repeating this process
over and over will eventually lead
to us finding a point L with the
property that no matter how
small the subinterval around L
might be it still contains infinitely
many terms in our sequence.
This point L is a candidate for the
limit of a subsequence.

����

L

How can we show analytically that every bounded sequence has a convergent subse-
quence?

Strategy: Suppose we could show that every sequence {an} has a monotonic subse-
quence {ank}. If {an} is assumed to be bounded, then {ank} would be both bounded and
monotonic. We could then apply the Monotone Convergence Theorem to show that
{ank} converges.

REMARK

Looking at the graph of the sequence {cos(n)} it is not at all obvious that this sequence
has a monotonic subsequence.

cos(n)

However, we will in fact show that this is the case. To do so we must first introduce
some terminology.

Calculus 1 (B. Forrest)2



Section 4.5: Bolzano-Weierstrass Theorem 135

DEFINITION Peak Points

Let {an} be a sequence. Then the index n0 ∈ N is called a peak point for the sequence
{an} if

ak < an0

for every k > n0.

n0

THEOREM 12 The Peak Point Lemma

Every sequence {an} has a monotonic subsequence {ank}.

PROOF

Let P be the collection of peak points.

Case 1: P is infinite.

Let n1 be the least element of P. Since P is infinite P \ {n1} is non-empty. Let n2 be
the least element of P \ {n1}. Next let n3 be the least element of P \ {n1, n2}.

Given peak points n1 < n2 < · · · < nk, let nk+1 be the least element of P \
{n1, n2, . . . , nk}. This process allows us to recursively define a sequence

n1 < n2 < · · · < nk < nk+1 < · · ·

of peak points for {an}. It follows that {ank} is decreasing because nk being a peak
point implies that

ank > ank+1 .
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n10
n9

n8
n7n6n3

n4
n5n2n1

Case 2: P is finite.

Let n1 be larger than any peak point. Since n1 is not a peak point there is an n1 < n2

such that an1 ≤ an2 . Since n2 is not a peak point there is an n1 < n2 < n3 such that
an1 ≤ an2 ≤ an3 .

Proceeding this way gives n1 < n2 < n3 < · · · < nk < nk+1 < · · · with

an1 ≤ an2 ≤ an3 ≤ · · · ≤ ank ≤ ank+1 ≤ · · · .

n
k+1

n
kn3

n4
n5n1

n2

Summary: If {an} has infinitely many peak points, then {an} has a decreasing subse-
quence while if it has only finitely many peak points there will be a non-decreasing
subsequence. This proves that every sequence {an} does indeed have a monotonic
subsequence.

THEOREM 13 Bolzano-Weierstrass Theorem (BWT)

Every bounded sequence has a convergent subsequence.
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PROOF

Assume that {an} is a bounded sequence. By the Peak point Lemma, {an} has a
monotonic subsequence {ank}. However, {ank} is also bounded and as a result the
Monotone Convergence Theorem shows that {ank} converges.

4.6 Limit Points

We know that if a sequence converges to L, then every subsequence converges to
L as well. We have also just seen that even non-convergent sequences can have
subsequences which converge. This leads us to make the following definition.

DEFINITION Limit Points of a Sequence

An α ∈ R is called a limit point of {an} if there is a subsequence {ank} of {an} such
that

lim
k→∞

ank = α.

We denote the set of limit points of {an} by LIM({an}).

REMARK

The Bolzano-Weierstrass Theorem shows that every bounded sequence has at least
one limit point.

EXAMPLE 24

i) If lim
n→∞

an = L, then LIM({an}) = {L}.

ii) LIM({1, 1
2 , 3,

1
4 , · · · , n

(−1)n+1
, · · · }) = {0}

Despite having a unique limit point this sequence diverges! This shows that
having a unique limit point is not sufficient to prove the sequence converges.
However, it can be shown that if the sequence is bounded it is indeed the case
that {an} converges if and only if it has a unique limit point.

iii) LIM({1,−1, 1,−1, · · · }) = {−1, 1}.

iv) LIM({1, 2, 3, 4, · · · }) = ∅.

v) Consider the sequence {cos(n)}. what are the limit points?
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cos(n)

A look at the graph of the sequence {cos(n)} shows a significant amount of
clustering around −1 and 1 suggesting that both values could be limit points of
the sequence. The clustering around 0 is less pronounced. But it turns out that
0 is indeed a limit point. In fact with some work one can show that

LIM({cos(n)}) = [−1, 1].

We end this section with the following question:

Question: Does there exist a sequence {an} such that

LIM({an}) = R?

That is, can we find a sequence so that no matter what α ∈ R we choose, there will
be a subsequence {ank} of {an} converging to α?

4.7 Cauchy Sequences

Aside from monotonic sequences at this point if we want to show that a sequence
converges we first guess what its limit might be, and then proceed with an ε-δ ar-
gument to show that the sequence does indeed converge to this value. One of the
most useful aspects of the Monotone Convergence Theorem is that it often allows
us to show that a sequence converges without explicitly knowing what the value of
the limit might be. This means that we can determine convergence intrinsically from
the data contained within the sequence alone. We do not have to look outside and
first identify a candidate for the limit before concluding convergence. In this section
we will try to find an intrinsic characterization of convergence that can be used for
all sequences rather than just monotonic ones. To see what such a characterization
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might look like let’s make the following observation about the nature of a convergent
sequence:

Key Observation: Assume that {an} converges with limit L. We know then that if
we are far enough out in the tail of the sequence, then all of the terms will be close
to L. If we take two such terms, an and am, then since both are close to L, they must
also be close to one another. To make this more precise we let ε > 0. We can now
find a cutoff N ∈ N so that if k ≥ N, then

|ak − L| <
ε

2
.

Now let n,m ≥ N. Then the Triangle Inequality shows that

|an − am| ≤ |an − L| + |L − am| <
ε

2
+
ε

2
= ε.

That is, if {an} converges, then for every ε > 0, we can find a cutoff N ∈ N such that
if n,m ≥ N, we have

|an − am| < ε.

LL- /2�

(
L+ /2�

)
am

n,m N� 0

an

We have just seen that convergent sequences have tails that cluster together as closely
as we would like. This clustering of the tail gives us a candidate for our intrinsic
characterization of convergence.

DEFINITION Cauchy Sequence

We say that a sequence {an} is Cauchy if for every ε > 0, there exists some N ∈ N
such that if m, n ≥ N, then |an − am| < ε.

We have established the following proposition:

PROPOSITION 14

Every convergent sequence {an} is Cauchy.

We are left to ask:

Fundamental Question: Does every Cauchy sequence converge?

Strategy:We will answer this question in two stages. In fact we will show:
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1) Every Cauchy sequence {an} is bounded.

This will allow us to apply the Bolzano-Weierstrass Theorem to conclude that
{an} has a convergent subsequence {ank}. Of course for a generic sequence
having a convergent subsequence is not enough to show that the sequence con-
verges. However, we will also show that Cauchy sequences have the following
rather remarkable property:

2) If {an} is a Cauchy sequence with a subsequence {ank} converging to L, then
{an} also converges to L.

THEOREM 15 Boundedness of Cauchy Sequences

Every Cauchy sequence is bounded.

PROOF

The proof of this result is very similar to the proof that convergent sequences are
bounded, except we cannot focus our attention on the limit point L. So we need to
manufacture a focal point by making use of the Cauchy criteria.

Choose an N0 such that if n,m ≥ N0 then

| an − am |< 1.

If n ≥ N0, then
| an − aN0 |< 1

and this in turn implies that
| an |<| aN0 | +1.

Let
M = max{| a1 |, | a2 |, · · · , | aN0−1 |, | aN0 | +1}.

Hence
| an |≤ M

for all n ∈ N.

-M M

[ ]( )
n N�

aN0
-1aN0

+1aN0

0
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We now show that if a Cauchy sequence has a convergent subsequence, then it must
itself be convergent.

PROPOSITION 16

Let {an} be Cauchy. Assume that {an} has a subsequence {ank} that converges to L.
Then {an} also converges to L.

PROOF
Outline of the Proof:

1. Choose N0 so that n,m ≥ N0 implies that | an − am |<
ε
2 .

2. Show that for this choice of cutoff N0 that if n ≥ N0, then we have

| an − L |< ε

as desired.

Let’s assume that {an} is Cauchy and that it has a subsequence {ank} that converges to
L. Given ε > 0, we can choose N0 ∈ N so that n,m ≥ N0 implies that

| an − am |<
ε

2
.

We now use the fact that we have a convergent subsequence. Since {ank} converges
to L, we can find a k0 so that nk0 > N0 and

|ank0
− L| <

ε

2
.

Finally, choose any n ≥ N0. The key is that any such n, we have that an must be very
close to ank0

which is in turn very close to L. More precisely, if n ≥ N0, then

| an − L |≤| an − ank0
| + | ank0

− L |<
ε

2
+
ε

2
= ε.

L

|a - L |<�n

an

a| -a |< /2�n
k0

n a| -L |< /2�

k0
n

a
k 0

n

This shows that
lim
n→∞

an = L.
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We are now in a position to show that all Cauchy Sequences converge.

THEOREM 17 Completeness Theorem for R

Every Cauchy sequence {an} converges.

PROOF

If {an} is Cauchy, then {an} is bounded. By the Bolzano-Weierstrass Theorem, {an}

has a convergent subsequence {ank}. Therefore, {an} also converges.

REMARK

The Completeness Theorem shows that a sequence in R converges if and only if it is
Cauchy. This theorem is far more profound than it might seem. In fact the following
are logically equivalent.

1. LUBP: Every non-empty bounded subset of R has a least upper bound.

2. MCT: Every bounded monotonic sequence converges.

3. BWT: Every bounded sequence has a convergent subsequence.

4. Every real number has a decimal expansion.

5. Completeness Theorem: Every Cauchy sequence converges.

All of these are often referred to as the Completeness Property for R.

REMARK

A common mistake is to assume that if {an} is such that

lim
n→∞

an+1 − an = 0,

then {an} is Cauchy. While every Cauchy sequence has this property, this does not
imply that the sequence is Cauchy as the next example shows.

EXAMPLE 25 Let

an = 1 +
1
2

+
1
3

+ · · · +
1
n

.
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Then

an+1 − an = (1 +
1
2

+
1
3

+ · · · +
1
n

+
1

n + 1
) − (1 +

1
2

+
1
3

+ · · · +
1
n

)

=
1

n + 1

→ 0

but {an} diverges to∞ so {an} is not Cauchy.
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Chapter 5

Limits and Continuity

Previously we studied what was meant by the limit of a sequence. Now we will
focus on limits for functions, something that you should be familiar with from your
previous Calculus course. It is important to note that these ideas are actually very
similar in flavour and we will be able to use what we have learned about limits of
sequences to give us a better understanding of limits for functions.

5.1 Introduction to Limits for Functions

Let’s begin by stating the common heuristic definition of a limit.

Heuristic Definition of the Limit of a Function at a Point x = a
We say that L is the limit of a function f as x approaches a if, as x gets closer and
closer to a without ever reaching a, f (x) gets closer and closer to L.

a

L

x

f

We will examine this definition with the following example:
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EXAMPLE 1 Consider the two functions f (x) = x2−1
x−1 and g(x) = x + 1. Factoring x2 − 1, we get

x2 − 1 = (x + 1)(x − 1). It might be tempting to use a little algebra to write

f (x) =
x2 − 1
x − 1

=
(x + 1)(x − 1)

x − 1
= x + 1
= g(x)

Does this mean that f and g are actually the same function? The answer is almost,
but not quite. It is true that provided x , 1, the two functions will assign x to the
same value. However, you will notice that f (x) is not defined at x = 1, whereas g(x)
is defined at this point. This means that the two functions have different domains and
that is enough to make them different functions.

The graph of g(x) = x + 1 is a straight line
with slope 1.

4

2

10-4 2 4-2
-2

g(x)

What happens if we graph f (x) = x2−1
x−1 ?

We would get the same picture as the
graph of g(x) = x + 1, except there is a
hole in the graph corresponding to where
x = 1.

(Note: When drawing a graph of this
type, it is common practise to exaggerate
the hole with a hollow circle.)

4

2

10-4 2 4-2
-2

f (x)

We want to focus on the values of f (x) when x is very close to, but not equal to, 1.

The following is a table of some select values of f (x) with x near 1.

x f (x)

0 1
0.1 1.1
0.5 1.5
0.75 1.75
0.9 1.9
0.99 1.99
0.999 1.999
0.99999 1.99999
0.99999999 1.99999999

x f (x)

2 3
1.9 2.9
1.5 2.5
1.25 2.25
1.1 2.1
1.01 2.01
1.001 2.001
1.00001 2.00001
1.00000001 2.00000001
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We can see from the table of values that as x gets very close to 1, then f (x) gets very
close to 2. So we would like to say that 2 is the limit of f (x) as x approaches 1.

As was the case with sequences, our heuristic definition of limits for functions lacks
precision. In fact, in our previous example, it is important to note that we can actually
get as close as we like to 2 provided that we choose x close enough to, but not equal
to, 1. (Remember, f (x) is not defined at x = 1.) How can we quantify this statement?

To answer this question we will proceed in a manner similar to our study of limits
of sequences. We would like to be able to specify a tolerance ε > 0 and show that
as x gets close enough to 1, the values of f (x) approximate our limit 2 within our
tolerance. In the case of sequences, we had to present a cutoff N ∈ N so that for any
n ≥ N, our term an was within ε of our limit. This time we need to present a distance
δ > 0 so that if the distance from x to 1 is less than the distance δ, and if x , 1, then
we would have that f (x) approximates our limit 2 within our tolerance.

That is, if 0 <| x − 1 |< δ, then | f (x) − 2 |< ε.

In fact, in this section we will show that for any tolerance ε > 0, if we let δ = ε, then
for any x with 0 < |x − 1| < δ, we would have | f (x) − 2| < ε. (This works because
y = x + 1 represents a line with slope m = 1.) As such the function f (x) = x2−1

x−1 has a
limit of 2 as x approaches 1.

NOTE

In this course, δ is the Greek letter delta and it will be used to represent a cutoff

distance in the definition of limits. It plays a similar role as the cutoff number N in
the definition of the limit of a sequence.

With the previous example in mind, we will now present a more precise definition of
the notion of a limit of a function at a point x=a.

DEFINITION Limit of a Function at a Point x = a

Let f be a function and let a ∈ R. We say that f has a limit L as x approaches a, or
that L is the limit of f (x) at x = a, if for any positive tolerance ε > 0, we can find a
cutoff distance δ > 0 such that if the distance from x to a is less than δ, and if x , a,
then f (x) approximates L with an error less than ε.

That is, if 0 <| x − a |< δ, then | f (x) − L |< ε.

In this case, we write
lim
x→a

f (x) = L.

(Note: We sometimes write x → a as shorthand for “x approaches a” and f (x) → L
as shorthand for “lim

x→a
f (x) = L.”
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Just as we did for sequences, we can illustrate how this works step by step.

Start with a function f that we suspect has a limit of L as x→ a.

L

a x

f

First choose some positive number ε to act as the tolerance. The horizontal lines
y = L + ε and y = L − ε are called the error bounds.

L

L + ε

L − ε

a

ε
{
ε
{

Our task is to find a δ > 0 such that if 0 <| x − a |< δ, then | f (x) − L |< ε. This
means that on the interval (a − δ, a + δ), excluding x = a, the values of f (x) all lie
between the lines of the error bounds. That is, if 0 <| x − a |< δ, then the graph of
the function lies entirely within these bounds. To do this we can choose δ as in the
following diagram.
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a

a + δa − δ

x

L

L + ε

L − ε

ε
{
ε
{

|x−a|

| f (x) − L|
{
δ δ

Next, someone else comes along with a smaller tolerance ε1 for us to use. Our task is
again to find a new distance δ1 such that if 0 <| x−a |< δ1, then | f (x)−L |< ε1. Note
that the old value δ may no longer work since there could be portions of the graph of
f within (a − δ, a + δ) that lie outside the new error bounds.

L

L + ε

L − ε

L + ε1

L − ε1

a

a + δa − δ

x

| f (x) − L|
{
δ δ

Consequently, we may have to pick a smaller δ1 as illustrated in the next diagram.

L

L + ε

L − ε

L + ε1

L − ε1

a
a + δa − δ

a + δ1a − δ1

x

δ1 δ1
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You may notice that the choice of δ1 is not the largest possible value that would serve
our purposes. Finding the largest possible δ1 is not important. We simply need to
find one value that will work.

As in the case with sequences, this process continues with even smaller tolerances ε
being presented, forcing us to find new values of δ. We would be able to conclude
that lim

x→a
f (x) = L if we could ensure that no matter how small the ε we are given,

we can find an appropriate δ. Unfortunately, to do this explicitly is often extremely
difficult, if not impossible. In fact, in this example, since we only have a picture of
the function, we would never really be able to find an appropriate δ explicitly for
every given ε.

We end this section by demonstrating how the definition can sometimes be used to
show that certain functions do not have limits at a particular point. We illustrate this
with an example that will be useful to us later. It is an analog for functions of the
sequence

{1,−1, 1,−1, · · · , (−1)n+1, · · · } = {(−1)n+1}.

EXAMPLE 2 Consider the function f (x) =
| x |

x
. Recall the definition of the absolute value:

| x |=
{

x if x ≥ 0
−x if x < 0 .

Hence,

f (x) =

{
x
x if x > 0
−x
x if x < 0 .

Consequently,

f (x) =

{
1 if x > 0
−1 if x < 0 .

The graph of f appears as:

-1

1

We want to know if this function has a limit at x = 0.

Notice from the graph that as x approaches 0 from the left (or negative side), the
function has a constant value of −1. We might guess that if this function had a limit
as x approaches 0, then it should be −1. On the other hand, if we allow x to approach
0 from the right (or positive side), we see that f (x) always has its value equal to 1.
This suggests that 1 should be the limit. However, just as in the case for sequences,
the limit of a function should be uniquely defined. Since we are torn between a limit
of −1 and 1, we will try to show that no limit exists.
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Let’s suppose that there is a limit and let lim
x→0

f (x) = L. Choose the tolerance ε to be
1
2 . (Note that any choice of ε < 1 will work.) The definition of the limit of a function
tells us that we can find a cutoff distance δ > 0 such that if 0 <| x − 0 |< δ, then
| f (x) − L |< 1

2 .

First consider x0 ∈ (0, δ). Then since
0 <| x0 − 0 |< δ, we get
| f (x0) − L |< 1

2 . But x0 > 0, so
f (x0) = 1. This means that
| (1) − L |< 1

2 . That is, the distance
from 1 to L is less than 1

2 . This shows
us that L ∈ ( 1

2 ,
3
2 ).

-1

1
1
2

3
2 L

δ−δ x00

ε = 1
2

Now let x1 ∈ (−δ, 0). Again we have
that 0 <| x1 − 0 |< δ, so
| f (x1) − L |< 1

2 . But x1 < 0 so
f (x1) = −1. This means that
| −1 − L |< 1

2 . That is, the distance
from −1 to L is less than 1

2 . This
shows us that L ∈ (−3

2 ,
−1
2 ).

-1

1

−1
2

−3
2

1
2

3
2

L

L

δ−δ x0

x1
0

If we combine these two results we see that L must be simultaneously in both the
interval (−3

2 ,
−1
2 ) and in the interval ( 1

2 ,
3
2 ). Since these intervals are disjoint, this is

impossible. Thus, we have shown that this function does not have a limit at x = 0.

EXAMPLE 3 Show that lim
x→2

3x + 1 = 7.

SOLUTION The fact that the limit
should be 7 is easy to see. As x
approaches 2 it makes sense that 3x
approaches 3 · 2 = 6 and hence that
3x + 1 should approach 6 + 1 = 7.
But we can also show that the formal
definition of a limit is satisfied as
well. To see how to do this, recall that
given a tolerance ε > 0 we must be
able to find a cutoff distance δ > 0
such that if x is within δ of 2, then
|(3x + 1) − 7| < ε.

10

2 + δ2 − δ

f (x) = 3x + 1
7 + ε

7 − ε

7

( )
20

2

4

6

8

12
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We observe that the graph of f is just
a line with slope 3. This means that if
we deviate from 2 by δ units, then the
value of f (x) can either increase or
decrease by at most 3 · δ. So if we
want this deviation to be less than our
tolerance ε, we should ask that
3 · δ ≤ ε or equivalently that δ ≤ ε

3 .

10

δ = ε
3

3δ = ε

2 + δ2 − δ

f (x) = 3x + 1
7 + ε

7 − ε

7

( )
20

2

4

6

8

12

Alternatively, we can work backwards. If we want

|(3x + 1) − 7| < ε,

then this is equivalent to
|3x − 6| = 3|x − 2| < ε

or
|x − 2| <

ε

3
.

Therefore, we get that if 0 < |x − 2| < ε
3 , then |(3x + 1) − 7| < ε, so δ = ε

3 satisfies the
definition.

REMARK

If f (x) = mx + b, where m , 0. Then lim
x→a

f (x) = m · a + b.

δ = ε
|m|

|m|δ = ε

a + δa − δ

f (x) = mx + b

(ma + b) + ε

(ma + b) − ε

ma + b

( )
a0

In particular, given ε > 0, and if δ =
ε

|m|
, then if 0 < |x − a| < δ =

ε

|m|
, we have

| f (x) − (m · a + b)| < ε.
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We have just seen that for a function of the form f (x) = mx + b with m , 0, the
task of applying the definition of the limit to find an appropriate δ given an ε > 0 is
actually straightforward. In fact, any δ satisfying

0 < δ <
ε

|m|
will suffice. However, even for relatively simple functions, the process can become
quite complicated. To illustrate this we will consider the following example.

EXAMPLE 4 Show that
lim
x→3

x2 = 9.

SOLUTION This result is intuitively clear since as x approaches 3 it makes sense
that x2 should approximate 9. However, to apply the definition we first choose ε > 0.
We want to choose a δ > 0 so that if 0 < |x − 3| < δ, then |x2 − 9| < ε. In this case,
we have

|x2 − 9| = |(x − 3)(x + 3)| = |x − 3||x + 3|.

If we proceed as we did in the linear case, we might be tempted to choose δ = ε
|x+3|

because if 0 < |x − 3| < ε
|x+3| , then

|x2 − 9| = |x − 3||x + 3|

<
ε

|x + 3|
|x + 3|

= ε

exactly as required. But the problem with this choice is that |x + 3| is not a constant
since as x moves toward 3, its value changes; thus, this is not a valid choice for δ. So
how do we get around this? The key is the following trick that allows us to control
the size of |x + 3|.

Trick: If we find a δ that works for a particular ε, then any smaller δ will also satisfy
the definition of the limit of a function for the same ε.

L
L + ε

L − ε

a a + δa − δ

L
L + ε

L − ε

a a + δa − δ
a + δ1a − δ1

δ1δ1

f (x) ∈ (L − ε, L + ε) δ1 < δ and f (x) ∈ (L − ε, L + ε)

f f
δ δ

Therefore, we can always assume that the δ we are looking for is less than or
equal to 1. So for the rest of this example, we will assume that the strategy is to
choose a δ ≤ 1.

Once we have assumed that δ ≤ 1, it follows that if 0 < |x− 3| < δ ≤ 1, we must have
that 2 < x < 4 and these are the only values of x that we need to consider.
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9 − ε

9 + ε

9

f (x)=x2

1

δ ≤ 1

10

0

2

4

6

8

12

1 2 3 4−1

14

16

1

δ ≤ 1

2 < x < 4

Now we can return to the task of finding a fixed δ ≤ 1 knowing that 2 < x < 4. But
if 2 < x < 4, then

|x + 3| < |4 + 3| = 7.

This information is helpful because we can now refine our previous calculation so
that

|x2 − 9| = |(x − 3)(x + 3)| = |x − 3||x + 3| < 7|x − 3|

provided that |x − 3| < 1. Now we are in a situation that is similar to the linear case,
and if we ask that

δ = min{1,
ε

7
},

then when 0 < |x − 3| < δ we would have both

|x + 3| < 7

because δ ≤ 1, and
|x − 3| <

ε

7
as well. It follows that if 0 < |x − 3| < δ, then

|x2 − 9| = |x − 3||x + 3|
< 7|x − 3|

< 7(
ε

7
)

= ε

exactly as required.
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9 − ε

9 + ε

9

f (x)=x2

δ ≤ 1

δ ≤ ε
7

10

0

2

4

6

8

12

1 2 3 4−1

14

16

δ ≤ 1

δ ≤ ε
7

The previous example shows that, even for simple functions, completing the ε-δ game
successfully can be a challenge. For this reason we will soon develop various arith-
metic properties to help us avoid having to explicitly do such calculations whenever
possible.

We end this section with three important remarks about the existence of limits.

REMARKS

1. For lim
x→a

f (x) to exist, f must be defined on an open interval (α, β) containing
x = a, except possibly at x = a.

2. The value of f (a), if it is defined at all, does not affect the existence of the limit
or its value.

3. If two functions are equal, except possibly at x = a, then their limiting be-
haviour at a is identical.

5.2 Sequential Characterization of Limits

We have just seen that there is a close connection between limits of sequences and
limits of functions. This leads us to ask the following:
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Question: Can we characterize limits of functions in terms of limits of sequences?

To see why we might be able to do so let’s assume that lim
x→a

f (x) = L. Now assume
that we have a sequence {xn} such that xn → a and xn , a. Then for large n, xn should
be very close to a, and as such we should have that f (xn) should be very close to L,
leading us to believe that perhaps lim

n→∞
f (xn) = L. In fact, we can show that this is the

case.

Let ε > 0. Since lim
x→a

f (x) = L, we can find a δ > 0 such that if x ∈ (a − δ, a + δ)
and x , a, then f (x) ∈ (L − ε, L + ε). But since xn → a, we can find a cutoff N so if
n ≥ N, we have xn ∈ (a − δ, a + δ). Since we also know that xn , a, we have that if
n ≥ N, then f (xn) ∈ (L − ε, L + ε). So the interval (L − ε, L + ε) contains a tail of the
sequence { f (xn)} and as such we have shown that f (xn)→ L.

L

L + ε

L − ε

a a + δa − δ
xn

( )

f

In fact, we can say more as the next theorem completes the connection between limits
of sequences and limits of functions.

THEOREM 1 Sequential Characterization of Limits

Let f be defined on an open interval containing x = a, except possibly at x = a. Then
the following two statements are equivalent:

i) lim
x→a

f (x) exists and equals L.

ii) If {xn} is a sequence with xn , a and xn → a, then

lim
n→∞

f (xn) = L.

PROOF

We have already shown that i) implies ii). To prove that ii) implies i) we will show
that if L is not the limit of f as x approaches a, then ii) fails. That is, we will show
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that we can construct a sequence {xn} wih xn , a and xn → a but { f (xn)} does not
converge to L.

Assume that L is not the limit of f as x approaches a. Then there must exist some
ε0 > 0 so that there is no δ > 0 where 0 <| x − a |< δ implies that

| f (x) − L |< ε0.

Therefore, for every δ > 0 there is a xδ ∈ (a − δ, a + δ) \ {a} with

| f (xδ) − L |≥ ε0.

In particular, for each n ∈ N, this would be true for δ = 1
n .

For each n ∈ N, consider δ = 1
n . Then there is an xn with 0 <| xn − a |< 1

n , but

| f (xn) − L |≥ ε0.

a

L+�

L

L-�

a-1/n a+1/n
( )

xn

0

0

This gives us a sequence {xn} with xn , a and xn → a, while for each n ∈ N, we have

| f (xn) − L| ≥ ε0.

It follows that { f (xn)} does not converge to L.
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a

L+�

L

L-�

0

0

Since we know that convergent sequences can have only one limit, an immediate
consequence of the Sequential Characterization of Limits Theorem is the fact that
limits for functions must also be unique.

THEOREM 2 Uniqueness of Limits for Functions

Assume that lim
x→a

f (x) = L and that lim
x→a

f (x) = M. Then L = M. That is, the limit of a
function is unique.

We will later see that the Sequential Characterization of Limits Theorem allows us
to carry over all of the arithmetic rules we developed for sequences, as well as the
Squeeze Theorem, to limits of functions. It can also be a useful tool to show that
certain functions do not have limits at certain points.

EXAMPLE 5 Recall that we showed the function

f (x) =
|x|
x

=

{
1 if x > 0
−1 if x < 0

failed to have a limit at x = 0. We can use sequences to show this result as well.

Assume that lim
x→0

f (x) did exist and was equal to L. Let xn = 1
n . Then xn → 0. So by

the sequential characterization of limits we have f (xn) → L. But f (xn) = 1 for each
n, so the constant sequence { f (xn)} converges to 1. As such, we must have L = 1.

On the other hand, if yn = −1
n , then again yn → 0 as well. Similar to before, this

means that f (yn) → L. But f (yn) = −1 for each n, so L = −1. However, since a
function cannot have two different limits, it must not have any.
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This leads us to the following strategy for showing that certain limits do not exist:

Strategy [Showing Limits Do Not Exist]:

If you want to show that lim
x→a

f (x) does not exist you can do so by either of
the following:

1) Find a sequence {xn} with xn → a, xn , a for which lim
n→∞

f (xn) does
not exist.

2) Find two sequences {xn} and {yn} with xn → a, xn , a and yn → a,
yn , a for which lim

n→∞
f (xn) = L and lim

n→∞
f (yn) = M but L , M.

As another illustration of this strategy, we next consider a rather badly behaved func-
tion that will provide us with some interesting examples going forward.

EXAMPLE 6 In this example we will look at the exotic function given by the formula

f (x) = sin
(
1
x

)
.

The following is the graph of this function on the interval [−0.5, 0.5].

−0.4 −0.2 0.2 0.4

0.5

−0.5

y=1

y=-1

Notice that as x approaches 0 the function oscillates wildly between 1 and −1. (This
happens as we approach 0 from the right because the function g(x) = 1

x maps the
interval [ 1

2(n+1)π ,
1

2nπ ] onto the interval [2nπ, 2(n + 1)π]. As we approach 0 from the
left g(x) = 1

x maps the interval [ −1
2nπ ,

−1
2(n+1)π ] onto the interval [−2(n + 1)π,−2nπ].)

In fact this rapid oscillation can be seen even more clearly if we look at the graph on
the interval [−0.01, 0.01].
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0.5

−0.5

1

−1

−0.01 0.01

(Note: If you look closely you can see that this rendering of the plot illustrates
sampling errors in the graphing routine. A more accurate graph may be created by
using more sampling points in the mathematical software used to render the plot.)

Behaviour such as what we have seen above suggests that lim
x→0

sin
(

1
x

)
should not exist.

We can use the Sequential Characterization of Limits Theorem to show this explicitly.

First observe that for each n ∈ N we have sin(π2 + 2nπ) = 1 and sin( 3π
2 + 2nπ) = −1.

Let
xn =

1
π
2 + 2nπ

and yn =
1

3π
2 + 2nπ

.

Then xn → 0 and yn → 0, however since f (xn) = sin(π2 + 2nπ) = 1 and f (yn) =

sin( 3π
2 + 2nπ) = −1 for each n ∈ N, we get that f (xn)→ 1 while f (yn)→ −1.

0.5

−0.5

1

−1

−0.01 0.01

xn yn

This is sufficient to show that lim
x→0

sin( 1
x ) does not exist.

5.2.1 Three More Strange Functions

In the previous section we saw that the Sequential Characterization of Limits could
be used to show that certain limits do not exist. In this section we will continue on
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from where we left off and introduce three more rather strange functions for which
the Sequential Characterization of Limits can be a useful tool to help us understand
their behaviour.

EXAMPLE 7

1

-1

rationals irrationals

Consider
f (x) :=

1 if x ∈ Q,
−1 if x < Q.

The graph of f looks almost identical to the two lines y = 1 and y = −1. But in fact
there are infinitely many gaps throughout the domain so to emphasize this we will
use two dotted lines rather than what would appear to be two solid lines.

1

-1

rationals irrationals

Let α ∈ R. We would like to investigate the possibility that a limit might exist at
x = a. Our instincts probably tell us that the limit should not exist because there
are x’s arbitrarily close to a where f (x) = 1 and x’s arbitrarily close to a where
f (x) = −1. This would mean that the limit should be both 1 and −1, which we know
is not permitted. We can however make this more rigorous.

We begin by choosing a sequence {sn} ⊂ Q, with sn → α.
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1

-1

rationals irrationals

�

sn

Then f (sn) → 1 since f (sn) = 1 for each n ∈ N. the Sequential Characterization of
Limits would imply that if lim

x→α
f (x) exists it must be equal to 1.

1

-1

rationals irrationals

�

sn

tn

Next we choose {tn} ⊂ R\Q with tn → α. Then f (tn)→ −1. However, the Sequential
Characterization of Limits would then tell us that lim

x→α
f (x) does not exist.

This function has the unusual property that the limit fails to exist at every point even
though it is defined everywhere.

Our next strange function is a variant of the previous function.
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EXAMPLE 8

x is rational

x is irrational

Let

f (x) =

{
x2 if x ∈ Q,
−x2 if x ∈ R \ Q,

We can again investigate the limiting behaviour of this function. However, unlike the
previous example, in this cases there are two cases to consider.

Case 1: α , 0.

A little thought might lead us to believe that the split nature of this function would
again lead to our limit failing to exist. To make this clear we must answer the follow-
ing questions which are left as exercises.

Questions: . Let {rn} ⊂ Q and {sn} ⊂ R \ Q with rn, sn , α and rn → α and sn → α.

i) What is lim
n→∞

f (rn)?

ii) What is lim
n→∞

f (sn)?

iii) What does the sequential characterization of limits tell us about lim
x→a

f (x)?

If the answers to i) and ii) are different, then the limit does not exist. If they are the
same, then the limit exists. Why?

Case 2: α = 0.

Here we will see that the situation is different from our previous example. We let {xn}

be a sequence of non-zero real numbers converging to 0. We know that f (xn) = x2
n if

xn is rational and f (xn) = −x2
n if xn is irrational. It follows that

−x2
n ≤ f (xn) ≤ x2

n
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for all n ∈ N. However, since lim
n→∞

xn = 0, the rules of arithmetic for limits of
sequences tells us that

lim
n→∞
−x2

n = 0 = lim
n→∞

x2
n.

We can now appeal to the Squeeze Theorem to conclude that lim
n→∞

f (xn) = 0 and
hence to the Sequential Characterization of Limits to show that

lim
x→0

f (x) = 0.

The last of the three rather unusual functions we will consider in this section is
Thomae’s function, which is often referred to as the popcorn function due to its un-
usual graph resembling the behaviour of popcorn being cooked.

EXAMPLE 9 The definition of Thomae’s function is more complex than the previous two func-
tions.

1

1

-1

-1

rationals irrationals

�

DEFINITION Thomae’s Function

The function f defined by

f (x) =


1 if x = 0
1
n if x = k

n ∈ Q with k ∈ Z \ {0}, n ∈ N, gcd(k, n) = 1.
0 if x ∈ R \ Q

is called Thomae’s Function.
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1

1

-1

-1

rationals irrationals

�

sn

The first thing you should notice about f is that f (x) = 0 for each irrational number.
Moreover, for every α ∈ R there exists a sequence {sn} ⊂ R \ Q with sn , α and
sn → α. As a consequence the Sequential Characterization of Limits tells us that if
lim
x→α

f (x) exists it must be 0. As such we ask:

Question: Is lim
x→α

f (x) = 0?

To see why it actually is lets let ε > 0 and choose N ∈ N so that

1
N
< ε.

Consider the interval I = [α − 1, α + 1]. For any natural number n there are only
finitely many rational numbers of the form m

n in the interval I. This means that there
are also only finitely many rationals r = m

n in I for which the denominator n is smaller
than N. Let {r1, r2, . . . , rk} be the collection of rationals different from α itself. Let

δ = min{|α − r1|, |α − r2|, . . . , |α − rk|}.

Then if 0 < |x − α| < δ, then either x is irrational and f (x) = 0, or x is a rational
number different from any of the ri’s. But in this case x = m

n where n ≥ N. It then
follows that

f (x) =
1
n
≤

1
N
< ε.

This shows that if 0 < |x − α| < δ, then

| f (x) − 0| < ε

and hence that lim
x→α

f (x) = 0.

This argument works because most rational numbers have very large denominators.
In fact what we have shown is that if you have any α ∈ R and a sequence {rn} for
rationals distinct from α which converges to α, the denominators of these rationals
must diverge to∞.
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REMARK

Later in this chapter we will introduce the notion of continuity. Thomae’s Function
has the unusual property that it is continuous at each irrational number but discontin-
uous at each rational number.

.

5.3 Arithmetic Rules for Limits of Functions

In this section, we will see that most of the usual rules of arithmetic hold for limits
of functions just as they did for sequences. In fact, we have the following theorem:

THEOREM 3 Arithmetic Rules for Limits of Functions

Let f and g be functions and let a ∈ R. Assume that lim
x→a

f (x) = L and that
lim
x→a

g(x) = M. Then

i) Assume that f (x) = c for every x ∈ R. Then lim
x→a

f (x) = c.

ii) For any c ∈ R, lim
x→a

c f (x) = cL.

iii) lim
x→a

f (x) + g(x) = L + M.

iv) lim
x→a

f (x)g(x) = LM.

v) lim
x→a

f (x)
g(x) = L

M if M , 0.

vi) lim
x→a

( f (x))α = Lα for all α > 0, L > 0.

Similar to the case for sequences, in rule (v) we did not mention what happens if
M = 0. Again, this is because there are examples of this type where the limit exists
and examples where it does not. However, if we apply the Sequential Characteriza-
tion of Limits Theorem, we immediately obtain the following theorem:

THEOREM 4 Assume that lim
x→a

f (x)
g(x) exists and lim

x→a
g(x) = 0. Then

lim
x→a

f (x) = 0.

REMARK

Similar to the case with sequences, if lim
x→a

g(x) = 0 but lim
x→a

f (x) , 0, the quotient
will be unbounded near x = a. This point can be illustrated by using the example
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h(x) =
f (x)
g(x) , where f (x) = x2 − 2x and g(x) = x2 − x. The numerator and denominator

are each polynomials and so (see the following example on Limits of Polynomials for
a justification of this calculation)

lim
x→1

f (x) = −1

while
lim
x→1

g(x) = 0.

The graph of this function shows that it is unbounded near x = 1, exactly as we
predicted.

h(x) =
f (x)
g(x) = x2−2x

x2−x

0

5

10

-5

-10

-2 -1 1 2 3 4

EXAMPLE 10 Limits of Polynomials: We see from the Arithmetic Rules, rule i), that if
f (x) = α0 = f (a) is a constant function, then for any a ∈ R, lim

x→a
f (x) = α0.

We have already seen that if f (x) = x for all x ∈ R, then

lim
x→a

f (x) = lim
x→a

x
= a
= f (a).

We also get that if g(x) = x2, then by rule (iv)

lim
x→a

g(x) = lim
x→a

x2

= lim
x→a

x × lim
x→a

x

= a × a
= a2

= g(a).

Calculus 1 (B. Forrest)2



Section 5.3: Arithmetic Rules for Limits of Functions 167

In fact, it can be shown that lim
x→a

xn = an for any n ∈ N.

Consequently, by using all of the limit rules, we get the following:

THEOREM 5 Limits of Polynomials

If p(x) = α0 + α1x + α2x2 + · · · + αnxn is any polynomial, then

lim
x→a

p(x) = p(a).

EXAMPLE 11 Limits of Rational Functions: Recall that a rational function is a function
f (x) =

P(x)
Q(x) , where P and Q are polynomials. Let’s see how to calculate lim

x→a
f (x).

The first step is to note that from arithmetic limit rule v), we get that if

lim
x→a

Q(x) = Q(a) , 0,

then

lim
x→a

f (x) = lim
x→a

P(x)
Q(x)

=

lim
x→a

P(x)

lim
x→a

Q(x)

=
P(a)
Q(a)

= f (a).

For example, let f (x) = x2−2x
x2−x .The graph of f looks as follows:

f (x) = x2−2x
x2−x

0

5

10

-5

-10

-2 -1 1 2 3 4
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If we want to find lim
x→3

f (x), we get that

lim
x→3

f (x) = lim
x→3

x2 − 2x
x2 − x

=

lim
x→3

x2 − 2x

lim
x→3

x2 − x

=
32 − 2(3)

32 − 3

=
3
6

=
1
2
.

f (x) = x2−2x
x2−x

0

5

10

-5

-10

-2 -1 1 2 3 4

(3, 1
2 )

This is consistent with what we see from the graph of f .

Suppose on the other hand that

lim
x→a

Q(x) = Q(a) = 0,

but
lim
x→a

P(x) = P(a) , 0.

Then we have seen from the limit rules that lim
x→a

P(x)
Q(x) cannot exist.

To illustrate this point, consider

lim
x→1

x2 − 2x
x2 − x

.

We have that lim
x→1

x2 − 2x = −1, but lim
x→1

x2 − x = 0. Therefore f (x) = x2−2x
x2−x does not

have a limit as x approaches 1.

Once again, we can see this
clearly from the graph of f
which shows that the
function is unbounded near
x = 1.

f (x) = x2−2x
x2−x

0

5

10

-5

-10

-2 -1 1 2 3 4

x = 1

The last case to deal with is

lim
x→a

P(x) = P(a) = 0 = lim
x→a

Q(x) = Q(a).
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But if the polynomial P is such that P(a) = 0, then P(x) must have (x− a) as a factor.
This means that there is a new polynomial P∗(x) such that

P(x) = (x − a)P∗(x).

Similarly, there is a new polynomial Q∗(x) such that

Q(x) = (x − a)Q∗(x).

But then
P(x)
Q(x)

=
(x − a)P∗(x)
(x − a)Q∗(x)

=
P∗(x)
Q∗(x)

for all x , a. Hence P(x)
Q(x) will have the same limit as x approaches a as P∗(x)

Q∗(x) . So we
can replace P(x)

Q(x) with P∗(x)
Q∗(x) and start again.

Let’s consider

lim
x→0

x2 − 2x
x2 − x

.

Now P(x) = x2 − 2x while Q(x) = x2 − x. It is easy to see that

P(0) = 0 = Q(0).

This means that both P(x) and Q(x) contain a factor (x − 0) = x. In fact,

P(x)
Q(x)

=
(x)(x − 2)
(x)(x − 1)

=
x − 2
x − 1

for all x , 0. But
lim
x→0

x − 2
x − 1

=
−2
−1

= 2.

It follows that

lim
x→0

x2 − 2x
x2 − x

= 2.

Once more, the graph agrees
with our calculation. Notice
that even though the graph
has a hole at (0, 2), the limit
can still exist there!

f (x) = x2−2x
x2−x

0

5

10

-5

-10

-2 -1 1 2 3 4

(0, 2)
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This suggests the following algorithm for finding limits of rational functions:

Strategy [Finding Limits for Rational Functions]:

Let f (x) =
P(x)
Q(x) .

Step 1: If Q(a) , 0, then

lim
x→a

P(x)
Q(x)

=
P(a)
Q(a)

.

Otherwise go to Step 2.

Step 2: If P(a) , 0 but Q(a) = 0, then the limit does not exist. Otherwise,
go to Step 3.

Step 3: If P(a) = 0 and Q(a) = 0, write

P(x)
Q(x)

=
(x − a)P∗(x)
(x − a)Q∗(x)

and return to Step 1 using the new function

f ∗(x) =
P∗(x)
Q∗(x)

since lim
x→a

f ∗(x) = lim
x→a

f (x).

It is worth noting that for some examples there may be a more efficient method to
find the limit, but this strategy will always work.

