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Abstract. We construct the first example of an infinite family of homo-

topic but pairwise smoothly non-isotopic Lagrangian tori in the rational el-

liptic surface E(1) = P2#9P2. Furthermore, we show that any two of these
tori are smoothly equivalent, i.e., there exists an orientation-preserving self-

diffeomorphism of E(1) that carries one torus to the other. Our construction

can be generalized for many other symplectic 4-manifolds, for example, the
logarithmic transforms E(n)m for integers n,m > 1.

1. Introduction

Let Σ be a Riemann surface and X a 4-manifold. Two smooth embeddings
f0, f1 : Σ→ X are said to be smoothly isotopic if there exists a smooth homotopy
ft : Σ × [0, 1] → X such that for each t ∈ [0, 1], ft is a smooth embedding of
Σ × {t}. We say that the pairs (X, f0(Σ)) and (X, f1(Σ)) are smoothly equivalent
if there exists an orientation-preserving pair-diffeomorphism from one to the other.
By isotopy extension theorem, (X, f0(Σ)) and (X, f1(Σ)) are smoothly equivalent
if f0 and f1 are smoothly isotopic. In this paper, we will concentrate on the case
when the genus of Σ is one, (X,ω) is a symplectic 4-manifold, and the embeddings
are Lagrangian, i.e., f∗0ω = f∗1ω = 0. Our main result is the following.

Theorem 1. Let m > 1, n ≥ 1, q 6= 0 be integers. Let (E(n)m, ω) be the simply
connected elliptic surface with geometric genus pg = n − 1 and a unique multiple
fiber Fm of multiplicity m, equipped with a standard Kähler form ω coming from
the elliptic fibration. Then there exists an infinite family of homotopic Lagrangian
tori representing the same homology class q[Fm] ∈ H2(E(n)m) that are not pairwise
smoothly isotopic.

All homology and cohomology groups in this paper will have integer coefficients.
Note that if X is simply connected, then f0 and f1 are homotopic if and only if
f0(Σ) and f1(Σ) are homologous. Each E(n)m is indeed simply connected. Also
note that the nonexistence of smooth isotopy trivially implies that there does not
exist any symplectic isotopy nor Hamiltonian isotopy between our Lagrangian tori.
We can also prove the following.

Corollary 2. Let F be a smooth torus fiber in the rational elliptic surface E(1) ∼=
P2#9P2. Then there is a symplectic form ω′ on E(1) such that, for any nonzero
integer q, there exists an infinite family of homotopic and smoothly equivalent La-
grangian tori representing the homology class q[F ] ∈ H2(E(1)) that are not pairwise
smoothly isotopic.
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The symplectic form ω′ in Corollary 2 may not necessarily lie in the Kähler cone
of E(1). However, since E(1) possesses a unique symplectic structure (see Theo-
rem D in [11]), ω′ defines the same symplectic structure as any Kähler form on
E(1). We note that all known examples of homotopic but smoothly non-isotopic
Lagrangian tori up to now (see [3], [7] and [19]) have also been smoothly inequiva-
lent. We emphasize that the family in Corollary 2 is the first example of Lagrangian
tori that are smoothly equivalent but not pairwise smoothly isotopic.

By a standard argument, we can perturb ω′ slightly and obtain another sym-
plectic form ω′′, with respect to which our tori in Corollary 2, representing q[F ]
with q > 0, are all symplectic submanifolds of (E(1), ω′′). When q > 1, these are
new examples of homotopic symplectic tori that are smoothly equivalent but not
pairwise smoothly isotopic. When q = 1, we already know that all symplectic tori
representing [F ], including the infinite family of non-isotopic symplectic tori con-
structed in [4], are smoothly equivalent by Lemma 3.3 in [18]. We can also construct
such symplectic tori directly in (E(1), ω′) by slightly modifying the construction
of Lagrangian tori that follows. By comparing the corresponding Seiberg-Witten
invariants, we can easily show that these new symplectic tori are not smoothly
equivalent to any of the symplectic tori that were constructed in [4]. We can also
obtain a generalization of Theorem 1 by replacing the elliptic surface E(n) with a
more general class of symplectic 4-manifolds (see Theorem 14 below).

