# The Taylor Series for Cosine and Sine 

Created by

Barbara Forrest and Brian Forrest

## Taylor Series for $\cos (x)$

Example: Find the Taylor series centered at $x=0$ for $f(x)=\cos (x)$.

| $f^{\prime}(x)$ | $=$ | $-\sin (x)$ | $\Longrightarrow f^{\prime}(0)$ | $=$ | $-\sin (0)$ | $=$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f^{\prime}$ | 0 |  |  |  |  |  |
| $f^{\prime \prime}(x)$ | $=$ | $-\cos (x)$ | $\Longrightarrow f^{\prime \prime}(0)$ | $=$ | $-\cos (0)$ | $=$ |
| -1 |  |  |  |  |  |  |
| $f^{\prime \prime \prime}(x)$ | $=$ | $\sin (x)$ | $\Longrightarrow f^{\prime \prime \prime}(0)$ | $=$ | $\sin (0)$ | $=$ |
| $f^{\prime \prime}(4)(x)$ | $=$ | $\cos (x)$ | $\Longrightarrow f^{(4)}(0)$ | $=$ | $\cos (0)$ | $=$ |
| 1 |  |  |  |  |  |  |
| $f^{(5)}(x)$ | $=$ | $-\sin (x)$ | $\Longrightarrow f^{(5)}(0)$ | $=$ | $-\sin (0)$ | $=$ |
| $f^{(6)}(x)$ | $=$ | $-\cos (x)$ | $\Longrightarrow f^{(6)}(0)$ | $=$ | $-\cos (0)$ | $=$ |
| $f^{(7)}(x)$ | $=$ | $\sin (x)$ | $\Longrightarrow f^{(7)}(0)$ | $=$ | $\sin (0)$ | $=$ |
| 0 | 0 |  |  |  |  |  |
| $f^{(8)}(x)$ | $=$ | $\cos (x)$ | $\Longrightarrow f^{(8)}(0)$ | $=$ | $\cos (0)$ | $=$ |

In fact,

| $f^{(4 k)}(x)$ | $=$ | $\cos (x)$ | $\Longrightarrow f^{(4 k)}(0)$ |  | $\cos (0)$ | $=$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f^{(4 k}(0)$ | 1 |  |  |  |  |  |
| $f^{(4 k+1)}(x)$ | $=$ | $-\sin (x)$ | $\Longrightarrow f^{(4 k+1)}(0)$ | $=$ | $-\sin (0)$ | $=$ |
| $f^{(4 k+2)}(x)$ | $=$ | $-\cos (x)$ | $\Longrightarrow f^{(4 k+2)}(0)$ | $=$ | $-\cos (0)$ | $=$ |
| $f^{(4 k+3)}(x)$ | $=$ | $\sin (x)$ | $\Longrightarrow$ | $f^{(4 k+3)}(0)$ | $=$ | $\sin (0)$ |
|  | $=$ | 0 |  |  |  |  |

## Taylor Series for $\cos (x)$

## Example (continued):

Find the Taylor series centered at $x=0$ for $f(x)=\cos (x)$.
Hence

$$
\begin{aligned}
\cos (x) & \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =1+\frac{0 x}{1!}+\frac{-1 x^{2}}{2!}+\frac{0 x^{3}}{3!}+\frac{1 x^{4}}{4!}+\cdots \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
\end{aligned}
$$

Note: The series converges for all $x \in \mathbb{R}$.

## Taylor Series for $\sin (x)$

Example: Find the Taylor series centered at $x=\mathbf{0}$ for $g(x)=\sin (x)$.
We have

| $g^{(4 k)}(x)$ | $=$ | $\sin (x)$ | $\Longrightarrow$ | $g^{(4 k)}(0)$ | $=$ | $\sin (0)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $g^{(4 k+1)}(x)$ | $=$ | $\cos (x)$ | $\Longrightarrow$ | $g^{(4 k+1)}(0)$ | $=$ | $\cos (0)$ |
| $=$ | $=$ | 1 |  |  |  |  |
| $g^{(4 k+2)}(x)$ | $=$ | $-\sin (x)$ | $\Longrightarrow$ | $g^{(4 k+2)}(0)$ | $=$ | $-\sin (0)$ |
| $g^{(4 k+3)}(x)$ | $=$ | $-\cos (x)$ | $\Longrightarrow$ | $g^{(4 k+3)}(0)$ | $=$ | $-\cos (0)$ |
| $g^{(4 k+3}$ | $=$ | -1 |  |  |  |  |

Hence

$$
\begin{aligned}
\sin (x) & \sim x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

Question: Does

$$
\cos (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
$$

and

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} ?
$$

## Taylor Series for $\cos (x)$ and $\sin (x)$

Key Observation: Suppose that $f$ is a function for which $f^{(n)}(a)$ exists for each $n$ and hence with Taylor series

$$
f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Then the $\boldsymbol{k}$-th partial sum of the Taylor Series is

$$
T_{k, a}(x)=\sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

which is the $\boldsymbol{k}$-th degree Taylor polynomial for $f$ centered at $x=a$.
Hence

$$
f\left(x_{0}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}\left(x_{0}-a\right)^{n}=\lim _{k \rightarrow \infty} T_{k, a}\left(x_{0}\right)
$$

if and only if

$$
\lim _{k \rightarrow \infty} R_{k, a}\left(x_{0}\right)=0
$$

