
EXOTIC SMOOTH STRUCTURES ON S2 × S2

ANAR AKHMEDOV AND B. DOUG PARK

Abstract. We construct an infinite family of mutually nondiffeomorphic ir-

reducible smooth structures on the topological 4-manifold S2 × S2.

1. Introduction

Let M denote a closed smooth 4-manifold. M is called irreducible if every con-
nected sum decomposition of M as M = X#Y implies that either X or Y is home-
omorphic to the 4-sphere S4. The following lemma will be useful for determining
irreducibility.

Lemma 1. Every closed smooth oriented simply connected spin 4-manifold with
nontrivial Seiberg-Witten invariant is irreducible.

Proof. Let M be a closed smooth oriented simply connected spin 4-manifold with
nontrivial Seiberg-Witten invariant. Suppose M = X#Y is a connected sum of
two smooth 4-manifolds X and Y . Then both X and Y are simply connected and
the intersection forms of X and Y are both even.

If b+2 (X) and b+2 (Y ) are both strictly positive, then the Seiberg-Witten invariant
of X#Y is trivial (cf. [22]). This contradiction shows that one of b+2 (X) and b+2 (Y )
is 0. Without loss of generality, assume b+2 (X) = 0. If b2(X) = b−2 (X) > 0, then
the intersection form of X is a nontrivial negative definite form, so by Donaldson’s
theorem in [7], it is isomorphic to the diagonal form b2(X)[−1]. But this contradicts
the fact that the intersection form of X is even. Thus we conclude that b2(X) =
0. Since X is simply connected, X must be homeomorphic to S4 by Freedman’s
theorem in [9]. �

To state our results, it will be convenient to introduce the following terminology.

Definition 2. Let M be a smooth 4-manifold. We say that M has ∞-property
if there exist an irreducible symplectic 4-manifold and infinitely many mutually
nondiffeomorphic irreducible nonsymplectic 4-manifolds, all of which are homeo-
morphic to M .

Let S2 × S2 denote the cartesian product of two 2-spheres. It was proved in
[3] that (2k − 1)(S2 × S2), the connected sum of 2k − 1 copies of S2 × S2, has
∞-property for every integer k ≥ 138. The main goal of this paper is to prove the
following.

Theorem 3. S2 × S2 has ∞-property.
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At the moment, S2 × S2 has the smallest Euler characteristic (four) amongst
all closed simply connected topological 4-manifolds that are known to possess more
than one smooth structure. The only closed simply connected 4-manifolds with
smaller Euler characteristic are S4 and the complex projective plane CP2. In [2],
we show that (2k− 1)(S2 ×S2) has ∞-property for every k ≥ 2. From Theorem 3,
we also obtain infinitely many mutually nondiffeomorphic (albeit not irreducible)
smooth structures on CP2#mCP2 for every m ≥ 2 by blowing up m− 1 points on
our exotic S2 × S2’s. When m = 4, we can deduce the following.

Corollary 4. There exist infinitely many mutually nondiffeomorphic 4-manifolds
{Yn | n = 1, 2, 3, . . . } that are all homeomorphic to CP2#4CP2 and satisfy the
following.

(i) Each Yn does not admit any Einstein metric.
(ii) Each Yn has negative Yamabe invariant.
(iii) On each Yn, there does not exist any nonsingular solution to the normalized

Ricci flow for any initial metric.

Proof. In Section 3, we construct infinitely many mutually nondiffeomorphic 4-
manifolds {M1

n | n = 1, 2, 3, . . . } that are all homeomorphic to S2 × S2 and have
distinct nontrivial Seiberg-Witten invariants. Let Yn = M1

n#3CP2. Then by Freed-
man’s theorem in [9], each Yn is homeomorphic to CP2#4CP2.

Part (i) now follows from Theorem 3.3 in [15] (by setting X = M1
n, k = 3

and ℓ = 0 in the notation of [15]). Part (ii) follows from [14] (see the paragraph
preceding Theorem 7 in [14]). Part (iii) follows from Theorem A in [13] (by setting
X = M1

n and k = 3 in the notation of [13]). �

We point out that the analogue of Corollary 4 for CP2#mCP2, when m =
5, 6, 7, 8, has been proved in [13, 18]. The proof of Theorem 3 is spread out in
Sections 2–5. In Section 4, we also construct other families of 4-manifolds with
cyclic fundamental groups and having Euler characteristic equal to four. Our overall
strategy is to apply the ‘reverse engineering’ technique of [8] to a suitably chosen
nontrivial genus 2 surface bundle over a genus 2 surface. In [5, 6], Baykur has used
a similar method to construct exotic smooth structures on CP2#5CP2.

