Created by

Barbara Forrest and Brian Forrest

Example: Recall that the geometric series

$$\sum_{n=0} x^{n}$$

converges for each x with |x| < 1.

Moreover, if |x| < 1, then we also know that

$$rac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Note: This means that the series provides us with a means to *represent* the function $f(x) = \frac{1}{1-x}$ on the interval (-1, 1).

Definition: [Functions Represented by a Power Series]

Let
$$\sum_{n=0}^{\infty} a_n (x-a)^n$$
 be a power series with radius of convergence $R > 0$. Let I be the interval of convergence for $\sum_{n=0}^{\infty} a_n (x-a)^n$.

Let f be the function defined on the interval I by the formula

$$f(x_0) = \sum_{n=0}^{\infty} a_n (x_0 - a)^n \quad (*)$$

for each $x_0 \in I$.

We say that the function f is represented by the power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ on I.

Example: Find a power series representation for the function

$$f(x) = \frac{x}{1 - x^2}$$

on the interval (-1, 1).

Solution: We know for any -1 < u < 1 that

$$\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n$$

If -1 < x < 1, and if $u = x^2$, then $u \in (-1,1)$, so

$$\frac{1}{1-x^{2}} = \sum_{n=0}^{\infty} (x^{2})^{n} = \sum_{n=0}^{\infty} x^{2n}$$

$$\frac{x}{1-x^{2}} = x \cdot \sum_{n=0}^{\infty} x^{2n}$$

$$= x \cdot \lim_{k \to \infty} \sum_{n=0}^{k} x^{2n}$$

$$= \lim_{k \to \infty} \sum_{n=0}^{k} x^{2n+1} = \sum_{n=0}^{\infty} x^{2n+1}$$

Hence

Example: Find the function represented by the power series

$$1 + 2x + x^2 + 2x^3 + x^4 + 2x^5 + \cdots$$

on the interval (-1, 1).

Observation: If $x \in (-1, 1)$, then $1 + 2x + x^{2} + 2x^{3} + x^{4} + \dots = (1 + x + x^{2} + x^{3} + \dots)$ $+(x+x^3+x^5+\cdots)$ = $\sum_{n=1}^{\infty} x^n + \sum_{n=1}^{\infty} x^{2n+1}$ n=0 n=0 $= \frac{1}{1-x} + \frac{x}{1-x^2}$ $= \frac{1+x}{1-x^2} + \frac{x}{1-x^2}$ $= \frac{1+2x}{1-x^2}$ for all $x \in (-1, 1)$.

Question: Assume that the series $\sum_{n=0}^{\infty} a_n (x-a)^n$ has radius of convergence R > 0 and interval of convergence I. What are the properties of the function

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n ?$$

- 1. Is f continuous on I?
- 2. Is f differentiable on (-R, R)? And if so what is its derivative?

Theorem: [Abel's Theorem: Continuity of Power Series]

Assume that the power series $\sum\limits_{n=0}^{\infty}a_n(x-a)^n$ has interval of convergence I. Let

$$f(x_0) = \sum_{n=0}^\infty a_n (x_0 - a)^n$$

for each $x_0 \in I$. Then f is continuous on I.