Acknowledgments. The author was partially supported by an NSERC discovery
grant. A preliminary version of the paper had been circulated with Stefano Vidussi
as a coauthor. The author thanks Stefano for graciously giving him permission to
publish the paper on his own.

2. Generalized link surgery

We present a generalization of the link surgery construction of Fintushel and
Stern in [6] as follows. Let L = ∪`i=1Ki ⊂ S3 be an ordered `-component link where
Ki is the i-th component. Let νL = ∪`i=1νKi denote its tubular neighborhood. The

complement of νL has boundary ∂(S3 \ νL) = ∪`i=1∂(νKi) ∼=
∐`
i=1 T

2, a disjoint
union of ` copies of 2-torus. For each i = 1, . . . , ` let Xi be a 4-manifold with a
boundary component T 3

i ⊂ ∂Xi, which is a 3-torus. Let ϕi : T 3
i → S1× ∂(νKi)

be a diffeomorphism between the 3-tori. If T 3
i and S1× ∂(νKi) are both equipped

with boundary orientations, then we require ϕi to be orientation-reversing.

Definition 3. The ordered collection D =
(
{Xi}`i=1 ; {ϕi}`i=1

)
is called link surgery

gluing data for an ordered `-component link L. We define the link surgery manifold
corresponding to D to be the 4-manifold (possibly with boundary)

L(D) =
[ ⊔̀
i=1

Xi

] ⋃
{ϕi}

[
S1 × (S3 \ νL)

]
,

where we identify the T 3
i boundary component of Xi with the i-th component of

the boundary of S1× (S3 \ νL) via the gluing diffeomorphism ϕi.

Logarithmic Transformations. For our purposes we only need to look at a par-
ticular 2-component link L which is the Hopf link in Figure 1. Let us choose the
following oriented factorizations of the boundary:

(2.1) ∂
[
S1× (S3 \ νL)

] ∼= [
S1× µ(A)× λ(A)

]
∪
[
S1× λ(B)× µ̄(B)

]
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Here, µ( · ) and λ( · ) denote the meridian and the longitude of a knot, respectively.
A bar over µmeans negative orientation. Note that both 3-tori are given a boundary
orientation coming from an orientation of the 4-manifold S1× (S3 \ νL).

A

B

Figure 1. Hopf link L = A ∪B

Let F denote a generic torus fiber of a simply connected elliptic surface E(n)
without any multiple fiber (n ≥ 1). There is a cartesian product decomposition
F = ρ1 × ρ2, where each ρj ∼= S1 (j = 1, 2) is an embedded circle in E(n), so that
a standard Kähler form (coming from the elliptic fibration) on E(n) restricts to
F as dvolρ1∧ dvolρ2 . The elliptic fibration of E(n) also gives a canonical framing
νF ∼= D2×ρ1×ρ2, and so the complex orientation on E(n) gives rise to the oriented
boundary factorization

(2.2) ∂[E(n) \ νF ] ∼= T 3 ∼= µ̄(F )× ρ1 × ρ2 ,
where µ(F ) denotes the “meridian” of F or the “rim circle” ∂D2×{pt} ⊂ D2×F ∼=
νF .

We will be working with the following family of link surgery gluing data, indexed
by integers m > 1, which differ only in ϕ2:

Dm =
({

X1 = E(n) \ νF , X2 = D2 × S1 × S1
}

;(2.3)

{
ϕ1 =

−1 0 0
0 1 0
0 0 1

 , ϕ2 =

−m 1 0
1 0 0
0 0 1

})
.

