Finding the Radius of Convergence

Created by

Barbara Forrest and Brian Forrest

Interval and Radius of Convergence

Definition: [Interval and Radius of Convergence]
Given a power series of the form $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$, the set

$$
I=\left\{x_{0} \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n} \text { converges }\right\}
$$

is an interval centered at $x=a$ which we call the interval of convergence for the power series.

Let

$$
R= \begin{cases}\operatorname{lub}\left(\left\{\left|x_{0}-a\right| \mid x_{0} \in I\right\}\right) & \text { if } I \text { is bounded } \\ \infty & \text { if } I \text { is not bounded. }\end{cases}
$$

Then \boldsymbol{R} is called the radius of convergence of the power series.

Radius of Convergence

Theorem: [Fundamental Convergence Theorem for Power Series]

Given a power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ centered at $x=a$, let R be the radius of convergence.

1. If $R=0$, then $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converges for $x=a$, but it diverges for all other values of \boldsymbol{x}.
2. If $0<R<\infty$, then the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converges absolutely for every $x \in(a-R, a+R)$ and diverges if $|x-a|>R$.
3. If $R=\infty$, then the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converges absolutely for every $x \in \mathbb{R}$.

Radius of Convergence

Question: How do we find the radius of convergence \boldsymbol{R} ?
Key Observation: Given $\sum_{n=0}^{\infty} a_{n} x^{n}$, assume that

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

where $0 \leq L<\infty$. For $x_{0} \neq 0$, let

$$
b_{n}=a_{n} x_{0}^{n}
$$

then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x_{0}^{n+1}}{a_{n} x_{0}^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x_{0}\right|\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\left|x_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =L\left|x_{0}\right|
\end{aligned}
$$

Radius of Convergence

Conclusions:

1. The Ratio Test shows that the series $\sum_{n=0}^{\infty} b_{n}=\sum_{n=0}^{\infty} a_{n} x_{0}^{n}$ converges absolutely if $L\left|x_{0}\right|<1$ and diverges if $L\left|x_{0}\right|>1$.
2. Assume that $0<L<\infty$. Then $L\left|x_{0}\right|<1$ if and only if $\left|x_{0}\right|<\frac{1}{L}$. Therefore, the radius of convergence is $\frac{1}{L}$.
3. If $L=0$, then no matter the value of x_{0}, we have $L\left|x_{0}\right|=0<1$. Therefore, $\boldsymbol{R}=\infty$.
4. If

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty
$$

then the same calculation would show that

$$
\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|=\infty
$$

and as such the series diverges for all nonzero x_{0}. But we know that the series must converge at $x=0$, so $R=0$.

Radius of Convergence

Theorem: [Test for the Radius of Convergence]
Let $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ be a power series for which

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

where $0 \leq L<\infty$ or $L=\infty$. Let R be the radius of convergence of the power series.

1. If $0<L<\infty$, then $R=\frac{1}{L}$.
2. If $L=0$, then $R=\infty$.
3. If $L=\infty$, then $R=0$.

Example

Example: Find the radius and interval of convergence for the power series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}\left(n^{2}+1\right)}
$$

Solution: Let $a_{n}=\frac{1}{3^{n}\left(n^{2}+1\right)}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{3^{n+1}\left((n+1)^{2}+1\right)}}{\frac{1}{3^{n}\left(n^{2}+1\right)}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{3^{n}\left(n^{2}+1\right)}{3^{n+1}\left((n+1)^{2}+1\right)}\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{3}\left(\frac{n^{2}+1}{n^{2}+2 n+2}\right) \\
& =\frac{1}{3} \lim _{n \rightarrow \infty} \frac{1+\frac{1}{n^{2}}}{1+\frac{2}{n}+\frac{2}{n^{2}}} \\
& =\frac{1}{3}
\end{aligned}
$$

It follows from the Radius of Convergence Test that $\boldsymbol{R}=\frac{1}{\frac{1}{3}}=\mathbf{3}$.

Example

Example (continued):

For $x=3$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{3^{n}\left(n^{2}+1\right)}=\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}
$$

Since

$$
\frac{1}{n^{2}+1}<\frac{1}{n^{2}}
$$

and since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, the Comparison Test shows that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges and hence that

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}
$$

converges.

Example

Example (continued):

Similarly, if $x=-3$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{(-3)^{n}}{3^{n}\left(n^{2}+1\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

Then the Alternating Series Test applies and this series also converges.
Alternately, we have

$$
\left|\frac{(-1)^{n}}{n^{2}+1}\right|=\frac{1}{n^{2}+1}
$$

and since $\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$ converges, this shows $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$ converges absolutely.

Therefore, the interval of convergence is $[-3,3]$.

Radius of Convergence

Key Observation: The series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}\left(n^{2}+1\right)} \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}}
$$

have the same radius of convergence!

Theorem

Let p and q be non-zero polynomials where $q(n) \neq 0$ for $n \geq k$. Then the following series have the same radius of convergence:

1. $\sum_{n=k}^{\infty} a_{n}(x-a)^{n}$
2. $\sum_{n=k}^{\infty} \frac{a_{n} p(n)(x-a)^{n}}{q(n)}$

However, they may have different intervals of convergence.

Radius of Convergence

Example: Find the radius and interval of convergence for the series

$$
1+2 x+x^{2}+2 x^{3}+x^{4}+\cdots
$$

In this case

$$
\frac{a_{n+1}}{a_{n}}= \begin{cases}2 & \text { if } n \text { is even } \\ \frac{1}{2} & \text { if } n \text { is odd }\end{cases}
$$

so

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}
$$

does not exist.

Observations:

1) The Divergence Test shows the series diverges if $|x| \geq 1$.
2) If $0 \leq x_{0}<1$, then

$$
0<1+2 x_{0}+x_{0}^{2}+2 x_{0}^{3}+x_{0}^{4}+\cdots \leq 2\left(1+x_{0}+x_{0}^{2}+x_{0}^{3}+x_{0}^{4}+\cdots\right)
$$

so the series converges by the Comparison Test and the Geometric Series Test.
Hence $R=1$ and the interval of convergence is $(-1,1)$.