2. Model complex surface

Let Σg denote a closed genus g Riemann surface. Let τ1 : Σ2 → Σ2 be an elliptic
involution with two fixed points {z0, z1} such that Σ2/⟨τ1⟩ = Σ1. Let τ2 : Σ3 → Σ3

be a fixed point free involution with Σ3/⟨τ2⟩ = Σ2. See Figure 1 and also Figure 2
wherein τ1 is a 180 degree anti-clockwise rotation around the ‘center’ point z1.
There is a free Z/2 action on the product Σ2×Σ3 given by α(z, w) = (τ1(z), τ2(w))
for α ̸= 0 ∈ Z/2, z ∈ Σ2, and w ∈ Σ3. Let X = (Σ2 × Σ3)/⟨α⟩ denote the
quotient manifold, and let q : Σ2 × Σ3 → X denote the quotient map. The Euler
characteristic and the Betti numbers ofX are e(X) = e(Σ2×Σ3)/2 = (−2)(−4)/2 =
4, b1(X) = 6 and b2(X) = 14. X is a minimal complex surface of general type with
pg = q = 3 and K2 = 8 (cf. [11]).

Let {a1, b1, a2, b2} and {c1, d1, c2, d2, c3, d3} be the set of simple closed curves
representing the standard generators of π1(Σ2, z0) and π1(Σ3, w0), respectively.
Note that the base point z0 of Σ2 is one of the two fixed points of τ1. Let w0 be
the base point of Σ3 and let w1 = τ2(w0) be as drawn in Figure 1. Throughout,



EXOTIC SMOOTH STRUCTURES ON S2 × S2 3

z0
τ1

z1
ww1

2τ

0w

c~22

c1

c3

Figure 1. Involution α = (τ1, τ2)

a

b

1

2

c
d

a

a

a

c

cc

c1

1

1

2

2

b b

b

d

d

dd

d

1

1

22

2

2

1

1

3

3

3

3

z1

0z

0z

0z

0z 0z

0z

0z

0z

w0

w0

w0

w0

w0 w0

w0

w0

w0

w0 w0

w0

a'2

a'1

a"2

b'1

τ

d'2
c'2
~

1

~a

~a2

1

~

~
b2

b1

c2
~w1

d1'

c1"
c'1

γ

δ

y0

y0

y1

y1

v1

v0

Figure 2. Lifts of Lagrangian tori

we choose {z0} × {w0} and q({z0} × {w0}) as the base points of π1(Σ2 × Σ3)
and π1(X), respectively. After isotopy and by changing the orientations of the
curves a2 and b2 if necessary, we can assume that α∗(a1 × {w0}) = a2 × {w1} and
α∗(b1 × {w0}) = b2 × {w1}.

Let c̃2 be a path from w0 to w1 in Σ3 shown in Figures 1 and 2. Since τ2 maps
the endpoints of c̃2 to one another, q({z0} × c̃2) is a closed path in X. Note that
τ2(c̃2) is a path from w1 to w0, and satisfy q({z0} × τ2(c̃2)) = q({z0} × c̃2) since
z0 is a fixed point of τ1. It follows that q∗({z0} × c̃2)

2 = q∗({z0} × c2) in π1(X).
Similarly, τ2(c̃

−1
2 ) is a path from w0 to w1 that traverse along the ‘bottom’ half of

the loop c2 in the clockwise direction in Figure 1.
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Note that the loops a2×{w0} and a2×{w1} are freely homotopic along the path
{z0} × τ2(c̃

−1
2 ) in Σ2 × Σ3. Thus we have

q∗(a2 × {w0}) = q∗(({z0} × τ2(c̃
−1
2 )) · (a2 × {w1}) · ({z0} × τ2(c̃2)))

= q∗(({z0} × c̃−1
2 ) · (a1 × {w0}) · ({z0} × c̃2))

(1)

inside π1(X). In this paper, the order of path compositions will always be from left
to right. An explicit homotopy F1 : [0, 1]× [0, 1] → X is given by

(2) F1(s, t) =


q(a2(0)× τ2(c̃2(1− 3t))) if 0 ≤ t ≤ s/3,

q(a2(
3t−s
3−2s )× τ2(c̃2(1− s))) if s/3 ≤ t ≤ (3− s)/3,

q(a2(1)× τ2(c̃2(3t− 2))) if (3− s)/3 ≤ t ≤ 1,

where a2(t) and c̃2(t) are parameterizations of the curves a2 and c̃2 satisfying
a2(0) = a2(1) = z0, c̃2(0) = w0, and c̃2(1) = w1. Similarly, we have