5.4 One-sided Limits

In a previous section, we encountered the function f (x) = |x|
x . We showed that this

function did not have a limit as x approached 0. However, if we consider only positive
values of x, then the function has constant value 1. Thus as x approaches 0 from the
right, f (x) approaches 1, and in fact is equal to 1. In this case, we say that 1 is the
limit of f (x) as x approaches 0 from the right (or from above). In general, we say
that L is the limit of a function f as x approaches a from the right, or from above, if
f (x) approximates L as closely as we wish by choosing x > a but close enough to a.

Similarly, we can consider limits from the left, or from below. We say that L is
the limit of a function f as x approaches a from the left, or from below, if f (x)
approximates L as closely as we wish by choosing x < a but close enough to a. In
the case f (x) = |x|

x , this function has a limit as x approaches 0 from the left (or from
below) of −1.
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The limits we have described above are called one-sided limits, while the limits we
have been looking at up until now are called two-sided limits. We can make the
description of one-sided limits more precise by mimicking the definition of a two-
sided limit that we developed earlier.

We begin with the limit from the right.

DEFINITION Limit from the Right

Let f be a function and let a ∈ R.

We say that f has a limit L as x approaches a from the right, or from above, if for any
positive tolerance ε > 0, we can find a cutoff distance δ > 0 such that if the distance
from x to a is less than δ, and if x > a, then f (x) approximates L with an error less
than ε. That is, if 0 < x − a < δ, then | f (x) − L |< ε.

L

L + ε

L − ε

a a + δ

δ

f

ε
{

x

} | f (x)−L|

In this case, we write
lim
x→a+

f (x) = L.

Note that the positive superscript,“+”, indicates that this is a limit from the right.

We can now present a similar definition for limits from the left.

DEFINITION Limit from the Left

Let f be a function and let a ∈ R.

We say that f has a limit L as x approaches a from the left, or from below, if for any
positive tolerance ε > 0, we can find a cutoff distance δ > 0 such that if the distance
from x to a is less than δ, and if x < a, then f (x) approximates L with an error less
than ε. That is, if 0 < a − x < δ, then | f (x) − L |< ε.
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L

L + ε

L − ε

aa − δ

δf

ε
{

x

| f (x)−L| {

In this case, we write
lim
x→a−

f (x) = L.

Note that the negative superscript,“−”, indicates that this is a limit from the left.

You may have noticed an obvious connection between one-sided limits and two-sided
limits. In particular, if a function f has a two-sided limit at a point x = a, then it is
easy to see that both one-sided limits exist as well and that they have the same value as
the two-sided limit. (Formally, given a tolerance ε > 0, the cutoff distance δ > 0 that
works for the two-sided limit also works for both one-sided limits simultaneously).

The converse is a little bit more subtle. Nonetheless, we could show that if both one-
sided limits exist and if they are equal, then the two-sided limit also exists with this
common value.

In fact, the following theorem summarizes the relationship between these two con-
cepts.

THEOREM 6 One-sided versus Two-sided Limits

Let f be a function defined on an open interval containing x = a except possibly at
x = a. Then the following two statements are logically equivalent:

1) lim
x→a

f (x) exists and equals L.

2) Both one-sided limits exist, and

lim
x→a−

f (x) = L = lim
x→a+

f (x).

Finally, we note that there are also valid sequential versions for both one-sided limits
and also that all of our arithmetic rules also hold for these limits.

Calculus 1 (B. Forrest)2



Section 5.5: The Squeeze Theorem 173

5.5 The Squeeze Theorem

We had previously seen a version of the Squeeze Theorem for sequences. In this
section, we introduce the Squeeze Theorem for limits of functions. We will then
show how it can be used to calculate limits of some rather exotic functions.

Assume that we have three functions, f , g and h, defined on an open interval I con-
taining x = a, except possibly at x = a. Also assume that for each x ∈ I, except
possibly x = a, we have

g(x) ≤ f (x) ≤ h(x)

and that
lim
x→a

g(x) = L = lim
x→a

h(x).

The picture illustrates these assumptions.

a

f

g

h

L

Notice that since
lim
x→a

g(x) = L = lim
x→a

h(x)

as x approaches a, both g(x) and h(x) get very close to L. But the graph of f is
squeezed between the graphs of g and h near a. As such the values of f (x) must also
be close to L near a. In other words, the picture suggests that f also has a limit as x
approaches a and that

lim
x→a

f (x) = L.

In fact, like the case for sequences, this is also the case for functions as the next theo-
rem shows. For obvious reasons we will also call this theorem the Squeeze Theorem.

THEOREM 7 Squeeze Theorem for Functions

Assume that three functions, f , g and h, are defined on an open interval I containing
x = a, except possibly at x = a. Assume also that for each x ∈ I, except possibly
x = a, that

g(x) ≤ f (x) ≤ h(x)
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and that
lim
x→a

g(x) = L = lim
x→a

h(x).

Then lim
x→a

f (x) exists and
lim
x→a

f (x) = L.

EXAMPLE 12 Earlier we looked at the rather unusual function f (x) = sin
(

1
x

)
. We also saw that

lim
x→0

sin
(

1
x

)
does not exist. However, if we let f (x) = x sin

(
1
x

)
, then the result is

different. In fact, since
∣∣∣∣sin

(
1
x

)∣∣∣∣ ≤ 1 for all x , 0, we get that∣∣∣∣∣∣x sin
(
1
x

)∣∣∣∣∣∣ = | x | ×

∣∣∣∣∣∣sin
(
1
x

)∣∣∣∣∣∣
≤ | x | × 1
= | x |

This gives us that

− | x | ≤

∣∣∣∣∣∣x sin
(
1
x

)∣∣∣∣∣∣ ≤ | x |
for all x , 0 as shown in the following diagram:

f (x) = x sin(1
x )

g(x) = −|x|

h(x) = |x|

1.5

1

0.5

-0.5

-1

-1.5

-1 -0.5 0.5 10

If we let g(x) = − | x | and h(x) =| x |, then

lim
x→0
− | x |= 0 = lim

x→0
| x | .
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Therefore the hypotheses for the Squeeze Theorem are satisfied and we can conclude
that lim

x→0
x sin

(
1
x

)
exists and that

lim
x→0

x sin
(
1
x

)
= 0.

Before we end this example, let’s take a look at the graph of f on the interval
[−.01, .01]. This graph clearly supports our assertion that lim

x→0
x sin

(
1
x

)
= 0.

It should be clear that there are corresponding versions of the Squeeze Theorem
for both one-sided limits as well. As an illustration of this we have the following
example:

EXAMPLE 13 A quick look at the graph of f (θ) = sin(θ) suggests that

lim
θ→0

sin(θ) = 0.

We can use the Squeeze Theorem to justify this claim.
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To see how this can be done we
let 0 < θ < π

2 . Recall that on the
unit circle, the radian measure of
an angle θ is equal to the length
of the arc subtended by the angle.
Then using the unit circle, we get
that

0 < sin(θ) < θ.

However since

lim
θ→0+

0 = 0 = lim
θ→0+

θ

the Squeeze Theorem shows that

lim
θ→0+

sin(θ) = 0.

θ

π

2

cos(θ)

sin(θ) θ

1
0

Now let −π2 < θ < 0. We note that sin(θ) is an odd function. That is

sin(−θ) = − sin(θ).

Moreover, as θ → 0−, we have −θ → 0+. From this we can deduce that

lim
θ→0−

sin(θ) = lim
θ→0−
− sin(−θ)

= lim
(−θ)→0+

− sin(−θ)

= − lim
(−θ)→0+

sin(−θ)

= −1 · 0
= 0

Since
lim
θ→0−

sin(θ) = 0 = lim
θ→0+

sin(θ)

it follows that
lim
θ→0

sin(θ) = 0.

We observe that for θ ∈ (−π2 ,
π
2 ), we have

cos(θ) =

√
1 − sin2(θ).

Using the Arithmetic Rules for Limits we get

lim
θ→0

cos(θ) = lim
θ→0

√
1 − sin2(θ)

=
√

1 − (lim
θ→0

sin(θ))2

= 1
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In the next section we will see how the Squeeze Theorem can be used to establish a
very important trigonometric limit that we will use to evaluate the derivatives of the
basic trigonometric functions.

5.6 The Fundamental Trigonometric Limit

One of the most important limits involving trigonometric functions is

lim
θ→0

sin(θ)
θ

.

Recall that as θ approaches 0, so does sin(θ). Consequently, it is difficult to determine
how the function sin(θ)

θ
behaves near 0. To help us understand, we can look at a plot

of the function on the interval [−.01, .01].

δ−δ

θ

1 − ε

1 + ε

f (θ) =
sin(θ)
θ

−0.01 −0.008 −0.006 −0.004 0 0.002 0.004 0.006 0.008 0.01

1.00001

1.000008

1.000006

1.000004

1.000002

1

0.999998

0.999996

0.999994

0.999992

0.999990

It appears from the graph that as θ approaches 0, sin(θ)
θ

gets very close to 1. In fact,
the graph demonstrates how to find the δ corresponding to a tolerance as small as
0.000002 if we applied the definition of the limit with L = 1. Still, this does not
actually prove that 1 is the limit. It turns out that we can give a geometric argument
that relies on a clever application of the Squeeze Theorem to verify that the limit is
actually 1.

To simplify matters, we will only calculate

lim
θ→0+

sin(θ)
θ

.
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Choose θ with 0 < θ < π
2 . Consider the

following diagram of a circle with radius
1 (the unit circle).

We have three distinct regions, a small
triangle, a sector of the circle, and a larger
triangle superimposed on one another. By
simply comparing these areas we will be
able to use the Squeeze Theorem to
establish the desired limit.

π
2

1
0

1
2 sin(θ) cos(θ)
1
2 θ
1
2 tan(θ)

θ

As noted, the previous diagram identifies
three regions. The first region we will
consider is the small triangle.

Recall from trigonometry that the triangle
has a base of length cos(θ) and height
sin(θ). Therefore, the area of this triangle
is

1
2

base × height =
sin(θ) cos(θ)

2
.

cos(θ)

sin(θ)

1

1
2 sin(θ) cos(θ)
1
2 θ
1
2 tan(θ)

θ

(cos(θ),sin(θ))

The second area is the sector shown the
following diagram.

Since the circle has radius 1, the area of
the circle is π. The area of the sector is
found by multiplying the fraction of the
circle represented by the sector by the
total area of the circle. Since the full
circle is made up of an arc with 2π
radians and the sector has an arc that
measures θ radians, the fraction of the
circle taken up by the sector is θ

2π . It
follows that the area of the sector is

θ

1
2 sin(θ) cos(θ)
1
2 θ
1
2 tan(θ)

θ

1

Sector area = fraction of circle × area of circle

=
θ

2π
× π

=
θ

2
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The third region is the largest of the three.
It is the outside triangle as indicated in the
diagram.

The triangle is a right triangle with base
1. Since tan(θ) =

opposite
ad jacent =

opposite
1 , the

triangle must have height equal to tan(θ).
Therefore, the area of the triangle is equal
to

tan(θ)
2

.

θ

1

1
2 sin(θ) cos(θ)
1
2 θ
1
2 tan(θ)

tan(θ)

These regions are listed in order of increasing area, so

sin(θ) cos(θ)
2

<
θ

2
<

tan(θ)
2

.

The next step is to multiply every term in this inequality by 2
sin(θ) to get

cos(θ) <
θ

sin(θ)
<

1
cos(θ)

.

Then take reciprocals and reverse the order of the inequalities to get

1
cos(θ)

>
sin(θ)
θ

> cos(θ).

We know from the properties of the cosine function that

lim
θ→0+

cos(θ) = 1

and hence that
lim
θ→0+

1
cos(θ)

= 1.

We can now use the Squeeze Theorem to conclude that

lim
θ→0+

sin(θ)
θ

= 1.

A similar calculation can be done to show that

lim
θ→0−

sin(θ)
θ

= 1.

This gives us the Fundamental Trigonometric Limit.

THEOREM 8 The Fundamental Trigonometric Limit

lim
θ→0

sin(θ)
θ

= 1.
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The Fundamental Trigonometric Limit tells us is that if “θ is small”, then

sin(θ) � θ.

This principle is actually quite useful and can be valuable in calculating other limits.

EXAMPLE 14 Find
lim
θ→0

sin(3θ)
sin(θ)

.

SOLUTION As θ → 0, we have that 3θ → 0. This means that if “θ is small”, so is
3θ. We know that if θ is small, then

sin(θ) � θ.

Similarly, if 3θ is small, then we would expect that

sin(3θ) � 3θ.

Putting these two statements together leads us to the possibility that if θ is small, then

sin(3θ)
sin(θ)

�
3θ
θ

= 3.

We might guess that

lim
θ→0

sin(3θ)
sin(θ)

= 3.

This is in fact the case.

To see how we can make this rigourous, first note that the Fundamental Trigonometric
Limit also shows that

lim
θ→0

sin(3θ)
3θ

= 1

and that

lim
θ→0

θ

sin(θ)
=

1

lim
θ→0

sin(θ)
θ

=
1
1

= 1.

Since
sin(3θ)
sin(θ)

= 3
(
sin(3θ)

3θ

) (
θ

sin(θ)

)
,

we get

lim
θ→0

sin(3θ)
sin(θ)

= lim
θ→0

3
(
sin(3θ)

3θ

) (
θ

sin(θ)

)
= 3

(
lim
θ→0

sin(3θ)
3θ

) (
lim
θ→0

θ

sin(θ)

)
= 3(1)(1)
= 3.
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EXAMPLE 15 Show
lim
θ→0

tan(θ)
θ

= 1.

SOLUTION Observe that

lim
θ→0

tan(θ)
θ

= lim
θ→0

(
sin(θ)
θ cos(θ)

)
= lim

θ→0

(
1

cos(θ)

) (
sin(θ)
θ

)
= lim

θ→0

(
1

cos(θ)

)
lim
θ→0

(
sin(θ)
θ

)
= (1)(1)
= 1.

EXAMPLE 16 Find
lim
θ→0

tan(θ)
sin(2θ)

.

SOLUTION Observe that

lim
θ→0

tan(θ)
sin(2θ)

= lim
θ→0

(
sin(θ)
cos(θ)

) (
1

sin(2θ)

)
= lim

θ→0

(
1

cos(θ)

) (
sin(θ)

sin(2θ)

)
= lim

θ→0

(
1

cos(θ)

) (
sin(θ)
θ

) (
2θ

sin(2θ)

) (
1
2

)
=

(
1
2

)
lim
θ→0

(
1

cos(θ)

)
lim
θ→0

(
sin(θ)
θ

)
lim
θ→0

(
2θ

sin(2θ)

)
=

(
1
2

)
(1)(1)(1)

=
1
2
.

5.7 Limits at Infinity and Asymptotes

In this section we extend the concept of a limit in two ways. In particular, we will
define:

• limits at infinity, where x becomes arbitrarily large, either positive or negative;
and

• infinite limits, where the function grows without bound near a particular point.
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Note: It is important to recognize that the symbol “∞” is not a real number. When
we say that “the limit of a function is infinity”, we are not saying that the limit exists
in the proper sense. Instead, this expression simply provides useful information about
the behaviour of functions whose values become arbitrarily large, either positive or
negative.

5.7.1 Asymptotes and Limits at Infinity

So far, whenever we have considered limits we have always focused on the behaviour
of a function near a particular point. In this section we will be concerned with what
happens when we allow the variable to approach either∞ or −∞. For example, if we
let

f (x) =
1

1 + x2 ,

then as x gets very large, 1 + x2 also gets very large. Consequently, 1
1+x2 becomes

very small or very close to 0. That is, as “x approaches ∞”, f (x) tends to zero. This
leads us to say that 0 is the limit of f (x) as x goes to∞.

Similarly, as x approaches −∞, we again have that 1 + x2 gets very large. It follows
that 1

1+x2 also becomes very small. We say that 0 is the limit of f (x) as x goes to −∞.

We want to make the notion of limits at ±∞ precise. To do this we mimic what we did
for ordinary limits and take our lead from what we did for sequences. In the example
above, if we are given a positive tolerance ε > 0, we can always find a cutoff N such
that if x > N, then f (x) approximates 0 with an error less than ε.

L = 0

ε

−ε

f (x) =
1

1 + x2

N x

For limits at infinity, the cutoff N plays the role of our cutoff distance δ in our previous
definition of a limit. It tells us how far out we must be so that f (x) approximates the
limit within the given tolerance. Generally speaking, the smaller the tolerance ε, the
larger N must be.
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Similarly, given a tolerance ε > 0, we can find a cutoff N1 such that if x < N1, then
f (x) approximates 0 with an error less than ε.

L = 0

ε

−ε

f (x) =
1

1 + x2

N1x

This leads us to the following definition:

DEFINITION Limits at Infinity

We say that a function f has a limit L as x approaches∞ if for every positive tolerance
ε > 0, we can always find a cutoff N > 0 such that if x > N, then f (x) approximates
L with an error less than ε.

That is,
if x > N, then | f (x) − L |< ε.

L

L + ε

L − ε

f

N x

In this case, we write
lim
x→∞

f (x) = L.

We can also define limits at −∞ in a similar manner. In particular, we say that a
function f has a limit L as x approaches −∞ if for every positive tolerance ε > 0, we
can always find a cutoff N such that if x < N, then f (x) approximates L with an error
less than ε.

Calculus 1 (B. Forrest)2



Chapter 5: Limits and Continuity 184

That is,
if x < N, then | f (x) − L |< ε.

L

L + ε

L − ε

f

Nx

This time we write
lim

x→−∞
f (x) = L.

Assume that lim
x→∞

f (x) = L. Then for large enough values of x, the graph of f is as
near as we would like to the line y = L.

Similarly, assume that lim
x→−∞

f (x) = L. Then again for large enough negative values
of x, the graph of f is as near as we would like to the line y = L.

This leads us to the following definition:

DEFINITION Horizontal Asymptote

Assume that lim
x→∞

f (x) = L or lim
x→−∞

f (x) = L.

Then in either case, we say that the line y = L is a horizontal asymptote of f .

Like the case of sequences, we can define the divergence of a function to ±∞ as x
approaches either∞ or −∞.

DEFINITION Infinite Limits at ∞
We say that the limit of f (x) as x
approaches∞ is∞ if for every M > 0
there exists a cutoff N > 0 such that if
x > N, then

f (x) > M.

We write

lim
x→∞

f (x) = ∞.

M > 0

f

N x
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Note: Similarly, we can define lim
x→∞

f (x) = −∞ and lim
x→−∞

f (x) = ±∞.

It is both useful and important to note that all of the usual rules for the arithmetic of
limits hold for limits at ±∞. In fact, the Squeeze Theorem also holds with the proper
modifications.

THEOREM 9 Squeeze Theorem for Limits at ±∞

Assume that g(x) ≤ f (x) ≤ h(x) for all x ≥ N. If

lim
x→∞

g(x) = L = lim
x→∞

h(x)

then lim
x→∞

f (x) exists and it equals L.

Assume that g(x) ≤ f (x) ≤ h(x) for all x ≤ N. If

lim
x→−∞

g(x) = L = lim
x→−∞

h(x)

then lim
x→−∞

f (x) exists and it equals L.

Let’s look at some examples of limits at ±∞.

EXAMPLE 17 Evaluate

lim
x→∞

2x2 − 3x + 4
x2 + x − 5

.

SOLUTION Observe that when dealing with polynomials, for large values of x the
highest power terms dominate. This means that we might expect that if x is very large
then

2x2 − 3x + 4
x2 + x − 5

�
2x2

x2 = 2.

From this we might guess that

lim
x→∞

2x2 − 3x + 4
x2 + x − 5

= 2.

The limit rules can be used to show that this guess is correct. First factor out the
highest power of x from both the numerator and the denominator. In this case, factor
out x2 from both the numerator and the denominator to get

2x2 − 3x + 4
x2 + x − 5

=
x2(2 − 3

x + 4
x2 )

x2(1 + 1
x −

5
x2 )

=
2 − 3

x + 4
x2

1 + 1
x −

5
x2
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for all x > 0. But then

lim
x→∞

2x2 − 3x + 4
x2 + x − 5

= lim
x→∞

x2(2 − 3
x + 4

x2 )

x2(1 + 1
x −

5
x2 )

= lim
x→∞

2 − 3
x + 4

x2

1 + 1
x −

5
x2

=
2 − 0 + 0
1 + 0 − 0

= 2

exactly as we had predicted.

EXAMPLE 18 Evaluate

lim
x→∞

3x3 + x
x2 + 1

.

SOLUTION We follow the same procedure as was outlined in the previous example
and write

3x3 + x
x2 + 1

=
x3(3 + 1

x2 )

x2(1 + 1
x2 )

= x
3 + 1

x2

1 + 1
x2


Now, as x approaches ∞,

3+ 1
x2

1+ 1
x2

approaches 3. This means that for very large values

of x, the function behaves much like y = 3x. In particular, the function f (x) grows
without bound and as such does not have a limit. We conclude that lim

x→∞
3x3+x
x2+1 does

not exist.

EXAMPLE 19 Evaluate

lim
x→−∞

3x3 + x
x4 + 1

.

SOLUTION This is very similar to the previous example. We write

3x3 + x
x4 + 1

=
x3(3 + 1

x2 )

x4(1 + 1
x4 )

=
1
x

3 + 1
x2

1 + 1
x4
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Just as before, we have that as x approaches −∞,
3+ 1

x2

1+ 1
x4

approaches 3. This means that

for large negative values of x, we have f (x) � 3
x . From this we can conclude that f (x)

approaches 0 as x approaches −∞. That is,

lim
x→−∞

3x3 + x
x4 + 1

= 0.

In general, for a rational function

f (x) =
p(x)
q(x)

=
anxn + · · · + a1x + a0

bmxm + · · · + b1x + b0

the existence of the limit at ±∞ depends on the relative degrees of the polynomials. If
n > m, then the numerator grows much faster than the denominator and the function
will eventually grow without bounds. This means that no limit exists.

If n < m, then the denominator will grow faster than the numerator. This means that
the limit of the function tends towards 0. That is if n < m, then

lim
x→±∞

anxn + · · · + a1x + a0

bmxm + · · · + b1x + b0
= 0.

The most interesting situation occurs when n = m. In this case, you can factor out
xn = xm from both the numerator and the denominator, and then follow the procedure
we used in our previous examples to show that

lim
x→±∞

anxn + · · · + a1x + a0

bnxn + · · · + b1x + b0
=

an

bn
.

We stated that the Squeeze Theorem holds for limits at ±∞. The next example illus-
trates how it can be used.

EXAMPLE 20 Evaluate
lim
x→∞

sin(x)
x

.

SOLUTION We know that for any x,

| sin(x) | ≤ 1.

It follows that if x , 0, then

|
sin(x)

x
| ≤

1
| x |

and hence that
−1
| x |
≤

sin(x)
x
≤

1
| x |

.

For x > 0, this inequality becomes

−1
x
≤

sin(x)
x
≤

1
x
.
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1
x

−
1
x

sin(x)
x

5

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

1510 20

This expression is exactly what we require to apply the Squeeze Theorem. In fact,
we know that

lim
x→∞

−1
x

= 0 = lim
x→∞

1
x
.

We can now apply the Squeeze Theorem to get that lim
x→∞

sin(x)
x exists and that

lim
x→∞

sin(x)
x

= 0.

A similar argument shows that

lim
x→−∞

sin(x)
x

= 0.

In the next section, we will again use the Squeeze Theorem to establish some funda-
mental results concerning the growth rate of logarithmic functions.

5.7.2 Fundamental Log Limit

In this section, we consider the limit

lim
x→∞

ln(x)
x

.

This limit is called the Fundamental Log Limit. From this limit we will be able
to derive a great deal of information about the relative growth rates of logarithmic,
polynomial, and exponential functions.
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First, note that ln(x) grows much more slowly than x. For example, ln(10000) =

9.210340468. This would lead us to guess that

lim
x→∞

ln(x)
x

= 0.

To make this idea more precise, we
begin with the observation that for
each u > 0, we have ln(u) < u. This is
illustrated in the diagram.

y = u

y = ln(u)

Now if u ≥ 1, then ln(u) ≥ 0. We can use an algebraic trick to get an inequality that
will help us find the limit. In particular, if we let u = x

1
2 and let x ≥ 1, recognizing

that x = x
1
2 · x

1
2 , we get that

0 ≤
ln(x)

x
=

2 ln(x
1
2 )

x
=

2

x
1
2

 ln(x
1
2 )

x
1
2

 ≤ 2

x
1
2

.

In summary, we have

0 ≤
ln(x)

x
≤

2

x
1
2

.

y =
2

x
1
2

y =
ln(x)

x

2

1

0 20 40 60 80 100 120 140 160 180 200

1.5

0.5

This inequality is exactly what we require since

lim
x→∞

0 = 0 = lim
x→∞

2

x
1
2

.
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From this result we can use the Squeeze Theorem to get:

THEOREM 10 Fundamental Log Limit

lim
x→∞

ln(x)
x

= 0.

The Fundamental Log Limit shows that ln(x) grows more slowly than x. What about
the growth rate of ln(x) versus that of

√
x or x

1
100 ?

For example, we have already seen that ln(10000) = 9.210340468 and we have

10000
1

100 = 1.096478196.

We might guess that x
1

100 actually grows more slowly than ln(x). However, the results
for x = 10000 are deceptive. While 10000 may seem like a large number, in the big
scheme of things, it is not. While it may take some time to get going, eventually the
function x

1
100 surpasses ln(x). In fact, we can show that

lim
x→∞

ln(x)

x
1

100

= 0

so ln(x) is eventually dominated by x
1

100 . Moreover, as the next example shows, for
any p > 0, no matter how small, xp eventually dominates ln(x).

EXAMPLE 21 If p > 0, then

lim
x→∞

ln(x)
xp = 0.

To show this, we use the Fundamental Log Limit and a small trick. First, write

ln(x)
xp =

1
p ln(xp)

xp .

Since p is a constant, it follows that

lim
x→∞

ln(x)
xp = lim

x→∞

1
p ln(xp)

xp

=
1
p

lim
x→∞

ln(xp)
xp .
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However, if p > 0 and x → ∞, then xp → ∞. Replacing x by xp in the Fundamental
Log Limit gives us

lim
x→∞

ln(xp)
xp = 0.

From this, we get

lim
x→∞

ln(x)
xp =

1
p

lim
x→∞

ln(xp)
xp .

= 0.

EXAMPLE 22 Evaluate
lim
x→∞

ln(xp)
x

.

SOLUTION This is a simple variant of the Fundamental Log Limit since

lim
x→∞

ln(xp)
x

= lim
x→∞

p ln(x)
x

.

= p lim
x→∞

ln(x)
x

.

= 0.

EXAMPLE 23 Evaluate

lim
x→∞

ln(x40)

x
1

1000

.

SOLUTION We know that

lim
x→∞

ln(x40)

x
1

1000

= lim
x→∞

40 ln(x)

x
1

1000

= 40 lim
x→∞

ln(x)

x
1

1000

= 0

by using the result from a previous example.

The limit in the last example follows easily from the Fundamental Log Limit, but it
might not be something that we would guess from numerical testing. For example, if
f (x) =

ln(x40)

x
1

1000
, then f (1000000) = 545.0381916. While this function eventually drops

off to 0, it does take quite a while to do so.
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So far, we have seen that ln(x) grows at a rate that is at least an order of magnitude
less than a polynomial function. We will now show that exponential functions grow
at a rate that is an order of magnitude greater than that of a polynomial function.

EXAMPLE 24 Let p > 0. Evaluate

lim
x→∞

xp

ex .

SOLUTION To find the limit, we first transform what we have into one of our
previous limits by letting u = ex. This means that x = ln(u). In this case, xp

ex becomes

(ln(u))p

u
=

(
ln(u)

u
1
p

)p

.

Note that if x→ ∞, then u = ex → ∞. From this we get

lim
x→∞

xp

ex = lim
u→∞

(
ln(u)

u
1
p

)p

=

(
lim
u→∞

ln(u)

u
1
p

)p

= 0p

= 0.

We know that as x goes to 0 from above, ln(x) goes to −∞. The next limit shows us
that this happens rather slowly.

EXAMPLE 25 Let p > 0. Evaluate
lim
x→0+

xp ln(x).

SOLUTION To find this limit, let x = 1
u . Then

xp ln(x) =
ln(1

u )
up =

− ln(u)
up .

If x→ 0+, then u→ ∞. This gives us

lim
x→0+

xp ln(x) = lim
u→∞

− ln(u)
up

= 0.

The diagram shows the graph of f (x) = x ln(x) near 0. It confirms our calculation by
showing that as x→ 0+, f (x)→ 0.
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f (x) = x ln(x)

8

6

4

2

0
0.5 1 1.5 2 2.5 3

5.7.3 Vertical Asymptotes and Infinite Limits

Consider the function f (x) = 1
x . We can

see that as x→ 0, this function does not
have a limit.

x

f (x)= 1
x

20

10

0

−10

−20

1 2−1−2

However, we can actually say more. As
x→ 0 from above, the function is positive
and it grows without bound. That is, f (x)
approaches∞.

x

f (x)= 1
x

20

10

0

−10

−20

1 2−1−2

It may be tempting to write

lim
x→0+

1
x

= ∞.

Similarly, as x→ 0 from below, the
function is negative and it again grows
without bound. This time we have that
f (x) approaches −∞ so we might write

lim
x→0−

1
x

= −∞.

x

f (x)= 1
x

20

10

0

−10

−20

1 2−1−2

Up until now the expressions

lim
x→0+

1
x

= ∞

and
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lim
x→0−

1
x

= −∞

have had no formal meaning. However, they do tell us something important about
the behaviour of the function f (x) = 1

x near x = 0.

In this section, we will see how to quantify the statements above. The key observation
is that to approach ∞ we must eventually exceed any fixed positive number, and to
approach −∞ we must eventually be less than any fixed negative number.

DEFINITION Right-Hand Infinite Limits

We say that f has a limit of∞ as x
approaches a from above if for every
cutoff M > 0, we can find a cutoff

distance δ > 0 such that if x > a and if the
distance from x to a is less than δ, then
f (x) > M. That is, if a < x < a + δ, then
f (x) > M.

δ

a + δa

M

x

f

In this case, we write
lim
x→a+

f (x) = ∞.

We say that f has a limit of −∞ as x
approaches a from above if for every
cutoff M < 0, we can find a cutoff

distance δ > 0 such that if x > a and if the
distance from x to a is less than δ, then
f (x) < M. That is, if a < x < a + δ, then
f (x) < M.

δ

a + δa
M

x f

In this case, we write
lim
x→a+

f (x) = −∞.
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DEFINITION Left-Hand Infinite Limits

We say that f has a limit of∞ as x
approaches a from below if for every
cutoff M > 0, we can find a cutoff

distance δ > 0 such that if x < a and if the
distance from x to a is less than δ, then
f (x) > M. That is, if a − δ < x < a, then
f (x) > M.

δ

a − δ a

M

x

f

In this case, we write
lim
x→a−

f (x) = ∞.

We say that f has a limit of −∞ as x
approaches a from below if for every
cutoff M < 0, we can find a cutoff

distance δ > 0 such that if x < a and if the
distance from x to a is less than δ, then
f (x) < M. That is, if a − δ < x < a, then
f (x) < M.

δ

a − δ a
M

x
f

In this case, we write
lim
x→a−

f (x) = −∞.

DEFINITION Infinite Limits

We say that
lim
x→a

f (x) = ∞

if
lim
x→a−

f (x) = ∞ = lim
x→a+

f (x).

We say that
lim
x→a

f (x) = −∞

if
lim
x→a−

f (x) = −∞ = lim
x→a+

f (x).
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DEFINITION Vertical Asymptote

If any of
lim
x→a±

f (x) = ±∞

occur, we say that the line x = a is a vertical asymptote for the function f .

NOTE

It is important to note that despite our terminology and notation, when we write
expressions such as

lim
x→a

f (x) = ∞,

we do not mean to imply that the function f has a limit at the point x = a. The
symbol “∞” is not a real number. In fact, what this expression actually tells us is that
the limit of the function does not exist precisely because the function grows without
bounds near a. A similar statement can be made for all of the other cases we have
encountered in this section. This is a subtle point but one of which you must be
aware.

EXAMPLE 26 Let f (x) = x2−1
x+2 . Find

lim
x→−2+

f (x).

SOLUTION Let p(x) = x2 − 1 and q(x) = x + 2. Since this function is a rational
function of the form p(x)

q(x) , test to see if the limit exists by first evaluating the denomi-
nator q(x) at x = −2. We get that q(−2) = −2 + 2 = 0. Next evaluate the numerator
p(x) at x = −2 to get that p(−2) = (−2)2 − 1 = 3 , 0. Our previous work on limits
tells us that when the denominator goes to 0, but the numerator does not, the limit
does not exist. We also know that the magnitude of the quotient approaches ∞. To
say more we must consider the sign of the function near x = −2.

A rational function can only change sign if either the numerator or the denominator
changes sign. This occurs at x = ±1 for the numerator and at x = −2 for the de-
nominator. These points divide our domain into four regions; x > 1, −1 < x < 1,
−2 < x < −1 and x < −2.

In the region x > 1, both the numerator and denominator are positive, so f (x) > 0.
Moving to the left, when we cross x = 1 the numerator becomes negative while the
denominator remains positive. This means that f (x) < 0 if −1 < x < 1. Crossing
x = −1 returns the numerator to a positive value and as a result the function is
also positive on the interval −2 < x < −1. Finally, when we cross x = −2, the
denominator becomes negative and the numerator is positive. Hence, f (x) < 0 if
x < −2. This information is summarized in the following diagram:
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-2 -1 1

x

0

x2 − 1 > 0

x + 2 < 0

f (x) < 0

x2 − 1 > 0

x + 2 > 0

f (x) > 0

x2 − 1 < 0

x + 2 > 0

f (x) < 0

x2 − 1 > 0

x + 2 > 0

f (x) > 0

Since we are interested in the behaviour of f (x) as x approaches −2 from above, we
will focus on the region −2 < x < −1. In this region, the function is positive. We can
conclude that

lim
x→−2+

x2 − 1
x + 2

= ∞.

If we wanted to know
lim

x→−2−
f (x),

then our analysis would be similar. However, in this case we would be interested in
the region x < −2. Since f (x) < 0 when x < −2, we have

lim
x→−2−

x2 − 1
x + 2

= −∞.

The following is a graph of this function and it confirms our calculations.

f (x) =
x2 − 1
x + 2

vertical

-2 0-1 1

asymptote
x = −2
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5.8 Continuity

One of the fundamental concepts in Calculus is continuity. Roughly speaking, conti-
nuity means that the value of a function at a fixed point x = a is determined uniquely
by the behaviour of the function near and at the point x = a. Since the behaviour near
x = a is central to the concept of a limit, this would suggest the following definition.

DEFINITION Formal Definition of Continuity I

We say that a function f is continuous at a point x = a if

i) lim
x→a

f (x) exists, and

ii) lim
x→a

f (x) = f (a).

a

f (a)

x

f

Otherwise, we say that f is discontinuous at x = a or that x = a is a point of
discontinuity for the function f .

The formal definition of a limit tells us that a function f is continuous at a point
x = a precisely when given any positive tolerance ε, we can find a cutoff distance
δ > 0 such that if x is within δ units of a, then f (x) approximates f (a) with an error
less than ε. That is, if | x − a |< δ, then | f (x) − f (a) |< ε.

a

a + δa − δ

x

f (a)

f (a) + ε

f (a) − ε

ε
{
ε
{

|x−a|

| f (x)− f (a)|
{

δ δ
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This leads us to our second formal definition for continuity:

DEFINITION Formal Definition of Continuity II

We say that a function f is continuous at x = a if for every positive tolerance ε > 0,
there is a cutoff distance δ > 0 such that if |x − a| < δ, then

| f (x) − f (a)| < ε.

We note that as was the case for limits, there is a sequential characterization of con-
tinuity at a point.

THEOREM 11 Sequential Characterization of Continuity

A function f is continuous at x = a if and only if whenever {xn} is a sequence with
lim
n→∞

xn = a, we must have that

lim
n→∞

f (xn) = f (a).

You will notice that this is essentially the sequential characterization of limits with L
replaced by f (a) and without the restriction that xn , a.

We end this section with a useful observation that is really nothing more than a nota-
tional trick.

Observation: Suppose that we want to consider lim
x→a

f (x). Assume x , a. Then we
can write

x = a + h

where h , 0. In particular, f (x) = f (a + h). We already know that if h → 0, then
x = a + h→ a + 0 = a. As a result we obtain the following

lim
x→a

f (x) = lim
h→0

f (a + h)

in the sense that if either limit exists, then both exist and they are equal. If one fails
to exist, so does the other. From this we can deduce an alternative way of stating that
f is continuous at x = a.

Fact:

A function f is continuous at x = a if and only if

lim
h→0

f (a + h) = f (a).
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5.8.1 Types of Discontinuities

You may notice that the second requirement in the definition of continuity (that
lim
x→a

f (x) = f (a)) actually implies the first (that lim
x→a

f (x) exists). Why then did we
write the definition in this way rather than simply requiring that lim

x→a
f (x) = f (a)?

The answer to this question comes from the observation that to really understand
what it means for a function to be continuous at a point you need to first see what
makes a function discontinuous. This can occur in two ways. Either (i) holds and (ii)
fails, or (i) fails and as a consequence so must (ii).

The first type of discontinuity we want to discuss happens when (i) holds, but (ii)
fails. In this case, since the limit as x approaches a exists, we might conclude that
the function is well-behaved near x = a, but it is either not defined at x = a or it
was defined in some sense “incorrectly.” An example of this type of discontinuity
happens when we consider the function f (x) = x2−1

x+1 at x = −1. We know

x2 − 1
x + 1

= x − 1

for all x , −1. It follows that

lim
x→−1

x2 − 1
x + 1

= −1 − 1 = −2.

However, since f (x) is not defined at x = −1, the graph of f has a hole at the point
(−1,−2).

f (−1)=−2

f (x) =
x2 − 1
x + 1

-2 -1 1 2
0

1

-1

-2

-3

This type of discontinuity is called a removable discontinuity because it can be re-
moved by simply defining or redefining f (a) to be the value of the limit at x = a.
This would fill the hole in the graph. In the case of our current example, we could
simply define f (−1) = −2. The new graph of f would look as follows:

f (−1)=−2

f (x) =


x2 − 1
x + 1

if x , −1

−2 if x = −1

-2 -1 1 2
0

1

-1

-2

-3
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The second type of discontinuity happens when lim
x→a

f (x) fails to exist. These discon-
tinuities are called essential discontinuities since they cannot be repaired by simply
defining or redefining f (a). We will now look at three ways that essential disconti-
nuities can happen. The first type is called a finite jump discontinuity.

We know that lim
x→a

f (x) exists if and only
if both lim

x→a−
f (x) and lim

x→a+
f (x) exist and

the two one-sided limits are equal.
Suppose on the other hand that
lim
x→a−

f (x) = L and lim
x→a+

f (x) = M, but that
L , M. We then have that lim

x→a
f (x) does

not exist, so f is discontinuous at x = a.
a

M

L

Notice the gap or jump of length | L − M | on the graph at x = a. It is this finite jump
that gives the discontinuity its name. It is also clear that the gap cannot be filled by
defining f (a) in some appropriate manner.

EXAMPLE 27 Let

f (x) =
|x|
x

=

{
1 if x > 0
−1 if x < 0 .

The graph of f looks as follows:

f (x) =
|x|
x

1

1

2

2

-1

-1

-2

-2 0

Since lim
x→0+

f (x) = 1 and lim
x→0−

f (x) = −1, the function f has a jump discontinuity of
length 2 at x = 0.

The second type of essential
discontinuity happens when the graph
has a vertical asymptote at x = a.
This means that at least one of the
one-sided limits is infinite. In the
picture, we have lim

x→a+
f (x) = −∞.

vertical
asymptote

x = a

a

f

Just as in the previous case, the graph of f is broken by a gap at x = a, but this time
the gap or jump is infinite in length. For this reason it is known as an infinite jump
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discontinuity. Like the finite jump discontinuity, it cannot be removed by defining or
redefining f (x) at x = a.

An example of this type of infinite
jump discontinuity is f (x) = 1

x at
x = 0.

x

f (x) =
1
x

20

10

0

−10

−20

1 2−1−2

x = 0

The third type of essential discontinuity is the oscillatory discontinuity. This happens
when f is bounded near x = a but it does not have a limit because of infinitely
many oscillations near a. The standard example of this phenomenon is the function
f (x) = sin

(
1
x

)
at x = 0. We remind you that the graph of sin

(
1
x

)
looks as follows:

−0.4 −0.2 0.2 0.4

0.5

−0.5

y=1

y=-1

f (x) = sin(1
x )

Unlike the previous two types of essential discontinuities, the graph of sin
(

1
x

)
does

not exhibit any obvious break at x = 0. However, a break still exists in the sense
that the y-axis divides the part of the graph to the left of 0 from the part to the right
of 0 and there is no way to define the function at 0 so that these two parts become
“connected.” That is, suppose you would like to trace the graph with a pencil. There
is no way to define f (0) so that you can get from a point on the graph located to the
left of 0 to a point on the graph to the right of 0 without the pencil leaving the graph.
In fact, all discontinuities result in “breaks” in the graph of the function at a point
x = a.

REMARK
Earlier in this chapter we introduced the Thomae Function:

f (x) =


1 if x = 0
1
n if x = k

n ∈ Q with k ∈ Z \ {0}, n ∈ N, gcd(k, n) = 1.
0 if x ∈ R \ Q
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We also showed that lim
x→α

f (x) = 0 for every α ∈ R. This means that f has the unusual
property that f is continuous at each irrational and has a removable discontinuity at
each rational.

Question: Does there exist a function g : R → R which is continuous at each
rational but discontinuous at each irrational?

.

5.8.2 Continuity of Polynomials, sin(x), cos(x), ex and ln(x)

We have just seen what can happen when a function is discontinuous. Under what
circumstances can we expect continuity?

EXAMPLE 28 Polynomial Functions

We already know that for a polynomial function p, we can find the limit at x = a by
simply evaluating p(x) at x = a. This is another way of saying that if

p(x) = a0 + a1x + · · · + anxn,

then p is continuous at each point a ∈ R.

EXAMPLE 29 Continuity of sin(x) and cos(x)

We have seen that

lim
x→0

sin(x) = 0 = sin(0) and lim
x→0

cos(x) = 1 = cos(0).

This shows that both sin(x) and cos(x) are continuous at x = 0. We can also use these
results to show continuity at any point. To see why this is the case observe that

lim
x→a

sin(x) = lim
h→0

sin(a + h)

= lim
h→0

sin(a) cos(h) + sin(h) cos(a)

= sin(a) · 1 + 0 · cos(a)
= sin(a)

and

lim
x→a

cos(x) = lim
h→0

cos(a + h)

= lim
h→0

cos(a) cos(h) − sin(a) sin(h)

= cos(a) · 1 − sin(a) · 0
= cos(a)
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EXAMPLE 30 Continuity of ex and ln(x)

Unlike the previous examples, it is actually not an easy task to prove the continuity
of either the function f (x) = ex or the function g(x) = ln(x) at a particular point
x = a. In fact, the easiest way to show that ex is continuous at each real number is
to realize that it can be defined by a special type of series construction known as a
power series. The proof of this is beyond the scope of this course. However, we can
show that if ex is continuous at x = 0, then it is continuous everywhere.

