Introduction to Taylor Series

Created by

Barbara Forrest and Brian Forrest

Taylor Series

Remark : Given a function f that can be represented by a power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

centered at $x=a$ with $R>0$, we have seen that f has derivatives of all orders at $x=a$ and that

$$
a_{n}=\frac{f^{(n)}(a)}{n!}
$$

So, in fact,

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Question : If we assume that a function f has derivatives of all orders at $a \in \mathbb{R}$, then the above series can certainly be constructed. Does the series represent f ?

Taylor Series

Definition: [Taylor Series]

Assume that f has derivatives of all orders at $a \in \mathbb{R}$. The formal series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

is called the Taylor series for f centered at $\boldsymbol{x}=\boldsymbol{a}$.
We write

$$
f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

In the special case where $\boldsymbol{a}=0$, the series is often referred to as the Maclaurin series for f.

Key Fact :

If f is represented by any power series it must be its Taylor series.

Taylor Series

Central Problems: Suppose that f is any function for which $f^{(n)}(a)$ exists for each n.

1) For which values of x does the series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

converge?
2) If the series above converges at x_{0}, is it true that

$$
f\left(x_{0}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}\left(x_{0}-a\right)^{n} ?
$$

That is, can f be reconstructed from the data contained in its various derivatives at the single point $x=a$?

Taylor Series

Example: Let $f(x)=e^{x}$. Then

$$
f^{(k)}(x)=e^{x} \quad \text { and } \quad f^{(k)}(0)=e^{0}=1
$$

for all $k=0,1,2,3, \ldots$
Hence

$$
e^{x} \sim \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

and this series converges for all $x \in \mathbb{R}$.
Fact: We know that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

for all $x \in \mathbb{R}$.

Taylor Series

Example: Let

$$
g(x)= \begin{cases}\frac{1}{e} & \text { if } x<-1 \\ e^{x} & \text { if }-1 \leq x \leq 1 \\ e & \text { if } x>1\end{cases}
$$

Then

$$
g^{(k)}(0)=e^{0}=1
$$

for all $k=0,1,2,3, \ldots$ so that

$$
g(x) \sim \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

and this series converges for all $x \in \mathbb{R}$.
However

$$
g(x) \neq \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n}
$$

if $x=7$.

Taylor Series

A Strange Example:

Let

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Taylor Series

Strange Example (continued): For

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

we can show that for every $k=0,1,2, \cdots$,

$$
f^{(k)}(0)=0
$$

Hence, the Taylor series is

$$
f(x) \sim \sum_{n=0}^{\infty} 0 \cdot x^{n}=0
$$

which converges everywhere but only agrees with the function $f(x)$ at $x=0$.

Taylor Series

Important Observations:

Suppose that f is any function for which $f^{(n)}(a)$ exists for each n.

1) Many different functions can have the same Taylor series centered at $x=a$ as does f.
2) Even if the Taylor series of f converges at a point x_{0}, it need not converge to $f\left(x_{0}\right)$.
3) The Taylor series centered at $x=a$ will always converge at a with value $f(a)$.

Taylor Series

Example: Find the Taylor series centered at $x=0$ for $f(x)=\cos (x)$.

$f^{\prime}(x)$	$=$	$\sin (x)$	$\Longrightarrow f^{\prime}(0)$	$=$	$-\sin (0)$	$=$
f^{\prime}	0					
$f^{\prime \prime}(x)$	$=$	$-\cos (x)$	$\Longrightarrow f^{\prime \prime}(0)$	$=$	$-\cos (0)$	$=$
$f^{\prime \prime}$	-1					
$f^{\prime \prime \prime}(x)$	$=$	$\sin (x)$	$\Longrightarrow f^{\prime \prime \prime}(0)$	$=$	$\sin (0)$	$=$
$f^{(4)}(x)$	$=$	$\cos (x)$	$\Longrightarrow f^{(4)}(0)$	$=$	$\cos (0)$	$=$
1						
$f^{(5)}(x)$	$=$	$-\sin (x)$	$\Longrightarrow f^{(5)}(0)$	$=$	$-\sin (0)$	$=$
$f^{(6)}(x)$	$=$	$-\cos (x)$	$\Longrightarrow f^{(6)}(0)$	$=$	$-\cos (0)$	$=$
$f^{(7)}(x)$	$=$	$\sin (x)$	$\Longrightarrow f^{(7)}(0)$	$=$	$\sin (0)$	$=$
$f^{(8)}(x)$	$=$	$\cos (x)$	$\Longrightarrow f^{(8)}(0)$	$=$	$\cos (0)$	$=$

In fact,

$f^{(4 k)}(x)$	$=$	$\cos (x)$	$\Longrightarrow f^{(4 k)}(0)$		$\cos (0)$	$=$
$f^{(4 k}(0)$	1					
$f^{(4 k+1)}(x)$	$=$	$-\sin (x)$	$\Longrightarrow f^{(4 k+1)}(0)$	$=$	$-\sin (0)$	$=$
$f^{(4 k+2)}(x)$	$=$	$-\cos (x)$	$\Longrightarrow f^{(4 k+2)}(0)$	$=$	$-\cos (0)$	$=$
$f^{(4 k+3)}(x)$	$=$	$\sin (x)$	\Longrightarrow	$f^{(4 k+3)}(0)$	$=$	$\sin (0)$
	$=$	0				

Taylor Series

Example (continued):

Find the Taylor series centered at $x=0$ for $f(x)=\cos (x)$.
Hence

$$
\begin{aligned}
\cos (x) & \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =1+\frac{0 x}{1!}+\frac{-1 x^{2}}{2!}+\frac{0 x^{3}}{3!}+\frac{1 x^{4}}{4!}+\cdots \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
\end{aligned}
$$

Note: The series converges for all $x \in \mathbb{R}$.

Taylor Series

Example: Find the Taylor series centered at $x=0$ for $g(x)=\sin (x)$.
We have

$g^{(4 k)}(x)$	$=$	$\sin (x)$	\Longrightarrow	$g^{(4 k)}(0)$	$=$	$\sin (0)$
$g^{(4 k+1)}(x)$	$=$	$\cos (x)$	\Longrightarrow	$g^{(4 k+1)}(0)$	$=$	$\cos (0)$
$g^{(4 k}$	$=$	1				
$g^{(4 k+2)}(x)$	$=$	$-\sin (x)$	\Longrightarrow	$g^{(4 k+2)}(0)$	$=$	$-\sin (0)$
$g^{(4 k+3)}(x)$	$=$	$-\cos (x)$	\Longrightarrow	0		
$g^{(4 k+3)}(0)$	$=$	$-\cos (0)$	$=$	-1		

Hence

$$
\begin{aligned}
\sin (x) & \sim x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

Question: Does

$$
\cos (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
$$

and

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} ?
$$

Taylor Series

Key Observation: Suppose that f is a function for which $f^{(n)}(a)$ exists for each n and hence with Taylor series

$$
f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Then the \boldsymbol{k}-th partial sum of the Taylor Series is

$$
T_{k, a}(x)=\sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

which is the \boldsymbol{k}-th degree Taylor polynomial for f centered at $\boldsymbol{x}=\boldsymbol{a}$.
Hence

$$
f\left(x_{0}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}\left(x_{0}-a\right)^{n}=\lim _{k \rightarrow \infty} T_{k, a}\left(x_{0}\right)
$$

if and only if

$$
\lim _{k \rightarrow \infty} R_{k, a}\left(x_{0}\right)=0
$$

