More Examples of Power Series

Created by

Barbara Forrest and Brian Forrest

More Examples of Power Series

Example 1: Using the Generalized Binomial Theorem we saw that

$$
(1+x)^{-2}=\sum_{k=1}^{\infty}(-1)^{k-1} k x^{k-1}
$$

Verify this using term-by-term differentiation.
Solution: We know that for $u \in(-1,1)$

$$
\frac{1}{1-u}=\sum_{k=0}^{\infty} u^{k}
$$

so with $u=-x$,

$$
\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k}
$$

Term-by-term differentiation gives

$$
-\frac{1}{(1+x)^{2}}=\sum_{k=1}^{\infty}(-1)^{k} k x^{k-1}
$$

Factoring out $\mathbf{- 1}$ gives

$$
\frac{1}{(1+x)^{2}}=\sum_{k=1}^{\infty}(-1)^{k-1} k x^{k-1}
$$

More Examples of Power Series

Example 2: We know that $\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}$ for $u \in(-1,1)$. Hence, if we let $u=-x^{2}$, then

$$
\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

for all $x \in(-1,1)$.
It follows that

$$
\arctan (x)=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

for some C. But $\arctan (0)=0 \Rightarrow C=0$ and

$$
\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

Moreover, because $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ also converges at $x=1$, we have

$$
\frac{\pi}{4}=\arctan (1)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} \Rightarrow \pi=\sum_{n=0}^{\infty}(-1)^{n} \frac{4}{2 n+1}
$$

More Examples of Power Series

Example 3:

i) Find the Taylor series centered at $\boldsymbol{x}=\mathbf{0}$ for the integral function

$$
F(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t
$$

ii) Find $F^{(9)}(0)$ and $F^{(16)}(0)$.
iii) Estimate $\int_{0}^{0.1} \cos \left(t^{2}\right) d t$ with an error of less than $\frac{1}{10^{6}}$.

Solution: i) We know that for any $u \in \mathbb{R}$,

$$
\cos (u)=\sum_{n=0}^{\infty}(-1)^{n} \frac{u^{2 n}}{(2 n)!}
$$

If we let $u=t^{2}$, we get that for any $t \in \mathbb{R}$,

$$
\cos \left(t^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(t^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{4 n}}{(2 n)!}
$$

More Examples of Power Series

Example 3 (continued): The Integration Theorem for Power Series gives us that

$$
\begin{aligned}
F(x) & =\int_{0}^{x} \cos \left(t^{2}\right) d t \\
& =\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} \frac{t^{4 n}}{(2 n)!} d t \\
& =\sum_{n=0}^{\infty} \int_{0}^{x}(-1)^{n} \frac{t^{4 n}}{(2 n)!} d t \\
& =\sum_{n=0}^{\infty}\left[\left.(-1)^{n} \frac{t^{4 n+1}}{(4 n+1)(2 n)!}\right|_{0} ^{x}\right] \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{(4 n+1)(2 n)!}
\end{aligned}
$$

for all $\boldsymbol{x} \in \mathbb{R}$.

More Examples of Power Series

Example 3 (continued): ii) We have

$$
F(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{(4 n+1)(2 n)!}
$$

We know that

$$
F^{(9)}(0)=a_{9} 9!\text { and } F^{(16)}(0)=a_{16} 16!
$$

Then

$$
4 n+1=9 \Rightarrow n=2
$$

so that

$$
a_{9}=(-1)^{2} \frac{1}{(4(2)+1)(2 \cdot 2)!}=\frac{1}{9 \cdot 4!}
$$

Hence

$$
F^{(9)}(0)=\frac{1}{9 \cdot 4!} \cdot 9!=5 \cdot 6 \cdot 7 \cdot 8=1680
$$

Since $4 n+1 \neq 16$ for any $n \in \mathbb{N} \cup\{0\}, a_{16}=0$ and

$$
F^{(16)}(0)=0
$$

More Examples of Power Series

Example 3 (continued): iii) Estimate $\int_{0}^{0.1} \cos \left(t^{2}\right) d t$ with an error of less than $\frac{1}{10^{6}}$.
Since

$$
F(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{(4 n+1)(2 n)!}
$$

we have

$$
\int_{0}^{0.1} \cos \left(t^{2}\right) d t=F(0.1)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(0.1)^{4 n+1}}{(4 n+1)(2 n)!}
$$

This is an alternating series with

$$
a_{n}=\frac{(0.1)^{4 n+1}}{(4 n+1)(2 n)!}
$$

Then

$$
a_{1}=\frac{(0.1)^{5}}{(5)(2)!}=\frac{1}{10^{6}}
$$

and $\sum_{n=0}^{0}(-1)^{n} \frac{(0.1)^{4 n+1}}{(4 n+1)(2 n)!}=(-1)^{0} \frac{(0.1)}{(1)(0!)}=0.1=a_{0}$ so

$$
\left|\int_{0}^{0.1} \cos \left(t^{2}\right) d t-0.1\right|<a_{1}=\frac{1}{10^{6}}
$$