(3) q∗(b2 × {w0}) = q∗(({z0} × c̃−1
2 ) · (b1 × {w0}) · ({z0} × c̃2))

inside π1(X) via the based homotopy

(4) F2(s, t) =


q(b2(0)× τ2(c̃2(1− 3t))) if 0 ≤ t ≤ s/3,

q(b2(
3t−s
3−2s )× τ2(c̃2(1− s))) if s/3 ≤ t ≤ (3− s)/3,

q(b2(1)× τ2(c̃2(3t− 2))) if (3− s)/3 ≤ t ≤ 1.

By using based homotopies supported inside q({z0} × Σ3), we also deduce that

q∗({z0} × c3) = q∗(({z0} × τ2(c̃
−1
2 )) · ({z0} × τ2(c1)) · ({z0} × τ2(c̃2)))

= q∗(({z0} × c̃−1
2 ) · ({z0} × c1) · ({z0} × c̃2)),

q∗({z0} × d3) = q∗(({z0} × τ2(c̃
−1
2 )) · ({z0} × τ2(d1)) · ({z0} × τ2(c̃2)))

= q∗(({z0} × c̃−1
2 ) · ({z0} × d1) · ({z0} × c̃2)).

Note again that, to go from w0 to w1, we have used the ‘bottom’ half of the loop
c2 and traversed it in the clockwise direction in Figure 1. This is why we have
q({z0} × τ2(c̃

−1
2 )) = q({z0} × c̃−1

2 ) first.
The quotient group π1(X)/q∗(π1(Σ2×Σ3)) is isomorphic to Z/2, and is generated

by the coset of q({z0} × c̃2). In summary, we have proved the following.

Lemma 5. The following six loops generate π1(X):

q(a1 × {w0}), q(b1 × {w0}), q({z0} × c1),

q({z0} × d1), q({z0} × c̃2), q({z0} × d2).

From now on, we will sometimes abuse notation and write a1 = q(a1 × {w0})
and c1 = q({z0} × c1), etc. The intersection form of X is isomorphic to 7H, where

(5) H =

[
0 1
1 0

]
.
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Hence σ(X), the signature of X, is 0. A basis for the intersection form of X is
given by the following seven geometrically dual pairs:

([a1 × c1],−[b1 × d1]), ([a1 × d1], [b1 × c1]),

([a2 × c1],−[b2 × d1]), ([a2 × d1], [b2 × c1]),

([(ã1ã2)× c̃2],−[b1 × d2]), ([a1 × d2], [(b̃1b̃2)× c̃2]),

([Σ2 × {w0}], [{z0} × Σ3]).

Here, [ · ] denotes the homology class of the image q( · ) in the quotient manifold X
for short. Note that even though [a1 × {w0}] = [a2 × {w0}] in H1(X;Z), we still
have [a1× c1] ̸= [a2× c1] since α∗[a1× c1] = [a2× c3] in H2(Σ2×Σ3;Z). The minus
signs are there to ensure that the nonzero intersection numbers are +1 with respect
to standard orientations. For example,

[a1 × c1] · [b1 × d1] = (−1)deg(c1) deg(b1)(a1 · b1)(c1 · d1)
= −1 · 1 · 1 = −1,

[a1 × d1] · [b1 × c1] = (−1)deg(d1) deg(b1)(a1 · b1)(d1 · c1)
= (−1) · 1 · (−1) = 1.

The composite loop b̃1b̃2 starts at a point y0 on a2 and traverses first along b̃1
to the point y1 = τ1(y0) on a1 and then along b̃2 back to the starting point y0. See

Figure 2. We define the loop ã1ã2 in a similar manner. Both loops ã1ã2 and b̃1b̃2
are mapped to themselves under τ1. Since the endpoints of c̃2 are mapped to each
other under τ2, the cylinders (ã1ã2)× c̃2 and (b̃1b̃2)× c̃2 become closed tori in X.

As observed in Example 2 of [11], it is convenient to view X as the total space
of a genus 2 surface bundle over a genus 2 surface:

(6) X =
Σ2 × Σ3

⟨α⟩
f−→ Σ3

⟨τ2⟩
= Σ2.

The quotients q(Σ2 × {w0}) and q({z0} × Σ3) are genus 2 surfaces in X that form
a fiber and a section of this bundle. Thus ([Σ2 × {w0}], [{z0} ×Σ3]) is represented
by a pair of transversely intersecting genus 2 symplectic surfaces in X.

