Finding the Radius of Convergence

Created by

Barbara Forrest and Brian Forrest

Interval and Radius of Convergence

Definition: [Interval and Radius of Convergence]

Given a power series of the form $\sum\limits_{n=0}^{\infty}a_n(x-a)^n$, the set

$$I=\{x_0\in \mathbb{R}\mid \sum_{n=0}^\infty a_n(x_0-a)^n ext{ converges}\}$$

is an interval centered at x = a which we call the interval of convergence for the power series.

Let

$$R = egin{cases} lub(\{|x_0-a| \mid x_0 \in I\}) & ext{if } I ext{ is bounded}, \ \infty & ext{if } I ext{ is not bounded}. \end{cases}$$

Then *R* is called the *radius of convergence* of the power series.

Theorem: [Fundamental Convergence Theorem for Power Series]

Given a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ centered at x = a, let R be the radius of convergence.

- 1. If R = 0, then $\sum_{n=0}^{\infty} a_n (x a)^n$ converges for x = a, but it diverges for all other values of x.
- 2. If $0 < R < \infty$, then the series $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges absolutely for every $x \in (a R, a + R)$ and diverges if |x a| > R.
- 3. If $R = \infty$, then the series $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges absolutely for every $x \in \mathbb{R}$.

Radius of Convergence

Question: How do we find the radius of convergence R?

Key Observation: Given $\sum_{n=1}^{\infty} a_n x^n$, assume that n=0 $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a} \right|$ where $0 \leq L < \infty$. For $x_0 \neq 0$, let $b_n = a_n x_0^n$ $\left|\frac{b_{n+1}}{b_n}\right| = \lim_{n \to \infty} \left|\frac{a_{n+1}x_0^{n+1}}{a_n x_0^n}\right|$ $\lim_{n\to\infty}$ then $= \lim_{n \to \infty} |x_0| \left| \frac{a_{n+1}}{a_n} \right|$ $= |x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ $= L |x_0|$

Radius of Convergence

Conclusions:

- 1. The Ratio Test shows that the series $\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} a_n x_0^n$ converges absolutely if $L \mid x_0 \mid < 1$ and diverges if $L \mid x_0 \mid > 1$.
- 2. Assume that $0 < L < \infty$. Then $L \mid x_0 \mid < 1$ if and only if $\mid x_0 \mid < \frac{1}{L}$. Therefore, the radius of convergence is $\frac{1}{L}$.
- 3. If L = 0, then no matter the value of x_0 , we have $L \mid x_0 \mid = 0 < 1$. Therefore, $R = \infty$.
- 4. If

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty,$$

then the same calculation would show that

$$\lim_{n\to\infty}\left|\frac{b_{n+1}}{b_n}\right|=\infty$$

and as such the series diverges for all nonzero x_0 . But we know that the series must converge at x = 0, so R = 0.

Theorem: [Test for the Radius of Convergence]

Let $\sum\limits_{n=0}^{\infty}a_n(x-a)^n$ be a power series for which

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

where $0 \leq L < \infty$ or $L = \infty$. Let R be the radius of convergence of the power series.

- 1. If $0 < L < \infty$, then $R = \frac{1}{L}$.
- 2. If L = 0, then $R = \infty$.
- 3. If $L = \infty$, then R = 0.

Example

Example: Find the radius and interval of convergence for the power series

$$\sum_{n=0}^{\infty} \frac{x^n}{3^n (n^2 + 1)}$$
Solution: Let $a_n = \frac{1}{3^n (n^2 + 1)}$. Then
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{3^{n+1} ((n+1)^2 + 1)}{\frac{1}{3^n (n^2 + 1)}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{3^n (n^2 + 1)}{3^{n+1} ((n+1)^2 + 1)} \right|$$

$$= \lim_{n \to \infty} \frac{1}{3} (\frac{n^2 + 1}{n^2 + 2n + 2})$$

$$= \frac{1}{3} \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{1 + \frac{2}{n} + \frac{2}{n^2}}$$

$$= \frac{1}{3}$$

It follows from the Radius of Convergence Test that $R=rac{1}{rac{1}{3}}=3.$

Example (continued):

For x = 3, the series becomes

$$\sum_{n=0}^{\infty} \frac{3^n}{3^n (n^2 + 1)} = \sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$
$$\frac{1}{n^2 + 1} < \frac{1}{n^2}$$

Since

and since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, the Comparison Test shows that $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converges and hence that

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$

converges.

Example (continued):

Similarly, if x = -3, the series becomes

$$\sum_{n=0}^{\infty} \frac{(-3)^n}{3^n (n^2 + 1)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + 1}$$

Then the Alternating Series Test applies and this series also converges.

Alternately, we have

$$\frac{(-1)^n}{n^2+1} = \frac{1}{n^2+1}$$

and since $\sum_{n=0}^{\infty} \frac{1}{n^2+1}$ converges, this shows $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+1}$ converges absolutely.

Therefore, the interval of convergence is [-3, 3].

Key Observation: The series

$$\sum_{n=0}^{\infty} \frac{x^n}{3^n(n^2+1)}$$

have the same radius of convergence!

Theorem

Let p and q be non-zero polynomials where $q(n) \neq 0$ for $n \geq k$. Then the following series have the same radius of convergence:

and

1.
$$\sum_{n=k}^{\infty} a_n (x-a)^n$$

2.
$$\sum_{n=k}^{\infty} \frac{a_n p(n) (x-a)^n}{q(n)}$$

However, they may have different intervals of convergence.

Radius of Convergence

Example: Find the radius and interval of convergence for the series

$$1 + 2x + x^2 + 2x^3 + x^4 + \cdots$$
$$\frac{a_{n+1}}{a_n} = \begin{cases} 2 & \text{if } n \text{ is even} \\ \frac{1}{2} & \text{if } n \text{ is odd} \end{cases}$$
$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

SO

does not exist.

In this case

Observations:

- 1) The Divergence Test shows the series diverges if $\mid x \mid \geq 1$.
- 2) If $0 \le x_0 < 1$, then

$$0 < 1 + 2x_0 + x_0^2 + 2x_0^3 + x_0^4 + \dots \le 2(1 + x_0 + x_0^2 + x_0^3 + x_0^4 + \dots)$$

so the series converges by the Comparison Test and the Geometric Series Test.

Hence R = 1 and the interval of convergence is (-1, 1).