Integration of Power Series

Created by

Barbara Forrest and Brian Forrest

Formal Antiderivative of a Power Series

Definition: [Formal Antiderivative of a Power Series]

Given a power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$, we define the formal antiderivative to be the power series

$$
\sum_{n=0}^{\infty} \int a_{n}(x-a)^{n} d x=C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-a)^{n+1}
$$

where C is an arbitrary constant.

Formal Antiderivative of a Power Series

Fundamental Problem: Suppose that the power series

$$
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

has radius of convergence $\boldsymbol{R}>0$. Let

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

be the function that is represented by this power series on the interval ($a-R, a+R$). Are the formal anitderivatives

$$
C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-a)^{n+1}
$$

true antiderivatives of the function f ?

Formal Antiderivative of a Power Series

Key Observations:

1. The series

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-a)^{n}
$$

is obtained from $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ by dividing each coefficient a_{n} by $q(n)=n+1$ so they have the same radius of convergence R.
2. The formal antiderivative

$$
C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-a)^{n+1}
$$

will have radius of convergence \boldsymbol{R}.
3. If

$$
F(x)=C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-a)^{n+1}
$$

on $(\boldsymbol{a}-\boldsymbol{R}, a+\boldsymbol{R})$, then its formal derivative is

$$
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

Term-by-Term Integration of a Power Series

Theorem: [Term-by-Term Integration of a Power Series]
Assume that the power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ has radius of convergence
$\boldsymbol{R}>0$. Let

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

for every $\boldsymbol{x} \in(\boldsymbol{a}-\boldsymbol{R}, \boldsymbol{a}+\boldsymbol{R})$. Then the series

$$
\sum_{n=0}^{\infty} \int a_{n}(x-a)^{n} d x=C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-a)^{n+1}
$$

also has radius of convergence \boldsymbol{R} and if

$$
F(x)=C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-a)^{n+1}
$$

then $F^{\prime}(x)=f(x)$.
Furthermore, if $[c, b] \subset(a-R, a+R)$, then

$$
\int_{c}^{b} f(x) d x=\int_{c}^{b} \sum_{n=0}^{\infty} a_{n}(x-a)^{n} d x=\sum_{n=0}^{\infty} \int_{c}^{b} a_{n}(x-a)^{n} d x
$$

Term-by-Term Integration of a Power Series

Important Note: It may seem perfectly natural that we are also able to integrate term-by-term the functions that are represented by a power series.

In general, if

$$
F(x)=\sum_{n=1}^{\infty} f_{n}(x)
$$

for each $x \in[a, b]$, then we might hope that

$$
\int_{a}^{b} F(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x
$$

Fact: If we do not make any additional assumptions about the nature of the functions f_{n} or about how the series converges, then it is possible that the function \boldsymbol{F} need not even be integrable on $[a, b]$ even if all of the f_{n} 's are.

Term-by-Term Integration of a Power Series

Example: Find a power series representation for $\ln (1+x)$.
Solution: Note that

$$
\frac{d}{d x}(\ln (1+x))=\frac{1}{1+x}
$$

Key Observation: For any $u \in(-1,1)$,

$$
\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}
$$

If $u=-x$ we get

$$
\frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n}
$$

for any $x \in(-1,1)$.

Term-by-Term Integration of a Power Series

Solution (continued): Therefore, there is a constant C such that

$$
\begin{aligned}
\ln (1+x) & =C+\sum_{n=0}^{\infty} \int(-1)^{n} x^{n} d x \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}
\end{aligned}
$$

for all $x \in(-1,1)$.
When $x=0$ we get

$$
\begin{aligned}
0 & =\ln (1+0) \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} 0^{n+1} \\
& =C
\end{aligned}
$$

Therefore

$$
\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}
$$

for all $x \in(-1,1)$.

Term-by-Term Integration of a Power Series

Key Note: The series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}
$$

has radius of convergence $R=1$. However, if $x=1$ the series becomes

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} 1^{n+1}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots
$$

which is exactly the Alternating Series. Therefore, the series also converges at $x=1$.
By Abel's Theorem, the equation

$$
\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}
$$

is actually valid on ($-1,1$] and
$\ln (2)=\ln (1+1)=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

