THE INDEX FOR FREDHOLM ELEMENTS IN A BANACH ALGEBRA VIA A TRACE

JJ Grobler and H Raubenheimer

Definition 1 Let I be an ideal in a Banach algebra. A function $\tau:I\to\mathbb{C}$ is called a **trace** if

- 1. $\tau(p) = 1$ for every rank one idempotent $p \in I$.
- 2. $\tau(a+b) = \tau(a) + \tau(b)$ for all $a, b \in I$.
- 3. $\tau(\alpha a) = \alpha \tau(a)$ for all $\alpha \in \mathbb{C}$ and $a \in I$.
- 4. $\tau(ab) = \tau(ba)$ for all $a \in I$ and $b \in A$.

Definition 2 Let A be a Banach algebra and I an ideal in A. We call an element $a \in A$ a **Fredholm element relative to I** if there exists $a_0 \in A$ such that

1.
$$aa_0 - 1 \in I$$
 and

2.
$$a_0a - 1 \in I$$
.

The collection of all Fredholm elements relative to I will be denoted by $\Phi(A, I)$.

Definition 3 Let τ be a trace on an ideal I in A. We define the index function $\iota : \Phi(A, I) \to \mathbb{C}$ by

 $\iota(a)= au(aa_0-a_0a) \quad ext{for all} \quad a\in \Phi(A,I).$ where a_0 satisfies $aa_0-1\in I$ and $a_0a-1\in I$.

Proposition 1 Let I be a trace ideal and $a \in \Phi(A, I)$.

- 1. The index function is well defined on $\Phi(A, I)$.
- 2. For $a, b \in \Phi(A, I)$, $\iota(ab) = \iota(a) + \iota(b)$.
- 3. For every $q \in I$ we have $\iota(a+q) = \iota(a)$.
- 4. For every $\lambda \neq 0$ and $q \in I$, $\iota(\lambda q) = 0$.
- 5. The set $\Phi(A, I)$ is open in A.
- 6. The index function ι is constant on every component of $\Phi(A,I)$.
- 7. The index function $\iota: \Phi(A,I) \to \mathbb{C}$ is continuous.

$$\mathsf{kh}(I) = \{ a \in A \mid a + \overline{I} \in \mathsf{Rad}(A/\overline{I}) \}$$

Theorem 1 Let A be a semisimple Banach algebra and let the trace ideal I satisfy $SocA \subset I \subset kh(SocA)$. Then

- 1. $a \in \Phi(A, I)$ if and only if there exists $a_0 \in A$ and idempotents $p, q \in SocA$ such that $aa_0 = 1 p$ and $a_0a = 1 q$.
- 2. $\iota(a) = \tau(q) \tau(p)$.
- 3. $\iota(a) = n(a) d(a)$.

If $a, b \in A$, then

$$\sigma(ab)\setminus\{0\}=\sigma(ba)\setminus\{0\}.$$

$$\varepsilon(ab)\setminus\{0\}=\varepsilon(ba)\setminus\{0\}$$
?

ExpA donotes the component of A^{-1} that contains 1. It is an open and closed subgroup of A^{-1} . The **exponential spectrum** of $a \in A$ is the set

$$\varepsilon(a) = \{\lambda \in \mathbb{C} \mid \lambda - a \notin \mathsf{Exp}A\}.$$

$$\partial \varepsilon(a) \subset \sigma(a) \subset \varepsilon(a)$$
.

Theorem 2 (Murphy) Let A be a Banach algebra and $a, b \in A$. Then each of the following conditions implies that $\varepsilon(ab)\setminus\{0\} = \varepsilon(ba)\setminus\{0\}$:

- 1. Either a or b is a limit or invertible elements.
- 2. A is of topological stable rank one.

Let I be a closed trace ideal such that $SocA \subset I \subset kh(SocA)$. Then

$$\Phi(A,I) = \bigcup_{n=-\infty}^{\infty} \iota^{-1}(n).$$

Let $J:A\to A/I$ be the natural homomorphism, ie, J(x)=x+I for all $x\in A$.

Proposition 2 Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with $Soc A \subset I \subset kh(Soc A)$. Then

$$J^{-1}\mathsf{Exp}(A/I)\subset\iota^{-1}(0).$$

Theorem 3 Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with $\operatorname{Soc} A \subset I \subset \operatorname{kh}(\operatorname{Soc} A)$. If $J^{-1}\operatorname{Exp}(A/I) = \iota^{-1}(0)$ then for all $a,b \in A$

$$\varepsilon(ab+I)\setminus\{0\}=\varepsilon(ba+I)\setminus\{0\}.$$

Theorem 4 Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with $\operatorname{Soc} A \subset I \subset \operatorname{kh}(\operatorname{Soc} A)$. If $a,b \in A$ with $1-ab \in \Phi(A,I)$, then $\iota(1-ab) = \iota(1-ba)$.