Introduction to Power Series

Created by
Barbara Forrest and Brian Forrest

Example

Problem: For which values of x does the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ converge?
Solution: Observe that if $b_{n}=\left|\frac{x^{n}}{n}\right|$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{|x|^{n+1}}{n+1}}{\frac{|x|^{n}}{n}} \\
& =\lim _{n \rightarrow \infty}|x| \frac{n}{n+1} \\
& =|x|
\end{aligned}
$$

The Ratio Test shows that $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ converges absolutely if $|x|<1$ and the series diverges if $|x|>1$.
If $x=1$, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges.
If $x=-1$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, which converges.

Power Series

Definition: [Power Series]

A power series centered at $x=a$ is a formal series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

where \boldsymbol{x} is viewed as a variable.
The value a_{n} is called the coefficient of the term $(x-a)^{n}$.

Central Questions:

1) If $I=\left\{x_{0} \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n}\right.$ converges $\}$, then what can we say about I ?
2) If we define a function f on I by $f\left(x_{0}\right)=\sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n}$ for all $x_{0} \in I$, then what can we say about $f(x)$?

Power Series

Observations:

1) Our convention is that $0^{0}=1$, so that if $x=a$, the series becomes

$$
\sum_{n=0}^{\infty} a_{n}(a-a)^{n}=a_{0}+0+0+0+\cdots=a_{0}
$$

2) We can let $u=x-a$ to get that $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converges at

$$
x=x_{0} \text { if and only if } \sum_{n=0}^{\infty} a_{n} u^{n} \text { converges at } u=x_{0}-a .
$$

Consequence: We need only focus on series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Interval of Convergence

Note: The series $\sum_{n=0}^{\infty} a_{n} x^{n}$ always converges at $\boldsymbol{x}=\mathbf{0}$.
Assume that $\sum_{n=0}^{\infty} a_{n} x_{1}^{n}$ converges where $x_{1} \neq 0$.

Then $\lim _{n \rightarrow \infty}\left|a_{n} x_{1}^{n}\right|=0$ and there exists an $N_{0} \in \mathbb{N}$ so that if $n \geq N_{0}$ we have $\left|a_{n} x_{1}^{n}\right| \leq 1$.
Let $\left|x_{0}\right|<\left|x_{1}\right|$. Then if $n \geq N_{0}$

$$
\left|a_{n} x_{0}^{n}\right|=\left|a_{n} x_{1}^{n}\right|\left|\frac{x_{0}}{x_{1}}\right|^{n} \leq\left|\frac{x_{0}}{x_{1}}\right|^{n}
$$

Since $\left|\frac{x_{0}}{x_{1}}\right|<1$, the series

$$
\sum_{n=N_{0}}^{\infty}\left|\frac{x_{0}}{x_{1}}\right|^{n}
$$

converges. By the Comparison Test we have that

$$
\sum_{n=0}^{\infty} a_{n} x_{0}^{n} \quad \text { converges absolutely. }
$$

Interval of Convergence

Key Observations: If the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $x_{1} \neq 0$ and if $\left|x_{0}\right|<\left|x_{1}\right|$, then the series converges at x_{0} as well.

Let

$$
I=\left\{x_{0} \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n} x_{0}^{n} \text { converge }\right\}
$$

Then

$$
\left(-\left|x_{1}\right|,\left|x_{1}\right|\right) \subset I
$$

$\Rightarrow I$ is an interval centered around $x=0$.
Note: The same analysis works for power series of the form $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$.

Interval and Radius of Convergence

Definition: [Interval and Radius of Convergence]
Given a power series of the form $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$, the set

$$
I=\left\{x_{0} \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n} \text { converges }\right\}
$$

is an interval centered at $x=a$ which we call the interval of convergence for the power series.

Let

$$
R= \begin{cases}\operatorname{lub}\left(\left\{\left|x_{0}-a\right| \mid x_{0} \in I\right\}\right) & \text { if } I \text { is bounded } \\ \infty & \text { if } I \text { is not bounded. }\end{cases}
$$

Then \boldsymbol{R} is called the radius of convergence of the power series.

Interval of Convergence

Theorem: [Fundamental Convergence Theorem for Power Series]
Given a power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ centered at $x=a$, let R be the radius of convergence.

1. If $R=0$, then $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converges for $x=a$, but it diverges for all other values of x.
2. If $0<R<\infty$, then the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converges absolutely for every $x \in(a-R, a+R)$ and diverges if $|x-a|>R$.
3. If $R=\infty$, then the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converges absolutely for every $x \in \mathbb{R}$.

Interval of Convergence

Remark: If $0<\boldsymbol{R}<\infty$, then there are four possibilities for the interval of convergence I.

$$
\begin{array}{ll}
\text { 1) } I=(a-R, a+R) & \text { Example: } \sum_{n=0}^{\infty} x^{n} \Rightarrow I=(-1,1) . \\
\text { 2) } I=[a-R, a+R) & \text { Example: } \sum_{n=1}^{\infty} \frac{x^{n}}{n} \Rightarrow I=[-1,1) . \\
\text { 3) } I=(a-R, a+R] & \text { Example: } \sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n} \Rightarrow I=(-1,1] . \\
\text { 4) } I=[a-R, a+R] & \text { Example: } \sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \Rightarrow I=[-1,1] .
\end{array}
$$

Key Note: Once \boldsymbol{R} is determined, you need to test the endpoints separately.