Here, we have expressed the gluing diffeomorphisms by matrices in GL(3,Z) rep-
resenting the induced linear maps (ϕi)∗ between the first homology groups of the
boundary 3-tori with respect to the ordered bases corresponding to the oriented
factorizations ∂X2 = ∂D2 × S1 × S1, (2.1) and (2.2) chosen above.

Lemma 4. Let L be the Hopf link in S3. Let Dm be link surgery gluing data
given by (2.3). Then L(Dm) is diffeomorphic to the logarithmic transform E(n)m
of multiplicity m.

Proof. The proof is easy and therefore omitted. We refer to [4] for an analogous
result. �

3. Construction of Lagrangian tori in E(n)m

Our construction of homologically nontrivial Lagrangian tori is a blending of the
constructions in [3] and [4]. Let L = A ∪B be the Hopf link. It is easy to see that
the Hopf link exterior S3 \ νL is diffeomorphic to S1 × A, where A ∼= S1 × [ε, 1] is
an annulus and 0 < ε < 1 is a constant. We choose the symplectic form

(3.1) ω0 = rdr ∧ dx + dy ∧ dθ
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on S1
x × (S3 \ νL) ∼= T 3× [ε, 1]. Here, x is the angular coordinate on the circle S1

x

(the subscript x is used to distinguish this circle from the S1 factors in S3 \ νL),
y is the angular coordinate parallel to B, and (r, θ) are the polar coordinates on A
(a subset of a normal disk to B) with ε ≤ r ≤ 1.

For each pair of relatively prime integers p and q, draw a closed curve Cp,q inside
(S3 \ νL) such that it is a (p, q) torus knot lying on the torus

T (r0) = {(y, r, θ) | r = r0 = constant, ε < r0 < 1},
which is a radial dilation of ∂(νB) = {(y, r, θ) | r = ε}. The linking numbers are
lk(Cp,q, A) = p and lk(Cp,q, B) = q. It follows immediately that dr|Cp,q

= 0. See
Figure 2 which illustrates the case when (p, q) = (1, 4).

A

θ

y

Cp,q

r( )0T

r( )0T

Figure 2. Closed curve Cp,q on the torus T (r0)

We define a torus Tp,q = S1
x × Cp,q ⊂ [S1

x × (S3 \ νL)] ⊂ L(Dm) = E(n)m. We
can easily compute that

(3.2) ω0|Tp,q = (rdr ∧ dx)|S1
x×Cp,q

+ (dy ∧ dθ)|S1
x×Cp,q

= 0 + 0 = 0 .

Theorem 5. For each pair of relatively prime integers p and q, the torus Tp,q =
S1
x × Cp,q is a Lagrangian submanifold of L(Dm) ∼= E(n)m, with respect to a stan-

dard Kähler symplectic form on E(n)m, and [Tp,q] = q[Fm] ∈ H2(E(n)m), where
Fm denotes the multiple fiber.

Proof. We recall that the standard link surgery gluing data for E(n)m as in [4] or
[6] give the identification of homology classes [Fm] = [S1

x × µ(B)]. In Section 2, we
have built E(n)m using “nonstandard” link surgery gluing data Dm:

(3.3) E(n)m = [E(n) \ νF ] ∪ϕ1 [S1
x × (S3 \ νL)] ∪ϕ2 [D2 × T 2] .

By carefully comparing the orientations with the standard link surgery gluing data
in [4] or [6], we can easily check that F̄m (Fm with negative orientation) is identified
with the core {0} × T 2 in the third component of decomposition (3.3).

We now show that [Tp,q] = q[Fm] in H2(E(n)m). Define R1 = µ(F ) × ρ1 and
R2 = µ(F )×ρ2, which are homologically essential tori in the boundary of E(n)\νF .
We will write D2 × T 2 as D2 × S1

a × S1
b to distinguish the two circle factors of T 2.

