Functions Represented by Power Series

Created by

Barbara Forrest and Brian Forrest

Functions Represented by Power Series

Example: Recall that the geometric series

$$
\sum_{n=0}^{\infty} x^{n}
$$

converges for each x with $|x|<1$.
Moreover, if $|x|<1$, then we also know that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Note: This means that the series provides us with a means to represent the function $f(x)=\frac{1}{1-x}$ on the interval $(-1,1)$.

Functions Represented by Power Series

Definition: [Functions Represented by a Power Series]

Let $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ be a power series with radius of convergence
$R>0$. Let I be the interval of convergence for $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$.
Let f be the function defined on the interval I by the formula

$$
\begin{equation*}
f\left(x_{0}\right)=\sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n} \tag{*}
\end{equation*}
$$

for each $x_{0} \in I$.
We say that the function f is represented by the power series
$\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ on I.

Functions Represented by Power Series

Example: Find a power series representation for the function

$$
f(x)=\frac{x}{1-x^{2}}
$$

on the interval $(-1,1)$.
Solution: We know for any $-1<u<1$ that

$$
\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}
$$

If $-1<x<1$, and if $u=x^{2}$, then $u \in(-1,1)$, so

$$
\frac{1}{1-x^{2}}=\sum_{n=0}^{\infty}\left(x^{2}\right)^{n}=\sum_{n=0}^{\infty} x^{2 n}
$$

Hence

$$
\begin{aligned}
\frac{x}{1-x^{2}} & =x \cdot \sum_{n=0}^{\infty} x^{2 n} \\
& =x \cdot \lim _{k \rightarrow \infty} \sum_{n=0}^{k} x^{2 n} \\
& =\lim _{k \rightarrow \infty} \sum_{n=0}^{k} x^{2 n+1}=\sum_{n=0}^{\infty} x^{2 n+1}
\end{aligned}
$$

Functions Represented by Power Series

Example: Find the function represented by the power series

$$
1+2 x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+\cdots
$$

on the interval $(-1,1)$.
Observation: If $x \in(-1,1)$, then

$$
\begin{aligned}
1+2 x+x^{2}+2 x^{3}+x^{4}+\cdots= & \left(1+x+x^{2}+x^{3}+\cdots\right) \\
& +\left(x+x^{3}+x^{5}+\cdots\right) \\
= & \sum_{n=0}^{\infty} x^{n}+\sum_{n=0}^{\infty} x^{2 n+1} \\
= & \frac{1}{1-x}+\frac{x}{1-x^{2}} \\
= & \frac{1+x}{1-x^{2}}+\frac{x}{1-x^{2}} \\
= & \frac{1+2 x}{1-x^{2}}
\end{aligned}
$$

for all $x \in(-1,1)$.

Functions Represented by Power Series

Question: Assume that the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ has radius of convergence $\boldsymbol{R}>\mathbf{0}$ and interval of convergence \boldsymbol{I}. What are the properties of the function

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n} ?
$$

1. Is f continuous on I ?
2. Is f differentiable on $(-\boldsymbol{R}, \boldsymbol{R})$? And if so what is its derivative?

Functions Represented by Power Series

Theorem: [Abel's Theorem: Continuity of Power Series]
Assume that the power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ has interval of convergence I. Let

$$
f\left(x_{0}\right)=\sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n}
$$

for each $x_{0} \in I$. Then f is continuous on I.