To see why this is so, we first observe that if
ex is continuous at x = 0, then

lim
h→0

eh = e0 = 1.

ex

1

0

Therefore

lim
x→a

ex = lim
h→0

ea+h

= lim
h→0

eaeh

= ea lim
h→0

eh

= ea

Once we have that ex is continuous at every point a ∈ R, we can give a geometric
argument to show that ln(x) is also continuous at each point in its domain. Consider
that f (x) = ex is invertible with inverse g(x) = ln(x). We know that the graph of g is
simply the reflection of the graph of f through the line y = x.
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f (x) = ex

g(x) = ln(x)

y = x

(a, f (a)) = (g(b), b)

(b, g(b)) = ( f (a), a)

Assume that f (a) = b. Continuity of f at x = a means that there are no breaks
in the graph at (a, f (a)). Since reflection does not create breaks that were not there
before, the graph of g would have no breaks at the point (b, g(b)). This leads us to
the following theorem:

THEOREM 12 Continuity of Inverses

Assume that y = f (x) is invertible with inverse x = g(y). If f (a) = b and if f is
continuous on an open interval containing x = a, then g is continuous at y = b = f (a).

As a consequence of the previous theorem we immediately get that ln(x) is continu-
ous at each point in its domain.

REMARK

The previous theorem concerning continuity of the inverse function seems quite ob-
vious given our geometric interpretation of the inverse function since it should be the
case that there are no breaks in the graph of g after reflection if there were no breaks
in the graph of f to begin with. However, it turns out that an analytic proof of this
result is surprisingly complex and at this point we do not as yet have the tools to
give the proof. As such we will delay the formal proof of this theorem until the next
chapter.
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5.8.3 Arithmetic Rules for Continuous Functions

In this section, we see how to build further examples of continuous functions. The
first two theorems follow immediately from the corresponding results for limits.

THEOREM 13 Continuity of Sums and Products

Let f and g be continuous at x = a, then

1) f + g is continuous at x = a.

2) f g is continuous at x = a.

THEOREM 14 Continuity of Quotients

Let f and g be continuous at x = a. If g(a) , 0, then f
g is continuous at x = a.

Let f (x) =
p(x)
q(x) be a rational function. Recall that p and q are polynomials. Let a ∈ R.

Then p and q are both continuous at x = a. It follows from the theorem on continuity
for quotients that f is continuous at x = a if and only if q(a) , 0.

EXAMPLE 31 Let p(x) = x2 − 1 and q(x) = x2 + x − 2. Then

f (x) =
x2 − 1

x2 + x − 2

is continuous precisely when x2 + x − 2 , 0. But

x2 + x − 2 = (x − 1)(x + 2)

so x2 + x − 2 = 0 if x = 1 or x = −2. This means that f is continuous everywhere
except at x = 1 and x = −2.

To test the nature of the discontinuities at x = 1 and x = −2, we must see if the limits
exist at either of these points. In fact, since

f (x) =
x2 − 1

x2 + x − 2

=
(x − 1)(x + 1)
(x − 1)(x + 2)

=
x + 1
x + 2
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if x , 1 we get that

lim
x→1

f (x) = lim
x→1

x + 1
x + 2

=
2
3
.

This shows that the function has a removable discontinuity at x = 1.

At x = −2, the situation is different. Since p(−2) = (−2)2 − 1 = 3 , 0, the limit of
this rational function f does not exist at x = −2. In fact, the function is unbounded
near x = −2. Moreover, since f (x) < 0 on the interval (−2,−1) and f (x) > 0 when
x < −2, we have

lim
x→−2−

f (x) = ∞

and
lim

x→−2+
f (x) = −∞.

This means that there is an essential discontinuity at x = −2.

This analysis of the function f is confirmed by the plot of its graph.

f (x) =
x2 − 1

x2 + x − 2
x = −2

y = 1

1 2 3−1−2−3 0

10

5

−5

−10

Though it is not relevant for our discussion of continuity, the picture also shows a
horizontal asymptote at y = 1. This is because

lim
x→−∞

f (x) = 1 = lim
x→∞

f (x).

The next theorem is a key tool in our quest to find continuous functions.
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THEOREM 15 Continuity of Compositions

Let f be continuous at x = a and g be continuous at x = f (a). Then h = g ◦ f is
continuous at x = a.

PROOF

We can give a simple proof that composition preserves continuity using the sequential
characterization of continuity.

Let f be continuous at x = a and g be continuous at x = f (a). Let
h(x) = (g ◦ f )(x) = g( f (x)). Let {xn} be a sequence such that xn → a. Since f is
continuous at x = a the sequential characterization of continuity shows that

lim
n→∞

f (xn) = f (a).

But now since f (xn)→ f (a) and since g is continuous at f (a) this time the sequential
characterization of continuity shows that

lim
n→∞

g( f (xn)) = g( f (a)).

This means that
lim
n→∞

h(xn) = lim
n→∞

g( f (xn)) = g( f (a)) = h(a)

which is exactly what we require to show that the composition is continuous.

EXAMPLE 32 Show that h(x) = ex2 sin(x) is continuous at each a ∈ R.

SOLUTION To establish the continuity of this complicated function directly from
the definition would be extremely difficult. However, the arithmetic rules will make
the task much simpler. We first observe that

1) x2 is continuous at each a ∈ R.
2) sin(x) is continuous at each a ∈ R.

From this the product rule implies that

f (x) = x2 sin(x)

is continuous at each a ∈ R. Next, we know that

g(x) = ex

is continuous at each a ∈ R. Finally, from the rule for compositions, we can conclude
that

h(x) = ex2 sin(x) = g( f (x))

is also continuous at each a ∈ R.
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5.8.4 Continuity on an Interval

So far whenever we have looked at limits or continuity for a function we have focused
our attention on a single point. In both cases, we were looking at the behaviour of
the function f at or very near to x = a. For this reason we call limits and continuity
at a point local properties of a function. However, we will often want to study the
behaviour of a function over an interval or over the entire real line R. In this case, we
are looking at the global nature of f . In particular, it will be useful to define what we
mean by continuity over an entire interval I rather than just at a single point. To do
so we will need to treat open intervals and closed intervals somewhat differently. For
open intervals of the form (a, b) or for R there is a very simple way to accomplish
our goal:

DEFINITION Continuity on (a, b) or R

We say that a function f is continuous on the open interval (a, b) if it is continuous
at each x ∈ (a, b).

We say that a function f is continuous on R, or just continuous for short, if it is
continuous at each x ∈ R.

This definition means that the graph of f has no breaks in the open interval (a, b)
or anywhere on the Real line, respectively. However, if we consider closed inter-
vals, the situation becomes more complicated. For example, consider the function
f (x) =

√
1 − x2 which is defined on the closed interval [−1, 1]. Not surprisingly, the

function f can be shown to be continuous at each x ∈ (−1, 1) and as such the defini-
tion above would mean that f is continuous on the open interval (−1, 1). But what
happens at the endpoints?

Technically, lim
x→−1

f (x) does not exist.
Since the function f is not defined for
x < −1, we get that lim

x→−1−
f (x) cannot

possibly exist. But for lim
x→−1

f (x) to exist,
both one-sided limits must exist as well.
Consequently, f is not continuous at
x = −1 in the traditional sense. Similarly,
f (x) is not defined for x > 1 and hence
lim
x→1+

f (x) does not exist. This would mean
that this function is not continuous at
x = 1 under the previous definition. To
see why this is troubling, look at the
graph of f .

1

1

−1 0

f (x) =
√

1 − x2

The graph of f appears to have all of the characteristics that we expect to see in a
continuous function. In particular, there are no breaks in the graph. Why is this so?

Firstly, because f is continuous on (−1, 1) there are no breaks in the open interval
(−1, 1). Then, as we approach −1 from within the interval, that is from above, the
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value of the function approaches 0 which is f (−1). Finally, as we approach 1 from
within the interval, or from below, we again see that the function approaches 0 which
is f (1). This means that instead of the two-sided limits at x = −1 and x = 1 agreeing
with the values of the function at the endpoints, we have

lim
x→−1+

√
1 − x2 = 0 = f (−1)

and
lim
x→1−

√
1 − x2 = 0 = f (1).

Since we are really only interested in what happens inside the closed interval [−1, 1],
this is essentially the best that we could expect. In summary, at the endpoints it is
the appropriate one-sided limit that tells us whether or not the value of the function
is properly reflected by the behaviour of the function near that point, but within the
closed interval. This leads us to define continuity on a closed interval more liberally
as follows:

DEFINITION Continuity on [a, b]

A function f is continuous on the closed interval [a, b] if

i) it is continuous at each x ∈ (a, b),
ii) lim

x→a+
f (x) = f (a), and

iii) lim
x→b−

f (x) = f (b).

The function f (x) =
√

1 − x2 satisfies all of these conditions on the interval [−1, 1].
As such, we would say that

√
1 − x2 is continuous on [−1, 1] even though technically

it is not continuous at either x = 1 or x = 2 using our existing definition.

5.9 Intermediate Value Theorem

In the previous section, we introduced the notion of continuity and looked at some of
the basic properties of continuous functions. In this section, we will look at a very
important consequence of a function being continuous on an interval, namely the
Intermediate Value Theorem. To motivate this theorem, we will begin with a rather
curious fact concerning temperature at points on the equator.

Fact:

At any given time there will always be a pair of diametrically opposite points
on the equator with exactly the same temperature!
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If you give the statement some thought you will find that it is not easy to see why this
must be true. In fact, it is rather surprising. It is also not immediately clear what this
has to do with continuity.

To understand this situation more clearly,
we will first assume that the earth’s
equator can be viewed as a circle and that
each point on the equator can be identified
by an angle θ in standard position. We
will then let T (θ) denote the temperature
at the given point on the equator.

T (θ)

θ

If a point has a standard position angle of
θ, then the point diametrically opposite to
it has a standard position angle of θ + π.
We want to show that we can always find
an angle θ so that T (θ) = T (θ + π), or
equivalently, that

H(θ) = 0

where

H(θ) = T (θ + π) − T (θ).

T (θ + π)

T (θ)

θ

θ + π

It is consistent with our understanding of the physical world to assume that temper-
ature varies continuously with position. For us this means that T is a continuous
function and hence so is H. Finally, we can achieve all diametrically opposite pairs
if we let θ range from 0 to π. Hence, we have reduced the problem to one of showing
that the function H, which is continuous on the closed interval [0, π], must take on
the value 0 at some point in this interval. Why must this happen?

To answer this latest question, we consider the following situation.

Suppose that we have a function f that is
continuous on a closed interval [a, b] and
that α is such that

f (a) < α < f (b).

This means that the graph of f starts out
below the line y = α at x = a and
eventually rises above the line y = α as
we move towards x = b.

y = α

(a, f (a))

(b, f (b))

ba

However, we have seen that when f is continuous on [a, b], its graph has no breaks in
this region. It would then seem rather obvious that to get from below the line y = α
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to above the line y = α without creating such a break, we must cross the line y = α at
least once. This means that there will be some point c in (a, b) with f (c) = α.

y = α

(a, f (a))

(b, f (b))

c ba

(c, f (c)) = (c, α)

This is the essence of the Intermediate Value Theorem.

THEOREM 16

The Intermediate Value Theorem (IVT)

Assume that f is continuous on the closed interval [a, b], and either

f (a) < α < f (b) or f (a) > α > f (b).

Then there exists a c ∈ (a, b) such that f (c) = α.

NOTE

1) There may be many points where f (x) = α.

2) In our proof c will be the last one.

PROOF

We will first assume that α = 0 and that

f (a) < 0 < f (b).

Let
S = {x ∈ [a, b] | f (x) ≤ 0}.

Note that S , ∅ since a ∈ S and S is bounded above by b. Let

c = lub (S ).
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We claim that f (c) = 0. However, we will first show that f (c) ≤ 0.

Since c = lub (S ), there exists a sequence {xn} ⊆ S with xn → c.

a bc

(a,f(a))

(b,f(b))

xn

Since f is continuous on [a, b] and since f (xn) ≤ 0 for each n ∈ N, the Sequential
Characterization of Continuity shows that

f (c) = lim
n→∞

f (xn) ≤ 0.

Next we let
yn = c +

b − c
n

.

Then c < yn ≤ b so yn < S and f (yn) > 0.

a bc

(a,f(a))

(b,f(b))

yn

Since yn → c, we have

f (c) = lim
n→∞

f (yn) ≥ 0.

This tells us that f (c) = 0 as claimed.

To obtain the more general result we consider the functions

g(x) = f (x) − α or h(x) = α − f (x)

respectively depending on whether f (a) < α < f (b) or if f (b) < α < f (a).
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REMARK

It is worth noting that despite the fact that the Intermediate Value Theorem seems
to be rather obvious, it is actually quite difficult to prove rigorously. The proof, as
we have seen relies on the Completeness Property of R via the Least Upper Bound
Property. In fact, the completeness of the real line is necessary. To see why suppose
that our universe was the rationals Q. Continuity still makes sense and the function
f (x) = x2 − 2 is continuous on [0, 2]. We also have that f (0) = −2 < 0 and f (2) =

2 > 0. However, there is no c ∈ (0, 2) ∩ Q such that f (c) = 0. This shows that the
IVT fails for the rationals.

The Intermediate Value Theorem, denoted by IVT, is exactly the tool we require to
complete the investigation of our temperature problem for the equator. Recall that
we need only show that the function H is 0 at some point in the closed interval [0, π].
To see that this is the case, there are three possibilities that we must consider.

Firstly, it is possible that H(0) = 0. But then T (π) = T (0) and we are done.

Secondly, we may have that H(0) < 0. This means T (π) < T (0). In this case, if
we could show that H(π) > 0, then the Intermediate Value Theorem would give us a
point θ0 ∈ (0, π) such that H(θ0) = 0 and hence that T (θ0 + π) = T (θ0).

The key here is that
T (π + π) = T (2π) = T (0)

since the angles θ = 0 and θ = 2π both represent the same point on the circle. What
does that tell us about H(π)? Is H(π) > 0 as desired?

T (π) T (π + π) = T (2π) = T (0)

The third possible option is that H(0) > 0. In this case, we must show that H(π) < 0.

We claim that if H(0) < 0, then H(π) > 0 and if H(0) > 0, the H(π) < 0. Con-
sequently, the Intermediate Value Theorem ensures us that there will always be a
pair of diametrically opposite points such that the temperatures at the two points are
identical. These claims are left as an exercise.

EXAMPLE 33 Show that there exists a c ∈ (0, 1) such that

cos(c) = c

SOLUTION We can see that this is true by plotting the graphs of the two functions
on the same set of axes.
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y = x
f (x) = cos(x)

Can we do better than a picture
proof ? In fact we can, but to do so we
must recognize that finding a
c ∈ (0, 1) with cos(c) = c is
equivalent to finding a c ∈ (0, 1) for
h(c) = 0 when

h(x) = cos(x) − x.

We also know that h is continuous on
the closed interval [0, 1]. Moreover as
the graph suggests

h(0) = cos(0) − 0 = 1 > 0

and

h(1) = cos(1) − 1 < 0.

h(x) = cos(x) − x

h(1) < 0

h(0) > 0

Since we have satisfied the conditions of the IVT, we can conclude that there exists
0 < c < 1 such that h(c) = 0 or equivalently that

cos(c) = c.

NOTE

The above argument shows us that there is a point 0 < c < 1 such that cos(c) = c,
however it does not tell us the value of c nor whether c is unique. That said, we
will soon see that the IVT does present us with a relatively simple algorithm to find
the approximate value of c with an error in the approximation that is as small as we
might choose.
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5.9.1 Approximate Solutions of Equations

The Intermediate Value Theorem has a number of important applications. Perhaps
the most important application for us will be the algorithm we can derive from the
IVT to find accurate approximations to solutions of equations that cannot easily be
solved exactly.

Approximating Roots of a Polynomial

Recall that if p(x) = a0 + a1x + · · · + anxn is a polynomial, then a root of p is any
number c such that p(c) = 0. For first-degree polynomials of the form p(x) = ax + b,
where a , 0, it is easy to find the root. We require

ax + b = 0.

If a , 0, the equation is satisfied when x = −b
a .

This is exactly the point where the line
y = ax + b crosses the x-axis.

p(x) = ax + b

x =
−b
a

If a = 0 and b , 0, then there is no real root since the horizontal line y = b does not
cross the x-axis.

For a quadratic polynomial of the form p(x) = ax2 + bx + c, the quadratic formula
tells us that p(x) = 0 if and only if

x =
−b ±

√
b2 − 4ac

2a
.

There are formulae like the quadratic formula that calculate the roots of third and
fourth degree polynomials. However, it is possible to use sophisticated ideas from
algebra to prove that there is no general formula for finding the roots of all fifth
degree polynomials or indeed for any degree above four. For example, we may want
to know if p(x) = x5 + x − 1 has any real roots and if so how can we find one?

It turns out that the Intermediate Value Theorem can provide a definitive answer to
the first part of this question and can give us a very useful tool to find an approximate
answer to the second part.
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EXAMPLE 34 Does p(x) = x5 + x − 1 have any real roots?

SOLUTION To see that p does have at least one real root, we note that
p(0) = 05 + 0− 1 = −1 < 0 and p(1) = 15 + 1− 1 = 1 > 0. Since the polynomial p(x)
is continuous on the closed interval [0, 1], the IVT implies that there will be a point
c with 0 < c < 1 such that p(c) = 0.

We also know from high school
calculus that:

(i) the derivative of the polynomial p
is p ′(x) = 5x4 + 1 and that in this
case, p ′(x) > 0 for all x, and

(ii) that a function which has a
strictly positive derivative at each x is
increasing.

This implies that the point c is the
only real root.

p(x) = x5 + x − 1

c
p(0)=−1<0

p(1)=1>0

The IVT is an existence theorem. This means that it tells you that a point c with
f (c) = α exists, but it does not tell you exactly how to find it. Nonetheless, we can
often use the IVT to find a very good approximation for such a point c. In fact, we
can use the IVT to approximate the root of the polynomial p(x) = x5 + x − 1.

EXAMPLE 35 Let p(x) = x5 + x − 1. Find the approximate value of its root.

SOLUTION To begin with, we know that the root c lies somewhere between 0 and
1. If we want to narrow the search, we could test the midpoint of this interval. In this
case, our midpoint is 1

2 and

p
(
1
2

)
=

(
1
2

)5

+
1
2
− 1

=
1

32
+

16
32
−

32
32

= −
15
32

< 0.

We now have that p(0) < 0, p( 1
2 ) < 0 and p(1) > 0. Since we have a sign change

between x = 1
2 and x = 1, the IVT tells us that c is between 1

2 and 1. This means that
we are now looking for c in an interval that is half the length of our original interval.
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p(x) = x5 + x − 1

c
p( 1

2 )<0

p(1)>0

To refine the search even further we repeat this process with the new interval [0.5, 1].
The new midpoint is

d =
1 + .5

2
= 0.75

We now test p(.75). If p(.75) > 0, then since p(.5) < 0, the root would be in the
interval [.5, .75]. If p(.75) < 0, the root would be in the interval [.75, 1] since we
know that p(1) > 0. In fact,

p(.75) = −.0126953 < 0,

so the root is in the interval [.75, 1].

Notice that we are now searching for c in an interval that is 1
4 = 1

22 times the length
of the original interval.

We can continue by finding the new midpoint

d =
1 + .75

2
= .875

Test this new midpoint to find that

p(.875) = .3879089 > 0

p(x) = x5 + x − 1
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Since the sign change now occurs between 0.75 and 0.875, the next interval of interest
is [.75, .875].

Again, we find the new midpoint

d =
.75 + .875

2
= .8125

As the previous diagram suggested, we see that

p(.8125) = .1665926 > 0

so we know that the root lies in the interval [.75,.8125]

We continue by finding the new midpoint

d =
.75 + .8125

2
= .78125.

and then determine that
p(.78125) = .0722883 > 0

Since p(.78125) is the same sign as p(.8125), we replace 0.8125 with 0.78125 giving
us the new interval [.75, .78125]. The next midpoint becomes

d =
.75 + .78125

2
= .765625

We have
p(.765625) = .0287006 > 0

so the root is in the interval [.75, .765625].

p(x) = x5 + x − 1

The next midpoint is

d =
.75 + .765625

2
= .7578125

Evaluating p(x) at this point gives

p(.7578125) = .007737 > 0

This means that the sign change happens between x = .75 and x = .7578125

One more iteration of the procedure gives us a new midpoint

d =
.75 + .7578125

2
= .75390625
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with
p(.75390625) = −.002544 < 0.

As such, we replace 0.75 as the new left-hand endpoint with 0.75390625. We have
now shown that

0.75390625 < c < 0.7578125

Notice that the length of the interval containing the root c is now

0.7578125 − 0.75390625 =
1

256

=
1
28

This is what we would expect since our original interval had length 1 and we have
run through 8 iterations of the procedure with each iteration producing a new interval
exactly 1

2 the length of the previous interval. If we want a final estimate of the root,
we can take the midpoint of the last two endpoints to get that

c �
0.75390625 + 0.7578125

2
= 0.755859375

The error in the estimate is at most the maximum distance from the final estimate to
each of the two endpoints in the final interval. But since the estimate is the midpoint
of this interval, this maximum difference is half the length of the interval. That is,

| 0.755859375 − c |≤
1
29 =

1
512

Since the estimate for c is quite good, we would expect that the value of the function
at the estimate should be close to 0. In fact,

p(0.755859375) = 0.002579752

p(x) = x5 + x − 1

5.9.2 The Bisection Method

The method that we have just outlined is called the Bisection Method because at each
stage we bisect the previous interval. If we wanted to increase the accuracy of the
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estimate, we would simply perform additional iterates of the procedure. Each addi-
tional iterate cuts the potential error in half. Since 1

24 = 1
16 <

1
10 , each block of four

additional iterations gives us at least one additional decimal place of accuracy. Since
1

210 = 1
1024 < 1

1000 , each block of ten additional iterations gives us three additional
decimal places of accuracy. This is useful because while the procedure is tedious to
carry out manually, it is very easy to program on a computer. The only cautionary
point we should make is that at some point the round-off error that arises when a
computer performs inexact arithmetic will become a limiting factor to the accuracy
achieved with this method. However, the IVT still provides us with a rather easy
method of obtaining a very accurate estimate of the root of a polynomial p.

The procedure we used for estimating the root of a polynomial works in much more
generality. For example, suppose that we wanted to show that the equation

ex = −3x2 + 4

has a solution in the interval [0, 1]. We could still apply the IVT. To do so we first
introduce the function

F(x) = ex + 3x2 − 4

obtained by subtracting the function on the right-hand side of our equation from the
function on the left-hand side. We then note that a point c is a solution of the equation
if and only if F(c) = 0. This new function F is a continuous function and

F(0) = e0 + 3(0)2 − 4 = −3 < 0

while
F(1) = e + 3 − 4 > 0.

Therefore, the IVT guarantees that there is at least one point c ∈ [0, 1] such that
F(c) = 0. That is,

ec = −3c2 + 4.

To gain a better understanding about where such a c might be located, we could
bisect the original interval at the midpoint 1

2 and evaluate F( 1
2 ). If F(1

2 ) < 0, then
since F(1) > 0 we would have a solution in the new interval [ 1

2 , 1]. Otherwise, if
F( 1

2 ) > 0, the new focus would be on the interval [0, 1
2 ]. We can then bisect the new

interval, test the midpoint and proceed as we have outlined previously.

In general, we now have an algorithm for using the Bisection Method to find approx-
imate solutions of equations that works as follows:

Suppose that we want to find an approximate solution to the equation

f (x) − g(x) = 0,

where both f and g are continuous functions of x, with an error of at most a fixed
tolerance ε.

Step 1: Form the new continuous function

F(x) = f (x) − g(x).
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Step 2: Find two points a0 < b0 such that either F(a0) > 0 and F(b0) < 0, or
F(a0) < 0 and F(b0) > 0.

The IVT now guarantees us that there is a point c between a0 and b0 such that
F(c) = 0.

Step 3: Find the midpoint of the interval [a0, b0] by using

d =
a0 + b0

2

and evaluate F(d).

Step 4: If F(a0) and F(d) have the same sign, then let a1 = d and b1 = b0. Otherwise,
let a1 = a0 and b1 = d to obtain a new interval [a1, b1] which will contain a solution
to the equation. We also have that b1 − a1 = 1

2 (b0 − a0).

Step 5: Repeat steps 3 and 4 to obtain new intervals [a2, b2], [a3, b3],. . . ,[an, bn],
each of which contains a solution to the equation. Moreover, for each k = 1, 2, . . . , n,
bk − ak = 1

2k (b0 − a0).

a0 ak b0bk

bk − ak = 1
2k (b0 − a0)

Step 6: Stop if
1

2n+1 (b0 − a0) < ε.

Let
d =

an + bn

2
.

Then there is a c such that F(c) = 0 and | d − c |< ε.

NOTE

Suppose that you are given a function f . Consider two distinct points a and b. To
test to see if f (a) and f (b) have the same sign we can simply calculate the product
f (a) f (b). If f (a) f (b) > 0, the two values have the same sign. If f (a) f (b) < 0, the
two values have the opposite sign.
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With this in mind we present a summary of the algorithm for the Bisection Method.

Summary [Bisection Method]

Problem: Given a continuous function f and a positive tolerance ε > 0, find
a point d so that there exists a point c with f (c) = 0 and |c − d| < ε.

Algorithm:

Step 1: Find two points a < b with f (a) f (b) < 0.

Step 2: Set ` = b − a.

Step 3: Set counter n to equal 0.

Step 4: Let d = a+b
2 .

Step 5: If `
2n+1 < ε, then STOP.

Step 6: If f (d) = 0, then STOP.

Step 7: If f (a) f (d) < 0, let b = d and n = n + 1, then go to Step 4.

Step 8: Let a = d and n = n + 1, then go to Step 4.

We have just seen that the Intermediate Value Theorem gives us a simple but effective
method for finding approximate solutions to many equations. In the next chapter, we
will introduce Newton’s Method, which is also very easy to describe and to program,
but is much more efficient as a means of finding approximate solutions to equations.

5.10 Extreme Value Theorem

In this section we present an important result that illustrates why continuity on a
closed interval differs significantly from continuity on an open interval. To motivate
our discussion we consider the following definition:
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DEFINITION Global Maxima and Global Minima

Suppose that f : I → R, where I is an interval.

• We say that c is a global maximum for f on I if c ∈ I and f (x) ≤ f (c) for all
x ∈ I.

• We say that c is a global minimum for f on I if c ∈ I and f (x) ≥ f (c) for all
x ∈ I.

• We say that c is an global extremum for f on I if it is either a global maximum
or a global minimum for f on I.

Note that a global maximum or minimum is sometimes called an absolute maximum
or minimum.

In many practical applications of mathematics finding extrema is either the primary
goal or it is a crucial step towards solving the problem being studied. However,
before we try to find extrema it is helpful to know when they exist. With this in mind
we ask the following question:

Question:

Given a function f defined on a non-empty interval I, do there exist points c, d ∈ I
such that f (c) ≤ f (x) ≤ f (d) for all x ∈ I? That is, does f achieve both a global
maximum and a global minimum on I?

Unfortunately, the answer to the question above is generally–No!

The first example we will look at shows that if f is a continuous function on an open
interval, then it is possible that neither a global maximum nor a global minimum
exists.

EXAMPLE 36 Let f (x) = x on the open interval (0, 1).

Since the open interval (0, 1) has no
largest or smallest value, f has no
global maximum or global minimum
on (0, 1).

1

1

0

f (x
) =

x

Key Observation: Notice that the function above seems to want to have a maximum
and a minimum at the end points x = 0 and x = 1 of the open interval (0, 1) but,
unfortunately, those points are not available for us to use.
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The next example shows that it is possible that either a global maximum exists or a
global minimum exists, but not both.

EXAMPLE 37 Let f (x) = 1 − x2 on the open interval (−1, 1) .

Then f has no global minimum on
(−1, 1), but f (x) does have a global
maximum on the interval (−1, 1) at
x = 0.

f (x) = 1 − x2

−1 10

1

As was the case in the previous example, the function does seem to want to achieve
its minimum at the missing end points of the open interval (−1, 1). This suggests
that if we replace the open interval with a closed interval by adding the endpoints,
we may have some hope to resolve our issues. In fact, this is the case as the next
theorem shows.

THEOREM 17 The Extreme Value Theorem (EVT)

Suppose that f is continuous on [a, b]. There exist two numbers c and d ∈ [a, b] such
that

f (c) ≤ f (x) ≤ f (d)

for all x ∈ [a, b].

PROOF

The proof will require three stages. In the first stage we will show that f is bounded
on [a, b]

Stage 1: We claim that

f ([a, b]) = { f (x)| x ∈ [a, b}]

is bounded.

Assume that this was not the case and that f is not bounded on [a, b]. Then for each
n ∈ N there would exist an xn ∈ [a, b] such that

| f (xn)| > n.
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a b
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(x ,f(x ))n n
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Since {xn} ⊂ [a, b] is bounded the Bolzano-Weierstrass Theorem implies that there
exists a subsequence {xnk} which converges to some point t ∈ [a, b]. The Sequential
Characterization of Continuity tells us that f (xnk) → f (t). However, this is impossi-
ble since

| f (xnk)| > nk

so that { f (xnk)} is not bounded. It follows that f must be bounded on [a, b].

Stage 2: Show that there exists d ∈ [a, b] such that

f (x) ≤ f (d)

for every x ∈ [a, b].

We begin by letting
M = lub ({ f (x)| x ∈ [a, b]}).

It will suffice to show that there exists d ∈ [a, b] such that f (d) = M.

For each n ∈ N, the fact that M − 1
n < M means that there exists an xn ∈ [a, b] such

that

M −
1
n
< f (xn) ≤ M.

M

M-1/n

xn
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By the BWT, {xn} has a subsequence {xnk} with xnk → d ∈ [a, b]. It then follows from
the Sequential Characterization of Continuity and the Squeeze Theorem that

f (d) = lim
k→∞

f (xnk) = M.

Stage 3: Show that there exists c ∈ [a, b] such that

f (c) ≤ f (d)

for every x ∈ [a, b].

We let
L = glb ({ f (x)| x ∈ [a, b]}).

By modifying the argument in Stage 2, we can show that there exists a c ∈ [a, b] such
that f (c) = L.

The next example shows that the assumption of continuity is essential in the statement
of the EVT.

EXAMPLE 38 Let

f (x) =

{
1
x if 0 < x ≤ 1
5 if x = 0

Then f has a global minimum on [0, 1] at x = 1, but it has no global maximum on
[0, 1].

f (x) = 1
x

This example does not contradict the EVT because f is not continuous on [0, 1].
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NOTE

At this point the EVT tells us that if f is a continuous function on a closed interval
[a, b], then the function always achieves its maximum and minimum value on the
interval. Unfortunately, the theorem does not tell us how to find the global extrema.

We have seen that the endpoints of an interval may play a role in locating maxima
or minima. However, as the next example shows, it is possible that neither extrema
occurs at an endpoint.

EXAMPLE 39 Consider the function f (x) = sin(x) on the interval [−π, π].

The function f (x) = sin(x) attains its
maximum and minimum values on
[−π, π] at x = π

2 and x = −π2 ,
respectively.

f (x) = sin(x)

−π π

−1

1

0−π
2

π
2

We will later show how to identify potential extrema if the function f is continuous
on the closed interval [a, b] and is differentiable on the open interval (a, b).

5.11 Uniform Continuity

Assume that f is continuous at each point in an interval I given an ε > 0 and a
point x = a ∈ I we know that we can find a δ > 0 such that is |x − a| < δ, then
| f (x) − f (a)| < ε. We know that the choice of δ depends on ε. However, it may also
depend on the point a as well. To see this consider the following example.

EXAMPLE 40 Consider the function f (x) = x2. This is continuous at each point in R. The following
diagram show the largest δ which will work in the definition of continuity given a
particular fixed ε at three points 0 < x0 < x1 < x2.
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If we denote the δ’s associated with x0, x1 and x2 respectively by δ0, δ1 and δ2, then
we see that

δ2 < δ1 < δ1

In fact, if f (x) = x2, then for x0 > 0 and ε > 0 fixed, the δ we get at x0 is

δx0 =

√
x2

0 + ε − x0 → 0

as x0 → ∞.

This shows that we cannot find a δ > 0 sufficiently small so that for the given fixed
ε > 0, this δ would work to satisfy the definition of continuity simultaneously at each
point in R.

It would of course be desirable if given a function f that is continuous on an interval
I and any ε > 0 that we could find a single δ > 0, depending only on ε, which would
work in the definition of continuity simultaneously at all points in I whenever this is
possible. If we can do so, we will say that f is uniformly continuous on I .

DEFINITION Uniform Continuity

We say that f is uniformly continuous on S ⊆ R if for every ε > 0 there exists a δ > 0
such that if x, y ∈ S and

| x − y |< δ,

then
| f (x) − f (y) |< ε.
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REMARK

It is an easy exercise to show that if f is uniformly continuous on S , then it is contin-
uous on S . Moreover, if T ⊆ S and if f is uniformly continuous on S , then it is also
uniformly continuous on T with the same δ.

We have already seen that f (x) = x2 is not uniformly continuous on R. We will soon
show that it is uniformly continuous on I = [0, 1] however. But right now we give an
example of a function that is uniformly continuous on R.

EXAMPLE 41 Let f (x) = 3x + 1 and let ε > 0. Given two points x1, x2 ∈ R we have that

| f (x1) − f (x2)| = |(3x1 + 1) − (3x2 + 1)|
= |3x1 − 3x2|

= 3 · |x1 − x2|

It follows that if we let δ = ε
3 and if |x1 − x2| < δ, then

| f (x1) − f (x2)| = 3 · |x1 − x2|

< 3 ·
ε

3
= ε

–2

0

2

4

6

8

10

12

x x

y=3x+1

|x -x |

3 |x -x |

� �= /3

�

1

1

1

2

2

2

This shows that f (x) = 3x + 1 is uniformly continuous on R.
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REMARK

The previous example can easily be modified to show that f (x) = mx+b is uniformly
continuous on R.

If m = 0, f is a constant function and given ε > 0, any δ > 0 will satisfy the definition
of uniform continuity for this ε.

If m , 0, then given ε > 0 we simply let δ = ε
|m| .

5.11.1 Sequential Characterization of Uniform Continuity

Just as was the case with limits and with continuity, it should not be surprising that
there is a useful sequential characterization of uniform continuity.

THEOREM 18 Sequential Characterization of Uniform Continuity

Assume that f (x) is defined on S ⊆ R. Then the following are equivalent:

i) f (x) is uniformly continuous on S .

ii) If {xn}, {yn} ⊆ S with lim
n→∞
| xn − yn |= 0, then

lim
n→∞
| f (xn) − f (yn) |= 0.

PROOF

i) implies ii):

Assume that f is uniformly continuous on S and that {xn}, {yn} ⊆ S with

lim
n→∞
| xn − yn |= 0.

Let ε > 0. Since f is uniformly continuous on S , we can find a δ > 0 such that if
x, y ∈ S and |x − y| < δ, then

| f (x) − f (y)| < ε.

Moreover, because lim
n→∞
| xn − yn |= 0, we can find a cutoff N ∈ N so that if n ≥ N,

then
|xn − yn| < δ.

It follows that if n ≥ N, then

| f (xn) − f (yn)| < ε
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which shows that
lim
n→∞
| f (xn) − f (yn) |= 0.

ii) implies i):

This time we will show that if i) fails, then ii) fails as well.

Assume that f is not uniformly continuous on S . Then there exists ε0 > 0 such that
for each δ > 0 there exists xδ, yδ ∈ S with |xδ − yδ| < δ but

| f (xδ) − f (yδ) ≥ ε0.

In particular, if n ∈ N with δ = 1
n , we get a pair of points xn and yn with |xn − yn| <

1
n

but
| f (xn) − f (yn) ≥ ε0.

xn yn

�
0

1/n

It follows that lim
n→∞
| xn − yn |= 0, but

lim
n→∞
| f (xn) − f (yn) |, 0.

Since ii) fails whenever i) fails, this means that ii) implies i) completing the proof.

Just as was the case for the Sequential Characterization of Continuity, the Sequential
Characterization of Uniform Continuity can be used to show that certain functions
are not uniformly continuous on a given set f .

EXAMPLE 42 We have seen that f (x) = x2 is not uniformly continuous on R. The Sequential
Characterization of Uniform Continuity can provide us with confirmation of this fact.
Indeed let

xn = n +
1
n

and yn = n.
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Then clearly lim
n→∞
| xn − yn |= lim

n→∞
1
n = 0. However,

lim
n→∞
| f (xn) − f (yn)| = lim

n→∞
|(n +

1
n

)2 − n2|

= lim
n→∞

2 +
1
n2

= 2.

This shows that f is not uniformly continuous on R as claimed.

EXAMPLE 43 Show that f (x) = 1
x is not uniformly continuous on (0, 1).

Solution: Let xn = 1
n and yn = 1

n+1 . Then lim
n→∞
| xn − yn |= lim

n→∞
1

n(n+1) = 0. However,

lim
n→∞
| f (xn) − f (yn)| = lim

n→∞
|n − (n + 1)|

= lim
n→∞

1

= 1.

What this shows is that we can have two points arbitrarily close together yet when we
apply f the results differ by the same constant 1. Visually, we can see this happening
in the following diagram:

1

ynxn
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5.11.2 Uniform Continuity on [a, b]

Given the examples we have seen so far it might seem that it is rare for a continuous
function to be uniformly continuous on an interval. We will now show that thankfully
this is not the case.

THEOREM 19 Uniform Continuity on [a, b]

If f is continuous on [a, b], then f (x) is uniformly continuous on [a, b].

PROOF

xn yn

�
0

1/n
[
a

]
b

Assume that f is not uniformly continuous. Then there exists an ε0 > 0 such that for
each n ∈ N we can choose xn, yn ∈ S with | xn − yn |<

1
n , but

| f (xn) − f (yn) |≥ ε0.

xn yn

�
0

[
a

]
bkk

c

By the Bolzano-Weierstrass Theorem we can choose {xnk} such that

xnk → c ∈ [a, b].

Since | xnk − ynk |<
1
nk
→ 0,

ynk → c.
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xn yn

�
0

[
a

]
bkk

c

�
0
2

�
0
2

By continuity f (xnk) → f (c) and f (ynk) → f (c). It follows that if nk is large enough,
we have

| f (xnk) − f (c) |<
ε0

2
,

and
| f (ynk) − f (c) |<

ε0

2
,

and hence
⇒| f (xnk) − f (ynk) |< ε0

which is a contradiction. Therefore f must be uniformly continuous on [a, b].

REMARK

You will notice that the previous result also depends on the completeness of R, this
time via the Bolzano-Weierstrass Theorem.

The use of the Bolzano-Weierstrass Theorem also gives us a clue as to what went
wrong in the case of f (x) = x2 over R and for g(x) = 1

x on (0, 1).

In the first case, our sequences {xn} and {yn} need not be bounded so we may not have
a convergent subsequence {xnk} to work with.

In the second case, we would get a convergent subsequence {xnk} ⊂ (0, 1), but this
time we would have xnk → 0 < (0, 1). As such we could not appeal to the Sequential
Characterization of Continuity to complete the proof. It follows that the theorem may
well fail on either an open interval or an unbounded interval. But all is not lost as far
as open intervals are concerned as the next example shows.

EXAMPLE 44

Let f (x) = x2. we know that f is not uniformly continuous on R. However our
most recent theorem shows us that f is uniformly continuous on [0, 1]. Moreover, we
know that if T ⊂ S and if f is uniformly continuous on S , then it is also uniformly
continuous on T . It follows that f (x) = x2 is also uniformly continuous on (0, 1). In
fact, it is uniformly continuous on any interval of finite length.
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5.12 Curve Sketching: Part 1

With modern computational tools available to help create precise plots of even rather
complicated functions, it might seem that curve sketching is no longer a useful skill
to learn. However, it is still a very valuable exercise since it forces you to really think
about what the various concepts of Calculus tell you about the underlying function.

Usually in a first course in Calculus the derivative is the central tool in curve sketch-
ing. However, it is actually the case that many functions can be drawn with a fair
degree of accuracy by determining only where the function is or is not continuous,
and by taking limits at certain points of interest. As such, below are steps that should
be followed when sketching the graph of f based on the ideas of this chapter.

Strategy [Basic Curve Sketching]

Step 1: Determine the domain of f .

Step 2: Determine any symmetries that the graph may have. In partic-
ular, test to see if the function is either even or odd.

Step 3: Determine, if possible, where the function changes sign and
plot these points.

Step 4: Find any discontinuity points for f .

Step 5: Evaluate the relevant one-sided and two-sided limits at the
points of discontinuity and identify the nature of the discon-
tinuities. In particular, indicate any removable discontinuity
with a small circle to denote the hole.

Step 6: From 5), draw any vertical asymptotes.

Step 7: Find any horizontal asymptotes by evaluating the limits of the
function at ±∞, if applicable. Draw the horizontal asymptotes
on your plot.

Step 8: Finally, use the information you have gathered above to con-
struct as accurate a sketch as possible for the graph of the given
function. It is often helpful to plot a few sample points as a
guide.

EXAMPLE 45 Sketch the graph of

f (x) =
xex

x3 − x
.
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SOLUTION

Step 1: This function is defined everywhere except when the denominator is
zero:

x3 − x = x(x − 1)(x + 1) = 0.

That is, everywhere except when x = 0 and x = ±1.

Step 2: The function is not even since f (−x) = −xe−x

−x3+x , f (x). The function
is not odd since − f (−x) = xe−x

x3−x , f (x). In fact, there are no obvious
symmetries.

Step 3: We first observe that

f (x) =
xex

x3 − x
=

ex

x2 − 1

for all x , 0. Since ex is never 0, the function is never 0. The IVT then
tells us that we could only have a sign change at a point of discontinuity.

Step 4: The function is the ratio of two continuous functions. Therefore, f is
discontinuous only at x = 0, x = −1 and x = 1 since these are the only
points where the denominator is 0.

Step 5: Since ex is always positive and since f (x) = xex

x3−x = ex

x2−1 for all x , 0,
there is no sign change at x = 0. However, the function goes from
positive to negative as we move across x = −1 (moving left to right)
and then from negative to positive as we cross x = 1 (moving left to
right).

In evaluating the limits, we will again use the fact that

f (x) =
xex

x3 − x
=

ex

x2 − 1

for all x , 0. This gives us that

lim
x→0

f (x) = lim
x→0

ex

x2 − 1
= −1.

Hence, x = 0 is a removable discontinuity for f .

Since ex > 0, this means that x = 1 and x = −1 are both vertical
asymptotes for f . Furthermore, since f (x) > 0 if x > 1 or x < −1, and
f (x) < 0 if x , 0 and −1 < x < 1, we get that

lim
x→1+

f (x) = ∞,

lim
x→1−

f (x) = −∞,

lim
x→−1+

f (x) = −∞,

and
lim

x→−1−
f (x) = ∞.
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Step 6: Draw these vertical asymptotes on the sketch of the plot.

Step 7: Since ex grows much more rapidly than any polynomial for large posi-
tive values of x, we have

lim
x→∞

f (x) = ∞.

Thus, f (x) grows without bound as x→ ∞.

But since ex becomes very small for large negative values of x, we have

lim
x→−∞

f (x) = 0.

Thus, y = 0 is a horizontal asymptote as x→ −∞. Draw this horizontal
asymptote on your plot.