From the gluing data (2.3) we identify factorwise:

µ(F )× ρ1 × ρ2 = S1
x × µ(A)× λ(A) ,(3.4)

∂D2 × S1
a × S1

b = (λ(B)−mS1
x)× S1

x × µ̄(B).(3.5)

Hence (ϕ−11 )∗[Tp,q] = p[R1] + q[R2] ∈ H2(E(n) \ νF ). Note that F gets identified
with the boundary torus ∂(νA) = µ(A) × λ(A) in (S3 \ νL) by ϕ1, and F̄m =
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{0}×S1
a×S1

b gets identified with the rim torus R̄2 = µ(F )× µ̄(B) by ϕ2. However,
note that [µ(F )] = 0 ∈ H1(E(n) \ νF ). Thus inside E(n)m we have

(3.6) (ϕ1)∗[ρ1] = (ϕ1)∗([ρ1]−m[µ(F )]) = [λ(B)]−m[S1
x] = (ϕ2)∗[∂D

2] = 0 .

Hence [R1] = [S1
a × ∂D2] = [∂(S1

a × D2)] = 0 ∈ H2(E(n)m), which implies that
[Tp,q] = q[R2] = q[Fm]. We also have 0 = [(λ(B)−mS1

x)× µ̄(B)] = [λ(B)× µ̄(B)]−
m[S1

x × µ̄(B)], which implies that [F ] = m[Fm].
Next we need to show that the form ω0 in (3.1) extends to the whole of E(n)m.

Recall that F gets identified with the boundary torus ∂(νA) = µ(A) × λ(A) in
(S3\νL) by ϕ1. It follows that the volume form of F is identified (up to deformation)
with the 2-form dy ∧ dθ. Let σ denote a punctured sphere section in E(n) \ νF .
Then we see easily that the volume form of σ can be extended to the form rdr∧dx.
We can view (r, x) as a polar coordinate system on the collared boundary of the
disk σ. Now we may identify the middle piece in the decomposition (3.3) above as
the cylinder

[S1
x × (S3 \ νL)] ∼= [S1

x × (S1 × A)] ∼= T 3 × [ε, 1].

Hence we conclude that ω0 is, up to deformation, equal to

dvolσ + dvolF ,

which is the restriction of the standard Kähler form (coming from the elliptic fibra-
tion) of E(n) \ νF ∼= [E(n) \ νF ]∪ϕ1

T 3× [ε, 1] to the cylinder. Here, dvol denotes
a volume form.

Since we assume that m > 1, the logarithmic transform is equivalent to the
“rational blowdown” construction of Fintushel and Stern in [5]. On the other hand,
by [15] and [16], rational blowdowns can be done symplectically and the symplectic
form needs to be modified only near the collar neighborhood of the boundary lens
spaces involved. As a result of this and since F ' m · Fm remains symplectic in
E(n)m, we may assume that the symplectic form on E(n)m restricts to ω0 on the
subset T 3 × [δ, 1] ⊂ [S1

x × (S1 × A)] for a suitable constant δ satisfying

0 < ε < δ < r0 < 1 .

In other words, we may arrange that the sequence of (m − 1) blow-ups and the
subsequent blowdown of a resulting configuration of spheres occur away from the
shorter cylinder T 3 × [δ, 1] ∼= νF \ (T 2 ×Dδ), where νF ∼= T 2 ×D2 is the closed
tubular neighborhood of F and Dδ = {z ∈ D2 ⊂ C | |z| < δ}. This, together with
(3.2), proves that Tp,q ⊂ T 3 × {r0} is a Lagrangian submanifold of E(n)m. �

Remark 6. Calling the link surgery gluing data Dm “nonstandard” is really a
misnomer. Note that in a 3-dimensional slice like Figure 2, we are only able to draw
two circular dimensions out of the possible three circular dimensions in the cylinder
T 3× [ε, 1]. Essentially, all we had done differently from the standard identifications
in [4] or [6] was to choose to draw the ρ1 dimension instead of the µ(F ) dimension.