Lemma 6. The loops q({z0} × c1), q({z0} × d1), q({z0} × c̃2) and q({z0} × d2)
represent elements of infinite order in π1(X).

Proof. From the homotopy long exact sequence for a fibration, we obtain

0 −→ π1(Σ2) −→ π1(X)
f∗−→ π1(Σ2) −→ 0,

where f∗ is the homomorphism induced by the bundle map in (6). f∗ maps the
loops in our lemma to the standard generators of π1(Σ2) and hence these loops
cannot be torsion elements of π1(X). �

3. Construction of exotic S2 × S2

Choose τ1 and τ2 invariant volume forms on Σ2 and Σ3, respectively. By pushing
forward the sum of pullbacks of these volume forms on Σ2 ×Σ3 under q, we obtain
a symplectic form ω on X. Alternatively, we can equip X with a symplectic form
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coming from the bundle structure in (6). Now consider the following six Lagrangian
tori in X:

(7)
q(a′1 × c′1), q(b′1 × c′′1), q(a′2 × c′1),

q(a′′2 × d′1), q(b′1 × d′2), q((b̃1b̃2)× c̃′2).

The lifts of these Lagrangian tori in Σ2×Σ3 are drawn in Figure 2. The prime and
double prime notations are explained in [8]. Each tori in (7) is Lagrangian with
respect to ω since the first circle factor lies in the Σ2 direction whereas the second
circle factor lies in the Σ3 direction.

The c̃′2 path that is ‘parallel’ to τ2(c̃2) is drawn in Figures 2 and 3. The endpoints

of c̃′2, v0 and v1, are mapped to each other by τ2. Thus the cylinder (b̃1b̃2)× c̃′2 in

Σ2×Σ3 becomes a closed torus in X. Let b̃1(t), b̃2(t) and c̃′2(t) be parameterizations

of the curves b̃1, b̃2 and c̃′2, respectively, satisfying b̃1(0) = y0, b̃1(1) = y1, b̃2(0) = y1,

b̃2(1) = y0, c̃
′
2(0) = v1 and c̃′2(1) = v0. Note that q({z}× c̃′2) is not a closed loop for

any point z ∈ b̃1b̃2 since there is no fixed point of τ1 on b̃1b̃2. However, the following
composition of paths gives rise to a simple closed curve on the q((b̃1b̃2)× c̃′2) torus:

(8) β(t) =

{
{y0} × c̃′2(2t) if 0 ≤ t ≤ 1/2,

b̃1(2t− 1)× {v0} if 1/2 ≤ t ≤ 1.

Since q({y0}×{v1}) = q({y1}×{v0}) when t = 0, 1, the loop q(β(t)) is well defined.
Let η be a short ‘diagonal’ path on the a2 × τ2(d2) torus from {z0} × {w1}

to {y0} × {v1}. Then α(η) is a path on the a1 × d2 torus from {z0} × {w0} to
{y1} × {v0}. Since q({z0} × {w1}) = q({z0} × {w0}), the image q(η · β · α(η)−1)
represents c̃2b1 in π1(X). Next consider the composition

(9) ξ(t) =


{y0} × c̃′2(4t) if 0 ≤ t ≤ 1/4,

b̃1(4t− 1)× {v0} if 1/4 ≤ t ≤ 1/2,

b̃2(4t− 2)× {v0} if 1/2 ≤ t ≤ 3/4,

{y0} × c̃′2(4− 4t) if 3/4 ≤ t ≤ 1.

Note that q(η · ξ · η−1) represents c̃2b1b2c̃
−1
2 = b2b1 in π1(X).

Both paths β and ξ begin at the point {y0} × {v1}, and their images under
q represent standard generators for the image of the fundamental group of the
q((b̃1b̃2)× c̃′2) torus in X that are based at q({y0}×{v1}). In particular, the words

for the q((b̃1b̃2)× c̃′2) torus in π1(X) are given by the conjugates of

(c̃2b1b2c̃
−1
2 )(c̃2b1)(c̃2b1b2c̃

−1
2 )−1(c̃2b1)

−1 = c̃2b1b2c̃
−1
2 b−1

1 b−1
2 .

w0

2τ

1v

c~2
c~2'

d2d2'

1w

v0

Figure 3. c̃′2 and d′2
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In what follows, for the sake of brevity, we will sometimes abuse notation and
blur the distinction between a surface or a curve in Σ2 × Σ3 and its image under
q in the quotient manifold X. We will use the notation [g, h] = ghg−1h−1 for the
commutator.

