Uniqueness of Power Series Representations

Created by

Barbara Forrest and Brian Forrest

Uniqueness of Power Series Representations

Question:

Can a function f have more than one power series representation centered at $x=a$ with $R>0$? That is, if
and

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

must

$$
f(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

$$
a_{n}=b_{n}
$$

for all $n \in \mathbb{N} \cup\{0\}$?

Differentiation of Power Series

Theorem: [Differentiation of Power Series]

Assume that the power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ has radius of convergence $\boldsymbol{R}>\mathbf{0}$. Let

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

for all $x \in(a-R, a+R)$. Then f is differentiable on $(a-R, a+R)$ and for each $x \in(a-R, a+R)$,

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}
$$

Uniqueness of Power Series Representations

Observation: If $f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}$, we have

$$
a_{0}=f(a)=b_{0}
$$

Since f is differentiable on $(a-R, a+R)$ with
$f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}=a_{1}+2 a_{2}(x-a)+3 a_{3}(x-a)^{2}+\cdots$
and
$f^{\prime}(x)=\sum_{n=1}^{\infty} n b_{n}(x-a)^{n-1}=b_{1}+2 b_{2}(x-a)+3 b_{3}(x-a)^{2}+\cdots$
we get that

$$
a_{1}=f^{\prime}(a)=b_{1}
$$

Important Note: f^{\prime} is also differentiable on $(a-R, a+R)$.

Uniqueness of Power Series Representations

Observation (continued): Since

$$
f^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-a)^{n-2}=2 a_{2}+3 \cdot 2 a_{3}(x-a)+\cdots
$$

and
$f^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) b_{n}(x-a)^{n-2}=2 b_{2}+3 \cdot 2 b_{3}(x-a)+\cdots$
we get that

$$
2 a_{2}=f^{\prime \prime}(a)=2 b_{2}
$$

Hence

$$
a_{2}=\frac{f^{\prime \prime}(a)}{2}=b_{2}
$$

Uniqueness of Power Series Representations

Observation (continued): In fact f has derivatives of all orders on $(a-R, a+R)$ with

$$
f^{\prime \prime \prime}(x)=\sum_{n=3}^{\infty} n(n-1)(n-2) a_{n}(x-a)^{n-3}
$$

and
$f^{(k)}(x)=\sum_{n=k}^{\infty} n(n-1)(n-2)(n-3) \cdots(n-k+1) a_{n}(x-a)^{n-k}$
Hence

$$
f^{\prime \prime \prime}(a)=3!a_{3} \Rightarrow a_{3}=\frac{f^{\prime \prime \prime}(a)}{3!}
$$

and

$$
f^{(k)}(a)=k!a_{k} \Rightarrow a_{k}=\frac{f^{(k)}(a)}{k!}
$$

Note: We would also have

$$
b_{k}=\frac{f^{(k)}(a)}{k!}
$$

Uniqueness of Power Series Representations

Theorem: [Uniqueness of Power Series Representations]
Suppose that

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

for all $x \in(a-R, a+R)$ where $R>0$. Then

$$
a_{n}=\frac{f^{(n)}(a)}{n!}
$$

In particular, if we also had that

$$
f(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

then we must have that

$$
b_{n}=a_{n}
$$

for each $n=0,1,2,3, \ldots$
Remark: f may have different representations at different center points.