4. Seiberg-Witten and other invariants

Throughout this section m,n, p and q will be integers satisfying: m > 1, n ≥ 1,
gcd(p, q) = 1. We start by showing that the fundamental groups of the complements
of Tp,q are independent of p.

Lemma 7. We have π1(E(n)m \ Tp,q) ∼= Z/q.
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Proof. We use the well-known fact that π1(E(n) \ νF ) = 1. As in [14], it is not too
hard to show that

π1
(
S3 \ ν(B ∪ Cp,q)

) ∼= 〈λ(A)〉 ∗ π1(∂(νB))

λ(A)q = λ(B)pµ(B)q
.

Using Van Kampen’s Theorem, we compute that

π1(E(n)m \ νTp,q)

∼= π1

(
E(n) \ νF

⋃
(3.4)

S1
x ×

(
S3 \ ν(A ∪B ∪ Cp,q)

) ⋃
(3.5)

D2× S1
a × S1

b

)

∼=
π1(S3 \ ν(B ∪ Cp,q)) ∗ π1(D2× S1

a× S1
b )

{λ(A) = 1, λ(B) = 1, S1
a = 1, µ(B)−1 = S1

b }
∼= 〈µ(B)〉/{µ(B)q = 1} ∼= Z/q .

Note that we have used S1
x = µ(F ) = 1. �

The following lemma says that some of the local symplectic invariants of our tori
are independent of both p and q. We refer to [1] and [7] for the definitions.

Lemma 8. The Lagrangian torus Tp,q has Maslov index 0 ∈ H1(Tp,q). The La-
grangian framing defect of Cp,q is zero.

Proof. The Maslov index of Tp,q is trivial since each circle factor of Tp,q = S1
x×Cp,q

has constant slope. It is easy to see that a parallel (p, q) torus knot on T (r0) is
a Lagrangian push-off of Cp,q, and such a push-off has linking number zero with
Cp,q. �

We shall adhere to the convention that (p, q)-cable means that the cable is p
times the longitude and q times the meridian. Let Lp,q denote the ordered 3-
component link which is the Hopf link A ∪ B plus Cp,q, which is the (p, q)-cable
of B. The components of Lp,q are ordered lexicographically. Let us choose the
following oriented factorizations of the boundary ∂[S1 × (S3 \ νLp,q)]

(4.1)
[
S1× µ(A)× λ(A)

]
∪
[
S1× λ(B)× µ̄(B)

]
∪
[
S1× µ(Cp,q)× λ(Cp,q)

]
Lemma 9. The Alexander polynomial of Lp,q is given by

∆Lp,q
(x, y, z) = xpyqzpq − 1 ,

where where the variables x, y, z refer to the meridians of, respectively, A, B and
Cp,q.

Proof. See [2] for a computation for this and other cabled links. �

Our strategy is to show that for fixed choices of m,n and q, the isotopy types
of the tori {Tp,q | gcd(p, q) = 1}, indexed by p, can be distinguished by comparing
the Seiberg-Witten invariants of the corresponding family of fiber-sum 4-manifolds
{E(n)m#Tp,q=F ′E(k) | gcd(p, q) = 1} for some fixed integer k ≥ 1 and a smooth
fiber F ′ = ρ′1 × ρ′2 ⊂ E(k). Note that F ′ has a canonical framing coming from the
elliptic fibration structure on E(k). Before we fiber-sum, we use the Lagrangian
framing (as defined on p. 952 of [7]) to trivialize the tubular neighborhood of Tp,q.
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Lemma 10. The fiber sum E(n)m#Tp,q=F ′E(k) is diffeomorphic to the link surgery
manifold Lp,q(Dm,k), where

Dm,k =
({

X1 = E(n) \ νF , X2 = D2 × S1 × S1, X3 = E(k) \ νF ′
}

;

{
ϕ1 =

−1 0 0
0 1 0
0 0 1

 , ϕ2 =

−m 1 0
1 0 0
0 0 1

 , ϕ3 =

 0 1 0
1 0 0
0 0 1

})
.