Step 8: Taking all of this information into consideration gives us the following
sketch of the function.

f (x) =
xex

x3 − x

y=0

x=−1 x=1

0

2 4 531−1−2

10

5

−5

−10
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Derivatives

In this chapter we introduce and study the derivative of a function. Intuitively, deriva-
tives can be viewed as instantaneous rates of change of a quantity. However, to make
this statement more precise mathematically we will appeal to the theory of limits that
we developed in the previous chapter.

6.1 Instantaneous Velocity

To motivate the concept of instantaneous rates of change, we begin by developing a
definition of velocity by considering the following problem.

Problem:

A stone is thrown straight upward in the air and eventually falls back to the ground.
How can we define the instantaneous velocity of the stone at any given time?

We begin by looking at the graph that
represents the height s of the stone
above the ground at time t.

Note: The graph represents the
height function, not the actual path of
the stone.

s

0 t

s = s(t)

You will recall that the average velocity of the stone relative to the ground over the
period from time t = t0 to t = t1 is given by the formula

Vave =
displacement (change in position)

elapsed time

=
s(t1) − s(t0)

t1 − t0

=
4s
4t

239
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where
4s = s(t1) − s(t0)

and
4t = t1 − t0.

This can be realized
geometrically as the
slope m of the “secant
line” to the graph of s
through the points
(t0, s(t0)) and (t1, s(t1)).

s

0 tt0 t1

m = vave =
s(t1) − s(t0)

t1 − t0

s = s(t)

It makes sense that the velocity of the stone should not vary a great deal over very
small intervals of time. Therefore, we should be able to use the average velocity over
a small interval around t0 to approximate v(t0), the instantaneous velocity at time t0.

As a first approximation, let h be a small number. We can calculate the average
velocity for the time period between t0 and t0 + h as follows:

v(t0) � vave

=
s(t0 + h) − s(t0)

(t0 + h) − t0

=
s(t0 + h) − s(t0)

h

s

0 tt0 t0 + h

m = vave =
s(t0 + h) − s(t0)

h

s = s(t)

h

In general, it makes sense that the smaller h is, the better the estimate of v(t0). This
leads us to define the instantaneous velocity to be the limit of the average velocities
over smaller and smaller time intervals around t0. That is,

v(t0) = lim
h→0

s(t0 + h) − s(t0)
h

provided this limit exists.
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6.2 Definition of the Derivative

In the previous section, we saw how we could define the instantaneous velocity of a
particle as the limit of average velocities. However, velocity is simply the instanta-
neous rate of change of displacement s with respect to time t and the average velocity
is simply the average rate of change of displacement over a fixed interval of time. In
this section, the same process is used to define the instantaneous rate of change for
any quantity.

Given a function f , we can define the average rate of change as t goes from t0 to t1 to
be the ratio

f (t1) − f (t0)
t1 − t0

.

If we fix a point a and let h be small, then

f (a + h) − f (a)
h

again represents the average change in f over a small interval around a. The quotient

f (a + h) − f (a)
h

is called a Newton Quotient for f centered at a. Geometrically, the Newton Quotient
represents the slope of the secant line to the graph of f through the points (a, f (a))
and (a + h, f (a + h)).

0

f

ta a + h

(a, f (a))

f (a + h) − f (a)

m =
f (a + h) − f (a)

h

(a + h, f (a + h))

h

In the same manner that we defined velocity, we should be able to approximate the
instantaneous rate of change of f at t = a by calculating the average rate of change
over smaller and smaller intervals around t = a. This leads us to the following
familiar definition.
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DEFINITION The Derivative at t = a

We say that the function f is differentiable at t = a if

lim
h→0

f (a + h) − f (a)
h

exists.

In this case, we write

f ′(a) = lim
h→0

f (a + h) − f (a)
h

and we call f ′(a) the derivative of f at t = a.

There is an alternate form for the definition of the derivative that is also quite useful.
It can be obtained by noting that if t = a + h, then as h → 0 we have t → a.
Furthermore, since h = t − a we get

f ′(a) = lim
h→0

f (a + h) − f (a)
h

= lim
t→a

f (t) − f (a)
t − a

provided the limits exist.

As we have already suggested, if y = f (t), 4y = f (t) − f (a) and 4t = t − a, then the
Newton Quotient

4y
4t

=
f (t) − f (a)

t − a
is the average change in y. Letting 4t → 0 gives us that

f ′(a) = lim
4t→0

4y
4t

is the limit of average rates of change over smaller and smaller intervals and as such
represents the instantaneous rate of change of y with respect to t.

EXAMPLE 1 Let s = s(t) represent the displacement of an object. Then

s ′(t0) = lim
4t→0

4s
4t

= lim
t→t0

s(t) − s(t0)
t − t0

= lim
h→0

s(t0 + h) − s(t0)
h

= v(t0)

where v(t0) is the instantaneous velocity of the object at time t0. This shows us that
velocity is the derivative of displacement.
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The existence of the derivative also has a very important geometric consequence.

6.2.1 The Tangent Line

Recall that given a fixed point (x0, y0)
in the Real plane, all non-vertical
lines that pass through (x0, y0) are
determined by the slope m of the line.
Increasing m corresponds to rotating
the line in a counter-clockwise
direction. Decreasing m corresponds
to a clockwise rotation.

0

(x0, y0) m1 > m

m2 < m

mcw

ccw

Assume that f ′(a) exists. Pick h0, h1, h2 and h3 with

h0 > h1 > h2 > h3 > 0.

For i = 0..3, let

mi =
f (a + hi) − f (a)

hi

and
m = f ′(a).

The following diagram shows the graph of f , the secant lines through (a, f (a)) and
(a + hi, f (a + hi)) for i = 0, 1, 2, 3 with slope mi, respectively, and the unique line
passing through (a, f (a)) with slope m = f ′(a).

0

f

xa a
+

h
0

(a, f (a))

m = f ′(a)

m0

m1

m2

m3

a
+

h
1

a
+

h
2

a
+

h
3

0← hi
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Notice that as h → 0, the slopes of the secant lines m0, m1, m2, and m3 are getting
closer to m. In the diagram, this is represented by the secant lines visually “converg-
ing” to the line passing through (a, f (a)) with slope m = f ′(a). That is, we can view
the line passing through (a, f (a)) with slope m = f ′(a) as a “limit” of secant lines
passing through (a, f (a)). We call this line the tangent line to the graph of f at x = a.

DEFINITION The Tangent Line

Assume that f is differentiable at x = a. The tangent line to the graph of f at x = a
is the line passing through (a, f (a)) with slope m = f ′(a).

It follows that the equation of the tangent line is

y = f (a) + f ′(a)(x − a).

NOTE

It is often said that “the derivative is the slope of the tangent line.” While we have
certainly just seen that this statement is true, it is not appropriate to use this statement
as the definition of the derivative. In fact, without first defining the derivative as a
limit of Newton Quotients, it is not at all obvious what we mean by the tangent line.
This is a subtle point, but an important one to remember.

Finally, we want to highlight an important relationship between continuity and dif-
ferentiability.

6.2.2 Differentiability versus Continuity

Suppose that f is differentiable at t = a. Then

f ′(a) = lim
t→a

f (t) − f (a)
t − a

.

Now since t → a, we have t−a→ 0. But we know from our study of limits that if the
limit of a quotient exists, and if the denominator approaches zero, then the numerator
must also approach zero. This means that if f is differentiable at t = a, then

lim
t→a

f (t) − f (a) = 0

or
lim
t→a

f (t) = f (a).

However, this last statement implies that f is continuous at t = a. This establishes
the following important theorem.
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THEOREM 1 Differentiability Implies Continuity

Assume that f is differentiable at t = a. Then f is continuous at t = a.

EXAMPLE 2 Let’s illustrate graphically why differentiability implies continuity. Consider

f (t) =

{
|t|
t if t , 0
0 if t = 0

.

Then we know that

f (t) =


1 if t > 0
0 if t = 0
−1 if t < 0

.

In this case,
lim
t→0−

f (t) = −1 , 1 = lim
t→0+

f (t)

so f is certainly not continuous at t = 0. Therefore, it follows from the previous
theorem, that f is not differentiable at t = 0.

In fact, if we were to
evaluate

lim
t→0+

f (t) − f (0)
t − 0

we would get

lim
t→0+

1
t

since f (0) = 0 and if
t > 0, then f (t) = 1.

slope =
f (t)− f (0)

t−0 = 1
t

(t, 1)

t0

1

−1

However, we have seen in our study of vertical asymptotes that

lim
t→0+

1
t

= ∞.

That is, the slopes of these secant lines approach ∞ as t → 0+. Moreover, since this
one-sided limit does not exist,

lim
t→0

f (t) − f (0)
t − 0

does not exist, and hence f is not differentiable at t = 0.

Now that we have established that differentiability implies continuity, it makes sense
to ask if the converse also holds. That is, does continuity imply differentiability? We
will see that this is not the case.
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EXAMPLE 3 Let f (x) =| x | and let a = 0. We can see from the graph of f that | x | is continuous
at 0.

We are interested in calculating

lim
x→0

f (x) − f (0)
x − 0

.

But since f (0) = 0, we get that

lim
x→0

f (x) − f (0)
x − 0

= lim
x→0

| x |
x

and we know that this last limit does not exist (see previous example). Therefore, f
is not differentiable at 0. In fact, we can see this clearly from an examination of the
graph of f (x) =| x |.

If we choose h1 > 0, then the slope of
the secant line through
(0, f (0)) = (0, 0) and
(h1, f (h1)) = (h1, h1) is 1. However, if
we choose h2 < 0, then the slope of
the secant line through
(0, f (0)) = (0, 0) and
(h2, f (h2)) = (h2,−h2) is −1.

f (x) =| x |

slope = 1

h1h2

slope = −1

This means that

lim
x→0+

f (x) − f (0)
x − 0

= lim
x→0+

| x |
x

= lim
x→0+

x
x

= 1

but

lim
x→0−

f (x) − f (0)
x − 0

= lim
x→0−

| x |
x

= lim
x→0−

−x
x

= −1.

We have just seen that when the two one-sided limits from the Newton Quotients
exist but are different, the derivative fails to exist. Geometrically, because the two
one-sided limits are different, we have a “sharp” point at 0 on the graph of | x |.
These sharp points are the most common sign that a continuous function fails to be
differentiable.
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We have just seen that continuity does not imply differentiability. However, in
this course, all of the continuous functions that we study will be differentiable at
most points in their domain. We might be led to believe that this is always the case.
Unfortunately, using ideas that are beyond the scope of this course, it is possible to
build functions that are continuous at each point, but are not differentiable anywhere!

It would be interesting to know what such a nowhere differentiable function might
look like. However, it turns out that it is impossible to draw such a function, but
you can get an idea about what its graph might look like by comparing it to a rocky
coastline. At a distance, the coastline has many visible nooks and crannies. More-
over, as you look more closely at a small piece of the coastline, you see even more
jagged edges corresponding to the sharp corner that we saw in the previous example.
We know that these sharp points indicate where the derivative does not exist. This
phenomenon continues even if you inspect a single rock that composes part of the
coastline, and then even at the microscopic level. Similar behaviour can be observed
if you look closely at the edge of a snow flake.

Note: Continuous, nowhere differentiable functions are rather strange. This unusual
behaviour leads to the study of fractals, an important area of modern mathematics
with many real-life applications.

6.3 The Derivative Function

Up until now we have only considered the derivative at a fixed point a in the domain
of a function. We will now consider the derivative on an interval.

DEFINITION The Derivative Function

We say that a function f is differentiable on an interval I if f ′(a) exists for every
a ∈ I. In this case, we define the derivative function, denoted by f ′, as

f ′(t) = lim
h→0

f (t + h) − f (t)
h

.

That is, the value of the derivative function at t is simply the derivative of f at t for
each t ∈ I.

There is an important alternative to the notation associated with the derivative. This
notation is due to Gottfried Wilhelm Leibniz who, along with Isaac Newton, is often
credited with having invented modern Calculus.

Leibniz Notation

Given a function y = f (t), Leibniz wrote

dy
dt
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for the derivative of y (or equivalently, of f ) with respect to t. An alternate form of
Leibniz’s notation is to write

d f
dt

or
d
dt

( f )

to indicate that f is to be differentiated with respect to the variable t. The symbol

d
dt

is called a differential operator.

In Leibniz’s notation, we denote f ′(a), the derivative at t = a, by

dy
dt

∣∣∣∣
a
.

That is,
dy
dt

∣∣∣∣
a

= f ′(a).

Note that it also makes sense to differentiate the function f ′. The derivative of this
function, if it exists, is called the second derivative of f and is denoted by f ′′. We
could then differentiate f ′′ to get the third derivative f ′′′, and so on. This leads us to
define the higher derivatives of f .

DEFINITION Higher Derivatives

Let f be a differentiable function with respect to x with derivative f ′. If f ′ is also
differentiable, then its derivative

d
dx

( f ′)

is called the second derivative of f and it is usually denoted by

f ′′.

It is also commonly denoted by either

f (2) or
d 2

dx2 ( f ).

If f ′′ is also differentiable, then its derivative is called the third derivative of f and it
is denoted by

f ′′′ or f (3).

In general, for any n ≥ 1,

f (n+1) =
d
dx

( f (n))

and f (n) is called the n-th derivative of f .

We will see later that f ′′ impacts the geometry of the graph of f . In particular, the
larger the magnitude of f ′′, the more curved the graph of f .
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6.4 Derivatives of Elementary Functions

In this section the definition of the derivative and the theory of limits are used to
determine the derivatives of some important functions. Using the definition of the
derivative to calculate derivatives is often called differentiation by first principles.

EXAMPLE 4 The Derivative of a Constant Function

Assume that f is a constant function. That is, there exists some c ∈ R such that

f (x) = c

for every x ∈ R. Fix a ∈ R. We want to find f ′(a) if it exists. To do this we evaluate

lim
h→0

f (a + h) − f (a)
h

.

However, since f (a + h) = c = f (a)
for each h , 0,

f ′(a) = lim
h→0

f (a + h) − f (a)
h

= 0.

f (x) = c

0

c
f ′(a) = slope = 0

a + ha

This result should be expected since f ′(a) represents the instantaneous rate of change
of f at x = a. Since constant functions do not change in value (horizontal line),
the slope of a constant function is always 0 and it follows that the derivative at any
point should also be 0.

EXAMPLE 5 The Derivative of a Linear Function

Let f (x) = mx + b. Then the graph of f is the straight line with slope m.

Choose a ∈ R. For h , 0, the secant
line joining (a, f (a)) and
(a + h, f (a + h)) is coincident with the
line that is the graph of f . Therefore,
any secant line to f (x) has slope m. f (x) = mx + b

0 a + ha

f ′(a) = slope = m

This suggests that f ′(a) = m. We can verify this algebraically as follows:
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f ′(a) = lim
h→0

f (a + h) − f (a)
h

= lim
h→0

(m(a + h) + b) − (ma + b)
h

= lim
h→0

ma + mh + b − ma − b
h

= lim
h→0

mh
h

= m.

In particular, if f (x) = x and if g(x) = 7x + 4, then f ′(x) = 1 and g ′(x) = 7 for all x.

EXAMPLE 6 The Derivative of a Simple Quadratic Function

Calculate the derivative of f (x) = x2.

Unlike the previous examples, the
derivative is not constant for all x. We
can see this by observing that the
slopes of the tangent lines through
(x, f (x)) vary as x varies.

f (x) = x2

1

2

3

4

0−2 −1 1 2

We can use first principles to find the value of the derivative of x2 at any point x:

f (x) = x2

1

2

3

4

0−2 −1 1 2

(x, x2)

f ′(x) = slope = 2x

x

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2xh + h2 − x2

h

= lim
h→0

2xh + h2

h
= lim

h→0
2x + h

= 2x.

Calculus 1 (B. Forrest)2



Section 6.4: Derivatives of Elementary Functions 251

The next example is a very important calculation of a derivative by first principles.

6.4.1 The Derivative of sin(x) and cos(x)

To calculate the derivative of sin(x) we need to recall two very important facts. The
first is the formula for the sine of a sum of angles. That is,

sin(x + y) = sin(x) cos(y) + cos(x) sin(y).

The second is the Fundamental Trig Limit,

lim
x→0

sin(x)
x

= 1.

We also require another limit which can be derived from the Fundamental Trig Limit,
namely that

lim
h→0

cos(h) − 1
h

= 0.

We can present graphical
evidence to support our
claim concerning this limit:

y

y =
cos(h)−1

h

h

Let’s derive this limit directly. To do so we first note that for any h near enough to 0,
cos(h) , −1, so

cos(h) + 1
cos(h) + 1

= 1.

Therefore, we have

lim
h→0

cos(h) − 1
h

= lim
h→0

(
cos(h) − 1

h

) (
cos(h) + 1
cos(h) + 1

)
= lim

h→0

cos2(h) − 1
h(cos(h) + 1)

= lim
h→0

− sin2(h)
h(cos(h) + 1)

= lim
h→0

sin(h)
h
· lim

h→0

− sin(h)
(cos(h) + 1)

= 1 · 0
= 0

since lim
h→0

sin(h)
h = 1, lim

h→0
(− sin(h)) = 0 and lim

h→0
(cos(h) + 1) = 2.

Now that we have established these facts, we can proceed directly to calculate the
derivative (function) of sin(x).
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The Derivative (Function) of sin(x)

We want to consider
lim
h→0

sin(x + h) − sin(x)
h

.

Using the rule for the sine of a sum of angles, this limit becomes

lim
h→0

(sin(x) cos(h) + cos(x) sin(h)) − sin(x)
h

.

Then

lim
h→0

(sin(x) cos(h) + cos(x) sin(h)) − sin(x)
h

= lim
h→0

(
sin(x)

cos(h) − 1
h

+ cos(x)
sin(h)

h

)
= sin(x) lim

h→0

cos(h) − 1
h

+ cos(x) lim
h→0

sin(h)
h

= sin(x) · 0 + cos(x) · 1
= cos(x).

We have established the following very important theorem.

THEOREM 2 The Derivative of sin(x)

Assume that f (x) = sin(x). Then

f ′(x) = cos(x).

The Derivative (Function) of cos(x)

To find the derivative of cos(x) we use a very similar calculation as above. This time
we want to consider

lim
h→0

cos(x + h) − cos(x)
h

.

Using the rule for the cosine of a sum of angles, this limit becomes

lim
h→0

(cos(x) cos(h) − sin(x) sin(h)) − cos(x)
h

.

Then

lim
h→0

(cos(x) cos(h) − sin(x) sin(h)) − cos(x)
h

= lim
h→0

(
cos(x)

cos(h) − 1
h

− sin(x)
sin(h)

h

)
= cos(x) lim

h→0

cos(h) − 1
h

− sin(x) lim
h→0

sin(h)
h

= cos(x) · 0 − sin(x) · 1
= − sin(x).
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This result establishes the following theorem:

THEOREM 3 The Derivative of cos(x)

Assume that f (x) = cos(x). Then

f ′(x) = − sin(x).

6.4.2 The Derivative of ex

Recall that for any a > 1, a0 = 1 and
the exponential function f (x) = ax

produces the following type of graph
through the point (0, 1).

You can see that the graph has a very
smooth appearance which is
characteristic of a differentiable
function. As such we can speculate
that f (x) = ax should be
differentiable everywhere.

f (x) = ax

−4 −3 −2 −1 0 1 2

1

2

3

4

5

6

Now under the assumption that f (x) = ax is differentiable, we can try to calculate the
derivative. Then

f ′(x) = lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= ax · lim
h→0

ah − 1
h

= ax · f ′(0).

This calculation tells us that
f ′(x) = Ca f (x)

where the constant Ca is the value of the derivative at x = 0. In this way the derivative
at x = 0 characterizes the function f (x) = ax.

The following diagram gives us a sense of what the value of the derivative f ′(0)
might be for various choices of the base a.
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0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

( 1
2 )x

1x

2x

4x

f ′(0) < 0

0 < f′ (0) < 1

f′ (0
) >

1

Notice in the diagram that if 0 < a < 1, then f ′(0) < 0. If a = 1, then f ′(0) = 0. If
a = 2, then 0 < f ′(0) < 1 and if a = 4, then f ′(0) > 1. Moreover, as a increases so
does f ′(0).

NOTE
Of all the possible choices for
a, there is a unique value so
that the slope of the tangent to
the graph of ax through (0, 1)
is 1. We call this number
e. From the previous diagram
we can see that 2 < e < 4. In
fact, e is known to be an
irrational number that is
approximately 2.718281828.

f (x) = ex

−4 −3 −2 −1 0 1 2

2

3

4

5

6

1 f ′(0) = slope = 1

If f (x) = ex, the slope of the tangent line at x = 0 is

1 = f ′(0)

= lim
h→0

f (0 + h) − f (0)
h

= lim
h→0

eh − e0

h

= lim
h→0

eh − 1
h

.
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This gives us the important limit

lim
h→0

eh − 1
h

= 1.

This limit and the basic properties of exponential functions can be used to evaluate
the derivative of f (x) = ex at any x ∈ R.

Consider

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h
.

= lim
h→0

ex(eh − 1)
h

.

= ex · lim
h→0

eh − 1
h

.

= ex · 1
= ex.

Therefore, we have shown that ex has the following remarkable property.

THEOREM 4 The Derivative of ex

Assume that f (x) = ex. Then
f ′(x) = ex.

We have just seen that the function f (x) = ex has the unusual property that it is equal
to its own derivative. Later in the course we will be able to show that if g is any
function such that g(x) = g ′(x) for all x ∈ R, then there exists a constant c ∈ R, such
that g(x) = cex for all x ∈ R (see The Mean Value Theorem).

For functions of the form f (x) = ax, we have the following theorem.

THEOREM 5 The Derivative of ax

Assume a > 0 and that f (x) = ax. Then

f ′(x) = ln(a) ax.
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6.5 Tangent Lines and Linear Approximation

A central goal in many applications of mathematics is to approximate complicated
objects by simpler ones in a way that the error can be kept very small. This is certainly
one of the main themes in Calculus.

Perhaps the simplest types of functions are linear functions of the form h(x) = mx+b.
In this section, we will see that if f is differentiable at a point x = a, then it is
possible to approximate f by a linear function h with the properties that h(a) = f (a),
h ′(a) = f ′(a), and that if x is close to a, then it is reasonable to expect that h(x)
will be very close to f (x). To see why this might be so we make the following key
observation.

Observation: Suppose that f is differentiable at x = a with derivative f ′(a). Then
by definition:

lim
x→a

f (x) − f (a)
x − a

= f ′(a).

This tells us that for values of x that are close to a we have

f (x) − f (a)
x − a

� f ′(a). (∗)

If we rearrange (∗), we get

f (x) − f (a) � f ′(a)(x − a),

and finally that
f (x) � f (a) + f ′(a)(x − a).

So, in summary, if we define a new function L f
a(x) by

L f
a(x) = f (a) + f ′(a)(x − a),

then provided that x is close to a we have

f (x) � L f
a(x).

That is, L f
a(x) approximates f (x) near x = a.

Also of interest is that the graph of L f
a is actually a line with equation

y = f (a) + f ′(a)(x − a).

In fact, it is not some arbitrary line, but rather the tangent line to the graph of f
through (a, f (a)).
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f

x = a x1

y = L f
a = f (a) + f ′(a)(x − a)

For this reason, we call L f
a the linear approximation to f centered at x = a.

DEFINITION Linear Approximation

Let y = f (x) be differentiable at x = a. The linear approximation to f at x = a is the
function

L f
a(x) = f (a) + f ′(a)(x − a).

L f
a is also called the linearization of f or the tangent line approximation to f at

x = a.

Note: If f is clear from the context, then we will simplify this notation and write La

to represent the linear approximation.

In summary, if f is differentiable at x = a and if x is close to a, then we can approx-
imate a complicated function f with the much simpler linear function La. That is, if
x is sufficiently close to a, then

f (x) � La(x).

There are 3 very important properties of La that you should keep in mind. These are:

Three Properties of the Linear Approximation:

1. La(a) = f (a).

2. La is differentiable and La
′(a) = f ′(a).

3. La is the only first degree polynomial with properties (1) and (2).

Let’s see how this works in the case of a familiar function.
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EXAMPLE 7 The Fundamental Trig Limit [Revisited]

Let f (x) = sin(x) and a = 0. We know that f (0) = sin(0) = 0 and f ′(x) = cos(x), so
f ′(0) = cos(0) = 1. Therefore, the linear approximation to sin(x) at x = 0 is

L0(x) = f (0) + f ′(0)(x − 0) = 0 + 1(x − 0) = x.

This means that if x is near 0, then

sin(x) � L0(x) = x.

This result is something that we already knew since it follows from the fact that

lim
x→0

sin(x)
x

= 1.

The following diagram
illustrates that L0(x) = x
is a very good
approximation to sin(x)
near 0.

f (x) = sin(x)

L0(x) = x

1

-3 -2 -1 0 1 2 3

-1

To investigate the accuracy of this estimate and to see how simple this process is to
use, we will estimate

sin(.01)
Since 0.01 is very close to 0 and we know that sin(0) = 0, to find the estimate we
simply write

sin(.01) � L0(.01) = x |.01= .01

If we were to use a calculator
(radian mode) to evaluate
sin(.01), we would find that

sin(.01) = .00999983

to eight decimal places. This
means that the error is

Error = | sin(.01) − L0(.01) |
= .00000017
= 1.7 × 10−7

which is remarkably accurate for
such a simple process.

L 0(
x)

=
x

f (x
) =

sin
(x)

Error = | sin(0.01) − L0(0.01) |

Error

= 1.7 × 10−7

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

Moreover, we also know that the estimate is too large since the tangent line sits above
the graph at x = 0.01.
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EXAMPLE 8 The fact that if f is differentiable at x = a implies that

f (x) � La(x)

near x = a can be interpreted to mean that locally every differentiable function looks
like a straight line. This is not a very precise statement but it is somewhat akin to the
fact that if you are in the middle of an ocean and look towards the horizon, the world
appears to be very flat. In contrast, if you view the earth from the space station you
can clearly see that it is not flat.

To further illustrate what we mean
by this statement let’s look at the
function

f (x) = tan(
√

x)

on the interval [0, 2] centered
around x = 1.

f (x) = tan(
√

x)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

Now let’s add in the tangent line
at x = 1 which corresponds to the
graph of L1.

The diagram illustrates that near
x = 1, L1 does a very good
job of approximating the function
tan(
√

x). However, as we move
away from x = 1, we can certainly
see that the two functions are dif-
ferent.

f (x) = tan(
√

x)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

y = L1(x)

Next let’s look at the graphs of
f and L1 on the interval [0.8, 1.2]
centered at x = 1.

We can still distinguish between
the two functions but on this scale
the graph of tan(

√
x) looks very

close to the line y = L1(x), and
only deviates from it near the ex-
tremes of the interval.

f (x) = tan(
√

x)

0.8 0.9 1 1.1 1.2

1.9

1.8

1.7

1.6

1.5

1.4

1.3

y = L1(x)
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Finally, let’s focus our view on the interval [0.99, 1.01].

In this case, within the accuracy
of our graphing tool, it is
essentially impossible to
distinguish between
f (x) = tan(

√
x) and its linear

approximation L1 on this very
small interval. In particular, the
graph of tan(

√
x) appears similar

to a line over this interval.

f (x) = tan(
√

x)

y = L1(x)

0.99 1 1.01

1.54

1.55

1.56

1.57

6.5.1 The Error in Linear Approximation

Anytime a process for approximation is used, it is always appropriate to have an
understanding about the size of the error.

DEFINITION The Error in Linear Approximation

Let y = f (x) be differentiable at x = a. The error in using linear approximation to
estimate f (x) is given by

Error =| f (x) − La(x) | .

f

a x1

La(x) = f (a) + f ′(a)(x − a)

Error = | f (x1) − La(x1) |

Notice that graphically, the error is represented by the vertical distance from the graph
of f (x) at x = a to the tangent line y = La(x).
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Question: What major factors affect the error in linear approximation?

First Observation: Since the approximation

f (x) � f (a) + f ′(a)(x − a) = La(x)

was obtained from the limit

f ′(a) = lim
x→a

f (x) − f (a)
x − a

it would make sense that the farther we are from a, the further away f (x)− f (a)
x−a might be

from f ′(a), and hence the larger the potential error. That is, the larger the value of

| x − a |

the larger the possible error. In the following diagram we see that as we move away
from a to x1 and then to x2, the error does indeed grow.

f

a x1

y = La(x)

Error

x2

As this diagram illustrates, in principle, as the distance from x to a increases, so does
the potential error in using La(x) to approximate f (x). However, it is not always true
that the value of the error gets larger as the distance from x to a increases. Consider
the following diagram:

f

a x1

y = La(x)

Error

x2 x3

No Error
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In fact, at x3 the linear approximation gives us the exact value of the function (no
error). Situations such as this are uncommon. Generally speaking, the closer we are
to a, the more confidence we will have in the accuracy of the estimate.

Second Observation: There is a second factor that affects the size of the potential
error. Since we are using a line to approximate the function, the more curved the
graph is near x = a, the greater the potential error. This situation is illustrated in the
next diagram.

f

a x1

y = La(x)

g

Error for f (x1)
Additional Error
Due to Curvature of g

Question: How can we quantify the phrase “the more curved the graph is?”

Curvature arises from a change in the slope of the tangent lines. The more quickly
these slopes change, the more curved the graph. (Note: Since the slope of the tangent
line to a linear function never changes, lines have zero curvature.)

Consider the following graph of
the function f .

Notice the two points labeled a
and b. Near (a, f (a)) the graph
curves slowly. Near (b, f (b)) the
curvature is much more
pronounced.

a b

f

(b, f (b))

(a, f (a))

Now consider the tangent lines to the graph at selected points.
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Near a the slopes of the tangent
lines change very little as we
move from left to right. However,
near b, the slopes of the tangent
lines change very quickly from
steeply decreasing to flat, to
steeply increasing. This rapid
change in the slope is what is
responsible for the significant
curvature that is observed in the
graph of f near x = b.

a b

f

The slope of the tangent line is f ′(x). Hence, the rate at which f ′(x) is changing is
given by f ′′(x). It follows that the larger the magnitude of f ′′(x) near x = a, the
greater the curvature of the graph and the larger the potential error in using linear
approximation. This means that the size of | f ′′(x) | is the second factor affecting the
potential size of the error in using linear approximation. This information leads us to
the following theorem.

THEOREM 6 The Error in Linear Approximation

Assume that f is such that | f ′′(x) |≤ M for each x in an interval I containing a point
a. Then

| f (x) − La(x) |≤
M
2

(x − a)2

for each x ∈ I.

EXAMPLE 9 In our previous error estimate of sin(.01) we could have used the above theorem with
I = [0, .01] and a = 0. We know that if f (x) = sin(x), then f ′′(x) = − sin(x). We also
know that on I = [0, .01], the largest value for | − sin(x) |= sin(x) occurs at x = .01
and that

| − sin(.01) |≤ .01

If we let M = .01, the Error in Linear Approximation Theorem tells us that

| sin(.01) − La(.01) | ≤
M
2

(.01 − 0)2

=
.01
2

(.01)2

= 5 × 10−7.

In fact, our actual error was 1.7 × 10−7 which is less than 5 × 10−7.

6.5.2 Applications of Linear Approximation

There are many sophisticated applications of linear approximation. Some of these
will be addressed later in this course. We will end this section with two simple but
useful applications of linear approximation.
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Application 1: Estimating Change

Assume that we know the value of f (x) at a point a. We want to know what change
we could expect in the value of f (x) if we move to a point x1 near a. That is, we want
to know what

∆y = f (x1) − f (a)

will be if we change the variable by

4x = x1 − a

units. If we were to use the linear approximation La, we would find that

∆y = f (x1) − f (a)
� La(x1) − f (a)
= ( f (a) + f ′(a)(x1 − a)) − f (a)
= f ′(a)(x1 − a)
= f ′(a)4x.

That is
∆y � f ′(a)4x.

This last statement is illustrated by the following diagram.

a x1

f ′(a)∆x

y = f (x)

∆y

∆x

f (a)

f (x1)

y = La(x)

La(x1)

The next example uses the method we have just derived for estimating the change in
a quantity.
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EXAMPLE 10 A metal sphere of radius 10 cm expands when heated so that its radius increases by
0.01 cm. Estimate the change in the volume of the sphere.

We know that the volume (V) of
the sphere with radius r is given
by

V = V(r) =
4
3
πr3

and that V ′(r) = 4πr2. Our focal
point is at r = 10 cm, so

V ′(10) = 400π.

We also know that 4r = .01.

∆V

r

∆r

We want to know
4V = V(10.01) − V(10)

If we use linear approximation our estimate becomes

∆V = V(10.01) − V(10)
� V ′(10)4r
= 400π(.01)
= 4π

This means we should expect the volume to change by approximately 4π cm3.

Application 2: Qualitative Analysis of Functions

The second application that we present in this section is an application of linear
approximation to qualitative analysis of functions. In this case, our problem will be
to study the behaviour of the function

y = e−x2

near x = 0. (This is a function that plays an important role in probability theory and
statistics.)

Our first step is to begin with a simpler function, eu. If h(u) = eu, then we know that
h ′(u) = eu so

h(0) = h ′(0) = e0 = 1.
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It follows that y = 1 + u is
the tangent line to h(u) = eu

through (0, 1). Linear
approximation tells us that if
u is near 0, then

eu � 1 + u.

h(u) = eu

y = L0(u) = 1 + u

6

5

4

3

2

1

0 1 2−1−2−3−4

However, if x is close to 0, then −x2 is very close to 0. If we let u = −x2, we get

y = e−x2
� 1 + (−x2) = 1 − x2.

The next diagram illustrates the graphs of both y = e−x2
and y = 1 − x2.

y = 1 − x2

y = e−x2

−2 −1 0 1 2

2

1

−1

You can see that if x is close to 0, then y = e−x2
behaves like the much simpler

function y = 1 − x2. Consequently, if we were asked to sketch the graph of y = e−x2

near x = 0 we could simply draw the parabola associated with y = 1 − x2.

REMARK

Despite the fact that we obtained the previous estimate by using linear approximation,
the function y = 1 − x2 is not the linear approximation to e−x2

at x = 0. The simplest
way to see this is to note that the graph of y = 1 − x2 is a parabola and not a line.
We will soon see that if g(x) = e−x2

, then g ′(x) = −2xe−x2
(see The Chain Rule). It

follows that g(0) = 1 and g ′(0) = 0, so the linear approximation to e−x2
at x = 0

is the constant function y = 1. In fact, y = 1 − x2 is the second degree analog of
the linear approximation called the second degree Taylor Polynomial. We will study
Taylor polynomials later in the course.
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6.6 Newton’s Method

In the previous section we introduced the notion of the linear approximation to a
differentiable function and studied some simple applications. In this section, we
present a much more profound application called Newton’s Method.

Recall that in the section on continuity we made use of the Intermediate Value The-
orem to develop a bisection algorithm for approximating the solution to an equation
of the type

f (x) = 0.

Newton’s Method is another such algorithm, but it is in most cases much more effi-
cient than the bisection technique. To see how this method works, we begin with the
following simple case.

Assume that f (x) = f (a) + m(x − a). Then f is a linear function whose graph passes
through the point (a, f (a)). Suppose we wanted to find a point c such that f (c) = 0.
In this case, provided that m , 0, there is no need to estimate c since we can calculate
it explicitly.

We have

0 = f (c) = f (a) + m(c − a).

This implies that

− f (a) = m(c − a).

If m , 0, we can divide both
sides of the equation by m to get

− f (a)
m

= c − a.

Finally, adding a to both sides of
the equation yields

c = a −
f (a)
m

= a −
f (a)
f ′(a)

.

a

(a, f (a))

c = a −
f (a)
m

f (x) = f (a) + m(x − a)

Therefore, if f (x) = f (a) + m(x − a) and m , 0, we can easily solve the equation

f (x) = 0.

(If m = 0, the graph of f is a horizontal line so if f (a) , 0, the graph does not cross
the x-axis and no such c exists.)

What do we do if the graph of f is not a line? It is in this case where we can use
linear approximation. The following steps outline a general method to find the linear
approximation of a differentiable function.
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Newton’s Method [Steps]

Step 1: Pick a point x1 that is reasonably close to a point c with f (c) = 0. (The IVT
might be helpful in finding such an x1.)

Step 2: If f is differentiable at x = x1, then we have seen that we can approximate f
near x1 by using its linear approximation Lx1(x) = f (x1) + f ′(x1)(x − x1). Since

f (x) � Lx1(x)

it would make sense that the graphs of f and Lx1 would cross the x-axis at roughly
the same place. Therefore, if f ′(x1) , 0, we can approximate c by x2, where x2 is
such that

Lx1(x2) = 0.

But we have already seen that

x2 = x1 −
f (x1)
f ′(x1)

.

(x1, f (x1))

x1c

x2 = x1 −
f (x1)
f ′(x1)

f

Lx1(x) = f (x1) + f ′(x1)(x − x1)

Step 3: We now repeat the
procedure, replacing x1 by x2 and
using the linear approximation at
x2, to get a new approximation

x3 = x2 −
f (x2)
f ′(x2)

for c. (x2, f (x2))

x1c

x2

x3 = x2 −
f (x2)
f ′(x2)

Lx2(x) = f (x2) + f ′(x2)(x − x2)

f

The diagram shows that in this example x3 is very close to c.

Continuing in this manner, we get a recursively defined sequence

xn+1 = xn −
f (xn)
f ′(xn)

where xn+1 is simply the point at which the tangent line to the graph of f through
(xn, f (xn)) crosses the x-axis.
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It can be shown that for most nice functions and reasonable choices of x1, the
sequence {xn} converges very rapidly to a number c with f (c) = 0. However, it
makes sense for us to ask: How accurate is the approximation?

Accuracy of Newton’s Method

If we want to approximate c to k decimal places of accuracy, k decimal places must be
carried throughout the calculations. The procedure stops when two successive terms,
xn and xn+1, agree to k many decimal places. In most cases, this will happen after only
a few iterations because each iteration usually doubles the number of decimal places
of accuracy. Indeed, Newton’s Method is much more efficient than the previous
bisection method for finding approximate solutions to equations since the bisection
method requires roughly 4 iterations to improve the accuracy of the estimate by just
1 decimal place.

EXAMPLE 11 Heron’s Method Revisited

Use Newton’s Method to estimate
√

2 to nine decimal places of accuracy.

In this case, to use Newton’s Method we consider the function

f (x) = x2 − 2.

The two solutions to the equation

f (x) = x2 − 2 = 0

are x =
√

2 and x = −
√

2. Since f (
√

2) = 0, we can choose a point x1 near
√

2,
and then apply Newton’s Method to f to estimate

√
2. In this case, we will begin at

x1 = 1.

Now since f (x) = x2−2, we have f ′(x) = 2x. The iterative sequence becomes x1 = 1
and

xn+1 = xn −
f (xn)
f ′(xn)

= xn −
(xn)2 − 2

2xn

=
2x2

n

2xn
−

(xn)2 − 2
2xn

=
x2

n + 2
2xn

=
1
2

(xn +
2
xn

).

That is,

xn+1 =
1
2

(xn +
2
xn

).
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This last formula should be familiar. It is in fact the formula for generating the
iterated sequence used to approximate

√
2 that we referred to as Heron’s algorithm

(or the Babylonian Square Root Method).

In fact, if we replace f (x) = x2−2 by f (x) = x2−α, then applying Newton’s Method
would generate the recursively defined sequence

xn+1 =
1
2

(xn +
α

xn
)

to estimate
√
α for any α > 0.

With this formula we can calculate the successive approximations. Using x1 = 1, we
have

x2 = x1+1

=
1
2

(1 +
2
1

)

=
1
2

(3)

=
3
2

= 1.5

Next we have

x3 = x2+1

=
1
2

(
3
2

+
2
3
2

)

=
17
12

= 1.416666667

We then get

x4 = x3+1

=
1
2

(
17
12

+
2
17
12

)

=
577
408

= 1.414215686

The next iteration gives us

x5 = x4+1

=
1
2

(
577
408

+
2

577
408

)

=
665857
470832

= 1.414213562
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At this stage, the last two approximations agree to five decimal places. We should
expect that the next iteration may very well agree with the previous estimate to all
nine decimal places. In fact, we have

x6 = x5+1

=
1
2

(
665857
470832

+
2

665857
470832

)

= 1.414213562

exactly as we expected. This means that Newton’s Method gives us an estimate that
√

2 � 1.414213562

and this estimate is accurate to nine decimal places.

EXAMPLE 12 Failure of Newton’s Method

You will recall that given a continuous function f on [a, b], if f (a) and f (b) are of
opposite signs, then the IVT ensures that there must be a c ∈ (a, b) for which f (c) = 0.
Moreover, it gave us an algorithm to find such a c within an error that could be made
as small as we wish. The problem with this algorithm is that while it always works,
it can be a rather slow process.

In contrast, if the function f is known to be differentiable, and if we were to apply
Newton’s Method to approximate c, typically we can find an extremely good approx-
imation with only a few iterations of this method. Recall that we expect the number
of decimal places of accuracy to double with every iteration!

However, unlike the IVT based algorithm, Newton’s Method can fail to find c if we
are unlucky, even if we know it exists. It turns out that the most problematic situation
occurs when we consider points where the tangent line is very flat. For example,
consider the function f (x) = arctan(x).

−1

−
π

2

π

2

1

−8 −6 −4 −2 0 2 4 6 8

f (x) = arctan(x)
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We know that
arctan(x) = 0 if and only if x = 0.

Notice that as x grows in magnitude, the graph of f becomes much flatter. This can
also be seen by looking at the derivative

d
dx

(arctan(x)) =
1

1 + x2

which approaches 0 as x grows. If we choose a point x1 as in the following diagram
and apply the iterative procedure, then we see that | x2 |>| x1 | and that the point x3 is
much farther away from 0 than either x1 or x2.

−1

−
π

2

π

2

1

−8 −6 −2 0 x1 4 6 8

f (x) = arctan(x)

x2 x3

In fact, in the case of arctan(x) it can be shown that if we choose any starting point
x1 with | x1 |>

π
4 , then Newton’s Method will fail with the iterates (i.e., points xn)

growing without bound.

6.7 Arithmetic Rules of Differentiation

In this section, we review the rules of differentiation that you learned in your high
school Calculus class.
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THEOREM 7 The Arithmetic Rules for Differentiation

Assume that f and g are both differentiable at x = a.

1) The Constant Multiple Rule:

Let h(x) = c f (x). Then h is differentiable at x = a and

h ′(a) = c f ′(a).

2) The Sum Rule:

Let h(x) = f (x) + g(x). Then h is differentiable at x = a and

h ′(a) = f ′(a) + g ′(a).

3) The Product Rule:

Let h(x) = f (x)g(x). Then h is differentiable at x = a and

h ′(a) = f ′(a)g(a) + f (a)g ′(a).

4) The Reciprocal Rule:

Let h(x) = 1
g(x) . If g(a) , 0, then h is differentiable at x = a and

h ′(a) =
−g ′(a)
(g(a))2 .

5) The Quotient Rule:

Let h(x) =
f (x)
g(x) . If g(a) , 0, then h is differentiable at x = a and

h ′(a) =
f ′(a)g(a) − f (a)g ′(a)

(g(a))2 .

We now present proofs of the Arithmetic Rules.