Lemma 7. Let X0 denote the complement of tubular neighborhoods of the six La-
grangian tori of (7) in X. The Lagrangian framings give the following bases for the
images of the fundamental groups of the 3-torus components of the boundary ∂X0.

(10)

{a1, c1; [b−1
1 , d−1

1 ]}, {b1, d1c1d−1
1 ; [a−1

1 , d1]},
{a2, c1; [b−1

2 , d−1
1 ]}, {b2a2b−1

2 , d1; [b2, c
−1
1 ]},

{b1, d2; a−1
1 a−1

2 c̃−1
2 a1a2c̃2}, {c̃2b1b2c̃−1

2 , c̃2b1; [a2, c̃2d
−1
2 c̃−1

2 ]}.

Proof. The point q({z0} × {w0}) lies in X0 and we choose it for the base point of
π1(X0). The first four triples in (10) are in standard form and can be derived as
in [8]. For the fifth triple corresponding to the q(b′1 × d′2) torus, the Lagrangian
push-offs of b′1 and d′2 represent b1 and d2, respectively, by a standard argument
in [8]. The orientation convention for the boundary ∂X0 dictates that the third
member of our triple (after the semicolon) should be the ‘clockwise’ meridian of
q(b′1 × d′2). (The anti-clockwise meridian is usually reserved for the boundary of
the tubular neighborhood of q(b′1 × d′2).) Note that the q(b′1 × d′2) torus intersects
the q((ã1ã2)× τ2(c̃2)) torus once negatively in X. Hence the clockwise meridian of
q(b′1×d′2) is given by a word for the punctured q((ã1ã2)× τ2(c̃2)) torus, read in the
anti-clockwise direction. To quickly reach the b′1 × d′2 torus from the preimage of
the base point {z0}× {w0}, we need to travel negatively in the a1 ×{w0} direction
and negatively in the {z0} × τ2(c̃2) direction. As explained in [8], the clockwise
meridian of q(b′1 × d′2) is then given by q((a2a1)

−1c̃−1
2 (a1a2)c̃2), coming from the

punctured q((ã1ã2)× τ2(c̃2)) torus. See the left half of Figure 4.

1a

1aa

1

a 1

a

2

a2
~~

~~

c~2τ2( ) c~2τ2( ) ζ ζ

Figure 4. Punctured q((ã1ã2)× τ2(c̃2)) and q(a1 × ζ) tori

For the sixth triple, it is clear that the Lagrangian push-offs of q(β) and q(ξ)
(see (8) and (9)) represent the homotopy classes of

q(({z0} × τ2(c̃2)) · (b1 × {w0})) = q({z0} × c̃2) · q(b1 × {w0}),

and

q(({z0} × τ2(c̃2)) · (b1 × {w0}) · (b2 × {w0}) · ({z0} × τ2(c̃
−1
2 )))

= q({z0} × c̃2) · q(b1 × {w0}) · q(b2 × {w0}) · q({z0} × c̃−1
2 ),
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respectively, in π1(X0). Since β and ξ both start at {y0} × {v1}, the lift of our
meridian must start at the nearest preimage of the basepoint {z0} × {w1}, rather
than starting at {z0} × {w0}. (Note that {z0} × {w0} lies near {y0} × {v0}.) For
analogy, note that for each of the first five triples, the lifts of the three loops must
all start at the same vertex of the octagon and the same vertex of the dodecagon
that are nearest to the chosen starting point on the corresponding surgery torus.
Furthermore, the pairs of vertices are different for different surgery tori.

d2

w0

w0

w0

w0

d'2
c'2
~

c2
~w1

v1
v0

w1

v2

ζc2
~τ (2 )

c2
~τ (2 )

Figure 5. Loop ζ in Σ3

Let ζ be the oriented loop in Σ3 drawn in Figure 5, which represents the lower
left portion of the dodecagon in Figure 2. Note that {z0}×ζ represents c̃2d

−1
2 c̃−1

2 in
π1(X0). (There is a based homotopy between these loops that is supported inside

q({z0} × Σ3) ⊂ X0.) The (b̃1b̃2) × c̃′2 cylinder intersects the a1 × ζ torus once
negatively at {y1} × {v2}, which is near {y1} × {v1} and {z0} × {w1}. Thus a lift

of the clockwise meridian of q((b̃1b̃2)× c̃′2), that starts at {z0} × {w1}, is given by
a word for the punctured a1 × ζ torus, read in the anti-clockwise direction. To
quickly reach the (b̃1b̃2)× c̃′2 cylinder from the point {z0}×{w1}, we need to travel
positively in the a1 × {w1} direction and positively in the {z0} × ζ direction. Note
that q(a1 × {w1}) = q(a2 × {w0}). Hence a lift of the clockwise meridian of the

q((b̃1b̃2) × c̃′2) torus, that starts at {z0} × {w1}, represents a2ζa
−1
2 ζ−1 = [a2, ζ] =