Here, we have chosen the boundary factorization (4.1), ϕ1 and ϕ2 are the same
maps as in Dm, and ϕ3 identifies factorwise:

µ̄(F ′)× ρ′1 × ρ′2 = µ(Cp,q)× S1 × λ(Cp,q).

Proof. The proof is easy and thus omitted. �

Theorem 11. Let M = S1×(S3\νLp,q), and ι : M → Lp,q(Dm,k) be the inclusion
map. Let β = ι∗[S

1 × µ(B)], γ = ι∗[S
1 × µ(Cp,q)] ∈ H2(Lp,q(Dm,k)). Then β and

γ are both primitive and linearly independent. The Seiberg-Witten invariant of
Lp,q(Dm,k) is given by

(4.2) SWLp,q(Dm,k) =
β−q − βq

β−1 − β
(β−m − βm)n−1(β−qγpq − βqγ−pq)k−1 .

Proof. Let α = ι∗[S
1 × µ(A)] ∈ H2(Lp,q(Dm,k)). From the gluing formulas in [13]

and [17], we may conclude that

(4.3) SWLp,q(Dm,k) = SWE(n)\νF · SWD2×T 2 · SWE(k)\νF ′ ·∆sym
Lp,q

(α2, β2, γ2),

where ∆sym
Lp,q

(x, y, z) = xp/2yq/2zpq/2−x−p/2y−q/2z−pq/2 is the symmetrized Alexan-

der polynomial of Lp,q. Recall from [13] that SWE(n)\νF = ([F ]−1 − [F ])n−1, and

SWD2×T 2 =
1

[{0} × T 2]−1 − [{0} × T 2]
.

In the proof of Theorem 5, we have seen that [{0} × T 2] = [F̄m] = [S1 × µ̄(B)]
and [F ] = m[Fm] = m[S1 × µ(B)]. Thus in (4.3) we may substitute SWE(n)\νF =

(β−m − βm)n−1 and SWD2×T 2 = −1/(β−1 − β).
Next note that [λ(B)] = [µ(A)] + q[µ(Cp,q)] ∈ H1(M). From (3.6), we can easily

deduce that [S1 × λ(B)] = m[S1
x × S1

x] = 0, which implies that α = γ−q. Thus in
(4.3) we may substitute

∆sym
Lp,q

(α2, β2, γ2) = αpβqγpq − α−pβ−qγ−pq = βq − β−q .

Since [λ(Cp,q)] = p[µ(A)]+q[µ(B)] ∈ H1(M), it follows that [F ′] = [S1×λ(Cp,q)] =
αpβq = βqγ−pq, and SWE(k)\νF ′ = (β−qγpq − βqγ−pq)k−1. Hence we have shown
that (4.3) simplifies to (4.2).

The proof that β and γ are primitive and linearly independent can be carried
out as in [4] and [8] and is omitted. �

5. Proofs of Theorem 1 and Corollary 2

In both of the proofs that follow, m > 1 will be a fixed integer and its actual
value (the multiplicity of the logarithmic transformation) is not important in the
proofs.
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Proof of Theorem 1. All that remains is to prove that the tori {Tp,q | gcd(p, q) = 1},
representing the homology class q[Fm], are non-isotopic for fixed value of q. We
argue as in the proof of Theorem 4.1 in [8]. Let p 6= p′ be two integers that
are relatively prime to q. Any isotopy of Tp,q to Tp′,q can be extended to a self-
diffeomorphism Φ : E(n)m → E(n)m such that Φ(Tp,q) = Tp′,q. Such isotopy also
guarantees that Φ extends to a diffeomorphism

Φ̃ : Lp,q(Dm,k) −→ Lp′,q(Dm,k)

satisfying Φ̃∗(qβ) = qβ′, where β and β′ denote the homology classes of S1 × µ(B)
in Lp,q(Dm,k) and Lp′,q(Dm,k) respectively. Since H2(Lp′,q(Dm,k)) is torsion-free,

we conclude that Φ̃∗(β) = β′. Now the 4-manifolds Lp,q(Dm,k) and Lp′,q(Dm,k)
have equivalent Seiberg-Witten invariant, i.e.,

Φ̃∗
(
SWLp,q(Dm,k)

)
= SWLp′,q(Dm,k) .