1) Proof of the Constant Multiple Rule:

Assume that c ∈ R and that f is differentiable at x = a. Then

(c f ) ′(a) = lim
h→0

(c f )(a + h) − (c f )(a)
h

= lim
h→0

c f (a + h) − c f (a)
h

= c lim
h→0

f (a + h) − f (a)
h

= c f ′(a).
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2) Proof of the Sum Rule:

Assume that f and g are differentiable at x = a. Then

( f + g) ′(a) = lim
h→0

( f + g)(a + h) − ( f + g)(a)
h

= lim
h→0

f (a + h) + g(a + h) − f (a) − g(a)
h

= lim
h→0

f (a + h) − f (a)
h

+ lim
h→0

g(a + h) − g(a)
h

= f ′(a) + g ′(a).

3) Proof of the Product Rule:

The justification for the Product Rule is a bit more complicated than for the
previous two rules. It requires the following trick:

( f g) ′(a) = lim
h→0

( f g)(a + h) − ( f g)(a)
h

= lim
h→0

f (a + h)g(a + h) − f (a + h)g(a) + f (a + h)g(a) − f (a)g(a)
h

= lim
h→0

f (a + h)(g(a + h) − g(a))
h

+ lim
h→0

g(a)( f (a + h) − f (a))
h

To evaluate the last two limits, we need to remember that since f is differen-
tiable at x = a, it is also continuous. This means that lim

h→0
f (a+h) = f (a). From

this it follows that

lim
h→0

f (a + h)(g(a + h) − g(a))
h

= lim
h→0

f (a + h) lim
h→0

(g(a + h) − g(a))
h

= f (a)g ′(a).

The second limit is more straight forward since we can factor out the constant
g(a) to get

lim
h→0

g(a)( f (a + h) − f (a))
h

= g(a) lim
h→0

( f (a + h) − f (a))
h

= g(a) f ′(a).

This gives us that

( f g) ′(a) = lim
h→0

f (a + h)(g(a + h) − g(a))
h

+ lim
h→0

g(a)( f (a + h) − f (a))
h

= f (a)g ′(a) + f ′(a)g(a).

exactly as stated.
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4) Proof of the Reciprocal Rule:

Assume that f is differentiable at x = a. Then

(
1
f

) ′(a) = lim
h→0

1
f (a+h) −

1
f (a)

h

= lim
h→0

f (a) − f (a + h)
f (a + h) f (a)h

= − lim
h→0

f (a + h) − f (a)
h

· lim
h→0

1
f (a + h) f (a)

= − f ′(a) ·
1

( f (a))2 (by continuity at x = a)

=
− f ′(a)
( f (a))2 .

5) Proof of the Quotient Rule:

The proof of the Quotient Rule is a combination of the Product Rule and the
Reciprocal Rule. This proof is left as an exercise.

So far, we have seen that d
dx (x) = 1 and that d

dx (x2) = 2x. It is not too difficult to show
that if n ∈ N, then

d
dx

(xn) = nxn−1.

These can all be considered special cases of the next important rule.

THEOREM 8 The Power Rule for Differentiation

Assume that α ∈ R, α , 0, and f (x) = xα. Then f is differentiable and

f ′(x) = αxα−1

wherever xα−1 is defined.

NOTE

In the case where α ∈ N, the Power Rule can be derived from the Binomial Theo-
rem. For α ∈ Q, the Power Rule can be obtained by using the Chain Rule and the
Inverse Function Theorem (both of which will be discussed later in the course), and
if necessary the Reciprocal Rule. Establishing differentiability in the case where α
is irrational is beyond the scope of this course. However, if we assume differentia-
bility, the Power Rule can be established using a technique known as logarithmic
differentiation.
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EXAMPLE 13 Differentiating Polynomials and Rational Functions

Let P(x) = a0+a1x+a2x2+· · ·+anxn be a polynomial. Then the rules of differentiation
can be used to show that P is always differentiable and that

P ′(x) = a1 + 2a2x + 3a3x2 + · · · + nanxn−1.

Using the Quotient Rule, we see that a rational function

R(x) =
P(x)
Q(x)

is differentiable at any point where Q(x) , 0.

In particular, if

R(x) =
x + 2
x2 − 1

,

then R is differentiable provided that x2 − 1 , 0. That is, when x , ±1. Moreover,
the Quotient Rule shows that

R ′(x) =
( d

dx (x + 2))(x2 − 1) − (x + 2)( d
dx (x2 − 1))

(x2 − 1)2

=
1 · (x2 − 1) − (x + 2)(2x)

(x2 − 1)2

=
(x2 − 1) − 2x2 − 4x

(x2 − 1)2

=
−x2 − 4x − 1

(x2 − 1)2

6.8 The Chain Rule

So far we have looked at various rules of differentiation. However, one of the most
powerful rules of differentiation, the Chain Rule, shows us how to differentiate com-
positions of differentiable functions. In this section, we will use linear approximation
to give a geometric derivation of this important rule.

Geometric Derivation of the Chain Rule

Preconditions: Suppose that we have two functions y = f (x) and z = g(y). Let

h(x) = g ◦ f (x) = g( f (x))

be the composition function.
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y

x

f (x)

a

f (a)

g(y)

g ◦ f (a)

z

yf (a)

x

z

a

g ◦ f (x)

g ◦ f (a)

Assume now that f (x) is differentiable at x = a and g(y) is differentiable at y = f (a).
We want to know if the composition function h(x) will also be differentiable at x = a,
and if so its derivative.

Geometric Derivation: Proving that the composition function is differentiable is a
little tricky, but if we assume it is differentiable, we can use what we learned about
linear approximation to derive its derivative. We will do this by building the linear
approximation function Lh

a(x) for our composition. To do so let’s assume that we
knew nothing about the functions f (x) and g(y) other than the values of f (a), f ′(a),
g( f (a)) and g ′( f (a)). First recall that since f (x) is differentiable at x = a and g(y) is
differentiable at y = f (a) we can approximate f (x) near x = a by L f

a(x) and we can
approximate g(y) near y = f (a) by Lg

f (a)(y).

y

x

f (x)

a

f (a)

L f
a (x)= f (a)+ f ′(a)(x−a) g(y)

g ◦ f (a)

z

yf (a)

Lg
f (a)(y)=g( f (a))+g′( f (a))(y− f (a))

Then since f (x) � L f
a(x) near x = a and g(y) � Lg

f (a)(y) near y = f (a), we would
hope that we can approximate the composition g ◦ f by composing the two linear
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approximations. That is, we should have

h(x) = g ◦ f (x) � Lg
f (a) ◦ L f

a(x)

near x = a.

Moreover,

Lg
f (a) ◦ L f

a(x) = Lg
f (a)(L

f
a(x))

= g( f (a)) + g ′( f (a))(L f
a(x) − f (a))

= g( f (a)) + g ′( f (a))(( f (a) + f ′(a)(x − a)) − f (a))
= g( f (a)) + g ′( f (a)) f ′(a)(x − a)

Then we get that the composition of the two linear approximations yields another
function whose graph is a line with equation

z = g( f (a)) + g ′( f (a)) f ′(a)(x − a).

y

xa

f (a)

L f
a (x)= f (a)+ f ′(a)(x−a)

g ◦ f (a)

z

yf (a)

Lg
f (a)(y)=g( f (a))+g′( f (a))(y− f (a))

x

z

a

g ◦ f (a)

Lg
f (a) ◦ L f

a(x) = g( f (a)) + g′( f (a)) f ′(a)(x − a)

At this point we would have

h(x) � g( f (a)) + g ′( f (a)) f ′(a)(x − a).

Question: Is
z = g( f (a)) + g ′( f (a)) f ′(a)(x − a)
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the tangent line to the graph of z = h(x) through (a, h(a))? In other words, is

Lh
a(x) = g( f (a)) + g ′( f (a)) f ′(a)(x − a)?

We do have
h(a) = g ◦ f (a) = g( f (a))

so that all we would need for this to be the new linear approximation is that

(g ◦ f ) ′(a) = g ′( f (a)) · f ′(a).

y

x

f (x)

a

f (a)

L f
a (x)= f (a)+ f ′(a)(x−a) g(y)

g ◦ f (a)

z

yf (a)

Lg
f (a)(y)=g( f (a))+g′( f (a))(y− f (a))

x

z

a

g ◦ f (x)

g ◦ f (a)

Lg
f (a) ◦ L f

a(x) = g( f (a)) + g′( f (a)) f ′(a)(x − a)

= Lg◦ f
a (x) = g ◦ f (a) + (g ◦ f )′(a)(x − a)

?

One of the most profound results in Calculus is that the previous argument does
indeed prove true. This is precisely the Chain Rule.

THEOREM 9 The Chain Rule

Assume that y = f (x) is differentiable at x = a and z = g(y) is differentiable at
y = f (a). Then h(x) = g ◦ f (x) = g( f (x)) is differentiable at x = a and

h ′(a) = g ′( f (a)) f ′(a).

In particular,
Lh

a(x) = Lg
f (a) ◦ L f

a(x).

Calculus 1 (B. Forrest)2



Chapter 6: Derivatives 280

It turns out that Leibniz’s notation is very convenient for describing the Chain Rule.
Suppose that we have

z = g(y) and y = f (x).

Then
dz
dy

= g ′(y) and
dy
dx

= f ′(x).

But
z = g(y) = g( f (x))

so the Chain Rule shows that

dz
dx

= g ′( f (x)) f ′(x)

=
dz
dy

∣∣∣∣
f (x)

dy
dx

∣∣∣∣
x

Therefore, in Leibniz’s notation, the Chain Rule simply becomes

dz
dx

=
dz
dy

dy
dx
.

EXAMPLE 14 Find
d
dx

(x2 + 1)3.

SOLUTION #1: Let f (x) = x2 + 1 and g(y) = y3. Let h(x) = g( f (x)). Then

d
dx

(x2 + 1)3 = h ′(x).

We also know that f ′(x) = 2x and g ′(y) = 3y2. From the Chain Rule we get that

h ′(x) = g ′( f (x)) f ′(x)
= 3( f (x))2(2x)
= 3(x2 + 1)2(2x)
= 6x(x2 + 1)2.

SOLUTION #2: Let z = y3 and y = x2 + 1. Then

z = y3 = (x2 + 1)3

so that
d
dx

(x2 + 1)3 =
dz
dx
.
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The Chain Rule says that
dz
dx

=
dz
dy

dy
dx
.

But
dz
dy

= 3y2 and
dy
dx

= 2x.

From this it follows that

dz
dx

=
dz
dy

dy
dx

= 3y2(2x)
= 3(x2 + 1)2(2x)
= 6x(x2 + 1)2.

6.8.1 Proof of the Chain Rule

So far we have given an important geometric interpretation of the Chain Rule. In this
section, we will give a proof for this fundamental result. In fact, we will prove the
following slightly upgraded version of the Chain Rule.

THEOREM 10 The Chain Rule: Upgraded Version

Assume that f : I → R, where I ⊆ R, and that g : J → R, where f (I) ⊆ J and I and
J are open intervals such that I contains some x = a and J contains f (a). If f (x) is
differentiable at x = a and g(y) is differentiable at y = f (a), then h(x) := (g ◦ f )(x) is
differentiable at x = a with h′(a) = g′( f (a)) f ′(a).

PROOF

Let φ : J → R be defined by

φ(y) =

g(y)−g( f (a))
y− f (a) if y , f (a),

g′( f (a)) if y = f (a).

Note that f (a) ∈ J, and so

lim
y→ f (a)

φ(y) = lim
y→ f (a)

g(y) − g( f (a))
y − f (a)

:= g′( f (a)).

and φ(y) is continuous at y = f (a).

Now we note that for all y ∈ J,

g(y) − g( f (a)) = φ(y)[y − f (a)],
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even when y = f (a). Hence

g( f (x)) − g( f (a)) = φ( f (x))[ f (x) − f (a)]

for all x ∈ I, since f (I) ⊂ J. We get

lim
x→a

g( f (x)) − g( f (a))
x − a

= lim
x→a

φ( f (x))[ f (x) − f (a)]
x − a

= lim
x→a

φ( f (x))
[

f (x) − f (a)
x − a

]
=

(
lim
x→a

φ( f (x))
)
·

(
lim
x→a

f (x) − f (a)
x − a

)
= φ( f (a)) ·

(
lim
x→a

f (x) − f (a)
x − a

)
:= g′( f (a)) f ′(a),

6.9 Derivatives of Other Trigonometric Functions

Earlier we made use of the Fundamental Trig Limit to show that d
dx (sin(x)) = cos(x).

We can now use the Rules of Differentiation to calculate the derivatives of all of the
other basic trigonometric functions.

EXAMPLE 15 Find d
dx (cos(x)).

SOLUTION We have already shown from first principles that d
dx (cos(x)) = − sin(x).

In this example we will derive this result from the Chain Rule. To do so we use the
identity

cos(x) = sin(x +
π

2
).

Let y = sin(u) and u = x + π
2 . Substituting for u gives us that

y = y(x) = sin(x +
π

2
) = cos(x).

Therefore,
d
dx

(cos(x)) =
dy
dx
.

However, by the Chain Rule

dy
dx

=
dy
du

du
dx

= cos(u) · (1)

= cos(x +
π

2
).
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Finally, using the addition identity for cosine, we get

cos(x +
π

2
) = cos(x) cos(

π

2
) − sin(x) sin(

π

2
)

= cos(x) · (0) − sin(x) · (1)
= − sin(x).

Therefore, using the Chain Rule we have shown that

d
dx

(cos(x)) = − sin(x).

EXAMPLE 16 Find d
dx (tan(x)).

SOLUTION We begin by writing

tan(x) =
sin(x)
cos(x)

and then apply the Quotient Rule to get

d
dx

(tan(x)) =
d
dx

(
sin(x)
cos(x)

)
=

( d
dx sin(x)) cos(x) − (sin(x))( d

dx cos(x))
cos2(x)

=
cos(x) cos(x) − (sin(x))(− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)
= sec2(x).

We have shown that
d
dx

(tan(x)) = sec2(x).

A similar calculation shows that

d
dx

(cot(x)) = − csc2(x).
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EXAMPLE 17 Find d
dx (sec(x)).

SOLUTION Recall that sec(x) = 1
cos(x) . We can again apply the Quotient Rule with

f (x) = 1 and g(x) = cos(x)

to get

d
dx

(
1

cos(x)

)
=

f ′(x)g(x) − f (x)g ′(x)
g(x)2

=
0 · cos(x) − 1(− sin(x))

cos2(x)

=
sin(x)

cos2(x)

=
sin(x)
cos(x)

1
cos(x)

= tan(x) sec(x)

That is,
d
dx

(sec(x)) = tan(x) sec(x).

A similar calculation shows that

d
dx

(csc(x)) = − cot(x) csc(x).

6.10 Derivatives of Inverse Functions

In this section, the relationship between the derivative of an invertible function and
that of its inverse is explored using linear approximation as a key tool. More specif-
ically, if we assume that y = f (x) is invertible on the interval [a, b] and that it is dif-
ferentiable on (a, b), we want to know when will the inverse function f −1(y) = g(y)
also be differentiable and what is its derivative?

We will begin by looking at this problem geometrically.
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Assume that we have a function
y = f (x) with an inverse x = g(y).
Assume also that y = f (x) is
differentiable at x = a and that
f (a) = b. This means that there is
a tangent line to the graph of f
through the point (a, b). This line
is actually the graph of the linear
approximation

L f
a(x) = f (a) + f ′(a)(x − a).

Moreover, if f ′(a) , 0, then
y = L f

a(x) is also an invertible
function.

y = f (x)

y =
x

(a, b)
y = f (a) + f′ (a

)(x −
a)

We know that we can find the
graph of the inverse function in
its standard form y = g(x) by
reflecting the graph of f through
the line y = x. If we also reflect
the tangent line, the result is a
new line that looks like a tangent
line to the graph of the inverse
function, except it passes through
the point (b, a).

y = g(x)

y = f (x)

y =
x

(a, b)

(b, a)

y = f (a) + f′ (a
)(x −

a)

The equation of the original tangent line is

y = f (a) + f ′(a)(x − a).

To find the equation of the reflected line, take the tangent line equation and exchange
the variables x and y to get

x = f (a) + f ′(a)(y − a)

and then solve for y. To accomplish this, begin by subtracting f (a) from both sides
to get

x − f (a) = f ′(a)(y − a).

Provided that f ′(a) , 0, we can divide both sides by f ′(a). This gives us

1
f ′(a)

(x − f (a)) = (y − a).

Adding a to both sides yields

y = a +
1

f ′(a)
(x − f (a)).
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NOTE

The procedure we used above is exactly how we would find the inverse of the function
y = L f

a(x). That is,

(L f
a)−1(x) = a +

1
f ′(a)

(x − f (a)).

The last step is to note that a = g(b) and b = f (a). Substituting these into the previous
equation gives us

y = g(b) +
1

f ′(a)
(x − b).

y = g(x)

y = f (x)

y =
x

(a, b)

(b, a)

y = f (a) + f ′(a)(x − a)

y = g(b) + (1/ f ′(a))(x − b)

The picture suggests that this should be the equation of the tangent line to g through
the point (b, a). However, if g is differentiable at b, the equation of the tangent line
would be

y = g(b) + g ′(b)(x − b).

Comparing the last two equations shows that they agree provided that

g ′(b) = g ′( f (a)) =
1

f ′(a)
=

1
f ′(g(b))

.
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y = g(x)

y = f (x)
y = x

(a, f (a)) = (g(b), b)

(b, g(b)) = ( f (a), a)

L f
a(x) = f (a) + f ′(a)(x − a)

Lg
b(x) = g(b) + g′(b)(x − b)

= g( f (a)) + 1/ f ′(a)(x − f (a))

g′( f (a))

It is worth noting again that this calculation can be done precisely when f ′(a) , 0.
We can summarize the previous discussion with the following important theorem.

THEOREM 11 The Inverse Function Theorem

Assume that y = f (x) is continuous and invertible on [c, d] with inverse x = g(y), and
f is
differentiable at a ∈ (c, d). If f ′(a) , 0, then g is differentiable at b = f (a), and

g ′(b) =
1

f ′(a)
=

1
f ′(g(b))

.

Moreover, L f
a is also invertible and

(L f
a)−1(x) = Lg

b(x) = Lg
f (a)(x).

EXAMPLE 18 Let f (x) = x3. In this case, the inverse function is easy to calculate – it is g(y) = y
1
3 .

To illustrate how the Inverse Function Theorem works, let a = 2. Then f (a) = b =

23 = 8. The Inverse Function Theorem states that

g ′(b) =
1

f ′(a)
.
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Therefore, we expect that

g ′(8) =
1

f ′(2)
.

This can be easily verified. We note that f ′(x) = 3x2 so

1
f ′(2)

=
1

12
.

We also know that g ′(y) = 1
3y

−2
3 . It follows that

g ′(8) = (
1
3

)(8
−2
3 )

= (
1
3

)(
1
4

)

=
1

12

exactly as expected.

This example can also be used to show what happens when the assumption that
f ′(a) , 0 fails. If a = 0, then b = f (a) = f (0) = 0 as well. We have that
f ′(a) = f ′(0) = 0. But g ′(y) = 1

3y
−2
3 is not defined at b = f (0) = 0. This can

be seen from the graph of g(x) = x
1
3 .

g(x) = x
1
3

vertical tangent line
x = 0

(0, 0)

The graph of g(x) = x
1
3 has a “vertical tangent line” through (0, 0) which is not

permitted. In fact, this “vertical tangent line” is simply the y-axis, or the line x = 0.
Moreover, this line is the reflection through y = x of the x-axis which is in turn the
tangent line to f (x) = x3 through (0, 0).
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g(x) = x
1
3

(y-axis)
x = 0

(x-axis)
y = 0

f (x) = x3

y =
x

In summary, if the original function has a horizontal tangent line, that is if f ′(x) = 0,
then the reflection becomes a vertical line which is not permitted as the tangent line
of a differentiable function. This explains why we do not allow f ′(x) = 0 in the
statement of the Inverse Function Theorem.

The previous example illustrates the Inverse Function Theorem, but it is artificial
since we could just as easily have calculated the derivative of the inverse function
directly. There is another way to view the Inverse Function Theorem that will turn
out to be very useful.

Assume that we knew that x = g(y) was the inverse of y = f (x), and that both
functions were differentiable. Then we know that

g ◦ f (x) = g( f (x)) = x.

The Chain Rule shows that

d
dx

(g( f (x))) =
d
dx

(x).

This means that
g ′( f (x)) f ′(x) = 1

and hence that
g ′( f (x)) =

1
f ′(x)

just as the Inverse Function Theorem suggested.

It is also useful to note that this equation can also be written as

f ′(x) =
1

g ′( f (x))
.

We can use these ideas to find the derivative of the natural logarithm function.
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EXAMPLE 19 Derivative of ln(x)

In this example, the derivative of f (x) = ln(x) is derived.

We know that ln(x) is invertible with
inverse g(y) = ey. Then for any x > 0
we have

g( f (x)) = eln(x) = x.

f (x) = ex

g(x) = ln(x)

y = x

The Chain Rule shows that
g ′( f (x)) f ′(x) = 1

and hence that
f ′(x) =

1
g ′( f (x))

.

But g ′(y) = g(y) = ey for any y. This means that

f ′(x) =
1

g ′( f (x))

=
1

e f (x)

=
1

eln(x)

=
1
x
.

We have just shown that if f (x) = ln(x), then f ′(x) = 1
x .

6.10.1 The Proof of the Inverse Function Theorem

In the previous section we gave a convincing geometric derivation of the Inverse
Function Theorem. In this section we would like to give a proof of this very powerful
tool.
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Possible Strategy: We would like to say

lim
y→b

g(y) − g(b)
y − b

= lim
y→b

g(y) − a
y − f (a)

= lim
x→a

x − a
f (x) − f (a)

= lim
x→a

1
f (x)− f (a)

x−a

=
1

f ′(a)
.

Question: Why is this not a valid proof???

REMARK

It turns out that the main issue with the proposed proof lies in our second line. Trans-
ferring the limit from y → b over to x → a seems to make sense because x = g(y)
and a = g(b), so we would assume that as y → b, we would have g(y) → g(b). But
in reality this is exactly what it means for the inverse function g to be continuous
at y = b and at this point we do not yet know that the continuity of g follows from
that of f . If we can show that this is the case, then the calculation above is really a
valid proof of the Inverse Function Theorem. As such we will devote the rest of this
section to showing that if f is continuous, so is g.

We tend to associate invertible functions with monotonic functions. Our next propo-
sition will show that if f is continuous, they are one and the same.

PROPOSITION 12 Suppose that f is continuous and one-to-one on [a, b], then f is either increasing or
decreasing on [a, b].

PROOF

If f is neither increasing nor decreasing, then there exists points c, d, e ∈ [a, b] with
c < d < e such that either:

1) f (c) < f (d) and f (d) > f (e) or

2) f (c) > f (d) and f (d) < f (e).
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c d e

�

s t

Case 1: If f (c) < f (d) and f (d) > f (e), then we can find α ∈ R so that

f (c) < α < f (d) and f (e) < α < f (d).

Since f is continuous on [c, d] and on [d, e] the IVT gives s ∈ (c, d) and t ∈ (d, e)
such that

f (s) = α = f (t)

which is impossible if f is one-to one.

Case 2: If f (c) > f (d) and f (d) < f (e), then we can argue in a manner similar to
Case 1.

We will now prove a useful version of Monotone Convergence Theorem for Func-
tions. The proof is remarkably similar to that of the MCT for sequences.

THEOREM 13 The Monotone Convergence Theorem for Functions

Suppose that f is increasing on [a, b]. Then

1) lim
x→c+

f (x) exists for all c ∈ [a, b) and lim
x→c+

f (x) = glb(S ) where

S = { f (x)| x ∈ (c, b]}.

2) lim
x→c−

f (x) exists for all c ∈ (a, b] and lim
x→c−

f (x) = lub(T ) where

T = { f (x)| x ∈ [a, c)}.
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PROOF

We will only prove 1) as 2) follows in much the same manner.

Let
S = { f (x)| x ∈ (c, b]}.

Then S is bounded below by f (c).

Let
L = glb(S ).

Let ε > 0. Then L < L + ε so L + ε is not a lower bound for S and hence there exists
d ∈ (c, b] such that

L ≤ f (d) < L + ε.

If x ∈ (c, d), then
L ≤ f (x) < f (d) < L + ε.

This shows that
lim
x→c+

f (x) = L.

REMARK

The Monotone Convergence Theorem for functions tells us that if f is monotonic on
[a, b], then the only types of discontinuities that f could have would be finite jump
discontinuities. Combining this observation with the Intermediate Value Theorem
yields the following important characterization of continuity for monotonic func-
tions:

THEOREM 14 Continuity for Monotonic Functions

Suppose that f is increasing on [a, b]. Then f is continuous on [a, b] if and only if

f ([a, b]) = { f (x)| x ∈ [a, b]} = [ f (a), f (b)].

PROOF

Since f is increasing, we have for each x ∈ [a, b] that

f (a) ≤ f (x) ≤ f (b).

It follows that
f ([a, b]) ⊆ [ f (a), f (b)].
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⇒): Assume that f is continuous and that

f (a) < α < f (b).

By the IVT there exists c ∈ (a, b) such that

f (c) = α.

Hence
f ([a, b]) = [ f (a), f (b)].

⇐): Assume that f is not continuous at some point c ∈ (a, b). Then

lim
x→c−

f (x) = L < M = lim
x→c+

f (x).

However, we would then have that

[L,M] ∩ f ([a, b]) = { f (c)}.

We know that [L,M] is infinite. It follows that

f ([a, b]) , [ f (a), f (b)].

If f is discontinuous at x = a, then

f (a) < M = lim
x→a+

f (x).

From here we note that
( f (a),M) ∩ f ([a, b]) = ∅.

Similarly, if f is discontinuous at x = b, then

lim
x→b−

f (x) = L < f (b).

This time we have that
(L, f (b)) ∩ f ([a, b]) = ∅.

Hence, if f is not continuous, then

f ([a, b]) , [ f (a), f (b)].

REMARK

Since the previous two resutls also hold for decreasing functions we now have an
easy criterion for determining if a monotonic function is continuous on an interval I.
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Moreover, this criterion provides us with the key tool to prove the following theorem
which in turn completes our proof of the Inverse Function Theorem.

THEOREM 15 Continuity for Inverse Functions

Suppose that f : [a, b] → R, is continuous and one-to-one with f ([a, b]) = [c, d] .
Let g : [c, d] → [a, b] be the inverse function of f on [c, d]. Then g is continuous on
[c, d].

PROOF

Since f is either increasing or decreasing on [a, b], it follows that g is also either
increasing or decreasing. Since

g([c, d]) = [a, b]

g is continuous on [c, d].

6.11 Derivatives of Inverse Trigonometric Functions

At the end of the previous section, the Inverse Function Theorem and the Chain Rule
were used to calculate the derivative of the function f (x) = ln(x). In this section, we
will use the same method to find the derivatives of arccos(x), arcsin(x) and arctan(x).

EXAMPLE 20 Derivative of arcsin(x)

For any x ∈ [−1, 1], if y = f (x) = arcsin(x) and if x = g(y) = sin(y) with y ∈ [−π2 ,
π
2 ],

then
g( f (x)) = sin(arcsin(x)) = x.

Applying the Chain Rule gives us

g ′( f (x)) f ′(x) = 1

and hence
f ′(x) =

1
g ′( f (x))

.

But since g ′(y) = cos(y), we get

f ′(x) =
1

cos(( f (x))
.
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To simplify this further, we again use the fact that cos2(y) + sin2(y) = 1 so that

cos(y) = ±

√
1 − sin2(y).

However, y ∈ [−π2 ,
π
2 ] requires that cos(y) ≥ 0 so

cos(y) =

√
1 − sin2(y).

We now have
f ′(x) =

1√
1 − sin2( f (x))

.

But y = f (x) = arcsin(x), so

f ′(x) =
1√

1 − sin2( f (x))

=
1√

1 − sin2(arcsin(x))

=
1

√
1 − x2

.

This shows that
d
dx

(arcsin(x)) =
1

√
1 − x2

.

The derivative calculation is
consistent with the graph of
arcsin(x).

−
π

2

π

2

−1 0 1

f (x) = arcsin(x)

ve
rt

ic
al

ta
ng

en
t

verticaltangent

m
=

1

Observe that the derivative

d
dx

(arcsin(x)) =
1

√
1 − x2

is always positive which we should expect since, as the graph shows, arcsin(x) is an
increasing function.
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As we approach x = −1 or x = 1, the graph suggests that the tangent lines become
very steep and that there is a vertical tangent line at both x = −1 and x = −1. But we
know that

lim
x→−1+

1
√

1 − x2
= ∞

and
lim
x→1−

1
√

1 − x2
= ∞

so this behaviour is expected.

Finally, since
sin(0) = 0 = arcsin(0)

the Inverse Function Theorem implies that

f ′(0) =
1

√
1 − 02

= 1.

This calculation is again consistent with the graph.

A word of caution is required. Our calculation was based on the assumption that
arcsin(x) was differentiable since we need this assumption to apply the Chain Rule.
However, the Inverse Function Theorem tells us that arcsin(x) is differentiable when
x ∈ (−1, 1), so we need not worry!

EXAMPLE 21 Derivative of arctan(x)

For any x ∈ (−∞,∞), if y = f (x) = arctan(x) and if x = g(y) = tan(y) with y ∈ (−π2 ,
π
2 ),

then
g( f (x)) = tan(arctan(x)) = x.

Applying the Chain Rule gives us that

g ′( f (x)) f ′(x) = 1

and hence
f ′(x) =

1
g ′( f (x))

.

But since g ′(y) = sec2(y) we get

f ′(x) =
1

sec2( f (x))
.

To simplify this equation, use the identity sec2(y) = 1 + tan2(y) so that
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f ′(x) =
1

1 + tan2( f (x))

=
1

1 + tan2(arctan(x))

=
1

1 + x2 .

This shows us that
d
dx

(arctan(x)) =
1

1 + x2 .

This derivative calculation is
also consistent with the
graph of arctan(x).

−1

y = −
π

2

y =
π

2

1

−8 −6 −4 −2 0 2 4 6 8

f (x) = arctan(x)

For example, we know that the derivative

d
dx

(arctan(x)) =
1

1 + x2

is always positive which we expect since, as the graph shows, arctan(x) is an increas-
ing function.

As we approach −∞ or ∞, the graph shows that the tangent lines become very flat
and that y = −π2 and y = π

2 are horizontal asymptotes. This is consistent with the fact
that

lim
x→∞

d
dx

(arctan(x)) = lim
x→∞

1
1 + x2 = 0

and
lim

x→−∞

d
dx

(arctan(x)) = lim
x→−∞

1
1 + x2 = 0.
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EXAMPLE 22 Derivative of arccos(x)

Recall that for any x ∈ [−1, 1], if y = f (x) = arccos(x) and if x = g(y) = cos(y) with
y ∈ [0, π], then

g( f (x)) = cos(arccos(x)) = x.

Applying the Chain Rule gives

g ′( f (x)) f ′(x) = 1

and hence that
f ′(x) =

1
g ′( f (x))

.

But since g ′(y) = − sin(y) we get

f ′(x) =
1

− sin( f (x))
.

To simplify this further, remember that cos2(y) + sin2(y) = 1 so that

sin(y) = ±
√

1 − cos2(y).

However, y ∈ [0, π] means that sin(y) ≥ 0 and as such

sin(y) =
√

1 − cos2(y).

We now have
f ′(x) =

−1√
1 − cos2( f (x))

.

But y = f (x) = arccos(x), so

f ′(x) =
−1√

1 − cos2( f (x))
.

=
−1√

1 − cos2(arccos(x))
.

=
−1
√

1 − x2
.
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This shows that

d
dx

(arccos(x)) =
−1
√

1 − x2
.

π

2

−1 0 1

f (x) = arccos(x)

ve
rt

ic
al

ta
ng

en
t

verticaltangent
π

EXAMPLE 23 Let f (x) = arctan(x2). Find f ′(x).

SOLUTION The solution to this question is a simple application of the Chain Rule.
Let u = x2 and y = arctan(u). Then

f ′(x) =
dy
du

du
dx

=
1

1 + u2 (2x)

=
2x

1 + x4 .

EXAMPLE 24 Let
H(x) = arcsin(x) + arccos(x).

Show that H ′(x) = 0.

SOLUTION Taking the derivative of H(x), we get

H ′(x) =
1

√
1 − x2

+
−1
√

1 − x2

= 0

for all x ∈ (−1, 1).
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This simple calculation reveals an interesting relationship between the functions
arcsin(x) and arccos(x). To see this relationship, note that the function H is a con-
tinuous function on the interval [−1, 1] with H ′(x) = 0 on the open interval (−1, 1).
Such a function must be constant–that is, there exists some number c ∈ R such that

H(x) = arcsin(x) + arccos(x) = c

for all x ∈ [−1, 1].

What is the value of c? To answer this we could simply evaluate

H(0) = arcsin(0) + arccos(0).

But arcsin(0) = 0 and arccos(0) = π
2 . It follows that

arcsin(x) + arccos(x) =
π

2
,

and hence that arcsin(x) = π
2 − arccos(x) for all x ∈ [−1, 1].

Question: Can you think of a trigonometric identity that might explain this result?

6.12 Implicit Differentiation

Up until now we have usually expressed functions in an explicit form. That is, we
have written

y = f (x)

to indicate that y is a function of the variable x with the rule for evaluation given
explicitly and represented by the expression “ f (x).” For example, if y = x2 we know
exactly how the rule works.

Once we have a function, its graph is all of the points of the form

{(x, f (x)) | x ∈ dom( f )}.

On the other hand, given the
graph of a function, we can
determine the value of the
function at a point x in its
domain by following the
arrows as indicated.

x

f (x) (x, y) = (x, f (x))

We can do this because for each x0 in the domain of the function, the line x = x0 cuts
the graph at exactly one point (x0, y0).

However, sometimes the functional relationship between x and y is implicit rather
than explicit.

Calculus 1 (B. Forrest)2



Chapter 6: Derivatives 302

For example, consider the
equation

x2 + y2 = 1.

A relationship between x and
y has certainly been
specified, but in this form it
does not look like a function.

x2 + y2 = 1

However, if we “solve” this expression for y in terms of x, we get

y = ±
√

1 − x2.

This is still not a functional
relation since, for example,
when x = 1

2 we have two
choices for y, but functions
must assign each point in
their domain to one and only
one value.

y = −
√

1 − x2

y = +
√

1 − x2
x2 + y2 = 1

x = 1
2

Nonetheless, the relation
actually “implies” at least
two different functions,
namely

y = f (x) =
√

1 − x2

and

y = g(x) = −
√

1 − x2.

The graph of f is just the top
half of the circle and the
graph of g is the bottom half. y = −

√
1 − x2 = g(x)

y = +
√

1 − x2 = f (x)x2 + y2 = 1

Both f and g are examples of functions that can be extracted implictly from the
expression x2 + y2 = 1.
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Once we have an explicit function such as

y = f (x) =
√

1 − x2

we can treat it in the usual way. For example, we could differentiate to get

dy
dx

= f ′(x) =
−x
√

1 − x2
.

Notice that the denominator
in this expression is just y, so
we can substitute to get the
equivalent expression

dy
dx

=
−x
y
.

This suggests that the slope
of the tangent line could be
determined by only knowing
the x and y coordinates of a
point on the graph.

y = f (x) = +
√

1 − x2 m =
dy
dx

= −
x
y

If we repeat this method with
the second function

y = g(x) = −
√

1 − x2,

we get

dy
dx

= g ′(x) =
x

√
1 − x2

.

Since

y = −
√

1 − x2,

we still get that

dy
dx

=
−x
y
.

y = g(x) = −
√

1 − x2

m =
dy
dx

= −
x
y

These may be the most natural functions that are implicitly determined by the relation

x2 + y2 = 1

but there are many others. For example, we could let

y = h(x)

where

h(x) =

{ √
1 − x2 if x ∈ [0, 1]
−
√

1 − x2 if x ∈ [−1, 0)
.
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This function is continuous except at x = 0. It is differentiable except at x = ±1 and
x = 0. Moreover, wherever the derivative exists it also satisfies

dy
dx

=
−x
y
.

In fact, if
y = h(x)

was any differentiable function that satisfied the equation

x2 + (h(x))2 = x2 + y2 = 1

then we would have
d
dx

(x2 + y2) =
d
dx

(1).

But

d
dx

(x2 + y2) =
d
dx

(x2) +
d
dx

(y2)

= 2x + 2y
dy
dx

with the last equality following by the Chain Rule. Since d
dx (1) = 0 we have

2x + 2y
dy
dx

= 0.

Solving for dy
dx gives us

dy
dx

=
−x
y
.

This process of finding the derivative from the relation x2 + y2 = 1 without actu-
ally identifying the function is called implict differentiation. Let’s look at another
example.

EXAMPLE 25 Folium of Descartes

Consider the equation
x3 + y3 = 6xy

or equivalently
x3 + y3 − 6xy = 0.

The set of points {(x, y) | x3 + y3 = 6xy} forms a curve in the plane called the Folium
of Descartes.
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x3 + y3 = 6xy

1 2 3−1−2−3−4−5

1

2

3

−1

−2

−3

−4

−5

0

Folium of Descartes

We can confirm from the picture that this is not the graph of a function. However, if
we consider only a portion of the curve, we can get the graph of an implicitly defined
function y = f (x) that satisfies the equation x3 + ( f (x))3 = 6x · f (x) on its domain.
An example of such a function is given in the diagram.

x3 + y3 = 6xy

1 2 3−1−2−3−4−5

1

2

3

−1

−2

−3

−4

−5

0

portion of

y = f (x)

This function is implicitly
defined, but since it is very
difficult to solve the equation for
y in terms of x, we do not know
the explicit rule for f (x).

It is easy to verify that the point
(3, 3) is a solution to the equation
and hence is also a point on the
curve. Moreover, we can extract
a different portion of the curve
that represents the graph of a new
function y = h(x) with h(3) = 3.

1 2 3−1−2−3−4−5

1

2

3

−1

−2

−3

−4

−5

0

(3, 3)

x3 + y3 = 6xy
portion of

y = h(x)

Again, we do not know the explicit formula for h(x), but the graph suggests that it is
differentiable at x = 3. We can still proceed to find its derivative using

d
dx

(x3 + y3) =
d
dx

(6xy)
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to get

3x2 + 3y2 dy
dx

= 6y + 6x
dy
dx
.

Solving this equation for dy
dx gives us

dy
dx

=
6y − 3x2

3y2 − 6x
.

However, when x = 3,
y = h(x) = 3 by our
choice of h(x). We can
substitute x = 3 and
y = 3 to get

h ′(3) =
dy
dx

∣∣∣∣∣
(3,3)

= −1.
1 2 3

1

2

3

−1

−2

−3

0

(3, 3)

x3 + y3 = 6xy

portion of

y = h(x)

m =
dy
dx = −1

In fact, the following statement is true. If g is any differentiable function implicitly
defined by the equation

x3 + y3 = 6xy,

that is if
x3 + (g(x))3 = 6xg(x),

and if (x, y) is any point with y = g(x), then we would again have

g ′(x) =
dy
dx

=
6y − 3x2

3y2 − 6x
.

EXAMPLE 26 Assume that
x2y + y2x = 6

defines an implicit function
y = f (x)

with f (1) = 2. (Note that the point (1,2) is a solution to this equation.) Assume also
that f is differentiable. Find f ′(1).

We know that
f ′(1) =

dy
dx
|(1,2) .

Implicit differentiation gives us that
d
dx

(x2y + y2x) =
d
dx

(6).
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The Product Rule and Chain Rule give us

2xy + x2 dy
dx

+ y2 + 2xy
dy
dx

= 0.

Rearranging terms this becomes

(x2 + 2xy)
dy
dx

= −2xy − y2

so
dy
dx

=
−2xy − y2

x2 + 2xy
.

Finally

dy
dx

∣∣∣∣∣
(1,2)

=
−2xy − y2

x2 + 2xy

∣∣∣∣∣∣
(1,2)

=
−2(1)(2) − 22

12 + 2(1)(2)

=
−8
5
.

The following example shows why implicit differentiation requires some caution.

EXAMPLE 27 Consider the equation
x4 + y4 = −1 − x2y2.

If we apply the method of implicit differentiation, you can verify that we would get

dy
dx

=
−2xy2 − 4x3

4y3 + 2x2y
.

However, what does this mean? If you look closely at the left-hand side of the equa-
tion x4 + y4 = −1 − x2y2, you will see that for any pair (x, y) this expression will
always be greater than or equal to 0 while the right-hand side is at most −1. There-
fore, the equality is never satisfied, so there is no implicitly defined function. We
have in fact found the derivative of a ghost!! This is why the existence of the implicit
function was always assumed before we applied this procedure.

Logarithmic Differentiation

Implicit differentiation does have a very useful application, called
logarithmic differentiation, that enables us to find derivatives of functions of the form

h(x) = g(x) f (x).
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We will illustrate this method with an example.

EXAMPLE 28 Let y = xx. The following is the graph of this unusual function. Notice that it is only
defined for x > 0.

y = xx

1

0
1 2

The graph looks quite smooth so we can assume that this function is diffferentiable.
However, since both the base and the exponent vary with x, our current rules do not
help us find the derivative. We can get around this problem by using a trick. Take the
logarithm of both sides of the equation to get the following equality:

ln(y) = x ln(x).

Now differentiate this equation implicitly to get

1
y

dy
dx

= ln(x) + x(
1
x

)

= ln(x) + 1.

Solving this for dy
dx gives us

dy
dx

= y(ln(x) + 1)

= xx(ln(x) + 1).

6.13 Local Extrema

In a previous section, we introduced the notion of global extrema for a function
defined on an interval I. We also saw that the Extreme Value Theorem told us that
if a function f is continuous on a closed interval [a, b], then there is always both a
global maximum and a global minimum located on [a, b]. Moreover, these extrema
can either be located at the endpoints or inside the open interval (a, b).
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The fact that a global extrema for a continuous function f on a closed interval [a, b]
will often occur within the open interval (a, b) suggests that it would be very worth-
while to try and identify the characteristics of a point c at which f achieves either its
maximum or minimum value on an open interval. In this section, we will see that
for differentiable functions there is a simple criterion that can help us identify such
points.

We begin by considering the following definition:

DEFINITION Local Maxima and Local Minima

A point c is called a local maximum for a function f if there exists an open interval
(a, b) containing c such that

f (x) ≤ f (c)

for all x ∈ (a, b).

A point c is called a local minimum for a function f if there exists an open interval
(a, b) containing c such that

f (c) ≤ f (x)

for all x ∈ (a, b).

REMARK

The difference between a local maximum and a global maximum (or between a local
minimum and a global minimum) is subtle. A global maximum is the point, if it
exists, where the function takes on its largest value over the entire interval I. A local
maximum is a point at which the function takes on its largest value on some open
subinterval of I, but possibly not all of I.

A local maximum is a point c where the function takes on its largest value on a
potentially very small portion of the interval and that portion must, by definition,
contain points on both sides of c. A local minimum is a point at which the function
takes on its least value on some open subinterval of I, but possibly not all of I.

The following picture provides a better understanding about these points.

The picture represents the graph
of a continuous function y = g(x)
defined on a closed interval
[a, f ]. The Extreme Value
Theorem ensures us that there is
both a global maximum and a
global minimum for g on [a, f ].
We have identified a number of
interesting points which we have
labeled a, b, c, d, e and f for
consideration.

y = g(x)

a b

c

d e f
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Let’s begin by considering the left-hand endpoint a. This is not a global maximum
nor a global minimum for g since g(b) > g(a) and g(c) < g(a). It is also not a local
maximum nor a local minimum because a close look at the definition shows that to
be either a local maximum or a local minimum, g must at least be defined a little bit
to the left of a, which it is not since it is an endpoint of the interval.