[a2, c̃2d
−1
2 c̃−1

2 ] in π1(X0). See the right half of Figure 4. �

Remark 8. It turns out that [a2, c̃2d
−1
2 c̃−1

2 ] = [a2, d
−1
2 ] in π1(X0). See (12) in the

proof of Theorem 10 below. Hence the clockwise meridian of the q((b̃1b̃2) × c̃′2)
torus also represents [a2, d

−1
2 ] in π1(X0).

Let n ≥ 1 and p ≥ 0 be a pair of integers. Inside X, we perform the following
six torus surgeries:

(11)

(a′1 × c′1, a
′
1,−n), (b′1 × c′′1 , b

′
1,−1),

(a′2 × c′1, c
′
1,−1), (a′′2 × d′1, d

′
1,−1),

(b′1 × d′2, d
′
2,−1/p), ((b̃1b̃2)× c̃′2, β,−1).

Here, we are using the notation from [8, 1]. For example, the first surgery is a
(−n)-surgery on q(a′1 × c′1) torus along q(a′1) loop with respect to the Lagrangian
framing in (10). The first and the fifth surgeries are Luttinger surgeries (cf. [17, 4])
when n = 1 and p ≥ 1, respectively. If p = 0, then the fifth surgery is trivial,
i.e., the surgery does not alter the 4-manifold. The other four surgeries with −1
coefficient are all Luttinger surgeries.
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Let Mp
n denote the resulting closed 4-manifold after the surgeries in (11). If

p ≥ 1, then we have

b1(M
p
n) = b1(X)− 6 = 0 and b2(M

p
n) = b2(X)− 2 · 6 = 2.

The intersection form of Mp
n is even for every n ≥ 1 and p ≥ 0. Note that Mp

1 is a
minimal symplectic 4-manifold for every p ≥ 0.

4. Calculation of fundamental group

The point q({z0} × {w0}) lies in X0 ⊂ Mp
n and hence we will choose it for the

base point of π1(M
p
n).

Lemma 9. π1(M
p
n) is generated by a1, b1, a2, b2, c1, d1, c̃2, d2. The following rela-

tions hold in π1(M
p
n):

a2 = c̃−1
2 a1c̃2, b2 = c̃−1

2 b1c̃2, b1 = c̃−1
2 b2c̃2,

[b2, d2] = 1, [a−1
1 b−1

1 a2, d2] = 1, [a−1
2 b−1

2 a1, d2] = 1,

[b−1
1 , d−1

1 ]n = a1, [a−1
1 , d1] = b1,

[b−1
2 , d−1

1 ] = c1, [b2, c
−1
1 ] = d1,

a−1
1 a−1

2 c̃−1
2 a1a2c̃2 = dp2, [a2, c̃2d

−1
2 c̃−1

2 ] = c̃2b1,

[a1, c1] = 1, [b1, c1] = 1, [a2, c1] = 1, [a2, d1] = 1, [b1, d2] = 1,

[a1, b1][a2, b2] = 1, [c1, d1][c̃2, d2] = 1.

Proof. By using Seifert-Van Kampen theorem, the generators of π1(M
p
n) can be de-

termined from Lemmas 5 and 7. The first relation comes from (1), which continues
to hold in π1(M

p
n) because the image of homotopy (2) is contained in q(a2×τ2(c̃2)),

which lies inside X0 ⊂ Mp
n. For example, we see that q(a2 × τ2(c̃2)) is disjoint

from the fifth surgery torus q(b′1 × d′2) in (11), since a2 × τ2(c̃2) is disjoint from
(b′1 × d′2) ∪ (τ1(b

′
1)× τ2(d

′
2)) in Σ2 × Σ3. See Figures 2 and 3.