For simplicity, let us focus on the case when k = 2 in (4.2). As was observed on

p. 320 of [8], Φ̃∗ maps the homology class γ to some linear combination of two
linearly independent homology classes ι∗[S

1 × µ(Cp′,q)] and ι∗[λ(Cp′,q) × µ(Cp′,q)].

Hence the equivalence of Seiberg-Witten invariants implies that Φ̃∗ maps the ho-
mology class pqγ to ±p′qγ′, where γ′ = ι∗[S

1 × µ(Cp′,q)]. Since γ and γ′ are both
primitive, this cannot happen for divisibility reasons. �

Proof of Corollary 2. It is well-known (see e.g. [9] or [10]) that for each m > 1,
there exists a diffeomorphism Ψm : E(1)→ E(1)m, sending the homology class [F ]
to [Fm]. Let ω′ = Ψ∗mωm, where ωm is a standard Kähler form on E(1)m. Then
Theorem 1 immediately implies that the family {Ψ−1m (Tp,q) | gcd(p, q) = 1} consists
of smoothly non-isotopic Lagrangian tori representing q[F ].

We claim that Tp,q and Tp′,q are smoothly equivalent in E(1)m when p′ = p− cq,
and c ∈ Z. We start by observing that both tori lie on the 3-torus S1

x× T (r0). Tp,q
and Tp′,q are smoothly equivalent in S1

x×T (r0), as there exists a self-diffeomorphism
ψ of S1

x × T (r0) that carries one to the other. With respect to the ordered basis
{[S1

x], [λ(B)], [µ̄(B)]} for H1(S1
x × T (r0)), ψ is determined by the following matrix

ψ∗ =

 1 0 0
0 1 c
0 0 1

 ∈ SL(3,Z) .

Note that ψ∗[S
1
x] = [S1

x], and ψ∗[Cp,q] = ψ∗(0, p,−q) = (0, p′,−q) = [Cp′,q].
By dilating in the r direction (see Section 3), we can easily construct a self-

diffeomorphism of E(n)m that maps S1
x × T (r0) ∼= T 3 × {r0} diffeomorphically

onto the boundary 3-torus

T 3× {1} ∼= S1× µ(A)× λ(A) ⊂ ∂[S1× (S3 \ νL)] ∼= T 3× [ε, 1].

Now recall that T 3× {1} gets identified with the boundary 3-torus ∂[E(1) \ νF ] in
the decomposition (3.3). Thus we can view Tp,q and Tp′,q as smoothly equivalent
submanifolds of ∂[E(1) \ νF ]. But any orientation-preserving self-diffeomorphism
of ∂[E(1) \ νF ] extends over E(1) \ νF , according to [12].

It remains to show that ψ can be extended over the other half of E(1)m, namely

T 3 × [ε, r0]
⋃
ϕ2

[D2 × S1 × S1] ,
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which is diffeomorphic to D2 × S1 × S1. This is equivalent to showing that the
composition ψ ◦ ϕ2, given by the matrix product 1 0 0

0 1 c
0 0 1

−m 1 0
1 0 0
0 0 1

 =

−m 1 0
1 0 c
0 0 1

 ,

extends over D2 × S1 × S1. This, in turn, is equivalent to exhibiting a self-
diffeomorphism ξ of D2 × S1 × S1 whose restriction ξ|∂ to the boundary 3-torus
satisfies ψ◦ϕ2 = ϕ2◦ξ|∂ . Our situation is summarized in the following commutative
diagram.