The point b is neither a global
maximum nor a global minimum.
However, it is a local maximum.
The diagram indicates an open
interval on which g(b) is the
largest value.

y = g(x)

a b

c

d e f

local maximum

The next point of interest is c. A
close look at the graph shows that
c is actually the global minimum
of g on [a, f ]. It is also a local
minimum since as the diagram
shows, an open interval exists
around c on which c yields the
minimum value of the function g.

y = g(x)

a b

c

d e f

local and
global minimum

It is worth noting that we could actually have chosen the interval (a, f ) as the open
interval in which c becomes a local minimum. This is an important observation
because it demonstrates the following general fact.

Fact

If g is a continuous function on a closed interval [a, b] and if
a < c < b is a global maximum/minimum for g on [a, b], then c is also a
local maximum/minimum for g.

The next two points, d and e, are a local maximum and a local minimum, respectively.
Neither is a global extremum.

The final point is f , the right-hand endpoint. Since g(x) is not defined to the right of
f , it follows that f cannot be a local maximum, but it is the global maximum for g
on [a, f ].

The following diagram summarizes our analysis.
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y = g(x)

a b

c

d e f

local and
global minimum

local maximum

local maximum

global maximum

local minimum

6.13.1 The Local Extrema Theorem

We have learned from the Extreme Value Theorem that a continuous function on a
closed interval [a, b] always attains its maximum and its minimum value at points in
the interval. Assume that f (x) ≤ f (c) for all x ∈ [a, b]. Either c is an endpoint, that
is c = a or c = b, or we have a < c < b. In the latter case, we have that c ∈ (a, b)
and f (x) ≤ f (c) for all x ∈ (a, b). But this means that if a < c < b, then c satisfies the
definition of a local maximum.

We have just seen that the maximum value of f (x) on the closed interval [a, b] either
occurs at an endpoint or at a local maximum. Similarly, the minimum value of f (x)
on the closed interval [a, b] either occurs at an endpoint or at a local minimum. Since
the endpoints are easy to identify, we are forced to look at the problem of finding
possible local maxima or minima. To see how to do this, begin by assuming that f is
differentiable at the local maximum or local minimum.

Assume that f has a local maximum at x = c and that f ′(c) exists. Since f has a
local maximum at x = c, there exists an interval a < c < b such that

f (x) ≤ f (c)

for all x ∈ (a, b). We also know that

f ′(c) = lim
h→0

f (c + h) − f (c)
h

.

However, this also means that

f ′(c) = lim
h→0+

f (c + h) − f (c)
h

.

Choose h > 0 small enough so that c < c+h < b. Then because c is a local maximum,
we have

f (c + h) − f (c) ≤ 0.

Since h > 0 this means that the Newton Quotient

f (c + h) − f (c)
h

≤ 0.
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Geometrically, this says that the
secant line slopes downward to
the right.

a bc c + h

h > 0

m =
f (c + h) − f (c)

h
≤ 0

f (c)
f (c + h)

We have shown that if h > 0 is small, then

f (c + h) − f (c)
h

≤ 0.

The rules for limits give us that

f ′(c) = lim
h→0+

f (c + h) − f (c)
h

≤ 0.

Now let h < 0 be chosen so that a < c + h < c. We again get that

f (c + h) − f (c) ≤ 0.

But this time h < 0 so that
f (c + h) − f (c)

h
≥ 0.

That is, the secant line slopes
upward to the right.

a bcc + h

h < 0

m =
f (c + h) − f (c)

h
≥ 0

f (c)

f (c + h)

We now have that if h < 0 is small, then

f (c + h) − f (c)
h

≥ 0.

The rules for limits give us that

f ′(c) = lim
h→0−

f (c + h) − f (c)
h

≥ 0.
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To summarize, we have shown that

f ′(c) ≤ 0

and
f ′(c) ≥ 0.

The only way this can occur is if

f ′(c) = 0.

Thus, if c is a local maximum for f and if f ′(c) exists, then we must have that

f ′(c) = 0.

A similar argument shows that if c is a local minimum for f and if f ′(c) exists then
we must have that

f ′(c) = 0.

THEOREM 16 Local Extrema Theorem

If c is a local maximum or local minimum for f and f ′(c) exists, then

f ′(c) = 0.

Unfortunately, as the next two examples illustrate, we have not completed the story as
far as finding local extrema is concerned. We will see that it is possible for f ′(c) = 0
but that c is neither a local maximum or a local minimum. It is also possible that c is
either a local maximum or a local minimum, but f ′(c) does not exist.

EXAMPLE 29 Let f (x) = x3. Then f ′(x) = 3x2, so f ′(0) = 0. However, 0 is neither a local
maximum nor a local minimum for f . To see this we note that if we have any open
interval (a, b) with a < 0 < b, then we can find two points x1 and x2 with

a < x1 < 0 < x2 < b.

But then

f (x1) < f (0) < f (x2).

Since (a, b) was any open interval
containing 0, this would be
impossible if 0 was either a local
maximum or a local minimum.

a 0 bx2x1

f (x) = x3
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EXAMPLE 30

Let f (x) = | x |. Then x = 0 is
a global minimum for f over all
of R. It is also a local minimum.
However, we do not have
f ′(0) = 0 since f ′(0) does not
exist.

f (x) = | x |

a b0

local minimum
global and

We have just seen that in looking for local minima or maxima we should look for
points where either f ′(x) = 0 or where the function is not differentiable. This leads
us to the following definition:

DEFINITION Critical Point

A point c in the domain of a function f is called a critical point for f if either

f ′(c) = 0

or
f ′(c)

does not exist.

6.14 Related Rates

Many real world problems are concerned with the rate of change of a given quantity.
In these situations we often start with a mathematical relationship between various
quantities from which we can deduce a corresponding relationship between their re-
spective rates of change. We call these related rate problems. To solve these prob-
lems we use mathematical models.

The basic idea behind mathematical modeling is to begin with a real world prob-
lem, interpret the problem by means of a mathematical expression which we call the
model, manipulate the expression to gain information about the model and finally,
use the information provided by the model to formulate a conclusion regarding the
original problem.

In this section, we will look at some simple examples of related rate problems that
can be solved by applying the ideas developed about derivatives and by using some
simple mathematical modeling techniques.
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EXAMPLE 31 The relationship between temperature T , pressure P and volume V for a gas is given
by the formula

PV = kT

where k is a constant particular to the gas.

Assume that the gas is heated so that the temperature is increasing. Suppose also
that the gas is allowed to expand so that pressure remains constant. If at a particular
moment the temperature is 348 Kelvin, but is increasing at a rate of 2 Kelvin per
second while the volume is increasing at a rate of 0.001 cubic meters per second,
what is the volume of the gas?

SOLUTION It may not appear that we have enough information to solve this prob-
lem since we know nothing about k or about the pressure at that moment in time.
Let’s list what information is known.

We have the formula
PV = kT.

We can start by differentiating with respect to time t (remember k is a constant) to get

P
dV
dt

+ V
dP
dt

= k
dT
dt
.

But we also know that the change in pressure remains constant, so
dP
dt

= 0.

Finally, we are told that at the instant when T = 348 Kelvin, we have that
dT
dt

= +2 Kelvin and
dV
dt

= +0.001 cubic meters per second.

Therefore, substituting we get

P · (0.001) + V · (0) = k · (2)

or that
P = 2000k.

Substituting this expression for P back into the original formula and using the fact
that T = 348 Kelvin gives us that

(2000k)V = k(348)

and hence that
V =

348
2000

� 0.174 m3.

Notice that in this example we have been rather sloppy with respect to including units
in the calculation. It is a valuable exercise to review this calculation and to verify the
units. In particular, what are possible units for P and k?
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EXAMPLE 32 A lighthouse sends out a beam of light that rotates counter-clockwise 10 times every
minute. The beam can be seen from a straight road that at its closest point P is 1 km
away from the lighthouse. How fast is the beam moving along the road when it
passes a point Q that is 500 m down the road from point P, with the beam moving
away from P?

SOLUTION The first step is to develop our mathematical model. For related rate
questions it is often best to begin with a carefully labeled diagram and then try to
identify the relationships that we have between our various quantities.

P
1 km

θ

x

lighthouse

beam

ro
ad

x = distance along the road from
the point P to the beam

θ = angle between the beam and the
line segment joining the lighthouse
to the point P

Q

50
0

m
et

er
s

The problem asks us to determine how fast the beam is moving along the road at a
particular point. In other words, how quickly is x = x(t) changing? Mathematically,
we are looking for

dx
dt
.

We are also told that the light makes 10 complete rotations each minute. Since it is
reasonable to assume that the light turns at a constant rate, then the light turns at the
rate of 2π · 10 = 20π radians per minute. We have just determined

dθ
dt

= 20π.

It is important to note that the derivative is positive since the beam is moving away
from point P and so θ is increasing (since the beam is rotating counter-clockwise).

To determine dx
dt we will make use of what we know about dθ

dt . However, to do this
we must first find a mathematical expression relating x and θ. For 0 < θ < π

2 , the
diagram shows that

x = x(t) = tan(θ(t)) = tan(θ).
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Differentiating using the Chain
Rule gives us

dx
dt

= sec2(θ)
dθ
dt
.

We know that dθ
dt = 20π. We also

know that when the beam is
500 m = 0.5 km from point P, we
have that

tan(θ) =
1
2
.

P 1 km
θ

x = 0.5 km

lighthouse

beam

Q

This means that
θ = arctan(

1
2

) ≈ 0.4636 radians

Substituting, we have

dx
dt

= sec2(θ)
dθ
dt

≈ sec2(0.4636)(20π)
= 78.54 km/minute

It follows that as the beam passes point Q, its speed along the road is

sec2(0.4636)(20π) = 78.54 km/minute.

An interesting observation is that as θ → π
2 , sec2(θ) → ∞. This means that as the

point Q moves further away from P, we can expect to see that the speed at which
the beam passes increases very rapidly despite the fact that the lighthouse rotates at
a constant speed.

EXAMPLE 33 A piston is attached to the exterior of a circular crankshaft with a radius of 5 cm by
a steel rod of length 20 cm. The crankshaft is rotating counter-clockwise at a rate of
1000 revolutions per minute. Find the velocity of the piston when the angle θ = π

2 .

x

θ π − θ

5 cm

20 cm
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SOLUTION In the diagram the velocity of the piston is the rate of change of the
quantity x. This means we are trying to find dx

dt . We also know that there are 1000 rpm
with each revolution consisting of 2π radians. Therefore, we have

dθ
dt

= 1000 · 2π

radians per minute. We must find an expression for the relationship between x and
the angle θ. To do this we will use the Cosine Law.

Recall, that if we have a triangle with three
sides labeled x, y, z and an angle θ opposite the
side with length z, then the Cosine Law states
that

z2 = x2 + y2 − 2xy cos(θ)

x z

y

θ

In this case, we have a triangle with three sides that are x, 20 and 5, respectively.

x

π − θ

5 cm
20 cm

The angle π − θ is opposite the side of length 20, so applying the Cosine Law leaves
us with

202 = x2 + 52 − 2(5)x cos(π − θ)

or
375 = x2 − 10x cos(π − θ).

Differentiating both sides gives us

0 =
d
dt

(375)

=
d
dt

(x2 − 10x cos(π − θ))

= 2x
dx
dt
− 10 cos(π − θ)

dx
dt
− 10x sin(π − θ)

dθ
dt

.

We are interested in the case where θ = π
2 . In this case, the interior angle is π− π

2 = π
2 .

This means that we actually are using a right triangle.
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x

5
20

Moreover, since cos(π2 ) = 0, we have

x2 = 375

so
x =
√

375.

Since cos(π2 ) = 0, sin(π2 ) = 1, and dθ
dt = 1000 · 2π, we can substitute into the previous

expression and simplify to get

0 = 2
√

375
dx
dt
− 10

√
375 (2000π).

Rearranging terms and solving for dx
dt we get that

dx
dt

= 10, 000π cm/min.
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Chapter 7

The Mean Value Theorem

7.1 The Mean Value Theorem

Up until now when we have considered the derivative we have focused almost entirely
on its local meaning. That is, on the information we can draw from the derivative
about the nature of a function near the point at which we are differentiating. In
this chapter we will study the global properties of differentiable functions over an
interval. We will see that the derivative can tell us a great deal about the behaviour of
a function over an entire interval. For example, we will see that if f ′(x) > 0 for all x
in some interval I, we can conclude that the function is increasing on I.

The key to understanding the global implications of the derivative is the Mean Value
Theorem (or MVT). This result states that the average rate of change for a differen-
tiable function over an interval is equal to the instantaneous rate of change at some
point in the interval. We will illustrate this idea by considering the following prob-
lem.

Problem:

A car travels forward a distance of 110 km on a straight road in a period of one hour.
If the speed limit on the road is 100 km/hr, can you prove that the car must have
exceeded the speed limit at some point?

Using the information provided, we are led to the fact that the average velocity over
the entire trip is

displacement
elapsed time

=
(110 − 0) km

(1 − 0) hr
= 110 km/hr.

It then seems reasonable that if the average velocity is 110 km/hr, the instantaneous
velocity must have exceeded 100 km/hr at some point. Also, since the average ve-
locity is 110 km/hr, it would make sense that at certain times the vehicle would be
traveling in excess of 110 km/hour and at other times it would be traveling less than
110 km/hr. We might deduce that at some point the car would be traveling at exactly
110 km/hr. Unfortunately, this is not a proof! We must find a way to justify our intu-
ition. To do this we will revisit what we have learned about the relationship between
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average velocity and instantaneous velocity. In fact, we will actually show that there
will be a time when the instantaneous velocity was equal to the average velocity.

Assuming the car is always
driving forward, let s(t) be the
distance traveled from the
starting point t hours from the
beginning of the trip. The only
information we currently know is
that s(0) = 0 and s(1) = 110. The
average velocity of 110 km/hr
represents the slope of the secant
line to the graph of s through the
points (0, s(0)) = (0, 0) and
(1, s(1)) = (1, 110).

1 t0

110

s m = vave =
s(1) − s(0)

1 − 0

=
110 − 0
1 − 0

= 110

(1,s(1))=(1,110)

(0,s(0))=(0,0)

The simplest case for us to consider occurs if velocity was constant throughout the
trip at 110 km/hour.

In this case, we would have

s(t) = 110t

and the graph would be a straight
line segment that coincides with
the previous secant line.

1 t0

110

s

s(t) = 110t

(1,s(1))=(1,110)

However, it would be unreasonable to believe that a constant velocity could be main-
tained throughout the entire trip.

It is more likely that the graph of
distance versus time will appear
as shown:

1 t0

110

s

(1,s(1))=(1,110)

For this generic situation we want to know: Does there exist some point t0 at which
the instantaneous velocity is 110 km/hr?

Visually, a solution to this question occurs when the tangent line to the graph of s is
parallel to the secant line through the points (0, s(0)) = (0, 0) and (1, s(1)) = (1, 110),
since parallel lines have the same slope. On the graph this actually occurs at two
distinct points as indicated on the following diagram.
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1 t0

110

s

(1, s(1)) = (1, 110)

s′(t1) = s′(t2) = 110

t1 t2

The fact that we can always expect at least one such point is the main idea of the
Mean Value Theorem.

THEOREM 1 Mean Value Theorem

Assume that f is continuous on [a, b] and f is differentiable on (a, b). Then there
exists a < c < b such that

f ′(c) =
f (b) − f (a)

b − a
.

Essentially, the Mean Value Theorem states that for a differentiable function, the
average rate of change over an interval will be the same as the instantaneous rate of
change at some point c in the interval. Geometrically, this means that the tangent line
to the graph of f through the point (c, f (c)) is parallel to the secant line through the
points (b, f (b)) and (a, f (a)).

a c b

(a, f (a)) m = f ′(c)

(b, f (b))

m =
f (b) − f (a)

b − a

(c, f (c))

Calculus 1 (B. Forrest)2



Section 7.1: The Mean Value Theorem 323

In order to justify the Mean Value Theorem, consider the following situation.

Assume that f is continuous on [a, b], differentiable on (a, b), and f (a) = 0 and
f (b) = 0. Then

f (b) − f (a)
b − a

=
0 − 0
b − a

= 0

so we want to show that there is point a < c < b such that f ′(c) = 0. There are three
possible cases that we must address:

1) f (x) = 0 for all x ∈ [a, b],
2) f (x0) > 0 for some x0 ∈ [a, b], and
3) f (x0) < 0 for some x0 ∈ [a, b].

In the first case, the function is constant on [a, b], so it is easy to see that for any
a < c < b, we have f ′(c) = 0.

In both case 2 and case 3, we appeal to the Extreme Value Theorem to get that the
function f must achieve both its maximum and minimum value on [a, b].

In case 2, we have that the maximum value must be strictly greater than 0. As such
the global maximum occurs at a point x = c in the open interval (a, b). But this
means that c is also a local maximum. Finally, since f is differentiable at c, we get
that f ′(c) = 0 exactly as required.

In case 3, we have that the minimum value must be strictly less than 0. This time the
global minimum occurs at a point x = c in the open interval (a, b) and hence, c is also
a local minimum. Just as before, we have that f ′(c) = 0.

In all three cases, we have shown that there must be at least one point c in the interval
(a, b) such that

f ′(c) =
f (b) − f (a)

b − a
= 0.

a c b

constant local max local min

a c b a c b

The situation we have just looked at is important enough to be given its own theorem
called Rolle’s Theorem.
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THEOREM 2 Rolle’s Theorem

Assume that f is continuous on [a, b], that f is differentiable on (a, b), and that f (a) =

0 = f (b). Then there exists a < c < b such that

f ′(c) =
f (b) − f (a)

b − a
= 0.

To see how the Mean Value Theorem follows from Rolle’s Theorem, we introduce
the following rather complicated looking function.

h(x) = f (x) −
(

f (a) +
f (b) − f (a)

b − a
(x − a)

)
.

To understand what this function represents we first note that the function

y = g(x) = f (a) +
f (b) − f (a)

b − a
(x − a)

is a linear function. Moreover, g(a) = f (a) and g(b) = f (b). This means that the
graph of g passes through both (a, f (a)) and (b, f (b)). Therefore, the graph of g is the
secant line through (a, f (a)) and (b, f (b)). But h(x) is just f (x) − g(x). This means
that h(x) is the vertical distance from the graph of f to the secant line joining (a, f (a))
and (b, f (b)) when the graph of f is above the secant line, and is the negative of this
distance if the graph of f is below the secant line.

a x b

(a, f (a))

(b, f (b))
fy = g(x) = f (a) +

f (b)− f (a)
b−a (x − a)

h(x) = f (x) −
(

f (a) +
f (b)− f (a)

b−a (x − a)
)

We also have that h is continuous on [a, b], differentiable on (a, b) and is such that
h(a) = f (a) − f (a) = 0 = f (b) − f (b) = h(b). That is, h satisfies the conditions
of Rolle’s Theorem. It follows that there exists a point c with a < c < b such that
h ′(c) = 0. But

h ′(c) = f ′(c) − g ′(c)

= f ′(c) −
f (b) − f (a)

b − a

since the graph of g is a line with slope equal to f (b)− f (a)
b−a .
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We have shown that
0 = f ′(c) −

f (b) − f (a)
b − a

so
f ′(c) =

f (b) − f (a)
b − a

exactly as required.

7.2 Applications of the Mean Value Theorem

In this section, we present some direct consequences of the Mean Value Theorem.

7.2.1 Antiderivatives

We have already developed a number of techniques for calculating derivatives. In this
section, we will see how we can sometimes “undo” differentiation. That is, given a
function f , we will look for a new function F with the property that F ′(x) = f (x).

DEFINITION Antiderivative

Given a function f , an antiderivative is a function F such that

F ′(x) = f (x).

If F ′(x) = f (x) for all x in an interval I, we say that F is an antiderivative for f on I.

EXAMPLE 1 Let f (x) = x2. Let F(x) = x3

3 . Then

F ′(x) =
3x3−1

3
= x2 = f (x),

so F(x) = x3

3 is an antiderivative of f (x) = x2.

While the derivative of a function is always unique, this is not true of antiderivatives.
In the previous example, if we let G(x) = x3

3 + 2, then we find that G ′(x) = x2.
Therefore, both F(x) = x3

3 and G(x) = x3

3 + 2 are antiderivatives of the same function
f (x) = x2.

This holds in greater generality as we shall soon see. That is, if F is an antiderivative
of a given function f , then so is G(x) = F(x) + C for every C ∈ R. A question
naturally arises – are these all of the antiderivatives of f ?

We will start with a very simple, yet very important result.

Recall that if a function f is constant on an open interval I, then f ′(x) = 0 for all
x ∈ I. The first application of the Mean Value Theorem that we will consider is the
converse of this statement.
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THEOREM 3 The Constant Function Theorem

Assume that f ′(x) = 0 for all x in an interval I, then there exists an α such that
f (x) = α for every x ∈ I.

PROOF

Let x1 be any point in I. Let α = f (x1). Now choose any other x2 in I. Since f
is differentiable on all of I, it is also continuous. It follows that the Mean Value
Theorem holds on the closed interval with endpoints x1 and x2. This means that there
exists a c between x1 and x2 such that

f ′(c) =
f (x2) − f (x1)

x2 − x1
.

But f ′(c) = 0, so we have

0 =
f (x2) − f (x1)

x2 − x1

and hence
f (x2) = f (x1) = α.

Since this holds for any xi ∈ I, we have shown

f (x) = α

for every x ∈ I.

EXAMPLE 2 We have seen that the function f (x) = ex has the unusual property that f ′(x) = f (x).
This property also holds for the function f1(x) = Cex for any constant C ∈ R. In this
example we will see that these are the only functions with this property.

Assume that g is such that g ′(x) = g(x) for every x ∈ R. Construct a new function by
letting

h(x) =
g(x)
ex .

Differentiate h using the quotient rule to get

h ′(x) =
exg ′(x) − d

dx (ex)g(x)

(ex)2

=
exg(x) − exg(x)

e2x

= 0

since g ′(x) = g(x) and d
dx (ex) = ex.

Then since h ′(x) = 0 for all x ∈ R, h(x) is constant. Let h(x) = C for all x ∈ R. Then
g(x) = Cex for all x ∈ R.
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REMARK

The Constant Function Theorem tells us that the family of all antiderivatives of the
function f (x) = 0 consists of all constant functions. That is, functions of the form

F(x) = C

for some constant C ∈ R.

The next application of the Mean Value Theorem is a small variant of the first. It plays
a very important role in the development of the theory of integration. In particular,
it shows us that any two antiderivatives of the same function must differ only by a
constant. Therefore, to find all of the antiderivatives of a given function it suffices to
find just one.

THEOREM 4 The Antiderivative Theorem

Assume that f ′(x) = g ′(x) for all x ∈ I. Then there exists an α such that

f (x) = g(x) + α

for every x ∈ I.

PROOF

To see that this theorem is true, consider the function

h(x) = f (x) − g(x).

Since
h ′(x) = f ′(x) − g ′(x) = 0

for every x ∈ I, the Constant Function Theorem tells us that there exists an α such
that

h(x) = f (x) − g(x) = α

for every x ∈ I. This means that

f (x) = g(x) + α

for every x ∈ I.
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Leibniz Notation:

We will denote the family of antiderivatives of a function f by∫
f (x) dx.

For example, ∫
x2 dx =

x3

3
+ C.

The symbol ∫
f (x) dx

is called the indefinite integral of f and f (x) is called the integrand.

Finding antiderivatives is generally much more difficult than differentiating. For ex-
ample, if f (x) = ex2

, then we can easily differentiate f using the Chain Rule to get

f ′(x) = ex2 d
dx

(x2)

= 2xex2
.

However, it is not at all obvious how to find∫
ex2

dx.

In fact, using sophisticated techniques from algebra, it is possible to prove that there
is no “nice” function that we can identify as an antiderivative of ex2

.

At this point, we will be content to find the antiderivatives of many of the basic
functions that are used in this course. The next theorem tells us how to find the
antiderivatives of one of the most important classes of functions, the powers of x.
This will allow us to find antiderivatives for any polynomial.

THEOREM 5 Power Rule for Antiderivatives

If α , −1, then ∫
xα dx =

xα+1

α + 1
+ C.
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To check that this theorem is correct we need only differentiate. Since

d
dx

(
xα+1

α + 1
+ C

)
= xα,

we have found all of the antiderivatives of xα.

REMARK

Suppose that F is an antiderivative of f and that G is an antiderivative of g. Then for
any real numbers α and β we have

d
dx

(αF(x) + βG(x)) = α f (x) + βg(x).

As a consequence of this observation and the Power Rule for Antiderivatives, we get
that∫

a0 + a1x + a2x2 + · · · + anxn dx = C + a0x +
a1

2
x2 +

a2

3
x3 + · · · +

an

n + 1
xn+1

for any polynomial p(x) = a0 + a1x + a2x2 + · · · + anxn.

The next example identifies the antiderivatives of several basic functions. You can
use differentiation to verify each one.

EXAMPLE 3

1) ∫
1
x

dx = ln(| x |) + C.

2) ∫
ex dx = ex + C.

3) ∫
ax dx =

ax

ln(a)
+ C.

4) ∫
sin(x) dx = − cos(x) + C.

5) ∫
cos(x) dx = sin(x) + C.

6) ∫
sec2(x) dx = tan(x) + C.
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7) ∫
1

1 + x2 dx = arctan(x) + C.

8) ∫
1

√
1 − x2

dx = arcsin(x) + C.

9) ∫
−1
√

1 − x2
dx = arccos(x) + C.

7.2.2 Increasing Function Theorem

Assume that
f (x) = mx + b.

If m > 0, the graph of the function slopes upwards as we move from left to right. In
other words, if x1 < x2, then

f (x1) = mx1 + b < mx2 + b = f (x2).

We have already seen that if a function is differentiable at a point it can be approx-
imated by its tangent line. Consequently, it would make sense to suggest that if a
function f was such that f ′(x) > 0 at every point in an interval I then it should also
be the case that if x1, x2 ∈ I and x1 < x2, then we would expect that

f (x1) < f (x2).

f (x) = mx + b m > 0

x2x1

(x1, f (x1))

(x2, f (x2))

In this section we will see that the Mean Value Theorem can be used to show that this
is in fact the case. In fact, to see why this is the case for any differentiable function
f we start by choosing two points x1 < x2 in I. If f is differentiable on I, then the
Mean Value Theorem holds for the closed interval [x1, x2].
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m = f ′(c) > 0

x2x1

f (x1) < f (x2)

c

Using the MVT, we get that there exists a c between x1 and x2 such that

f (x2) − f (x1)
x2 − x1

= f ′(c) > 0.

Since x2 − x1 > 0, we have
f (x2) − f (x1) > 0

or equivalently that
f (x2) > f (x1).

However, this is exactly what it means for f to be increasing on I.

A similar argument shows that if f is such that f ′(x) < 0 for every x in an interval I,
then f is decreasing on I. We can summarize this in the following important theorem.

THEOREM 6 The Increasing/Decreasing Function Theorem

i) Let I be an interval and assume that f ′(x) > 0 for all x ∈ I. If x1 < x2 are two
points in I, then

f (x1) < f (x2).

That is, f is increasing on I.

ii) Let I be an interval and assume that f ′(x) ≥ 0 for all x ∈ I. If x1 < x2 are two
points in I, then

f (x1) ≤ f (x2).

That is, f is non-decreasing on I.

iii) Let I be an interval and assume that f ′(x) < 0 for all x ∈ I. If x1 < x2 are two
points in I, then

f (x1) > f (x2).

That is, f is decreasing on I.
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iv) Let I be an interval and assume that f ′(x) ≤ 0 for all x ∈ I. If x1 < x2 are two
points in I, then

f (x1) ≥ f (x2).

That is, f is non-increasing on I.

Question: If f is increasing and differentiable on I = (a, b), must f ′(x) > 0 for all
x ∈ I?

It is easy to show that f ′(x) ≥ 0 (why?). However, the following example shows that
the strict inequality, f ′(x) > 0, is not always required.

EXAMPLE 4

Let f : R→ R be defined by
f (x) = x3. This function is
increasing and differentiable on R
with f ′(x) = 3x2, and f ′(0) = 0.

f (x) = x3
1

1-1

-1

7.2.3 Functions with Bounded Derivatives

We motivated the introduction of the Mean Value Theorem by considering a problem
involving a car that traveled a distance of 110 km in exactly one hour. Our task was
to show that at some point the car exceeded the posted speed limit of 100 km/hr.
Suppose we considered a different question:

Problem: If a car travels along a road and never exceeds a speed of 100 km/hr, what
is the maximum distance that the car could travel in 1 hour?

Intuitively, the answer to this problem should be 100 km. If so, then the car in our
original scenario could not have completed the 110 km trip without speeding. We
will now show that the MVT can again be used to verify our intuition by giving us a
direct relationship between the magnitude of the derivative and how much a function
could possibly change over a given interval.

Observation: Let’s assume that f is continuous on [a, b] and is differentiable on
(a, b). Assume also that

m ≤ f ′(x) ≤ M
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for each x ∈ (a, b). Pick some x ∈ [a, b]. The Mean Value Theorem is true on the
interval [a, x]. This means that there exists a c between a and x such that

f ′(c) =
f (x) − f (a)

x − a
.

Since m ≤ f ′(x) ≤ M, we get that

m ≤
f (x) − f (a)

x − a
≤ M.

Geometrically this means that the slope of the secant line joining (a, f (a)) and (x, f (x))
has a value that sits between the maximum and minimum values of the derivative on
the interval. Moreover, since x − a > 0, we get that

m(x − a) ≤ f (x) − f (a) ≤ M(x − a)

or equivalently that

f (a) + m(x − a) ≤ f (x) ≤ f (a) + M(x − a).

We have shown that the
graph of f sits between
the lines
y = f (a) + m(x − a) and
y = f (a) + M(x − a).

(a, f (a))

a bx

(x, f (x))

y = f (a) + m(x − a)

y =
f (a

) +
M(x −

a)

m ≤
f (x) − f (a)

x − a
≤ M

f

THEOREM 7 The Bounded Derivative Theorem

Assume that f is continuous on [a, b] and differentiable on (a, b) with

m ≤ f ′(x) ≤ M

for each x ∈ (a, b). Then

f (a) + m(x − a) ≤ f (x) ≤ f (a) + M(x − a)

for all x ∈ [a, b].
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EXAMPLE 5 Assume that f (0) = 3 and that 1 ≤ f ′(x) ≤ 2 for all x ∈ [0, 1]. Show that

4 ≤ f (1) ≤ 5.

We know from the Mean Value
Theorem that

1 ≤
f (1) − f (0)

1 − 0
≤ 2.

Then

1 ≤ f (1) − 3 ≤ 2

and hence that

4 ≤ f (1) ≤ 5.

3

4

5

1

4 ≤ f (1) ≤ 5

m = 1

m = 2 f

REMARK

If we return to the scenario of a car traveling one hour along a road without exceed-
ing a speed of 100 km/hr, then the previous theorem tells us immediately that the
maximum distance the car could have traveled in that time frame was in fact 100 km
as we expected.

7.2.4 Comparing Functions Using Their Derivatives

If we consider two functions, f and g, so that f ′(x) ≤ g ′(x) on an interval I, we
cannot conclude that f (x) ≤ g(x). In fact, in the following diagram, notice that
f ′(x) < 0 (slopes of the tangent lines are negative) while g ′(x) > 0 (slopes of the
tangent lines are positive), yet g(x) < f (x).
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g

f

However, if we know that f (a) = g(a) and that f ′(x) ≤ g ′(x), then we can con-
clude that f (x) ≤ g(x) for x > a, and also that g(x) ≤ f (x) for x < a. From these
conclusions we will be able to derive some interesting inequalities.

THEOREM 8

Assume that f and g are continuous at x = a with f (a) = g(a).

i) If both f and g are differentiable for x > a and if f ′(x) ≤ g ′(x) for all x > a,
then

f (x) ≤ g(x)

for all x > a.

ii) If both f and g are differentiable for x < a and if f ′(x) ≤ g ′(x) for all x < a,
then

f (x) ≥ g(x)

for all x < a.

PROOF

i) We will assume that f and g are continuous at x = a with f (a) = g(a), f and g are
differentiable for x > a, and f ′(x) ≤ g ′(x) for all x > a. Let’s build a new function

h(x) = g(x) − f (x).

Then h is continuous at x = a and differentiable for x > a with

h ′(x) = g ′(x) − f ′(x) ≥ 0

for all x > a. So if x > a, by the Mean Value Theorem, we can find a < c < x so that

0 ≤ h ′(c) =
h(x) − h(a)

x − a
.

We know that h(a) = 0 and that x − a > 0, so this tells us that

h(x) = g(x) − f (x) ≥ 0

exactly as we had hoped.
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f (a) = g(a)

a x
f

g

h(x) = g(x) − f (x)

ii) The proof of part (ii) is similar.

REMARK

In the previous theorem, if we replace f ′(x) ≤ g ′(x) with the strict inequality
f ′(x) < g ′(x), then we can also show that f (x) < g(x) if x > a and that f (x) > g(x)
if x < a.

EXAMPLE 6 We will now use what we have just learned to help us establish the following
fundamental limit:

lim
n→∞

(
1 +

1
n

)n

= e

To do so we first show that

x −
1
2

x2 < ln(1 + x) < x (∗)

for all x > 0. To see this let

f (x) = x −
1
2

x2

g(x) = ln(1 + x), and
h(x) = x.
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Then
0 = f (0) = g(0) = h(0).

Moreover,

f ′(x) = 1 − x,

g ′(x) =
1

1 + x
, and

h ′(x) = 1.

Therefore if x > 0, then

g ′(x) =
1

1 + x
< 1 = h ′(x).

We also know that for any x > 0

(1 − x)(1 + x) = 1 − x2 < 1

so that if x > 0

f ′(x) = 1 − x <
1

1 + x
= g ′(x).

It follows that for x > 0 we have

f ′(x) < g ′(x) < h ′(x).

h(x) = x

g(x) = ln(1 + x)

f (x) = x −
x2

2

x −
x2

2
< ln(1 + x) < x3

2

1

0

−1

1 2 3

Applying the previous theorem twice gives us the inequality (∗).

The next observation we can make is that if x > 0, we can divide all three terms in
inequality (∗) by x to get

1 −
1
2

x <
ln(1 + x)

x
< 1. (∗∗)

In particular, if x = 1
n , we have

1 −
1

2n
<

ln
(
1 + 1

n

)
1
n

= n ln
(
1 +

1
n

)
= ln

(
1 +

1
n

)n

< 1. (∗ ∗ ∗)

Applying the Squeeze Theorem to (∗ ∗ ∗) gives us that

lim
n→∞

ln
(
1 +

1
n

)n

= 1.
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Finally, since ex is a continuous function, the Sequential Characterization of
Continuity gives us that

e = e1 = lim
n→∞

eln(1+ 1
n )n

= lim
n→∞

(
1 +

1
n

)n

.

The previous example can be modified to show the following:

THEOREM 9 Let α ∈ R. Then
eα = lim

n→∞

(
1 +

α

n

)n
.

7.2.5 Interpreting the Second Derivative

Since
f ′′ =

d
dx

( f ′)

f ′′(x) represents the instantaneous rate of change of f ′(x). For example, if we let
s(t) denote the displacement of an object, we have already seen that v(t) = s ′(t)
represents the velocity of the object. Then v′(t) = s ′′(t) is the rate of change of
velocity. That is, s ′′(t) = a(t) is the acceleration of the object at time t.

Geometrically, f ′(x) represents the slope of the tangent line to the graph of f . There-
fore, f ′′ measures how quickly these slopes are changing.

Increasing slopes correspond to
the “counter-clockwise” rotations
of the tangent lines.

m1 < m2 < m3 < m4 < m5

m1

m2 m3

m4

m5

We know that f ′ increases when

f ′′(x) > 0.
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It follows that when f ′′(x) > 0
the graph of f has the following
distinctive shape similar to a cup
opening upwards.

m1 < m2 < m3 < m4 < m5

m1

m2 m3

m4

m5

In this case, we say that the graph of f is concave upwards.

Similarly, decreasing slopes
correspond to “clockwise”
rotations of the tangent lines.

m1 > m2 > m3 > m4 > m5

m1

m2 m3

m4

m5

We know that f ′ decreases when

f ′′(x) < 0.

It follows that when f ′′(x) < 0,
the graph of f has a shape similar
to a cup opening downwards.

m1 > m2 > m3 > m4 > m5

m1

m2 m3

m4

m5

In this case, we say that the graph of f is concave downwards.

7.2.6 Formal Definition of Concavity

The previous section provided an informal definition of what it means for the graph
of a function to be concave upwards or concave downwards on an interval. A more
precise definition of concavity is now presented.
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Recall that if (a, f (a)) and (b, f (b)) are two points on the graph of a function f , then
the line segment joining these two points is called a secant to the graph of f .

DEFINITION Concavity

The graph of f is concave upwards
on an interval I if for every pair of
points a and b in I, the secant line
joining (a, f (a)) and (b, f (b)) lies
above the graph of f .

a b

(a, f (a))
(b, f (b))

secant
f

The graph of f is concave
downwards on an interval I if for
every pair of points a and b in I, the
secant line joining (a, f (a)) and
(b, f (b)) lies below the graph of f .

a b

(a, f (a))

(b, f (b))
secant

f

The next theorem summarizes what we have already observed about the relationship
between concavity and the second derivative.

THEOREM 10 Second Derivative Test for Concavity

i) If f ′′(x) > 0 for each x in an interval I, then the graph of f is concave upwards
on I.

ii) If f ′′(x) < 0 for each x in an interval I, then the graph of f is concave down-
wards on I.

Calculus 1 (B. Forrest)2



Section 7.2: Applications of the Mean Value Theorem 341

EXAMPLE 7

In the diagram, the graph of the
function f is concave upwards on
the interval [a, c] and concave
downwards on [c, b].

We say that f changes its
concavity at x = c. The point
(c, f (c)) is called an inflection
point.

a c b

inflection point

concave downwardsconcave upwards

(c, f (c))

f

DEFINITION Inflection Point

A point (c, f (c)) is called an inflection point for the function f if

i) f is continuous at x = c, and
ii) the concavity of f changes at x = c.

Observation: Typically an inflection point at x = c would occur when the second
derivative changes from positive to negative, or vice versa. If f ′′ is continuous, the
Intermediate Value Theorem requires that f ′′(c) = 0.

THEOREM 11 Test for Inflection Points

If f ′′ is continuous at x = c and (c, f (c)) is an inflection point for f , then f ′′(c) = 0.

WARNING This theorem shows us how to locate candidates for inflection points.
However, f ′′(c) = 0 does not mean that an inflection point always occurs when x = c.

EXAMPLE 8 Let f (x) = x3. Then f ′(x) = 3x2 and f ′′(x) = 6x. To find all possible candidates for
an inflection point we solve

f ′′(x) = 6x = 0.

The only solution is x = 0. Therefore, x = 0 is a candidate for the location of a point
of inflection for the function f (x) = x3. To confirm whether f does indeed have a
point of inflection at x = 0, we must check that the concavity of f changes from the
interval x < 0 to the interval x > 0.
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Since f ′′(x) = 6x, we know that if x < 0,
then f ′′(x) < 0, so the graph of f is
concave downwards on the interval
(−∞, 0). On the other hand, f ′′(x) > 0
when x > 0, so the graph of f is concave
upwards on the interval (0,∞). This
shows that the concavity of f does indeed
change at x = 0. Since f is clearly
continuous at x = 0, we can now conclude
that (0, 0) is an inflection point.

inflection point

f (x) = x3

(0, 0)

EXAMPLE 9 Let f (x) = x4. Then f ′(x) = 4x3 and f ′′(x) = 12x2. To find all possible candidates
for an infection point, solve f ′′(x) = 12x2 = 0.

Once again, the only solution is x = 0.
However, in this case, the second
derivative does not change sign at x = 0.
In fact, f ′′(x) = 12x2 ≥ 0 for all x. In
particular, the graph of f is concave
upwards on the interval [−1, 1]. (Note: f
is actually concave upwards on all of R.)
As such, (0, 0) is not an inflection point
for f (x) despite the fact that f ′′(0) = 0
because the concavity of f did not
change.

f (x) = x4

(0, 0)−1 1

We end this section with two applications. The first is an application in biology to
population growth. The second is an analysis of customer satisfaction.

EXAMPLE 10

The diagram represents the graph
of the population P of a
particular bacteria over time t in a
restricted environment.

P

ttITime

Po
pu

la
tio

n

P = P(t)
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When the population is small, the number of bacteria available to multiply is very
limited. As such, the rate at which the population increases is slow. As the population
increases, so does the rate at which the bacteria multiply. Consequently, as long as
the bacteria have ample food so that the death rate remains low, the overall population
grows at an increasing rate. However, at some point, the bacteria will begin to exhaust
the resources available for survival. At this point, the death rate due to starvation will
increase and the growth rate in the overall population will start to slow down again.

Since the instantaneous rate of change in population is simply the derivative P ′ of P,
and since we also know that the larger P ′(t) is the steeper the graph will be, the slow
down in population growth occurs at the instant that the graph is at its steepest. How-
ever, on the graph this occurs at time tI . Moreover, (tI , P(tI)) is an inflection point for
the bacteria population versus time graph. At this point the scarcity of resources starts
to restrict the rate at which the population can increase until it eventually flattens out
due to mass starvation.

EXAMPLE 11

The diagram represents a graph
of consumer satisfaction U (also
known as utility), versus the price
p spent on a type of good, such
as an automobile.

Price

Sa
tis

fa
ct

io
n

(U
til

ity
)

p

U = U(p)

U

pL

At very low prices, this product is of very poor build quality and has few features. As
the price rises, so does quality. The feature set available in the product improves with
an increase in price. However, there is a phenomena called the “law of diminishing
returns” that takes effect at some price point. This law says that after some price
point the gain in satisfaction for each additional dollar spent will start to decrease.

Since the instantaneous rate of change in satisfaction per unit change in price is sim-
ply the derivative U ′ of U, and since we also know that the larger U ′(p) is the steeper
the graph will be, “the law of diminishing returns” starts to take effect at the point at
which the graph of U is at its steepest. On the graph, this occurs at price pL. More-
over, (pL,U(pL)) is an inflection point for the utility versus price graph. This point
represents the price at which each additional dollar spent on the product returns less
in additional customer satisfaction.

REMARK

You will notice that the graphs in the two previous example have a very similar shape.
This is no accident. Both are examples of a phenomenon known as Logistic Growth.
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In both cases the inflection point represents the place where resources start to have a
diminishing impact on the rate at which the quantity increases.

7.2.7 Classifying Critical Points:
The First and Second Derivative Tests

Previously we saw that if x = c was either a local maximum or a local minimum
for a function f , then either f ′(c) = 0 or f ′(c) did not exist. That is, c is a critical
point. However, we have also shown that not all critical points are local extrema.
In this section we will look at how to determine if a critical point c is either a local
maximum or a local minimum. We will present two such methods for solving this
problem.

Method 1: Finding Maxima and Minima using the First Derivative Test

Assume x = c is a critical point for f . As the name suggests, the first method for
testing critical points involves a careful examination of the first derivative near c.

Assume that a < c < b and that f is continuous at c. Let’s also assume that

f ′(x) < 0 for all x ∈ (a, c)
and f ′(x) > 0 for all x ∈ (c, b).