The second relation comes from (3), which continues to hold in π1(M
p
n) because

the image of homotopy (4) is contained in q(b2 × τ2(c̃2)) ⊂ X0. The third relation
can be written as

q∗(b1 × {w0}) = q∗(({z0} × c̃−1
2 ) · (b2 × {w0}) · ({z0} × c̃2))

= q∗(({z0} × τ2(c̃
−1
2 )) · (b1 × {w1}) · ({z0} × τ2(c̃2)))

The corresponding based homotopy is given by

F3(s, t) =


q(b1(0)× τ2(c̃2(1− 3t))) if 0 ≤ t ≤ s/3,

q(b1(
3t−s
3−2s )× τ2(c̃2(1− s))) if s/3 ≤ t ≤ (3− s)/3,

q(b1(1)× τ2(c̃2(3t− 2))) if (3− s)/3 ≤ t ≤ 1.

The image of F3 is contained in q(b1 × τ2(c̃2)), which in turn lies inside X0.
The fourth relation comes from the torus q(b2×d2) lying in X0. The fifth relation

comes from the torus q(γ × d2) lying in X0, where γ is the closed path drawn in
Figure 2. Note that

q∗(γ × {w0}) = q∗((a
−1
1 × {w0}) · (b−1

1 × {w0}) · (a2 × {w0}))

via a based homotopy that is supported inside q(Σ2 × {w0}) ⊂ X0. Similarly, the
sixth relation comes from the torus q(δ × d2) in X0, where δ is the closed path
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drawn in Figure 2 satisfying

q∗(δ × {w0}) = q∗((a
−1
2 × {w0}) · (b−1

2 × {w0}) · (a1 × {w0})).
The next eleven relations are standard and can be derived as in [8] from Lemma 7

and the definition of torus surgery. Note that q∗([a1, b1][a2, b2]×{w0}) = 1 holds in
π1(M

p
n) because of the presence of the genus 2 surface q(Σ2×{w0}) insideX0 ⊂ Mp

n.
The last relation q∗({z0}×[c1, d1][c̃2, d2]) = 1 holds in π1(M

p
n) since q({z0}×Σ3) is a

genus 2 surface in X0 ⊂ Mp
n whose fundamental group is generated by q({z0}× c1),

q({z0} × d1), q({z0} × c̃2) and q({z0} × d2). �

Theorem 10. We have π1(M
p
n)

∼= Z/p. In particular, π1(M
0
n)

∼= Z and π1(M
1
n) =

0 for every integer n ≥ 1.

Proof. From the fifteenth and the sixteenth relations in Lemma 9, we know that
a2 commutes with both c1 and d1. Using the last relation in Lemma 9, we deduce
that a2 commutes with [c̃2, d2] = [c1, d1]

−1. This implies that

1 = [a2, [c̃2, d2]] = a2c̃2d2c̃
−1
2 (d−1

2 a−1
2 d2)c̃2d

−1
2 c̃−1

2

= a2c̃2d2c̃
−1
2 a−1

2 [a2, d
−1
2 ]c̃2d

−1
2 c̃−1

2 .

Solving for [a2, d
−1
2 ], we conclude that

(12) [a2, d
−1
2 ] = (a2c̃2d2c̃

−1
2 a−1

2 )−1(c̃2d
−1
2 c̃−1

2 )−1 = [a2, c̃2d
−1
2 c̃−1

2 ].

Combining (12) with the twelfth relation in Lemma 9, we get [a2, d
−1
2 ] = c̃2b1 and

(13) a2d
−1
2 a−1

2 = c̃2b1d
−1
2 .

From the fifth and the sixth relations in Lemma 9, we deduce that d−1
2 commutes

with the product

(a−1
2 b−1

2 a1)(a
−1
1 b−1

1 a2) = a−1
2 b−1

2 b−1
1 a2.

It follows that

(14) [b−1
2 b−1

1 , a2d
−1
2 a−1

2 ] = a2[a
−1
2 b−1

2 b−1
1 a2, d

−1
2 ]a−1

2 = 1.

Using (13), we can rewrite (14) as

1 = [b−1
2 b−1

1 , c̃2b1d
−1
2 ] = b−1

2 b−1
1 c̃2b1d

−1
2 b1b2d2b

−1
1 c̃−1

2 .

Since d2 commutes with both b1 and b2 by the fourth and the seventeenth relations,
we deduce that

1 = b−1
2 b−1

1 c̃2b1b1b2b
−1
1 c̃−1

2 = b−1
2 b−1

1 b2b2b1b
−1
2 .

Hence b−1
1 b22b1b

−2
2 = 1, and so b1 commutes with b22.

From the ninth and the tenth relations, we deduce that

c1 = b−1
2 d−1

1 b2d1 = b−1
2 [c−1

1 , b2]b2[b2, c
−1
1 ]

= b−1
2 c−1

1 b2c1b2c
−1
1 b−1

2 c1 = b−1
2 d−1

1 b2b2c
−1
1 b−1

2 c1.

