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Formal Antiderivative of a Power Series

Definition: [Formal Antiderivative of a Power Series]

Given a power series
∞∑

n=0
an(x− a)n, we define the formal

antiderivative to be the power series

∞∑
n=0

∫
an(x− a)n dx = C +

∞∑
n=0

an

n + 1
(x− a)n+1

where C is an arbitrary constant.
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Formal Antiderivative of a Power Series

Fundamental Problem: Suppose that the power series

∞∑
n=0

an(x− a)n

has radius of convergence R > 0. Let

f(x) =
∞∑

n=0

an(x− a)n

be the function that is represented by this power series on the interval
(a−R, a + R). Are the formal anitderivatives

C +
∞∑

n=0

an

n + 1
(x− a)n+1

true antiderivatives of the function f?COPYRIG
HTED



Formal Antiderivative of a Power Series
Key Observations:

1. The series
∞∑

n=0

an

n + 1
(x− a)n

is obtained from
∞∑

n=0

an(x− a)n by dividing each coefficient an by

q(n) = n + 1 so they have the same radius of convergence R.

2. The formal antiderivative

C +

∞∑
n=0

an

n + 1
(x− a)n+1

will have radius of convergence R.

3. If
F (x) = C +

∞∑
n=0

an

n + 1
(x− a)n+1

on (a−R, a + R), then its formal derivative is
∞∑

n=0

an(x− a)nCOPYRIG
HTED



Term-by-Term Integration of a Power Series
Theorem: [Term-by-Term Integration of a Power Series]

Assume that the power series
∞∑

n=0

an(x− a)n has radius of convergence

R > 0. Let

f(x) =

∞∑
n=0

an(x− a)n

for every x ∈ (a−R, a + R). Then the series
∞∑

n=0

∫
an(x− a)n dx = C +

∞∑
n=0

an

n + 1
(x− a)n+1

also has radius of convergence R and if

F (x) = C +

∞∑
n=0

an

n + 1
(x− a)n+1

then F ′(x) = f(x).
Furthermore, if [c, b] ⊂ (a−R, a + R), then∫ b

c

f(x) dx =

∫ b

c

∞∑
n=0

an(x− a)n dx =

∞∑
n=0

∫ b

c

an(x− a)n dxCOPYRIG
HTED



Term-by-Term Integration of a Power Series

Important Note: It may seem perfectly natural that we are also able to
integrate term-by-term the functions that are represented by a power
series.

In general, if

F (x) =
∞∑

n=1

fn(x)

for each x ∈ [a, b], then we might hope that∫ b

a

F (x) dx =
∞∑

n=1

∫ b

a

fn(x) dx

Fact: If we do not make any additional assumptions about the nature of
the functions fn or about how the series converges, then it is possible
that the function F need not even be integrable on [a, b] even if all of the
fn’s are. COPYRIG
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Term-by-Term Integration of a Power Series

Example: Find a power series representation for ln(1 + x).

Solution: Note that

d

dx
(ln(1 + x)) =

1

1 + x

Key Observation: For any u ∈ (−1, 1),

1

1− u
=

∞∑
n=0

un

If u = −x we get

1

1 + x
=

1

1− (−x)
=

∞∑
n=0

(−x)n

for any x ∈ (−1, 1).COPYRIG
HTED



Term-by-Term Integration of a Power Series
Solution (continued): Therefore, there is a constant C such that

ln(1 + x) = C +
∞∑

n=0

∫
(−1)nxn dx

= C +
∞∑

n=0

(−1)n

n + 1
xn+1

for all x ∈ (−1, 1).

When x = 0 we get

0 = ln(1 + 0)

= C +
∞∑

n=0

(−1)n

n + 1
0n+1

= C

Therefore
ln(1 + x) =

∞∑
n=0

(−1)n

n + 1
xn+1

for all x ∈ (−1, 1).COPYRIG
HTED



Term-by-Term Integration of a Power Series
Key Note: The series

∞∑
n=0

(−1)n

n + 1
xn+1

has radius of convergence R = 1. However, if x = 1 the series
becomes

∞∑
n=0

(−1)n

n + 1
1n+1 =

1

1
−

1

2
+

1

3
−

1

4
+

1

5
− · · ·

which is exactly the Alternating Series. Therefore, the series also
converges at x = 1.
By Abel’s Theorem, the equation

ln(1 + x) =

∞∑
n=0

(−1)n

n + 1
xn+1

is actually valid on (-1,1] and

ln(2) = ln(1 + 1) =
1

1
−

1

2
+

1

3
−

1

4
+

1

5
− · · · =

∞∑
n=1

(−1)n+1

nCOPYRIG
HTED
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