Since f ′(x) < 0 on (a, c), the
function f is decreasing on (a, c).
We also know that if f ′(x) > 0
on (c, b), then f is increasing on
that interval. This means that the
function f decreases as we
approach c from the left and f
increases as we move away from
c to the right. As the graph
shows, this suggests that f has a
local minimum at x = c.

a c b

f ′(x) < 0 f ′(x) > 0

min

f is decreasing f is increasing
Assume again that a < c < b and that f is continuous at c. However, this time we
will assume that

f ′(x) > 0 for all x ∈ (a, c)
and f ′(x) < 0 for all x ∈ (c, b).

Since f ′(x) > 0 on (a, c), f is
increasing on (a, c). Also, since
f ′(x) < 0 on (c, b), f is
decreasing on (c, b). In this case,
f increases as we approach c
from the left and f decreases as
we move away from c to the
right. Thus, f has a local
maximum at x = c.

a c b

f ′(x) > 0 f ′(x) < 0

max

f is increasing f is decreasing
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These observations are summarized in the following theorem.

THEOREM 12 First Derivative Test

Assume that c is a critical point of f , and f is continuous at c.

i) If there is an interval (a, b) containing c such that

f ′(x) < 0 for all x ∈ (a, c)
and f ′(x) > 0 for all x ∈ (c, b),

then f has a local minimum at c.

ii) If there is an interval (a, b) containing c such that

f ′(x) > 0 for all x ∈ (a, c)
and f ′(x) < 0 for all x ∈ (c, b),

then f has a local maximum at c.

EXAMPLE 12 Find all of the critical points of the function

f (x) =
x3

3
− x.

For each critical point, determine if it is a local maximum, a local minimum, or
neither. Finally, graph f .

SOLUTION To find the critical points we need to solve the equation f ′(x) = 0.
But f ′(x) = x2 − 1. Hence f ′(x) = 0 when x = 1 or x = −1. Since the function is
a polynomial, it is always differentiable, so x = 1 and x = −1 are the only critical
points.

We will use the First Derivative Test to determine the nature of the critical points. To
apply the test we need to know about the sign of f ′(x) around the critical points.

Since f ′(x) = x2 − 1 is a second
degree polynomial with a positive
coefficient on its highest degree
term, its graph is a parabola that
opens upwards. Moreover, the
only sign changes occur when
f ′(x) = 0 at x = 1 and x = −1.

We have that f ′(x) > 0 if x > 1,
f ′(x) < 0 if x ∈ (−1, 1), and
f ′(x) > 0 if x < −1.

f ′(x) = x2 − 1

f ′(x) > 0 f ′(x) > 0f ′(x) < 0

10

−1

−2 2

1

2

3

−1
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Consider the critical point x = 1. We have just seen that f ′(x) < 0 if x ∈ (−1, 1), and
f ′(x) > 0 if x > 1. This means that f decreases as we approach x = 1 from the left
and increases as we move away from x = 1 to the right. The First Derivative Test
tells us that these conditions indicate a local minimum.

For x = −1 we know that f ′(x) > 0 if x < −1, and f ′(x) < 0 if x ∈ (−1, 1). In this
case, the First Derivative Test tells us that x = −1 is a local maximum.

To graph f we note that

lim
x→−∞

x3

3
− x = −∞ and lim

x→∞

x3

3
− x = ∞.

Moreover, since

f (x) =
x3

3
− x

=
x
3

(x2 − 3)

=
x
3

(x −
√

3)(x +
√

3)

we have f (x) = 0 when x = 0 or x = ±
√

3.

Combining this information with
the results about the critical
points gives us the following
graph.

f (x) =
x3

3
− x

local max

local min

−3 −2 −1
0
−2

−4

1 2 3

2

4

−
√

3
√

3

Method 2: Finding Maxima and Minima using the Second Derivative Test

Assume that c is a critical point for f with f ′(c) = 0. This means that the tangent
line to the graph of f through (c, f (c)) is the horizontal line y = f (c).
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Suppose now that there is an
open interval (a,b) containing c
such that f ′′(x) < 0 for all
x ∈ (a, b). (This will happen, for
example, if f ′′ is continuous at c
and f ′′(c) < 0.) Then the graph
of f is concave downwards on
(a, b). Therefore, the tangent line
at x = c sits above the graph as
shown.

y = f (c)

f

a c b

max

Our conclusion is that f has a local maximum at x = c.

If, instead of f ′′(x) < 0 for all
x ∈ (a, b), we assume that
f ′′(x) > 0 for all x ∈ (a, b), then
the function is concave upwards.
In this case, the tangent line sits
below the graph.

y = f (c)

f

a c b

min

This time we have that f has a local minimum at x = c.

We have just outlined a test for the nature of a critical point called the
Second Derivative Test. The precise statement is as follows:

THEOREM 13 Second Derivative Test

Assume that f ′(c) = 0 and that f ′′ is continuous at x = c.

i) If f ′′(c) < 0, then f has a local maximum at c.

ii) If f ′′(c) > 0, then f has a local minimum at c.

Let’s revisit the previous example.

EXAMPLE 13 Let f (x) = x3

3 − x. We have seen that the critical points occur at x = ±1 since
f ′(x) = x2 − 1. The first derivative test showed us that for f a local maximum occurs
at x = −1 and a local minimum occurs at x = 1.

We can confirm this result again by applying the Second Derivative Test. In fact,
f ′′(x) = 2x. Hence, f ′′(−1) = −2 < 0 so the test shows that f has a local maximum
that occurs at x = −1. We also have that f ′′(1) = 2 > 0 so f has a local minimum at
x = 1, exactly as we had concluded previously.
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7.2.8 Finding Maxima and Minima on [a, b]

Let’s summarize what we have learned about local extrema for a continuous function
f on a closed interval [a, b].

The Extreme Value Theorem guarantees the existence of both a global maximum and
a global minimum for f . Assume that the global maximum occurs at a point x = c.
Then either

(1) c = a or c = b
or

(2) c ∈ (a, b).

In the second case, c is also a local maximum. Consequently, c is a critical point.
Therefore, f ′(c) = 0 or f ′(c) does not exist. A similar statement holds for the global
minimum. This leads to a simple algorithm for finding the global maximum and
global minimum of a function f .

Summary [Finding the Global Maximum and Global Minimum]

To find the maximum and minimum for a continuous function f on [a, b]:

• Step 1: Evaluate f (a) and f (b).

• Step 2: Find all critical points c in (a, b) such that f ′(c) = 0 and
f ′(c) does not exist, where applicable.

• Step 3: Evaluate the function at each of the critical points.

• Step 4: The global maximum is at the point that produces the
largest Real value from Steps 1 and 3. The global minimum is at
the point that produces the smallest Real value from Steps 1 and 3.

EXAMPLE 14 Find the maximum and minimum value for the function f (x) = x3

3 − x on the interval
[−3, 2].

SOLUTION We first determine the values of the function f (−3) and f (2) at the
endpoints of the interval. We have

f (−3) = −6 and f (2) =
2
3
.

We know that the only critical points in [−3, 2] occur at x = ±1 since f ′(x) = x2 − 1.
We now have

f (−1) =
2
3

and f (1) =
−2
3
.
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Of the four values above, the
maximum value of f (x) is 2

3
which occurs at both the interior
critical point x = −1 and at the
right-hand endpoint x = 2. The
minimum value of f (x) is −6
which occurs at the left-hand
endpoint x = −3. The diagram
confirms our analysis.

−3 −2 −1

1

1 2
−1

−2

−3

−4

−5

−6min

max max

EXAMPLE 15 Find the maximum and minimum values for f (x) = ex + e−x on the interval [−1, 3].
Sketch the graph of f on [−1, 3].

SOLUTION We first evaluate the function at the endpoints to get

f (−1) =
1
e

+ e and f (3) = e3 +
1
e3 .

Next, we must find the critical points in the open interval (−1, 3). Since f is differen-
tiable, we need only solve

f ′(x) = ex − e−x = 0.

It may not be obvious how to solve this equation. To do so we use a trick and look at
the graphs of g(x) = ex and h(x) = e−x simultaneously.

Since f ′(x) = g(x) − h(x), the
solution to the equation

f ′(x) = ex − e−x = 0

occurs when the graphs intersect.
This only occurs when x = 0.
Therefore, x = 0 is the only
critical point.

h(x) = e−x g(x) = ex

3

2

1

0 1−1
Now f (0) = 1 + 1 = 2. Moreover,

f (0) = 2 < f (−1) =
1
e

+ e < f (3) = e3 +
1
e3 .

This means that the global minimum occurs at x = 0 and the minimum value on the
interval is f (0) = 2. The global maximum is at x = 3 and its value is f (3) = e3 + 1

e3

(or f (3) ≈ 20.13).
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In sketching the graph we can
deduce from the previous
diagram that ex < e−x if x < 0,
and e−x < ex if x > 0. This means
that f ′(x) < 0 if x < 0, and
f ′(x) > 0 if x > 0. Therefore, the
function is decreasing on [−1, 0]
and is increasing on [0, 3].

We also note that since
f ′′(x) = ex + e−x > 0 for all x, the
graph is concave upwards.

f (x) = ex + e−x

−1 0 1 2 3

5

10

15

20
max

min

(3, 20.13)

(0, 2)

f ′′(x) > 0
f is concave up

f ′(x) < 0 f ′(x) > 0
f is decreasing f is increasing

7.3 L’Hôpital’s Rule

In the section on limits, we saw that if we had a function h(x) =
f (x)
g(x) and if

lim
x→a

f (x) = 0 = lim
x→a

g(x),

then we could not say whether or not lim
x→a

h(x) exists. For this reason, we call such a

situation an indeterminate form of type 0
0 .

Similarly, if
lim
x→a

f (x) = ±∞ = lim
x→a

g(x),

we would not be able to determine immediately if the limit of the quotient exists. We
call this situation an indeterminate form of type ∞

∞
.

L’Hôpital’s Rule provides us with a tool for evaluating many of these indeterminate
limits. To motivate the rule let’s consider the following observation.

Observation: Let h(x) =
f (x)
g(x) . Let’s assume that

lim
x→a

f (x) = 0 = lim
x→a

g(x),

so that we have an indeterminate form of type 0
0 . Let’s also assume that f and g

have continuous derivatives with g ′(a) , 0. We know from our work with linear
approximations that for x near a we have that

f (x)
g(x)

�
f (a) + f ′(a)(x − a)
g(a) + g ′(a)(x − a)

=
f ′(a)
g ′(a)
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since f (a) = 0 = g(a). This might lead us to guess that if lim
x→a

f (x)
g(x) exists, then in fact

lim
x→a

f (x)
g(x)

=
f ′(a)
g ′(a)

. (∗)

Moreover, since f ′ and g ′ are continuous with g ′(a) , 0, we also have

f ′(a)
g ′(a)

= lim
x→a

f ′(x)
g ′(x)

. (∗∗)

Combining (∗) and (∗∗) gives us

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

.

This leads us to the statement of L’Hôpital’s Rule.

THEOREM 14 L’Hôpital’s Rule

Assume that f ′(x) and g ′(x) exist near x = a, g ′(x) , 0 near x = a except possibly
at x = a, and that lim

x→a

f (x)
g(x) is an indeterminate form of type 0

0 or ∞
∞

, then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

provided that the latter limit exists (or is∞ or −∞ ).

Moreover, this rule remains valid for one-sided limits and for limits at ±∞.

L’Hôpital’s Rule can be derived from a rather sophisticated application of the Mean
Value Theorem, further evidence of the importance of the MVT. However, the proof
of L’Hôpital’s Rule is beyond the scope of this discussion.

We will illustrate how the rule can be applied by looking at several examples.

EXAMPLE 16 Evaluate
lim
x→0

ex − 1
x

.

SOLUTION Let f (x) = ex − 1 and g(x) = x. Then both functions are continuous
and

lim
x→0

ex − 1 = e0 − 1 = 0 = lim
x→0

x.

Therefore, this is an indeterminate form of type 0
0 .

We also have that f ′(x) = ex and g′(x) = 1. Hence, we have satisfied all of the
conditions in the statement of L’Hôpital’s Rule. Moreover,

lim
x→0

f ′(x)
g′(x)

= lim
x→0

ex

1
= 1
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so L’Hôpital’s Rule tells us that

lim
x→0

ex − 1
x

= lim
x→0

ex

1
= 1.

We can verify that this limit is correct by noting that

lim
x→0

ex − 1
x

is by definition the derivative of the function h(x) = ex at the point x = 0. However,
we know that h′(x) = ex so h′(0) = e0 = 1, exactly as we expected.

The next example is similar. However, it shows that we may need to apply L’Hôpital’s
Rule more than once to find the limit.

EXAMPLE 17 Evaluate

lim
x→0

ex2
− cos(x)

x2 .

SOLUTION Let f (x) = ex2
− cos(x) and g(x) = x2. We have

lim
x→0

f (x) = lim
x→0

(ex2
− cos(x))

= e0 − cos(0)
= 1 − 1
= 0

and

lim
x→0

g(x) = lim
x→0

x2

= 0

so the limit is indeterminate of type 0
0 .

Next we get that f ′(x) = 2xex2
+ sin(x) and g′(x) = 2x. It is easy to verify that

lim
x→0

(2xex2
+ sin(x)) = 0 = lim

x→0
2x.

This means that we have another indeterminate form of type 0
0 , so we cannot yet

determine the original limit. However, if we let F(x) = 2xex2
+ sin(x) and G(x) = 2x,

then we have all of the conditions satisfied to try and apply L’Hôpital’s Rule again to
find

lim
x→0

F(x)
G(x)

.
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This time, we have F ′(x) = 2ex2
+ 4x2ex2

+ cos(x) and G ′(x) = 2. However,

lim
x→0

F ′(x) = lim
x→0

(2ex2
+ 4x2ex2

+ cos(x))

= 2e0 + 4(0)e0 + cos(0)
= 2 + 1
= 3

and
lim
x→0

G ′(x) = lim
x→0

2 = 2.

Hence,

lim
x→0

F ′(x)
G ′(x)

= lim
x→0

2ex2
+ 4x2ex2

+ cos(x)
2

=
3
2
.

We can now apply L’Hôpital’s Rule to get that

lim
x→0

2xex2
+ sin(x)
2x

= lim
x→0

f ′(x)
g ′(x)

= lim
x→0

F(x)
G(x)

= lim
x→0

F ′(x)
G ′(x)

=
3
2
.

A second application of L’Hôpital’s Rule shows that

lim
x→0

ex2
− cos(x)

x2 = lim
x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g ′(x)

=
3
2
.

The next example in this section is a blend of the previous two examples. However,
it demonstrates how you may be tempted to use L’Hôpital’s Rule incorrectly and
therefore, calculate incorrect results.
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EXAMPLE 18 Evaluate
lim
x→0

ex − 1
x2 .

SOLUTION Let f (x) = ex − 1 and g(x) = x2. It is easy to verify that this limit is
indeterminate of type 0

0 . Applying L’Hôpital’s Rule we get f ′(x) = ex and g ′(x) =

2x.

Now
lim
x→0

2x = 0.

So we might be tempted to try the method used in the previous example. Let

F(x) = f ′(x) = ex

and
G(x) = g ′(x) = 2x.

Then
F ′(x) = ex

and
G ′(x) = 2.

It follows that
lim
x→0

F ′(x)
G ′(x)

= lim
x→0

ex

2
=

1
2
.

Using these limits we could apply L’Hôpital’s Rule to get that

lim
x→0

f ′(x)
g ′(x)

=
1
2

and then apply the rule again to get that

lim
x→0

ex − 1
x2 = lim

x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g ′(x)

=
1
2
.

All of this looks very nice – the only problem is that IT IS WRONG!

What did we do that was incorrect? The mistake is that it is not true that

lim
x→0

f ′(x)
g ′(x)

= lim
x→0

ex

2x

=
1
2
.

While we had
lim
x→0

g ′(x) = lim
x→0

2x = 0,
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the numerator does not approach 0 since

lim
x→0

ex = e0 = 1.

The limit rules tell us that if the denominator approaches 0 but the numerator does
not, then the limit of the quotient does not exist. In this case, we calculated the wrong
answer because f ′ and g ′ do not satisfy the conditions for L’Hôpital’s Rule.

However, since L’Hôpital’s Rule is still valid if lim
x→0

f ′(x)
g ′(x) = ∞, we really should have

stopped after the first stage and concluded that in fact

lim
x→0

ex − 1
x2 = ∞.

This example illustrates the point that care must always be taken to ensure that all of
the conditions of the theorem are met before you apply L’Hôpitals Rule.

REMARK

In the previous example, we could have anticipated the fact that

lim
x→0

ex − 1
x2 = ∞

because we know by using linear approximation that ex − 1 � x and so we might
expect

ex − 1
x2 �

x
x2 =

1
x
.

Of course this is not a precise argument. However, in the next course we will study a
method that does make this simple argument much more rigorous..

EXAMPLE 19 Evaluate
lim
x→∞

ln(x)
x

.

SOLUTION This is the Fundamental Log Limit that we studied previously. In fact,
we know that

lim
x→∞

ln(x)
x

= 0.

We can use L’Hôpital’s Rule to verify this result. Let f (x) = ln(x) and g(x) = x.
Then

lim
x→∞

f (x) = ∞ = lim
x→∞

g(x).

This produces an indeterminate form of the type ∞
∞

.
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Differentiating f and g gives us f ′(x) = 1
x and g ′(x) = 1. Therefore,

lim
x→∞

f ′(x)
g ′(x)

= lim
x→∞

1
x

1

= lim
x→∞

1
x

= 0.

L’Hôpital’s Rule implies that

lim
x→∞

ln(x)
x

= lim
x→∞

f (x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

= 0

exactly as we expected.

Up until now we have dealt with two types of indeterminate forms which we have
denoted by 0

0 and ∞
∞

. There are five more standard indeterminate forms which we will
denote by

0 · ∞,∞−∞, 1∞,∞0, and 00.

For example, an indeterminate form of type 0·∞ arises from the function h(x)=f(x)g(x)
when

lim
x→a

f (x) = 0

and
lim
x→a

g(x) = ∞.

Similarly, the function (g(x)) f (x) would produce an indeterminate form of type∞0.

EXAMPLE 20 Use L’Hôpital’s Rule to evaluate

lim
x→0+

x ln(x)

with g(x) = x and f (x) = ln(x).

SOLUTION This is an indeterminate form of type 0 · ∞ since

lim
x→0+

x = 0

and
lim
x→0+

ln(x) = −∞.

Using a trick we can turn this example into an indeterminate form of type ∞
∞

. To do
so we write

x ln(x) =
ln(x)

1
x

.
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With F(x) = f (x) = ln(x) and G(x) = 1
g(x) = 1

x , we now have an indeterminate form
of type ∞

∞
.

Moreover, since G ′(x) = − 1
x2 is never 0, we have satisfied all of the conditions re-

quired to use L’Hôpital’s Rule. Then

F ′(x)
G ′(x)

=

1
x

− 1
x2

= −x.

It follows that
lim
x→0+

F ′(x)
G ′(x)

= lim
x→0+
−x = 0.

Therefore, L’Hôpital’s Rule shows that

lim
x→0+

x ln(x) = lim
x→0+

F(x)
G(x)

= lim
x→0+

F ′(x)
G ′(x)

= 0.

The next example provides us with an alternative method for establishing a very
important limit that can be used as another definition for the number e.

EXAMPLE 21 Evaluate

lim
x→∞

(
1 +

1
x

)x

.

SOLUTION This is an indeterminate form of type 1∞.

The first step in evaluating this limit is to write the function as follows:(
1 +

1
x

)x

= ex ln(1+ 1
x ).

Consider what happens to

x ln
(
1 +

1
x

)
as x→ ∞. As x→ ∞,

(
1 + 1

x

)
→ 1 so that

ln
(
1 +

1
x

)
→ 0.

This means that

x ln
(
1 +

1
x

)
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is indeterminate of type 0 ·∞ as x→ ∞. We can use the same trick as in the previous
example and write F(x) = ln

(
1 + 1

x

)
and G(x) = 1

x to turn this latter limit into type 0
0 .

Next, we have

F ′(x)
G ′(x)

= lim
x→∞

(
−1
x2

)
1+ 1

x(
−1
x2

)
=

1
1 + 1

x

so that
lim
x→∞

F ′(x)
G ′(x)

= lim
x→∞

1
1 + 1

x

= 1.

Therefore L’Hôpital’s Rule shows us that

x ln
(
1 +

1
x

)
→ 1

as x→ ∞.

Finally, since ex is continuous we get that(
1 +

1
x

)x

= ex ln(1+ 1
x ) → e1 = e

as x→ ∞.

In summary, we have shown that

lim
x→∞

(
1 +

1
x

)x

= e.

A similar calculation can show that for any a ∈ R,

lim
x→∞

(
1 +

a
x

)x
= ea.

The next problem is rather challenging. In theory the limit could be evaluated using
L’Hôpital’s Rule since it is indeterminate of the form 0

0 . However, the calculations
involved become very messy, very quickly. Instead, and somewhat incredibly, we
will soon study a method that could be used to evaluate the limit by inspection (see
Big-O Notation) – you might want to wait until then to try it!

Calculus 1 (B. Forrest)2



Section 7.4: Cauchy’s Mean Value Theorem 359

Problem: Show that

lim
x→0

4(ex3
− 1 − x3 − x6

2 )2

x6 tan(x7) sin(2x5)
=

1
18

.

Historical Note: L’Hôpital’s Rule is named after G. F. A. L’Hôpital, a French no-
bleman, who lived from 1661-1704. The rule appeared in his book Analyse des in-
finiment petits, often regarded as the first ever Calculus text. While this book played
a significant role in the development of the Calculus in the 18th century, the main
ideas in the book were not developed by L’Hôpital. In fact, L’Hôpital’s Rule is due
to Johann Bernoulli whom L’Hôpital paid a rather substantial salary in exchange for
Bernoulli’s many mathematical discoveries. Indeed, the top mathematicians of the
time often had patrons just like many of the world’s great artists. (Reference: see the
website MacTutor History of Mathematics Archive.)

We have already given a reasonable argument to why L’Hôpital’s Rule should be
valid using what we know about linear approximation. However, before we can give
a formal proof of L’Hôpital’s Rule we will need an upgraded version of the Mean
Value Theorem.

7.4 Cauchy’s Mean Value Theorem

In this section we will prove the following upgraded version of the Mean Value The-
orem due to Cauchy:

THEOREM 15 Cauchy’s Mean Value Theorem (CMVT)

Suppose that f and g are continuous on [a, b] and differentiable on (a, b) with g′(x) ,
0 for any x ∈ (a, b). Then g(a) , g(b) and there exists a c ∈ (a, b) such that

f (b) − f (a)
g(b) − g(a)

=
f ′(c)
g′(c)

NOTE

1) If g(x) = x, this is the MVT.

2) By the usual MVT we would get

f (b) − f (a)
g(b) − g(a)

=

f (b)− f (a)
b−a

g(b)−g(a)
b−a

=
f ′(c1)
g′(c2)

.

The Cauchy Mean Value Theorem tells us that we can replace c1 and c2 in the
above equality with a single point c.
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PROOF

Since g′(x) , 0, g(a) , g(b).

Define

H(x) =
f (b) − f (a)
g(b) − g(a)

[g(x) − g(a)] − ( f (x) − f (a)).

Then H(x) is continuous on [a, b] and differentiable on (a, b) with

H(a) =
f (b) − f (a)
g(b) − g(a)

[g(a) − g(a)] − ( f (a) − f (a)) = 0

and
H(b) =

f (b) − f (a)
g(b) − g(a)

[g(b) − g(a)] − ( f (b) − f (a)) = 0.

By Rolle’s Theorem there is a c ∈ (a, b) such that

0 = H′(c) =
f (b) − f (a)
g(b) − g(a)

g′(c) − f ′(c).

It follows that
f (b) − f (a)
g(b) − g(a)

=
f ′(c)
g′(c)

.

7.4.1 Geometric Interpretation of the Cauchy Mean Value Theorem

Recall that the Mean Value Theorem can be interpreted as saying that the secant
line joining (a, f (a)) and (b, f (b)) is parallel to the tangent line through (c, f (c)) for
some point c ∈ (a, b). We will now give an analogous geometric interpretation of the
Cauchy Mean Value Theorem. However, to do so we must first introduce the concept
of a curve in R2.

DEFINITION Curve in R2

A curve in R2 is a function
→

F: [a, b]→ R2 given by

→

F (t) = (g(t), f (t))

g(t) and f (t) are called the coordinate functions of
→

F.

We can visualize a curve by plotting its range.
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F(a)

F(t )1 F (b )

F (t )2
F (t )3

a ttt b1 2 3

There is a notion of differentiability for functions such as
→

F. In fact it turns out that
→

F is differentiable precisely when its coordinate functions g and f are differentiable
and the derivative in this case is a vector in R2 given by

→

F ′(t) = (g ′(t), f ′(t)).

Moreover, the line in the direction of
→

F (t) = (g ′(t), f ′(t)) through the point
→

F (t) is
the tangent line to the curve at

→

F (t). The slope of this line is simply

m =
f ′(t))
g ′(t)

.

Consider the secant line through
→

F (a) = (g(a), f (a)) and
→

F (b) = (g(b), f (b)). The
slope of this line is

f (b) − f (a)
g(b) − g(a)

.

Putting the last two observations together, the Cauchy Mean Value Theorem tells us
that there exists a point c ∈ (a, b) such that

f (b) − f (a)
g(b) − g(a)

=
f ′(c))
g ′(c)

.

In other words, the secant line through
→

F (a) = (g(a), f (a)) and
→

F (b) = (g(b), f (b))
is parallel to the tangent line to the curve through

→

F (c).
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F(a)

F (b )

F (t)

a t b

=(g(t),f(t))

c

m=
f(b)-f(a)

g(b)-g(a)

(c)F� =(g (c),f (c))� �

F(c)

=
f (c)�

g (c)�

7.5 The Proof of L’Hôpital’s Rule

We now have the tools we need to prove L’Hôpital’s Rule. In fact, we will prove a
part of a slightly upgraded version of the rule. Before we do we will introduce some
new notation.

DEFINITION Indeterminate Forms

R∗ = R ∪ {−∞,∞} is called the set of extended real numbers.

Suppose that f , g : I → R, where I is an open interval containing some a ∈ R∗ as an
endpoint. Suppose that g(x) , 0 for all x ∈ I.

1) The limit lim
x→a±

f (x)
g(x) is called an indeterminate form of type 0

0 if

lim
x→a±

f (x) = 0 = lim
x→a±

g(x).

2) The limit lim
x→a±

f (x)
g(x) is called an indeterminate form of type ∞

∞
if

lim
x→a±

f (x) = ±∞ and lim
x→a±

g(x) = ±∞.

We will now state a slightly upgraded version of the 0
0 version of L’Hôpital’s Rule.

THEOREM 16 L’Hôpital’s Rule Version 0
0

Assume that f , g : (a, b)→ R, where a, b ∈ R∗ with a < b. Also assume that f and g
are differentiable on (a, b) and that both g(x) and g′(x) , 0 for all x ∈ (a, b).

Calculus 1 (B. Forrest)2



Section 7.5: The Proof of L’Hôpital’s Rule 363

1) Assume that lim
x→a+

f (x) = 0 = lim
x→a+

g(x).

i) If lim
x→a+

f ′(x)
g′(x) = L ∈ R, then lim

x→a+

f (x)
g(x) = L.

ii) If lim
x→a+

f ′(x)
g′(x) = ±∞, then lim

x→a+

f (x)
g(x) = ±∞.

2) Assume that lim
x→b−

f (x) = 0 = lim
x→b−

g(x).

i) If lim
x→b−

f ′(x)
g′(x) = L ∈ R, then lim

x→b−
f (x)
g(x) = L.

ii) If lim
x→b−

f ′(x)
g′(x) = ±∞, then lim

x→b−
f (x)
g(x) = ±∞.

PROOF

We will prove 1i). The remaining cases are very similar.

Assume that f , g : (a, b)→ R, where a, b ∈ R∗ with a < b. Also assume that f and g
are differentiable on (a, b) and that both g(x) and g′(x) , 0 for all x ∈ (a, b). Assume
that lim

x→a+
f (x) = 0 = lim

x→a+
g(x) and that

lim
x→a+

f ′(x)
g′(x)

= L

where L ∈ R.

Let ε > 0. Choose a < β in I such that if a < ξ < β, then

|
f ′(ξ)
g′(ξ)

− L |< ε.

We can do this since lim
x→a+

f ′(x)
g′(x) = L.

Let a < x < β. Next we choose a seqeuence {yn}, with a < yn < x and yn → a. Then
by the CMVT, for each n ∈ N there exists a pont ξn between x and yn such that

|
f (x) − f (yn)
g(x) − g(yn)

− L |=|
f ′(ξn)
g′(ξn)

− L | .

Next we note that a < ξn < β. It then follows that

|
f (x) − f (yn)
g(x) − g(yn)

− L |=|
f ′(ξn)
g′(ξn)

− L |< ε.
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a � �xy
n

� �
f ( )� �

g ( )� �
- L

n

n=

�n

� �
g(x)-g(y )

f(x)-f(y )n

n

- L ��	

We have shown that for each n ∈ N that

|
f (x) − f (yn)
g(x) − g(yn)

− L |< ε.

Since
lim
n→∞

f (yn) = 0 = lim
n→∞

g(yn)

we have
lim
n→∞
|

f (x) − f (yn)
g(x) − g(yn)

− L |=|
f (x)
g(x)

− L |≤ ε.

a � �x

� �
g(x)-g(y )

f(x)-f(y )n

n

- L � ��
f(x)

g(x)
- L � �

In summary, we have shown that if a < x < β, then

|
f (x)
g(x)

− L |≤ ε.

This is exactly what we needed to do to prove that

lim
x→a+

f (x)
g(x)

= L.
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REMARK

As we mentioned earlier the proofs of all of the other cases of L’Hôpital’s Rule with
indeterminate forms of the type 0

0 as quite similar. Moreover, the two-sided limit
analogs folow immediately as well from our one-sided results.

The case where we have indeterminate forms of the type ∞
∞

is slightly more compli-
cated, involving a small trick. But since the basic argument is the same we will not
address this case here.

7.6 Curve Sketching: Part 2

Previously, we used the theory of limits and continuity to develop a procedure to aid
in constructing basic sketches of graphs of functions. We can now use the information
obtained from the derivative to refine the sketches.

To draw the graph of a function f you should first follow the steps for curve sketching
outlined in Chapter 5 (see Curve Sketching: Part 1). Once you have completed those
steps, you should try to obtain as much of the following information as possible.

Strategy [Basic Curve Sketching: Part 2]

• Step 1: Complete the steps for Curve Sketching: Part 1.

• Step 2: Calculate f ′(x).

• Step 3: Identify any critical points: locate where f ′(x) = 0 or
where f ′(x) does not exist.

• Step 4: Determine where f is increasing or decreasing by
analysing the sign of f ′(x) between the critical points.

• Step 5: Test the critical points to determine if they are local max-
ima, local minima, or neither.

• Step 6: Find f ′′(x).

• Step 7: Locate where f ′′(x) = 0 or where f ′′(x) does not exist.
Use these points to divide the real number line into intervals. De-
termine the concavity of f by analysing the sign of f ′′(x) inside
these intervals (if possible).

• Step 8: Identify any points of inflection.

• Step 9: Incorporate this information into your original sketch.
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Ideally, we would follow each of these steps when we construct the graph of a func-
tion. However, in practice, some or all of these steps may be quite difficult to com-
plete. Moreover, in many instances your initial sketch produced using the steps from
Curve Sketching Part 1 will be accurate enough to suggest the information that would
be obtained using the derivative. We will illustrate these remarks by revisiting the ex-
ample from our earlier look at curve sketching.

EXAMPLE 22 Sketch the graph of

f (x) =
xex

x3 − x
.

SOLUTION Recall that our previous investigation of this function gave us a graph
that appeared as follows:

f (x) =
xex

x3 − x

y=0

x=−1 x=1

0

2 4 531−1−2

10

5

−5

−10

The graph does indeed suggest some of the characteristics that we might find by
following the steps in the Basic Curve Sketching Strategy, Part 2. For example, it
suggests that the function has a local maximum between x = −1 and x = 0, and a
local minimum somewhere after x = 1. Let’s complete the curve sketching steps to
confirm our suspicions.

Step 1: Calculate f ′(x). Taking the derivative of f (x) we get

f ′(x) =
(x2 − 2x − 1)ex

(x2 − 1)2

for x , 0, x , ±1.

Step 2: A critical point x = c occurs when c is in the domain of f and either f ′(c)
does not exist or f ′(c) = 0. In step 1 we saw that f ′(x) does not exist when x = 0 or
x = ±1. However, x = 0 and x = ±1 are not critical points according to the definition
since they are not in the domain of the function f . Indeed, in our original sketch,
we found that x = 0 was a removable discontinuity, and x = 1 and x = −1 were the
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locations of the vertical asymptotes. Now since ex > 0 for all x and the denominator
is always positive for all x , ±1, it follows that f ′(x) = 0 when

x2 − 2x − 1 = 0.

The quadratic formula tells us that these critical points occur when

x =
2 ±
√

4 + 4
2

= 1 ±
√

2.

Moreover,
1 +
√

2 ≈ 2.414213562

and
1 −
√

2 ≈ −0.414213562.

This suggests that the local minimum is located at x ≈ 2.4141213562 and the local
maximum is located at x ≈ −0.414213562. We will confirm these results in the next
few steps.

Step 3: We can determine where f is increasing or decreasing by analysing the sign
of f ′(x) in particular intervals and then applying the Increasing/Decreasing Function
Theorem.

First, use the critical points and discontinuities we found in step 2 to divide the real
line into intervals.

x<−1

−1 1−
√

2 0 1 1+
√

2

−1<x<1−
√

2
1−
√

2<x<0
0<x<1 1<x<1+

√
2 x>1+

√
2

f (x) critical points and discontinuities

According to the Increasing/Decreasing Function Theorem, if f ′(x) > 0 on some
interval I, then f is increasing on I. Otherwise, f is decreasing. Using the intervals
determined by the locations of the critical points and discontinuities, we now need
to deterimine the sign of f ′(x) inside each of these intervals. Any test point within
each interval will suffice, so we will choose numbers inside the intervals that make
the calculation easier.

Since ex is always positive and the denominator of f ′(x) is always positive when
x , ±1, the sign of f ′(x) depends only on the sign of the numerator, x2 − 2x − 1.
Let’s check x = −2, x = −0.5, x = −0.2, x = 0.5, x = 2, and x = 3 (these are random
points, each found inside one of the intervals).
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2 3−0.5−2

f (x) critical points and discontinuities
f ′(x) test points

0.5

x<−1

−1 1−
√

2 0 1 1+
√

2

−1<x<1−
√

2
1−
√

2<x<0
0<x<1 1<x<1+

√
2 x>1+

√
2

−0.2
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Then we get (you should verify these calculations):

Interval Test
Point

Calculate
x2 − 2x − 1

f ′(x)
positive

or
negative

f
increasing

or

decreasing

x < −1 x = −2 (−2)2 − 2(−2) − 1 = +7 f ′(x) > 0 f increasing

(positive)

−1 < x < 1 −
√

2 x = −0.5 (−0.5)2 − 2(−0.5) − 1 = +0.25 f ′(x) > 0 f increasing

(positive)

1 −
√

2 < x < 0 x = −0.2 (0.2)2 − 2(0.2) − 1 = −1.36 f ′(x) < 0 f decreasing

(negative)

0 < x < 1 x = 0.5 (0.5)2 − 2(0.5) − 1 = −1.75 f ′(x) < 0 f decreasing

(negative)

1 < x < 1 +
√

2 x = 2 (2)2 − 2(2) − 1 = −1 f ′(x) < 0 f decreasing

(negative)

x > 1 +
√

2 x = 3 (3)2 − 2(3) − 1 = +2 f ′(x) > 0 f increasing

(positive)
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In summary, x2−2x−1 > 0 and therefore f ′(x) > 0 in the intervals where x > 1+
√

2
and if −1 < x < 1−

√
2 and x < −1. This means f (x) is increasing when x > 1 +

√
2

or when x < 1 −
√

2, except at x , −1 (vertical asymptote).

f (x) =
xex

x3 − x

y=0

x=−1 x=1

0

2 4 531−1−2

x<−1 −1<x<1−
√

2
1−
√

2<x<0
0<x<1 1<x<1+

√
2 x>1+

√
2

f ′(x) is +

f is increasing
f ′(x) is +

f is increasing

Calculus 1 (B. Forrest)2



Section 7.6: Curve Sketching: Part 2 371

We also have that x2 − 2x − 1 < 0 and therefore f ′(x) < 0 in the interval where
1 −
√

2 < x < 0 or 0 < x < 1 or 1 < x < 1 +
√

2. Therefore, f is decreasing if
1−
√

2 < x < 1+
√

2, except at x = 0 (removable discontinuity) and at x = 1 (vertical
asymptote).

f (x) =
xex

x3 − x

y=0

x=−1 x=1

0

2 4 531−1−2

x<−1 −1<x<1−
√

2
1−
√

2<x<0
0<x<1 1<x<1+

√
2 x>1+

√
2

f ′(x) is +

f is increasing
f ′(x) is +

f is increasing
f ′(x) is −
f is decreasing
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Step 4: We can now use the First Derivative Test to verify the nature of the two
critical points, x = 1 −

√
2 and x = 1 +

√
2. We know that the function is decreasing

as we approach x = 1 +
√

2 from the left and the function is increasing as we move
away from this critical point to the right. As such, the First Derivative Test guarantees
that the local minimum is located at x = 1 +

√
2. Similarly, we can confirm that the

local maximum is located at x = 1 −
√

2.

f (x) =
xex

x3 − x

y=0

x=−1 x=1

0

2 4 531−1−2

x<−1 −1<x<1−
√

2
1−
√

2<x<0
0<x<1 1<x<1+

√
2 x>1+

√
2

f ′(x) is +

f is increasing
f ′(x) is +

f is increasing
f ′(x) is −
f is decreasing

LOCAL
MIN

LOCAL
MAX
x=1−

√
2

x=1+
√

2

Steps 5-7: The second derivative of f (x) is

f ′′(x) = ex (x4 − 4x3 + 4x2 + 4x + 3)(
x2 − 1

)3

which is far too complicated to extract much useful information. However, the pre-
vious sketch suggests that f ′′(x) < 0 on the interval (−1, 1) (since the graph of f
appears concave downwards here except at x = 0) and that f ′′(x) > 0 everywhere
else that it exists (since the graph of f appears concave upwards everywhere else).
In fact, this can be verified by using a mathematical software program. It turns out
that the polynomial in the numerator of f ′′(x) has no real roots and as such the sign
of the second derivative is the same as the sign of x2 − 1, though you would not have
been expected to deduce this from the information we have available. Since f ′′(x)
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has no real roots, it cannot equal 0, and so there are no possible candidates for points
of inflection.

Step 8: Enhance the sketch of the function using the information acquired from
completing these steps.

f (x) =
xex

x3 − x

y=0

x=−1 x=1

0

2 4 531−1−2

x<−1 −1<x<1−
√

2
1−
√

2<x<0
0<x<1 1<x<1+

√
2 x>1+

√
2

f ′(x) is +

f is increasing
f ′(x) is +

f is increasing
f ′(x) is −
f is decreasing

LOCAL
MIN

LOCAL
MAX

x<−1 −1<x<1 and x,0 x>1

f ′′(x) is +

f is
f ′′(x) is −

f is concave down
f ′′(x) is +

f is concave up

x=1−
√

2

x=1+
√

2

concave up

EXAMPLE 23 Determine if the function f (x) = x2ex has any points of inflection.

SOLUTION To locate the points of inflection of a function, you must complete two
tasks:

1. Find all candidates for points of inflection by locating where the second deriva-
tive f ′′(x) is zero or does not exist, and
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2. Confirm that the concavity of the function changes on either side of these can-
didates.

In other words, you must confirm that f ′′(x) changes sign from positive to negative
or from negative to positive on either side of every candidate for a point of inflec-
tion. Finding the zeros of f ′′(x) is not sufficient to conclude that they are points of
inflection.

Step 1: Find the candidates for inflection points (if any): Set f ′′(x) = 0 and solve
for x, and locate where f ′′(x) does not exist.

We have that
f ′(x) = x2ex + 2xex

and so
f ′′(x) = x2ex + 4xex + 2ex = ex(x2 + 4x + 2).

Since f ′′(x) exists everywhere we only need to solve f ′′(x) = x2ex + 4xex + 2ex =

ex(x2 + 4x + 2) = 0. The factor ex is always non-zero so we need to determine when
x2 + 4x + 2 = 0. Using the quadratic formula, we get that x = −2 −

√
2 � −3.414 or

x = −2 +
√

2 � −0.586 are the only candidates for points of inflection.

Step 2: Confirm whether the concavity of the function changes on either side of
these candidates by testing the sign of f ′′(x).

Use x = −2−
√

2 � −3.414 and x = −2+
√

2 � −0.586 to divide the domain of f ′′(x)
into three intervals. We need to check the sign of f ′′(x) in each of these intervals.

test x=-4
f ′′(−4) > 0

test x=-3 test x=0
f ′′(−3) < 0 f ′′(0) > 0

−3.414 −0.586

f ′′(x) changes from
positive to negative
around x = −3.414, so
this is an inflection point.

f ′′(x) changes from
negative to positive
around x = −0.586, so
this is an inflection point.

Since the sign of f ′′(x) changes on either side of each candidate, they must be points
of inflection.

To find the y-coordinate of each point substitute these x-values back into f (x). We
have f (−3.414) � 0.38 and f (−0.586) � 0.19. Thus we can conclude that the points
of inflection for this function are approximately (−3.414, 0.38) and (−0.586, 0.19).

As an additional exercise you should complete all of the steps for Curve Sketching
to confirm that the graph of this function appears as follows.
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f (x) = x2ex
f grows
without bounds

concave down

Horizontal Asymptote is

concave upconcave up

y = 0 for x→ −∞

EXAMPLE 24 Show that the function f (x) = x
1
3 has an inflection point at x = 0, but that f ′′(x) does

not exist at x = 0.

SOLUTION You should confirm that

f ′(x) =
1

3x
2
3

and
f ′′(x) =

−2

9x
5
3

.

Step 1: Find any candidates for inflection points: Set f ′′(x) = 0 and solve for x, and
locate where f ′′(x) does not exist.

Note that f ′′(x) has a numerator that is non-zero, so f ′′(x) , 0 for all x. However,
f ′′(x) does not exist when the denominator is zero; that is, when x = 0.

Step 2: Confirm whether the concavity of the function changes on either side of the
candidate x = 0.

Case x < 0: Choose a test point, say x = −1. Since f ′′(−1) = −2

9(−1)
5
3

= +2
9 > 0, it

follows that f is concave upwards when x < 0.

Case x > 0: Choose a test point, say x = +1. Since f ′′(1) = −2

9(1)
5
3

= −2
9 < 0, it

follows that f is concave downwards when x > 0.

In fact, the graph of f (x) = x
1
3 appears as follows.
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f (x) = x
1
32

−2

2 4
0

−2−4

f is concave upwards f is concave downwards

f ′′(0) does not exist
f (0) = 0 is an inflection point

f ′′(x) > 0 f ′′(x) < 0

Notice that this function has an inflection point at x = 0 even though the second
derivative f ′′(x) does not exist at x = 0.
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Taylor Polynomials and
Taylor’s Theorem

In this chapter we will see that if a function f has derivatives of higher orders, then
we can not only construct the linear approximation, but we can also approximate f
with higher order polynomials that encode the information provided by these higher
derivatives.