Canceling the c1’s from both sides and then rearranging, we conclude that

d1 = b22c
−1
1 b−2

2 .

Since b1 also commutes with c1 by the fourteenth relation, b1 must commute with
d1. It follows that a1 = [b−1

1 , d−1
1 ]n = 1. From a1 = 1, we can easily deduce that all

other generators are trivial except for d2. By Lemma 6, d2 has order p in π1(M
p
n)

if p is a positive integer. �
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Remark 11. At the moment, Mp
1 has the smallest Euler characteristic amongst

all closed minimal symplectic 4-manifolds having fundamental group isomorphic to
Z/p.

5. Homeomorphism and Seiberg-Witten invariant

Throughout this section, let p = 1. For every integer n ≥ 1, M1
n is a closed

simply connected spin 4-manifold having intersection form H (see (5)) with a basis
given by the homology classes of genus 2 surfaces q(Σ2 × {w0}) and q({z0} × Σ3).
By Freedman’s classification theorem in [9], M1

n is homeomorphic to S2 × S2 for
every n ≥ 1.

Theorem 12. The symplectic 4-manifold M1
1 is homeomorphic but not diffeomor-

phic to S2 × S2.

Proof. From [16], we know that the symplectic Kodaira dimension is a diffeomor-
phism invariant. The rational ruled surface S2 × S2 has Kodaira dimension −∞.
X is a minimal surface of general type and hence has Kodaira dimension 2. Since
M1

1 is the result of six Luttinger surgeries on X and Luttinger surgeries preserve
symplectic Kodaira dimension (cf. [12]), M1

1 has Kodaira dimension 2 as well. �

Let A and B denote the 2-dimensional cohomology classes of M1
n that are

Poincaré dual to the homology classes of q(Σ2×{w0}) and q({z0}×Σ3), respectively.
Let

SWM1
n
: H2(M1

n;Z) −→ Z
denote the ‘small perturbation’ Seiberg-Witten invariant of M1

n (cf. Lemma 3.2 in
[20]).

Theorem 13. SWM1
n
(L) ̸= 0 only when L = ±(2A+ 2B), and

|SWM1
n
(±(2A+ 2B))| = n.

Proof. Let Z denote the symplectic 4-manifold obtained by performing the following
five Luttinger surgeries on X:

(b′1 × c′′1 , b
′
1,−1), (a′2 × c′1, c

′
1,−1), (a′′2 × d′1, d

′
1,−1),

(b′1 × d′2, d
′
2,−1), ((b̃1b̃2)× c̃′2, β,−1).

Note that these are five of the six surgeries in (11) with p = 1. Hence we obtain
M1

n by performing (a′1 × c′1, a
′
1,−n) surgery on Z. We have e(Z) = 4, σ(Z) = 0,

b1(Z) = 1, b2(Z) = 4, and the intersection form of Z is isomorphic to 2H with a
basis given by

(15) ([a1 × c1],−[b1 × d1]), ([Σ2 × {w0}], [{z0} × Σ3]).

As shown in [8, 1], our theorem will follow at once if we can prove that the Seiberg-
Witten invariant of Z is nonzero only on ±c1(Z).

We abuse the notation slightly and let A and B also denote the Poincaré duals
of [Σ2 × {w0}] and [{z0} × Σ3], respectively, in H2(Z;Z). If SWZ(L) ̸= 0, then
by applying the adjunction inequality to four surfaces in (15), we conclude that
L = rA+ sB, where r and s are even integers satisfying |r| ≤ 2 and |s| ≤ 2. Since
the dimension of the Seiberg-Witten moduli space for L is nonnegative, we must
have

L2 = 2rs ≥ 2e(Z) + 3σ(Z) = 8.
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It follows that r = s = ±2, and L = ±(2A+ 2B) = ∓c1(Z). By Taubes’s theorem
in [21], we know that |SWZ(±c1(Z))| = 1. �

Since the value of the Seiberg-Witten invariant for the canonical class of a sym-
plectic 4-manifold is always ±1 by the work of Taubes [21] (see the proof of Theo-
rem 1.2 in [20] for the b+2 = 1 case), M1

n cannot be symplectic when n ≥ 2. Hence
we conclude that {M1

n | n ≥ 2} are irreducible (see Lemma 1), nonsymplectic and
mutually nondiffeomorphic. This concludes the proof of Theorem 3.

Remark 14. In [19], Rasmussen has computed the Ozsváth-Szabó invariant of
M1

n, and has shown that M1
n’s do not admit any perfect Morse function.
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