S1
x × T (r0)

ψ

��

∂(D2 × S1 × S1)
ϕ2

oo

ξ|∂
��

� � // D2 × S1 × S1

ξ

���
�
�

S1
x × T (r0) ∂(D2 × S1 × S1)

ϕ2oo � � // D2 × S1 × S1

Now such ξ|∂ must be given by the matrix

ϕ−12 ◦ ψ ◦ ϕ2 =

 0 1 0
1 m 0
0 0 1

−m 1 0
1 0 c
0 0 1

 =

 1 0 c
0 1 mc
0 0 1


on the boundary. Note that, with respect to the ordered basis {[∂D2], [S1

a], [S1
b ]}

for H1(∂(D2 × S1
a × S1

b )), any self-diffeomorphism of ∂(D2 × S1
a × S1

b ) given by
a matrix in GL(3,Z) with the first column vector (±1, 0, 0) can be extended over
D2 × S1

a × S1
b (for example see p. 485 of [9]). It follows that ξ exists.

Thus we conclude that there exists an orientation-preserving self-diffeomorphism
Φ′ of E(1)m that carries Tp,q diffeomorphically onto Tp′,q. In conclusion, if p0 is
any integer relatively prime to q, then the family {Ψ−1m (Tp,q) | p ≡ p0 mod q} will
satisfy the conclusion of Corollary 2. �

Remark 12. Note that unlike the (hypothetical) diffeomorphism Φ in the proof
of Theorem 1, the diffeomorphism Φ′ in the proof of Corollary 2 cannot extend to
a diffeomorphism between the fiber sums Lp,q(Dm,k) and Lp′,q(Dm,k). If there was

such an extension Φ̃′, then just like in the proof of Theorem 1, we could conclude
that Φ̃′∗(pqγ) = ±p′qγ′, once again a contradiction. To sum it up, Tp,q can be
mapped to Tp′,q by a self-diffeomorphism of E(1)m, but this self-diffeomorphism
cannot be an extension of any smooth isotopy between these tori.

6. Generalization to other symplectic 4-manifolds

Theorem 1 can be readily generalized to apply to more general symplectic 4-
manifolds. In the following definition, we single out the properties of the pair
(E(n), F ) that are essential in the proof of Theorem 1.

Definition 13. Let T be a symplectic torus submanifold in a symplectic 4-manifold
(X,ω). We say that (X,T, ω) is an affable triple if the following four conditions
hold.

(i) The tubular neighborhood (νT, ω|νT ) is symplectomorphic to
(D2× S1× S1, dvolD2 + dvolS1×S1).

(ii) T contains a loop, primitive in π1(T ), which bounds in X \T an embedded
disk of self-intersection −1.
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(iii) The Seiberg-Witten invariant SWX\νT is a nonzero polynomial in [T ] ∈
H2(X \ νT ).

(iv) H2(X \ νF ) is torsion-free.

The following is a direct generalization of Theorem 1.

Theorem 14. Suppose m > 1, q 6= 0 are integers and (X,T, ω) is an affable
triple as in Definition 13. Let (Xm, ωm) denote the result of a generalized loga-
rithmic transformation of multiplicity m on T . Let Tm denote the multiple fiber of
Xm. Then there exists an infinite family of Lagrangian tori representing the same
homology class q[Tm] ∈ H2(Xm) that are not pairwise smoothly isotopic.

Proof. It was shown in Section 8.5 of [10] (see also [5] and [15]) that Xm possesses
a canonical symplectic form ωm coming from the symplectic form ω on X. The
rest of the proof is a straightforward modification of the proof of Theorem 1. We
need to replace E(n) \ νF in (2.3) with X \ νT , and replace µ̄(F ) × ρ1 × ρ2 in
(2.2) with µ̄(T ) × τ1 × τ2, where the factorization T = τ1 × τ2 comes from the
symplectomorphism to S1× S1 in condition (i) of Definition 13. �
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