8.1 Introduction to Taylor Polynomials and Approximation

Recall that if f is differentiable at x = a, then if x � a

f ′(a) �
f (x) − f (a)

x − a
.

Cross-multiplying gives us

f ′(a)(x − a) � f (x) − f (a)

and finally that
f (x) � f (a) + f ′(a)(x − a) .

This led us to define the linear approximation to f at x = a to be the function

La(x) = f (a) + f ′(a)(x − a).

We saw that the geometrical significance of the linear approximation is that its graph
is the tangent line to the graph of f through the point (a, f (a)).
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f

a

La(x) = f (a) + f ′(a)(x − a)

Recall also that the linear approximation has the following two important properties:

1. La(a) = f (a).

2. L′a(a) = f ′(a).

In fact, amongst all polynomials of degree at most 1, that is functions of the form

p(x) = c0 + c1(x − a),

the linear approximation is the only one with both properties (1) and (2) and as such,
the only one that encodes both the value of the function at x = a and its derivative.

We know that for x near a that
f (x) � La(x).

This means that we can use the simple linear function La to approximate what could
be a rather complicated function f at points near x = a. However, any time we use
a process to approximate a value, it is best that we understand as much as possible
about the error in the procedure. In this case, the error in the linear approximation is

Error(x) =| f (x) − La(x) |

and at x = a the estimate is exact since La(a) = f (a).

There are two basic factors that affect the potential size of the error in using linear
approximation. These are

1. The distance between x and a. That is, how large is | x − a |?

2. How curved the graph is near x = a?

Note that the larger | f ′′(x) | is, the more rapidly the tangent lines turn, and hence the
more curved the graph of f . For this reason the second factor affecting the size of
the error can be expressed in terms of the size of | f ′′(x) |. Generally speaking, the
further x is away from a and the more curved the graph of f , the larger the potential
for error in using linear approximation. This is illustrated in the following diagram
which shows two different functions, f and g, with the same tangent line at x = a.
The error in using the linear approximation is the length of the vertical line joining
the graph of the function and the graph of the linear approximation.
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g

a x

Error(1)

Error(2)

f

La(x) = f (a) + f ′(a)(x − a)

Notice that in the diagram, the graph of g is much more curved near x = a than is the
graph of f . You can also see that at the chosen point x the error

Error(1) =| f (x) − La(x) |

in using La(x) to estimate the value of f (x) is extremely small, whereas the error

Error(2) =| g(x) − La(x) |

in using La(x) to estimate the value of g(x) is noticeably larger. The diagram also
shows that for both f and g, the further away x is from a, the larger the error is in the
linear approximation process.

In the case of the function g, its graph looks more like a parabola (second degree
polynomial) than it does a line. This suggests that it would make more sense to try
and approximate g with a function of the form

p(x) = c0 + c1(x − a) + c2(x − a)2.

(Notice that the form for this polynomial looks somewhat unusual. You will see
that we write it this way because this form makes it easier to properly encode the
information about f at x = a).

In constructing the linear approximation, we encoded the value of the function and
of its derivative at the point x = a. We want to again encode this local information,
but we want to do more. If we can include the second derivative, we might be able
to capture the curvature of the function that was missing in the linear approximation.
In summary, we would like to find constants c0, c1, and c2, so that

1. p(a) = f (a),

2. p ′(a) = f ′(a), and

3. p ′′(a) = f ′′(a).
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It may not seem immediately obvious that we can find such constants. However, this
task is actually not too difficult. For example, if we want p(a) = f (a), then by noting
that

p(a) = c0 + c1(a − a) + c2(a − a)2 = c0

we immediately know that we should let c0 = f (a).

We can use the standard rules of differentiation to show that

p ′(x) = c1 + 2c2(x − a).

In order that p ′(a) = f ′(a), we have

f ′(a) = p ′(a) = c1 + 2c2(a − a) = c1.

Finally, since
p ′′(x) = 2c2

for all x, if we let c2 =
f ′′(a)

2 , we have

p ′′(a) = 2c2 = 2(
f ′′(a)

2
) = f ′′(a)

exactly as required. This shows that if

p(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2,

then p is the unique polynomial of degree 2 or less such that

1. p(a) = f (a),

2. p ′(a) = f ′(a), and

3. p ′′(a) = f ′′(a).

The polynomial p is called the second degree Taylor polynomial for f centered at
x = a. We denote this Taylor polynomial by T2,a.

EXAMPLE 1 Let f (x) = cos(x). Then,

f (0) = cos(0) = 1, and f ′(0) = − sin(0) = 0,

and
f ′′(0) = − cos(0) = −1.

It follows that

L0(x) = f (0) + f ′(0)(x − 0) = 1 + 0(x − 0) = 1
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for all x while

T2,0(x) = f (0) + f ′(0)(x − 0) +
f ′′(0)

2
(x − 0)2

= 1 + 0(x − 0) +
−1
2

(x − 0)2

= 1 −
x2

2
.

The following diagram shows cos(x) with its linear approximation and its second
degree Taylor polynomial centered at x = 0.

L0(x) = 1

f (x) = cos(x)

T2,0(x) = 1 − x2

2

−2 −1 0

−0.5

−1

0.5

1

1 2

Notice that the second degree Taylor polynomial T2,0 does a much better job approx-
imating cos(x) over the interval [−2, 2] than does the linear approximation L0.

We might guess that if f has a third derivative at x = a, then by encoding the value
f ′′′(a) along with f (a), f ′(a) and f ′′(a), we may do an even better job of approxi-
mating f (x) near x = a than we did with either La or with T2,a. As such we would be
looking for a polynomial of the form

p(x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3

such that

1. p(a) = f (a),

2. p ′(a) = f ′(a),

3. p ′′(a) = f ′′(a), and

4. p ′′′(a) = f ′′′(a).
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To find such a p, we follow the same steps that we outlined before. We want p(a) =

f (a), but p(a) = c0 + c1(a − a) + c2(a − a)2 + c3(a − a)3 = c0, so we can let c0 = f (a).

Differentiating p we get

p ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2

so that
p ′(a) = c1 + 2c2(a − a) + 3c3(a − a)2 = c1.

Therefore, if we let c1 = f ′(a) as before, then we will get p ′(a) = f ′(a).

Differentiating p ′ gives us

p ′′(x) = 2c2 + 3(2)c3(x − a).

Therefore,
p ′′(a) = 2c2 + 3(2)c3(a − a) = 2c2.

Now if we let c2 =
f ′′(a)

2 , we get

p ′′(a) = f ′′(a).

Finally, observe that

p ′′′(x) = 3(2)c3 = 3(2)(1)c3 = 3!c3

for all x, so if we require
p ′′′(a) = 3!c3 = f ′′′(a),

then we need only let c3 =
f ′′′(a)

3! .

It follows that if

p(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 +

f ′′′(a)
3!

(x − a)3,

then

1. p(a) = f (a),

2. p ′(a) = f ′(a),

3. p ′′(a) = f ′′(a), and

4. p ′′′(a) = f ′′′(a).

In this case, we call p the third degree Taylor polynomial centered at x = a and
denote it by T3,a.

Given a function f , we could also write

T0,a(x) = f (a)

and
T1,a(x) = La(x) = f (a) + f ′(a)(x − a)
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and call these polynomials the zero-th degree and the first degree Taylor polynomials
of f centered at x = a, respectively.

Observe that using the convention where 0! = 1! = 1 and (x − a)0 = 1, we have the
following:

T0,a(x) =
f (a)
0!

(x − a)0

T1,a(x) =
f (a)
0!

(x − a)0 +
f ′(a)

1!
(x − a)1

T2,a(x) =
f (a)
0!

(x − a)0 +
f ′(a)

1!
(x − a)1 +

f ′′(a)
2!

(x − a)2

T3,a(x) =
f (a)
0!

(x − a)0 +
f ′(a)

1!
(x − a)1 +

f ′′(a)
2!

(x − a)2 +
f ′′′(a)

3!
(x − a)3.

Recall that f (k)(a) denotes the k-th derivative of f at x = a. By convention, f (0)(x) =

f (x). Then using summation notation, we have

T0,a(x) =

0∑
k=0

f (k)(a)
k!

(x − a)k

T1,a(x) =

1∑
k=0

f (k)(a)
k!

(x − a)k

T2,a(x) =

2∑
k=0

f (k)(a)
k!

(x − a)k

and

T3,a(x) =

3∑
k=0

f (k)(a)
k!

(x − a)k.

This leads us to the following definition:

DEFINITION Taylor Polynomials

Assume that f is n-times differentiable at x = a. The n-th degree Taylor polynomial
for f centered at x = a is the polynomial

Tn,a(x) =

n∑
k=0

f (k)(a)
k!

(x − a)k

= f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · +

f (n)(a)
n!

(x − a)n
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NOTE

A remarkable property about Tn,a is that for any k between 0 and n,

T (k)
n,a(a) = f (k)(a).

That is, Tn,a encodes not only the value of f (x) at x = a but all of its first n derivatives
as well. Moreover, this is the only polynomial of degree n or less that does so!

EXAMPLE 2 Find all of the Taylor polynomials up to degree 5 for the function f (x) = cos(x) with
center x = 0.

We have already seen that f (0) = cos(0) = 1, f ′(0) = − sin(0) = 0, and f ′′(0) =

− cos(0) = −1. It follows that
T0,0(x) = 1,

and
T1,0(x) = L0(x) = 1 + 0(x − 0) = 1

for all x, while

T2,0 = 1 + 0(x − 0) +
−1
2!

(x − 0)2 = 1 −
x2

2
.

Since f ′′′(x) = sin(x), f (4)(x) = cos(x), and f (5)(x) = − sin(x), we get f ′′′(0) =

sin(0) = 0, f (4)(0) = cos(0) = 1 and f (5)(0) = − sin(0) = 0. Hence,

T3,0(x) = 1 + 0(x − 0) +
−1
2!

(x − 0)2 +
0
3!

(x − 0)3

= 1 −
x2

2
= T2,0(x)

We also have that

T4,0(x) = 1 + 0(x − 0) +
−1
2!

(x − 0)2 +
0
3!

(x − 0)3 +
1
4!

(x − 0)4

= 1 −
x2

2
+

x4

24

and

T5,0(x) = 1 + 0(x − 0) +
−1
2!

(x − 0)2 +
0
3!

(x − 0)3 +
1
4!

(x − 0)4 +
0
5!

(x − 0)5

= 1 −
x2

2
+

x4

24
= T4,0(x)
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An important observation to make is that not all of these polynomials are distinct.
In fact, T0,0(x) = T1,0(x), T2,0(x) = T3,0(x), and T4,0(x) = T5,0(x). In general, this
equality of different order Taylor polynomials happens when one of the derivatives is
0 at x = a. (In this example at x = 0.) This can be seen by observing that for any n

Tn+1,a(x) = Tn,a(x) +
f (n+1)(a)
(n + 1)!

(x − a)n+1

so if f (n+1)(a) = 0, we get Tn+1,a(x) = Tn,a(x).

The following diagram shows cos(x) and its Taylor polynomials up to degree 5. You
will notice that there are only four distinct graphs.

f (x) = cos(x)

T2,0(x) = T3,0(x) = 1 − x2

2

T4,0(x) = T5,0(x) = 1 − x2

2 + x4

24

T0,0(x) = T1,0(x) = 1

−2 −1
0

−0.5

−1

0.5

1

1 2

In the next example, we will calculate the Taylor Polynomials for f (x) = sin(x).

EXAMPLE 3 Find all of the Taylor polynomials up to degree 5 for the function f (x) = sin(x) with
center x = 0.

We can see that f (0) = sin(0) = 0, f ′(0) = cos(0) = 1, f ′′(0) = − sin(0) = 0,
f ′′′(0) = − cos(0) = −1, f (4)(0) = sin(0) = 0, and f (5)(0) = cos(0) = 1. It follows
that

T0,0(x) = 0,

and
T1,0(x) = L0(x) = 0 + 1(x − 0) = x

and

T2,0(x) = 0 + 1(x − 0) +
0
2!

(x − 0)2

= x
= T1,0(x).
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Next we have

T3,0(x) = 0 + 1(x − 0) +
0
2!

(x − 0)2 +
−1
3!

(x − 0)3

= x −
x3

6

and that

T4,0(x) = 0 + 1(x − 0) +
0
2!

(x − 0)2 +
−1
3!

(x − 0)3 +
0
4!

(x − 0)4

= x −
x3

6
= T3,0(x).

Finally,

T5,0(x) = 0 + 1(x − 0) +
0
2!

(x − 0)2 +
−1
3!

(x − 0)3 +
0
4!

(x − 0)4 +
1
5!

(x − 0)5

= x −
x3

6
+

x5

5!

= x −
x3

6
+

x5

120
.

The following diagram includes the graph of sin(x) with its Taylor polynomials up to
degree 5, excluding T0,0 since its graph is the x-axis.

T1,0(x) = T2,0(x) = x

T3,0(x) = T4,0(x) = x − x3

6

T5,0(x) = x − x3

6 + x5

120

f (x) = sin(x)

−2 −1 0 1 2−3 3

1

2

3

−3

−2

−1
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Notice again that the polynomials are not distinct though, in general, as the degree
increases so does the accuracy of the estimate near x = 0.

To illustrate the power of using Taylor polynomials to approximate functions, we can
use a computer to aid us in showing that for f (x) = sin(x) and a = 0, we have

T13,0(x) = x−
1
6

x3 +
1

120
x5 −

1
5040

x7 +
1

362880
x9 −

1
39916800

x11 +
1

62270 20800
x13

The next diagram represents a plot of the function sin(x) − T13,0(x). (This represents
the error between the actual value of sin(x) and the approximated value of T13,0(x).)

sin(x) − T13,0(x)

0.02

0.01

−0.01

−0.02

0 2 4−2−4

Notice that the error is very small until x approaches 4 or −4. However, the y-scale
is different from that of the x-axis, so even near x = 4 or x = −4 the actual error is
still quite small. The diagram suggests that on the slightly more restrictive interval
[−π, π], T13,0(x) does an exceptionally good job of approximating sin(x).

To strengthen this point even further, we have provided the plot of the graph of
sin(x) − T13,0(x) on the interval [−π, π].

sin(x) − T13,0(x)

−0.000024

0.000024

−3 −2 −1
0

1 2 3
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Note again the scale for the y-axis. It is clear that near 0, T13,0(x) and sin(x) are
essentially indistinguishable. In fact, we will soon have the tools to show that for
x ∈ [−1, 1],

| sin(x) − T13,0(x) |< 10−12

while for x ∈ [−0.01, 0.01],

| sin(x) − T13,0(x) |< 10−42.

Indeed, in using T13,0(x) to estimate sin(x) for very small values of x, round-off errors
and the limitations of the accuracy in floating-point arithmetic become much more
significant than the true difference between the functions.

EXAMPLE 4 The function f (x) = ex is particularly well-suited to the process of creating estimates
using Taylor polynomials. This is because for any k, the k-th derivative of ex is again
ex. This means that for any n,

Tn,0(x) =

n∑
k=0

f (k)(a)
k!

(x − a)k

=

n∑
k=0

e0

k!
(x − 0)k

=

n∑
k=0

xk

k!
.

In particular,

T0,0(x) = 1,
T1,0(x) = 1 + x,

T2,0(x) = 1 + x +
x2

2
,

T3,0(x) = 1 + x +
x2

2
+

x3

6
,

T4,0(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
, and

T5,0(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
.

Observe that in the case of ex, the Taylor polynomials are distinct since ex, and hence
all of its derivatives, is never 0.

The next diagram shows the graphs of ex and its Taylor polynomials up to degree 5.
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f (x) = ex

T0,0(x)

T1,0(x)

T2,0(x)

T3,0(x)

T4,0(x)
T5,0(x)

−2 −1 0 1 2

12

10

8

6

4

2

8.2 Taylor’s Theorem and Errors in Approximations

We have seen that using linear approximation and higher order Taylor polynomials
enable us to approximate potentially complicated functions with much simpler ones
with surprising accuracy. However, up until now we have only had qualitative in-
formation about the behaviour of the potential error. We saw that the error in using
Taylor polynomials to approximate a function seems to depend on how close we are
to the center point. We have also seen that the error in linear approximation seems
to depend on the potential size of the second derivative and that the approximations
seem to improve as we encode more local information. However, we do not have
any precise mathematical statements to substantiate these claims. In this section, we
will correct this deficiency by introducing an upgraded version of the Mean Value
Theorem called Taylor’s Theorem.

We begin by introducing some useful notation.

DEFINITION Taylor Remainder

Assume that f is n times differentiable at x = a. Let

Rn,a(x) = f (x) − Tn,a(x).

Rn,a(x) is called the n-th degree Taylor remainder function centered at x = a.

The error in using the Taylor polynomial to approximate f is given by

Error =| Rn,a(x) | .

The following is the central problem for this approximation process.
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Problem: Given a function f and a point x = a, how do we estimate the size of
Rn,a(x)?

The following theorem provides us with the answer to this question.

THEOREM 1 Taylor’s Theorem

Assume that f is n + 1-times differentiable on an interval I containing x = a. Let
x ∈ I. Then there exists a point c between x and a such that

f (x) − Tn,a(x) = Rn,a(x) =
f (n+1)(c)
(n + 1)!

(x − a)n+1.

We will make three important observations about Taylor’s theorem.

1) First, since T1,a(x) = La(x), when n = 1 the absolute value of the remainder
R1,a(x) represents the error in using the linear approximation. Taylor’s Theorem
shows that for some c,

| R1,a(x) |= |
f ′′(c)

2
(x − a)2|.

This shows explicitly how the error in linear approximation depends on the
potential size of f ′′(x) and on | x − a |, the distance from x to a.

2) The second observation involves the case when n = 0. In this case, the theorem
requires that f be differentiable on I and its conclusion states that for any x ∈ I
there exists a point c between x and a such that

f (x) − T0,a(x) = f ′(c)(x − a).

But T0,a(x) = f (a), so we have

f (x) − f (a) = f ′(c)(x − a).

Dividing by x − a shows that there is a point c between x and a such that

f (x) − f (a)
x − a

= f ′(c).

This is exactly the statement of the Mean Value Theorem. Therefore, Taylor’s
Theorem is really a higher-order version of the MVT.

Calculus 1 (B. Forrest)2



Section 8.2: Taylor’s Theorem and Errors in Approximations 391

a c x

(a, f (a))

(x, f (x))

f

3) Finally, Taylor’s Theorem does not tell us how to find the point c, but rather
that such a point exists. It turns out that for the theorem to be of any value, we
really need to be able to say something intelligent about how large | f (n+1)(c) |
might be without knowing c. For an arbitrary function, this might be a difficult
task since higher order derivatives have a habit of being very complicated.
However, the good news is that for some of the most important functions in
mathematics, such as sin(x), cos(x), and ex, we can determine roughly how
large | f (n+1)(c) |might be and in so doing, show that the estimates obtained for
these functions can be extremely accurate.

EXAMPLE 5 Use linear approximation to estimate sin(.01) and show that the error in using this
approximation is less that 10−4.

SOLUTION We know that f (0) = sin(0) = 0 and that f ′(0) = cos(0) = 1, so

L0(x) = T1,0(x) = x.

Therefore, the estimate we obtain for sin(.01) using linear approximation is

sin(.01) � L0(.01) = .01

Taylor’s Theorem applies since sin(x) is always differentiable. Moreover, if
f (x) = sin(x), then f ′(x) = cos(x) and f ′′(x) = − sin(x). It follows that there exists
some c between 0 and .01 such that the error in the linear approximation is given by∣∣∣R1,0(.01)

∣∣∣ =

∣∣∣∣∣ f ′′(c)
2

(.01 − 0)2
∣∣∣∣∣ =

∣∣∣∣∣− sin(c)
2

(.01)2
∣∣∣∣∣

Recall that the theorem does not tell us the value of c, but rather just that it exists. Not
knowing the value of c may seem to make it impossible to say anything significant
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about the error, but this is actually not the case. The key observation in this example
is that regardless of the value of point c, | − sin(c) |≤ 1. Therefore,

| R1,0(.01) | =

∣∣∣∣∣− sin(c)
2

(.01)2
∣∣∣∣∣

≤
1
2

(.01)2

< 10−4 .

This simple process seems to be remarkably accurate. In fact, it turns out that this
estimate is actually much better than the calculation suggests. This is true because
not only does T1,0(x) = x, but we also have that T2,0(x) = T1,0(x) = x. This means
that there is a new number c between 0 and .01 such that

| sin(.01) − .01 | = | R2,0(.01) |

=

∣∣∣∣∣ f ′′′(c)
6

(.01 − 0)3
∣∣∣∣∣

=

∣∣∣∣∣− cos(c)
6

(.01)3
∣∣∣∣∣

< 10−6

since | − cos(c) |≤ 1 for all values of c.

This shows that the estimate sin(.01) � .01 is accurate to six decimal places. In fact,
the actual error is approximately −1.666658333 × 10−7.

Finally, we know that for 0 < x < π
2 , the tangent line to the graph of f (x) = sin(x) is

above the graph of f since sin(x) is concave downward on this interval. (In fact, the
Mean Value Theorem can be used to show that sin(x) ≤ x for every x ≥ 0.) Since the
tangent line is the graph of the linear approximation, this means that our estimate is
actually too large.

y = x

f (x) = sin(x)

1 2 30

1

2
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Taylor’s Theorem can be used to confirm this because

sin(x) − x = R1,0(x) =
− sin(c)

2
(x)2 < 0

since sin(c) > 0 for any c ∈ (0, π2 ).

In the next example we will see how Taylor’s Theorem can help in calculating various
limits. In order to simplify the notation, we will only consider limits as x→ 0.

EXAMPLE 6 Find lim
x→0

sin(x) − x
x2 .

SOLUTION First notice that this is an indeterminate limit of the type 0
0 .

We know that if f (x) = sin(x), then T1,0(x) = T2,0(x) = x. We will assume that we
are working with T2,0. Then Taylor’s Theorem shows that for any x ∈ [−1, 1], there
exists a c between 0 and x such that

| sin(x) − x |=
∣∣∣∣∣− cos(c)

3!
x3

∣∣∣∣∣ ≤ 1
6
| x |3

since | − cos(c) | ≤ 1 regardless where c is located. This inequality is equivalent to

−1
6
| x |3≤ sin(x) − x ≤

1
6
| x |3 .

If x , 0, we can divide all of the terms by x2 to get that for x ∈ [−1, 1]

− | x |3

6x2 ≤
sin(x) − x

x2 ≤
| x |3

6x2

or equivalently that
− | x |

6
≤

sin(x) − x
x2 ≤

| x |
6
.

We also know that
lim
x→0

− | x |
6

= lim
x→0

| x |
6

= 0

The Squeeze Theorem guarantees that

lim
x→0

sin(x) − x
x2 = 0.

The technique we outlined in the previous example can be used in much more gener-
ality. However, we require the following observation.
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Suppose that f (k+1) is a continuous function on [−1, 1]. Then so is the function

g(x) =

∣∣∣∣∣∣ f (k+1)(x)
(k + 1)!

∣∣∣∣∣∣ .
The Extreme Value Theorem tells us that g has a maximum on [−1, 1]. Therefore,
there is an M such that ∣∣∣∣∣∣ f (k+1)(x)

(k + 1)!

∣∣∣∣∣∣ ≤ M

for all x ∈ [−1, 1].

Let x ∈ [−1, 1]. Taylor’s Theorem assures us that there is a c between x and 0 such
that

| Rk,0(x) |=

∣∣∣∣∣∣ f (k+1)(c)
(k + 1)!

xk+1

∣∣∣∣∣∣ .
Therefore,

| f (x) − Tk,0(x) | = | Rk,0(x) |

=

∣∣∣∣∣∣ f (k+1)(c)
(k + 1)!

xk+1

∣∣∣∣∣∣
≤ M | x |k+1

since c is also in [−1, 1].

It follows that
−M | x |k+1≤ f (x) − Tk,0(x) ≤ M | x |k+1 .

We summarize this technique as follows:

THEOREM 2 Taylor’s Approximation Theorem I

Assume that f (k+1) is continuous on [−d, d] for d > 0. Then there exists a constant
M > 0 such that

| f (x) − Tk,0(x) |≤ M | x |k+1

or equivalently that

−M | x |k+1≤ f (x) − Tk,0(x) ≤ M | x |k+1

for each x ∈ [−d, d].

This theorem is very helpful in calculating many limits.
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EXAMPLE 7 Calculate lim
x→0

cos(x) − 1
x2 .

SOLUTION We know that for f (x) = cos(x) we have T2,0 = 1 − x2

2 . Moreover, all
of the derivatives of cos(x) are continuous everywhere. The Taylor Approximation
Theorem tells us that there is a constant M such that

−M | x |3 ≤ cos(x) − (1 −
x2

2
) ≤ M | x |3

for all x ∈ [−1, 1]. Dividing by x2 with x , 0 we have that

−M | x | ≤
cos(x) − (1 − x2

2 )
x2 ≤ M | x |

for all x ∈ [−1, 1]. Simplifying the previous expression produces

−M | x | ≤
cos(x) − 1

x2 +
1
2
≤ M | x |

for all x ∈ [−1, 1].

Applying the Squeeze Theorem we have that

lim
x→0

cos(x) − 1
x2 +

1
2

= 0

which is equivalent to

lim
x→0

cos(x) − 1
x2 =

−1
2
.

This limit is consistent with the behaviour of the function h(x) =
cos(x)−1

x2 near 0. This
is illustrated in the following graph.

h(x) =
cos(x) − 1

x2

x−1 −0.5 0.5 1
0

−0.1

−0.2

−0.3

−0.4

−0.5
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The previous limit can actually be calculated quite easily usingL’Hôpital’s Rule As
an exercise, you should try to verify the answer using this rule. The next example
would require much more work usingL’Hôpital’s Rule. It is provided to show you
how powerful Taylor’s Theorem can be for finding limits.

EXAMPLE 8 Find lim
x→0

e
x4
2 − cos(x2)

x4 .

SOLUTION This is an indeterminate limit of type 0
0 . We know from Taylor’s Ap-

proximation Theorem that we can find a constant M1 such that for any u ∈ [−1, 1]

−M1u2 ≤ eu − (1 + u) ≤ M1u2

since 1 + u is the first degree Taylor polynomial of eu. Now if x ∈ [−1, 1], then
u = x4

2 ∈ [−1, 1]. In fact, u ∈ [0, 1
2 ]. It follows that if x ∈ [−1, 1] and we substitute

u = x4

2 , then we get
−M1x8

4
≤ e

x4
2 − (1 +

x4

2
) ≤

M1x8

4
.

We also can show that there exists a constant M2 such that for any v ∈ [−1, 1]

−M2v4 ≤ cos(v) − (1 −
v2

2
) ≤ M2v4

since 1 − v2

2 is the third degree Taylor polynomial for cos(v).

If x ∈ [−1, 1] then so is x2. If we let v = x2, then we see that

−M2x8 ≤ cos(x2) − (1 −
x4

2
) ≤ M2x8 .

The next step is to multiply each term in the previous inequality by −1 to get

−M2x8 ≤ (1 −
x4

2
) − cos(x2) ≤ M2x8.

(Remember, multiplying by a negative number reverses the inequality.)

Now add the two inequalities together:

−(
M1

4
+ M2)x8 ≤ e

x4
2 − (1 +

x4

2
) + (1 −

x4

2
) − cos(x2) ≤ (

M1

4
+ M2)x8 .

If we let M = M1
4 + M2 and simplify, this inequality becomes

−Mx8 ≤ e
x4
2 − cos(x2) − x4 ≤ Mx8

for all x ∈ [−1, 1]. Dividing by x4 gives us that

−Mx4 ≤
e

x4
2 − cos(x2)

x4 − 1 ≤ Mx4 .
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The final step is to apply the Squeeze Theorem to show that

lim
x→0

e
x4
2 − cos(x2)

x4 − 1 = 0

or equivalently that

lim
x→0

e
x4
2 − cos(x2)

x4 = 1.

This limit can be confirmed visually from the graph of the function h(x) =
e

x4
2 −cos(x2)

x4 .

h(x) =
e

x4
2 − cos(x2)

x4

−1 −0.5 0 0.5 1

0.9
0.92

0.94

0.96

0.98

1
1.02

1.04

1.06

1.08

1.1

The previous example involved a rather complicated argument. However, with a
little practice using Taylor polynomials and the mastery of a few techniques, limits
like this can actually be done by inspection!

8.3 Big-O

Suppose that we know that
lim
x→0

f (x) = 0.

One question we might ask is: How quickly does f (x) approach 0? For example,
consider

lim
x→0

x2 = 0 = lim
x→0

x17.

It is easy to rationalize that x17 approaches 0 much more quickly than x2 as x nears 0.
In this section we will introduce notation to reflect the relative orders of magnitude
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of two functions, f and g, and use it to address this question. In particular, we will
focus our attention on the case where a function f is of an order of magnitude no
greater than xn when x is near 0.

We begin with the following definition:

DEFINITION Big-O Notation

We say that f is Big-O of g as x→ a if there exists an ε > 0 and an M > 0 such that

| f (x)| ≤ M|g(x)|

for all x ∈ (a − ε, a + ε) except possibly at x = a.

In this case, we write
f (x) = O(g(x)) as x→ a

or simply f (x) = O(g(x)) if a is understood.

If f is Big-O of g as x→ a, then we say that f (x) has order of magnitude that is less
than or equal to that of g(x) near x = a.

REMARK

In the definition above, once we find any positive ε that works, so will any smaller
value of ε. As such we can always insist that 0 < ε ≤ 1.

Big-O notation is due to the German mathematician Edmund Landau. While we will
use the notation to investigate the behaviour of functions near a point, the notation
is also commonly used in computer science for the analysis of the complexity of
algorithms.

NOTE

In the following applications, we will always use a = 0 and g(x) = xn for some n ∈ N.

THEOREM 3
Suppose f (x) = O(xn) for some n ∈ N. Then

lim
x→0

f (x) = 0.
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PROOF

Suppose f (x) = O(xn) for some n ∈ N. This implies that

−M|xn| ≤ f (x) ≤ M|xn|

on (−ε, ε) except possibly at x = 0. Since

lim
x→0
−M|xn| = 0 = lim

x→0
M|xn|,

the Squeeze Theorem for functions guarantees that

lim
x→0

f (x) = 0.

REMARK

We have shown that every function that is Big-O of xn as x → 0 (for some n ∈ N)
converges to 0 as x→ 0. We denote this fact by writing

lim
x→0

O(xn) = 0

for all n ∈ N.

Since our main interest will be to compare two functions f and g near a point x = a,
we will require the following modification of the previous definition:

DEFINITION Extended Big-O Notation

Suppose that f , g and h are defined on an open interval containing x = a, except
possibly at x = a. We write

f (x) = g(x) + O(h(x)) as x→ a

if
f (x) − g(x) = O(h(x)) as x→ a.

We may omit the x→ a condition if a is understood.

REMARK

The notation f (x) = g(x) + O(h(x)) tells us that f (x) ≈ g(x) near x = a with an error
that is an order of magnitude at most that of h(x).

Calculus 1 (B. Forrest)2



Chapter 8: Taylor Polynomials and Taylor’s Theorem 400

EXAMPLE 9 Consider f (x) = sin(x). Using Taylor’s Theorem we get that if x ∈ [−1, 1], there
exists some c between x and 0 such that

| sin(x) − T1,0(x)| = | sin(x) − x| =
∣∣∣∣∣ f ′′(c)

2!
x2

∣∣∣∣∣ =

∣∣∣∣∣− sin(c)
2

x2
∣∣∣∣∣ ≤ 1

2
|x2|.

Hence,
sin(x) − x = O(x2),

so that
sin(x) = x + O(x2).

This gives us a qualitative sense about how well the function T1,0(x) = x approximates
the function f (x) = sin(x) near x = 0 by showing that the error is of an order of
magnitude of at most x2.

In fact, since T1,0(x) = T2,0(x) for sin(x), we can interpret x as T2,0(x) instead of
T1,0(x). If we apply Taylor’s Theorem again using T2,0, we get that

sin(x) = x + O(x3).

This is a stronger statement because x3 is an order of magnitude smaller than x2 near
x = 0 and as such this shows that the approximation sin(x) � x is even better than
was suggested before.

In the previous example we saw that if f (x) = sin(x), then f (x) = T1,0(x) + O(x2)
and f (x) = T2,0(x) + O(x3). Both observations arose immediately from Taylor’s
Theorem. The next theorem shows that this phenomenon may be extended to many
other functions.

THEOREM 4 Taylor’s Approximation Theorem II

Let r > 0. If f is (n + 1)-times differentiable on [−r, r] and f (n+1) is continuous on
[−r, r], then f (x) = Tn,0(x) + O(xn+1) as x→ 0.

PROOF

By the Extreme Value Theorem, f (n+1) is bounded on [−r, r]. Let M be chosen so that
| f (n+1)(x)| ≤ M for all x ∈ [−r, r]. Taylor’s Theorem implies that for any x ∈ [−r, r],
there exists a c between x and 0 so that

| f (x) − Tn,0(x)| =

∣∣∣∣∣∣ f (n+1)(c)
(n + 1)!

xn+1

∣∣∣∣∣∣ ≤
∣∣∣∣∣ M
(n + 1)!

xn+1
∣∣∣∣∣ =

M
(n + 1)!

|xn+1|.

This shows that f (x) − Tn,0(x) = O(xn+1) as x → 0 and the result of the theorem
follows.
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Question: Assume that f (x) = O(xn) and g(x) = O(xm) as x → 0. What can we say
about f (x) + g(x)?

To answer this question we first observe that

lim
x→0

f (x) = 0 = lim
x→0

g(x).

It follows from the limit laws that

lim
x→0

f (x) + g(x) = 0

as well. But how quickly does the sum go to 0?

We can think of the Big-O symbols as representing the size of the error when ap-
proximating a function near 0. The triangle inequality tells us that the error in a sum
is at most the sum of the individual errors. But it is also the case that we cannot
expect the error to be any smaller than the largest individual error. To make this more
precise, we can find a 0 < ε ≤ 1 and two constants M1 and M2 such that for all
x ∈ (−ε, ε) ⊂ [−1, 1], except possibly at x = 0, we have

| f (x)| ≤ M1|xn|

and
|g(x)| ≤ M2|xm|.

Therefore
| f (x) + g(x)| ≤ M1|xn| + M2|xm|.

Next observe that the smaller the value of k, the more slowly xk goes to 0. In fact, if

k = min{n,m},

then for all x ∈ [−1, 1] we have

|xn| ≤ |xk| and |xm| ≤ |xk|.

It follows that for all x ∈ (−ε, ε), except possibly at x = 0, we have

| f (x) + g(x)| ≤ M1|xn| + M2|xm| ≤ M1|xk| + M2|xk| = (M1 + M2)|xk|.

This shows that
f (x) + g(x) = O(xk)

where
k = min{n,m}.

In other words, the potential error in a sum is at least as large as the error in either
part. We summarize this by writing

O(xn) + O(xm) = O(xk)

where k = min{n,m}.

The next theorem provides a summary of all of the arithmetic properties of Big-0
notation. Aside for the second property, which we have just outlined above, the other
properties follow almost immediately from the definition of Big-O. Therefore, the
proofs are left as exercises.

Calculus 1 (B. Forrest)2



Chapter 8: Taylor Polynomials and Taylor’s Theorem 402

THEOREM 5 Arithmetic of Big-O

Assume that f (x) = O(xn) and g(x) = O(xm) as x→ 0, for some m, n ∈ N. Let k ∈ N.
Then we have the following:

1) c(O(xn)) = O(xn). That is, (c f )(x) = c · f (x) = O(xn).

2) O(xn) + O(xm) = O(xk), where k = min{n,m}. That is, f (x) ± g(x) = O(xk).

3) O(xn)O(xm) = O(xn+m). That is, f (x)g(x) = O(xn+m).

4) If k ≤ n, then f (x) = O(xk).

5) If k ≤ n, then 1
xk O(xn) = O(xn−k). That is, f (x)

xk = O(xn−k).

6) f (uk) = O(ukn). That is, we can simply substitute x = uk.

EXAMPLE 10 Show that f (x) = cos(x2) − 1 = − x4

2 + O(x8). Use this result to evaluate

lim
x→0

cos(x2) − 1
x4 .

SOLUTION We begin by observing that if g(u) = cos(u), then since the third degree
Taylor polynomial for g centered at u = 0 is

T3,0(u) = 1 −
u2

2

the Taylor Approximation Theorem II gives us that

g(u) = 1 −
u2

2
+ O(u4).

Arithmetic Rule (6) allows us to substitute x2 for u to get

cos(x2) = g(x2) = 1 −
(x2)2

2
+ O((x2)4) = 1 −

x4

2
+ O(x8).

Then

f (x) = g(x2) − 1 = −
x4

2
+ O(x8).

To evaluate

lim
x→0

cos(x2) − 1
x4

we use the Arithmetic Rules to get
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lim
x→0

cos(x2) − 1
x4 = lim

x→0

− x4

2 + O(x8)
x4

= lim
x→0
−

1
2

+ O(x4)

= −
1
2

EXAMPLE 11 Evaluate

lim
x→0

x2 sin(x2)(ex − 1)
(cos(x) − 1)(sin2(x))(sin(2x))

.

SOLUTION Using the arithmetic of Big-O, observe that sin(u) = u + O(u3), and
so sin(x2) = x2 + O(x6). Next, observe also that ex = 1 + x + O(x2), and so ex − 1 =

x + O(x2). Then

x2(ex − 1) sin(x2) = x2(x + O(x2))(x2 + O(x6))
= (x3 + O(x4))(x2 + O(x6)) = x5 + O(x9) + O(x6) + O(x10)
= x5 + O(x6).

Now cos(x) = 1 − x2

2 + O(x4) and so cos(x) − 1 = −x2

2 + O(x4); sin(u) = u + O(u3) so
sin(2x) = 2x+O(x3); and sin2(x) = (x+O(x3))(x+O(x3)) = x2+O(x4)+O(x4)+O(x6) =

x2 + O(x4). Then

(cos(x) − 1)(sin2(x))(sin(2x)) =

(
−x2

2
+ O(x4)

)
(x2 + O(x4))(2x + O(x3))

=

(
−x4

2
+ O(x6) + O(x6) + O(x8)

)
(2x + O(x3))

=

(
−x4

2
+ O(x6)

)
(2x + O(x3))

= −x5 + O(x7) + O(x7) + O(x9)
= −x5 + O(x7).

Substituting we get that
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lim
x→0

x2 sin(x2)(ex − 1)
(cos(x) − 1)(sin2(x))(sin(2x))

= lim
x→0

x5 + O(x6)
−x5 + O(x7)

= lim
x→0

1 + O(x)
−1 + O(x2)

(factoring out x5)

= lim
x→0

1 + 0
−1 + 0

= −1.

8.3.1 Calculating Taylor Polynomials

Recall that the Taylor Approximation Theorem II tells us that if f (n+1) is continuous
on a non-trivial closed interval containing x = 0, then

f (x) = Tn,0(x) + O(xn+1).

In particular, if f (x) = cos(x2) − 1, then

cos(x2) − 1 = T7,0(x) + O(x8).

But in a previous example we also showed that

cos(x2) − 1 = −
x4

2
+ O(x8)

leading us to ask: Is

T7,0(x) = −
x4

2
?

We could calculate the first seven derivatives of f to try and verify this result. How-
ever, this is a long and tedious calculation. Instead, it would be helpful if there was
a converse to the Taylor Approximation Theorem II. That is, if p is a polynomial of
degree n or less, and f (x) = p(x) + O(xn+1), we would hope that p(x) = Tn,0(x).

It turns out that if we can verify that f (n+1) is continuous on a non-trivial closed
interval containing x = 0, p is a polynomial of degree n or less, and
f (x) = p(x) + O(xn+1), then p(x) = Tn,0(x).

Consider the following observation:

Observation: If p is a polynomial with degree n or less (where n ∈ N ∪ {0}), and
p(x) = O(xn+1), then p(x) = 0 for all x.

The proof of this result is by Mathematical Induction. However, for example, in the
following argument we will outline why it is true when n = 3.
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Suppose that
p(x) = c0 + c1x + c2x2 + c3x3

and that p(x) = O(x4). We want to show that p(x) = 0 for all x. We know that

c0 = p(0) = lim
x→0

p(x) = lim
x→0

O(x4) = 0.

It follows that p(x) = x · p1(x) where

p1(x) = c1 + c2x + c3x2.

Moreover, we have

p1(x) =
p(x)

x
=

O(x4)
x

= O(x3).

Then if we argue as we did before we would get

c1 = p1(0) = lim
x→0

p1(x) = lim
x→0

O(x3) = 0.

From here we get that p1(x) = x · p2(x) where

p2(x) = c2 + c3x

and that

p2(x) =
p1(x)

x
=

O(x3)
x

= O(x2).

Then
c2 = p2(0) = lim

x→0
p2(x) = lim

x→0
O(x2) = 0.

And finally, we get that p2(x) = x · p3(x) where

p3(x) = c3

and that

p3(x) =
p2(x)

x
=

O(x2)
x

= O(x)

so that
c3 = 0.

Other values of n can be handled in a similar manner.

THEOREM 6 Characterization of Taylor Polynomials

Assume that r > 0. Assume also that f is (n + 1)-times differentiable on [-r, r] and
f (n+1) is continuous on [−r, r]. If p is a polynomial of degree n or less with

f (x) = p(x) + O(xn+1),

then p(x) = Tn,0(x).
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PROOF

First note that by assumption

f (x) − p(x) = O(xn+1).

We also know that the Taylor Approximation Theorem II guarantees that

f (x) − Tn,0(x) = O(xn+1).

Using Big-O arithmetic, we have that

h(x) = p(x) − Tn,0(x)
= [ f (x) − Tn,0(x)] − [ f (x) − p(x)]
= O(xn+1) + O(xn+1)
= O(xn+1).

But h is a polynomial of degree n or less with h(x) = O(xn+1), so it follows from the
previous observation that

0 = h(x) = p(x) − Tn,0(x).

Therefore p(x) = Tn,0(x).

EXAMPLE 12 We have previously shown that if f (x) = cos(x2) − 1, then

f (x) = −
x4

2
+ O(x8).

This means that

T7,0(x) = −
x4

2
.

EXAMPLE 13 Let f (x) = x2(ex − 1) sin(x2). Find T5,0(x) and in particular, find f (4)(0) and f (5)(0).

SOLUTION Previously we would have been discouraged by the prospect of finding
the fourth and fifth derivatives of f at x = 0. Using Big-O arithmetic makes this
problem easy.

Recall that we previously calculated sin(u) = u + O(u3), and so sin(x2) = x2 + O(x6).
Observe also that ex = 1 + x + O(x2), and so ex − 1 = x + O(x2). Then

f (x) = x2(ex − 1) sin(x2) = x2(x + O(x2))(x2 + O(x6))
= (x3 + O(x4))(x2 + O(x6))
= x5 + O(x9) + O(x6) + O(x10)
= x5 + O(x6).
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The Characterization of Taylor Polynomials Theorem tells us that x5 = T5,0(x). Since

T5,0(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 +
f (4)(0)

4!
x4 +

f (5)(0)
5!

x5,

by matching coefficients, we get that 0 =
f (4)(0)

4! and 1 =
f (5)(0)

5! . It follows that f (4)(0) =

0 and f (5)(0) = 5! = 120.
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