Created by

Barbara Forrest and Brian Forrest

Example 1: Using the Generalized Binomial Theorem we saw that

$$(1+x)^{-2} = \sum_{k=1}^{\infty} (-1)^{k-1} k x^{k-1}$$

Verify this using term-by-term differentiation.

Solution: We know that for $u \in (-1, 1)$

$$\frac{1}{1-u} = \sum_{k=0}^{\infty} u^k$$

so with u = -x,

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$

Term-by-term differentiation gives

$$-\frac{1}{(1+x)^2} = \sum_{k=1}^{\infty} (-1)^k k x^{k-1}$$

Factoring out -1 gives

$$\frac{1}{(1+x)^2} = \sum_{k=1}^{\infty} (-1)^{k-1} k x^{k-1}$$

Example 2: We know that
$$\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n$$
 for $u \in (-1, 1)$. Hence, if we let $u = -x^2$, then

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

for all $x \in (-1, 1)$.

It follows that

$$\arctan(x) = C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

for some C. But $\arctan(0)=0 \Rightarrow C=0$ and

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Moreover, because $\sum\limits_{n=0}^{\infty}(-1)^n rac{x^{2n+1}}{2n+1}$ also converges at x=1, we have

$$\frac{\pi}{4} = \arctan(1) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} \Rightarrow \pi = \sum_{n=0}^{\infty} (-1)^n \frac{4}{2n+1}$$

Example 3:

i) Find the Taylor series centered at x = 0 for the integral function

$$F(x) = \int_0^x \cos(t^2) \, dt$$

- ii) Find $F^{(9)}(0)$ and $F^{(16)}(0)$.
- iii) Estimate $\int_0^{0.1} \cos(t^2) dt$ with an error of less than $\frac{1}{10^6}$.

Solution: i) We know that for any $u \in \mathbb{R}$,

$$\cos(u) = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n}}{(2n)!}$$

If we let $u=t^2$, we get that for any $t\in\mathbb{R},$

$$\cos(t^2) = \sum_{n=0}^{\infty} (-1)^n \frac{(t^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^n \frac{t^{4n}}{(2n)!}$$

Example 3 (continued): The Integration Theorem for Power Series gives us that

$$F(x) = \int_0^x \cos(t^2) dt$$

= $\int_0^x \sum_{n=0}^\infty (-1)^n \frac{t^{4n}}{(2n)!} dt$
= $\sum_{n=0}^\infty \int_0^x (-1)^n \frac{t^{4n}}{(2n)!} dt$
= $\sum_{n=0}^\infty \left[(-1)^n \frac{t^{4n+1}}{(4n+1)(2n)!} \Big|_0^x \right]$
= $\sum_{n=0}^\infty (-1)^n \frac{x^{4n+1}}{(4n+1)(2n)!}$

for all $x \in \mathbb{R}$.

Example 3 (continued): ii) We have

$$F(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{(4n+1)(2n)!}$$

We know that

$$F^{(9)}(0) = a_9 9!$$
 and $F^{(16)}(0) = a_{16} 16!$

Then

$$4n+1=9 \Rightarrow n=2$$

so that

$$a_9 = (-1)^2 \frac{1}{(4(2)+1)(2\cdot 2)!} = \frac{1}{9\cdot 4!}$$

Hence

$$F^{(9)}(0) = \frac{1}{9 \cdot 4!} \cdot 9! = 5 \cdot 6 \cdot 7 \cdot 8 = 1680$$

Since 4n+1
eq 16 for any $n\in\mathbb{N}\cup\{0\},$ $a_{16}=0$ and

 $F^{(16)}(0) = 0$

Example 3 (continued): iii) Estimate $\int_0^{0.1} \cos(t^2) dt$ with an error of less than $\frac{1}{10^6}$.

Since

$$F(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{(4n+1)(2n)!}$$

we have

$$\int_0^{0.1} \cos(t^2) \, dt = F(0.1) = \sum_{n=0}^\infty (-1)^n \frac{(0.1)^{4n+1}}{(4n+1)(2n)!}$$

This is an alternating series with

$$a_n = \frac{(0.1)^{4n+1}}{(4n+1)(2n)!}$$

Then

$$a_1 = rac{(0.1)^5}{(5)(2)!} = rac{1}{10^6}$$

and
$$\sum_{n=0}^{0} (-1)^n \frac{(0.1)^{4n+1}}{(4n+1)(2n)!} = (-1)^0 \frac{(0.1)}{(1)(0!)} = 0.1 = a_0$$
 so
 $\left| \int_0^{0.1} \cos(t^2) dt - 0.1 \right| < a_1 = \frac{1}{10^6}$